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Abstract
To increase the range of applicability of decoupling strategies for reliability-based design optimization (RBDO), a sequential
optimization and moment-based reliability assessment (SOMRA) is proposed. In this approach, a moment method based on the
univariate dimension reduction method (UDRM) and probability density function (PDF) estimation is employed. Meanwhile, a
corresponding mathematical model and a PDF-based method of calculating the shifting scalar are developed to decouple the
reliability assessment from the optimization process. The shifting scalar is corrected according to the nonlinear degree of the limit
state surface of the performance function before reconstructing the mathematical model for the next iteration of optimization.
This approach uses statistical moments to check whether the constraints are active, and rather than assessing the reliability and
calculating the shifting scalars for all constraints, only the active constraints are considered for the PDF estimation and shifting
scalar calculation. Three numerical examples and an automobile crashworthiness lightweight design problem are presented to
demonstrate the effectiveness of the proposed method.
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1 Introduction

Reliability-based design optimization (RBDO), which con-
siders the uncertainty of both design variables and system
parameters, has been widely used in practical engineering
fields (Ho-Huu et al. 2018). In the study of Lv et al. (2016),
a reliability optimization of front-end structure design of a
vehicle was carried out to reduce passenger injuries and to
improve the design reliability. Compared with deterministic
optimization, RBDO considers fluctuations in the design var-
iables caused by noise, which improves the failure probability
of the structures. However, the traditional double-loop method
(DLM) embeds reliability evaluation into the optimization

algorithm, and the calculation cost is unacceptable.
Therefore, an efficient RBDO method is urgently needed.

At present, research on the efficiency of the RBDO can be
divided into two categories: (1) research that establishes a
surrogate model to reduce the time of the reliability evaluation
and (2) research that adopts efficient optimization strategies,
such as the single-loop method and the decoupling method, to
reduce the number of constraint evaluations in the reliability
assessment.

In practical engineering, implicit functions that require fi-
nite element analysis (FEA) and computational fluid dynam-
ics (CFD) are always computationally expensive and time
consuming. To solve this problem, a surrogate model can be
established to improve the efficiency of the performance func-
tion evaluations. Common surrogate models include the radial
basis functions (Dai et al. 2011), a chaotic polynomial (Hu and
Youn 2011), kriging (Ju et al. 2008), and support vector ma-
chine (SVM) (Basudhar and Missoum 2008). Zhang et al.
(2017) adopted the response surface (RS) method, the expan-
sion optimal linear estimation (EOLE) method, and the gradi-
ent projection method (GPM) to transform a time-dependent
reliability problem into a time-independent reliability prob-
lem. To further improve the modeling efficiency, various sam-
pling criteria have been proposed. Bichon et al. (2008)
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developed an efficient global reliability analysis (EGRA)
method that selected points with high uncertainty as sample
points. Lee et al. (2008) proposed the constraint boundary
sampling (CBS) method, which evaluated samples around
the limit state constraint boundary. Based on this idea, the
sequential sampling (SS) method (Zhao et al. 2009), local
adaptive sampling (LAS) method (Chen et al. 2014), and local
kriging approximation method based on the MPP (LMPP) (Li
et al. 2016), which selects the sample point on the limit state
constraint boundaries around the current design point, were
proposed to further improve modeling efficiency. Based on
the kriging model, Meng et al. (2018, 2019) developed an
adaptive directional boundary sampling (ADBS) method and
an importance learning function (ILF) to improve the efficien-
cy of kriging model construction. ADBS and ILF were ex-
tended to accurately and efficiently solve the RBDO and non-
probabilistic reliability-based design optimization (NRBDO)
problems with multiple performance functions. In ADBS, the
points near the constraint boundary along the descending di-
rection of objective functions were selected with more oppor-
tunity. In ILF, the non-probabilistic reliability indexes of dif-
ferent points near the limit state surface were calculated to
compare points in terms of importance.

Although the surrogate model can effectively improve the
efficiency of RBDO by reducing the calculation time of the
performance function, the traditional strategy of the DLM
makes the computation expensive. Nested structure is utilized
in the optimization process of DLM and reliability assessment
is performed after each optimization iteration. Thus, optimi-
zation strategies reducing the number of reliability assess-
ments were developed (Liao and Ivan 2014; Wang et al.
2018; Lu et al. 2018; Cho and Lee 2011). The single-loop
strategy (Agarwal et al. 2008) uses the Karush-Kuhn-Tucker
(KKT) optimality condition corresponding to the probability
constraint instead of reliability assessments. Shan and Wang
(2008) proposed a novel approach that decomposed RBDO
into two independent parts, and a deterministic optimization
constrained by the reliable design space (RDS) would be per-
formed only once. However, the error around the saddle point
of the performance function increases as the standard devia-
tions of the design variables increase. The decoupling loop
strategy sequentially performs optimization design and a
reliability assessment by an iterative method to improve
efficiency while maintaining almost the same precision. Wu
and Wang (1996) used safety-factor-based deterministic con-
straints instead of the probabilistic constraints to avoid
performing an optimization with nested structure. Du and
Chen (2003) proposed a sequential optimization and reliabil-
ity assessment (SORA) method to shift the boundaries of vi-
olated constraints (with low reliability) in the feasible direc-
tion based on the reliability information obtained in the previ-
ous cycles. Liang et al. (2004) developed a single-loop meth-
od (SLM) to calculate the RDS based on the derivatives of the

optimal design point. Cheng et al. (2006) obtained the opti-
mum design by solving a sequence of subprogramming
problems and introduced a new formulation for approximate
reliability constraints and its linearization. Huang et al. (2012)
proposed an enhanced SORA (ESORA) method that con-
siders constant and varying variances. The gradient of the
performance function at MPP is approximated to improve
the RBDO efficiency when the performance functions are
not all linear. Chen et al. developed an optimal shifting vector
(OSV) approach (Chen et al. 2013a) and an adaptive
decoupling approach (ADA) (Chen et al. 2013b) to further
improve the efficiency of RBDO. Huang et al. (2016) pro-
posed an incremental shifting vector (ISV) approach to obtain
the new shifting vector by preserving the shifting vector from
the previous steps and computing a shifting vector increment,
which made the process of reliability analysis unnecessary.

However, the decoupling methods mentioned above ap-
proximate the limit state function based on the MPP or
Taylor series expansion. The equivalent deterministic con-
straints are obtained by translating the whole limit state sur-
face based on the reliability information of optimal design
points, which will sometimes introduce errors. In recent years,
a moment-based reliability assessment method that requires
neither iterations nor the computation of sensitivities was de-
veloped. This method consists of two steps: the calculation of
statistical moments and the estimation of a probability density
function (PDF). The univariate dimension reduction method
(UDRM), proposed by Rahman and Xu (2004), calculates
statistical moments precisely and rapidly and has promoted
the development of moment-based reliability assessment.
Several approaches, including the Pearson system (Nagahara
2004), saddlepoint approximations (SA) (Huang and Du
2006), the extended generalized lambda distribution (EGLD)
(Acar et al. 2010), and the maximum entropy method (MEM)
(Dai et al. 2008), were used to estimate the distribution of a
continuous random variable with moments of finite orders. To
handle arbitrary probability distribution, Liu et al. (2018) pro-
posed a general framework for the forward and inverse struc-
tural uncertainty propagations based on the dimension reduc-
tion (DR) method and the derivative lambda probability den-
sity function (λ-PDF). The results indicated that the moment
methods are generally more accurate and efficient for distri-
bution generation than the first-order reliability method
(FORM) and the second-order reliability method (SORM).
Due to their advantageous features, the moment methods are
alternatives to FORM or SORM when (1) the performance
function does not have a derivative; (2) the MPP is hard to
identify; (3) there are multiple MPPs; or (4) the probability is
close to the median and FORM or SORM cannot provide
accurate solutions (Huang and Du 2006). Lee and Jung
(2008) proposed a DRM-based MPP method for inverse reli-
ability analysis, and the method is then used for the next
design iteration of RBDO to obtain an optimal design. Du
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(2008) considered the SA for sequential optimization to re-
duce the nonlinearity caused by a non-normal-to-normal
transformation, which did not improve the RBDO accuracy
based on the MPP.

While moment-based methods for reliability assessment
have been well-developed in recent years, the decoupling
strategy for RBDO still focuses on MPP-based methods.
The objective of this work is to develop an efficient and ac-
curate decoupling strategy for RBDO based on the moment-
based method. In the proposed method, the moment-based
reliability assessment method is employed to perform uncer-
tainty analysis; and the corresponding decoupling loop strate-
gy, which includes the calculation of a probabilistic constraint
shifting scalar and a local shifting-modified factor, is then
developed to obtain the equivalent deterministic constraints
corresponding to the probabilistic constraints; an inactive con-
straint checking criterion is utilized to further improve the
efficiency. Three numerical examples and an automobile
crashworthiness lightweight design problem are examined to
show the effectiveness of the proposed approach.
Additionally, the accuracy of PDF estimation methods, i.e.,
MEM and Edgeworth series expansion, is compared based
on the optimization results.

The rest of this article consists of four sections. Section 2
describes the combined reliability assessment method
employed in the proposed method. The proposed method is
then introduced in detail in Section 3. In Section 4, four
RBDO examples are discussed to illustrate and test the ap-
proach. Finally, concluding remarks on this new method are
provided in Section 5.

2 Essence of the moment method

In this section, the basic procedure of themoment-basedmeth-
od involving UDRM and PDF estimation is mathematically
described.

The core of RBDO is its probabilistic constraint defined in
(1), which requires reliability assessments of a deterministic
constraint based on random variables and parameters. The
function prob(⋅) is defined as:

prob g D;X;Pð Þ≤0ð Þ ¼ ∫g D;X;Pð Þ≤0⋯∫ f X;P X;Pð ÞdXdP ð1Þ

where D, X, and P denote the vector of deterministic design
variables, the vector of basic random design variables, and the
vector of random parameters, respectively. g(D,X, P) is the
performance function, which denotes one of the deterministic
constraints; and f(X, P) is the joint PDF of all random vari-
ables and parameters. For convenience, we combine all ran-
dom variables and random parameters as V = [X, P]T = [x1,
…, xl, p1,…, pq]

T and assume that all random variables are
independent and normally distributed. Correlated random

variables can be transformed into normal independent random
variables by the Rosenblatt transformation (Rosenblatt 1952).
The probabilistic constraint is simply expressed as:

prob g D;Vð Þ≤0ð Þ ¼ ∫g D;Vð Þ≤0⋯∫ f V Vð ÞdV ð2Þ

The integral operation of the PDF is the key step in calcu-
lating the reliability or failure probability of a performance
functiong(D, V). We can see that (2) involves a high-
dimensional integration with the same dimension as the num-
ber of random variables and parameters, which is quite diffi-
cult to calculate directly. Analytical methods such as FORM
and SORM are efficient in reliability analysis, but the potential
error resulting from limit state approximation is not known.

To ensure that RBDO based on a decoupled loop can be
employed for more problems in engineering applications, this
paper uses statistical moments and PDF estimation to calcu-
late the reliability of the performance function. Therefore, the
first four statistical moments based on the UDRM and the
PDF calculated via MEM or Edgeworth series expansion are
introduced in Section 2.1 and Section 2.2, respectively.

2.1 Univariate dimension reduction method

The UDRM was proposed by Rahman and Xu (2004) to ap-
proximate the statistical moments of the performance func-
tion, which is affected by the random variables and parame-
ters. The calculation procedure of statistical moments involves
an additive decomposition of a multidimensional function into
multiple one-dimensional functions, an approximation of re-
sponse moments by the moments of single random variables
or parameters, and a quadrature rule for numerical integration.

In general, considering an n-dimensional, differentiable,
real-valued performance function g(V) with random variables
V(v1,…vn), the performance function g(V) approximated by
multiple one-dimensional functions can be expressed as:

g Vð Þ ¼ g v1;…; vnð Þ≅ ∑
n

i¼1
gi− n−1ð Þg μv1 ;…; uvn

� � ð3Þ

where gi ¼ gi μv1 ;…;μvi−1 ; vi;μviþ1
;…;μvn

� �
denotes the

one-dimensional function with respect to vi. If we define
g0 ¼ g μv1 ;…;μvn

� �
, then, the jth origin moment of the per-

formance function, mj, can be calculated as (Zhang et al.
2011):

mj ¼ E g j Vð Þ� �
≅ ∑

j

k¼0
Ck

jE ∑
n

i¼1
gi

� 	k( )
� 1−nð Þ � E g0ð Þ½ � j−k ð4Þ

where Ck
j ¼ j!=k!= j−kð Þ! denotes the binomial coefficients

and E(·) denotes the mean function. According to the
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polynomial theory, the summation E ∑
n

i¼1
gi

� 	k
can be further

rewritten as:

E ∑
n

i¼1
gi

� 	k
¼ ∑

kl ≥0;k1þ…þkn¼k

k
k1;…; kn


 �
∏

1≤ i≤ n
E gkii
� � ð5Þ

The one-dimensional integration in (5) can be expressed as:

E gki
� � ¼ ∫gk μv1 ;…;μvi−1 ; vi;μviþ1

;…;μvn

� �
f vi vð Þdv ð6Þ

where k denotes the order of moments for the one-dimensional
random function and f vi vð Þ denotes the PDF of vi, which is

transformed into a normal distribution.
Finally, the Gauss-Hermite quadrature rule is used to ap-

proximate the one-dimensional integration function E gki
� �

.
The number of integration points depends on the nonlinearity
of the performance function. In this paper, we take six inte-
gration points for the exponential function and four integration
points for the polynomial function. The computational effort
(CE) can be measured by the number of function evaluations
and is given by

CE ¼ nv � ng þ 1 ð7Þ

where nv denotes the number of design variables and ng de-
notes the number of Gauss integral points.

2.2 PDF estimation method based on statistical
moments

The calculation accuracies of the SA, EGLD, Pearson sys-
tem, and MEM for the PDF of the performance function
were compared in Li and Zhang (2011). The results
showed that the MEM is the most accurate method in
PDF modeling and that it is not sensitive to a moderately
low reliability level. Meng et al. (2016) demonstrated that
Edgeworth series expansion has the advantages of fast con-
vergence speed and fewer calculations and can estimate a
PDF of a complex structure. Therefore, while validating
the efficiency of the proposed method, the accuracies of
the reliability calculation of the MEM and Edgeworth se-
ries expansion method are discussed.

2.2.1 Edgeworth series expansion

Edgeworth series expansion (Barndorff-Nielsen and Cox
1979) is a true asymptotic expansion that can theoretically
approximate an arbitrary distribution by using the Gauss basis
function. The first four terms can usually obtain a sufficiently

high accuracy, and the cumulative distribution function (CDF)
is defined as follows:

F zð Þ≅Φ zð Þ− u2g
� �−1

2
=6


 �
Φ 3ð Þ zð Þ þ 1

24
u4g= u2g

� �2
=24−0:125


 �
Φ 4ð Þ zð Þ

þ u2g
� �−1

2
=72


 �2

Φ 6ð Þ zð Þ

ð8Þ

where z denotes the value of the performance function; ukg
denotes the kth center moment of the performance func-
tion, which can be calculated by the origin moments; Φ
denotes the standard normal CDF; Φ (k)(z) = (−1)k −
1φ(z)Hk − 1(z) denotes the kth derivative of the standard
normal CDF; φ denotes the standard normal PDF; and
Hk − 1(z) is the Hermite polynomial, and its recursive rela-
tion can be expressed as follows:

H0 zð Þ ¼ 1;H1 zð Þ ¼ z
Hn zð Þ ¼ zHn−1 zð Þ− n−1ð ÞHn−2 zð Þ

�
ð9Þ

2.2.2 Maximum entropy method

The MEM is regarded as the most unbiased estimation of a
PDF, which means the most likely PDF from all the PDFs
under constraints of the statistical moments (Zellner and
Highfield 1988). The PDF is an optimal solution to the opti-
mization problem, which is defined as follows:

max ∫− f zð ÞIn f zð Þdz
s:t: ∫zi f zð Þdz ¼ mi; i ¼ 0; 1;…; n

ð10Þ

wheremi is the ith origin moment and n denotes the number of
the given moment constraints, which is defined as 4 in this
paper. f(z) stands for the PDF of the performance function
determined by the MEM. The method of Lagrangian multi-
pliers is used to solve the above optimization problem. With
the Lagrangian multipliers λi, i = 0, …, 4, the Lagrangian
function can be expressed as

L ¼ ∫− f zð ÞIn f zð Þdzþ ∑
4

i¼0
λi ∫zi f zð Þdz−mi
� � ð11Þ

The analytical expression of f(z) is solved by f zð Þ ¼ exp

− ∑
4

t¼0
λtzt


 �
based on the necessary conditions for a station-

ary point for (10). We can obtain the five Lagrangian multi-
pliers by solving the set of nonlinear equations as follows:

∫ziexp − ∑
4

t¼0
λtzt


 �
dz ¼ mi; i ¼ 0;…; 4 ð12Þ
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3 Proposed method

It is universally known that different reliability assessment
methods correspond to different decoupled loop strategies of
RBDO. The accuracy of the RBDO is determined by three
factors: (1) the accuracies of the reliability assessment
methods used to determine the upper limit of the accuracy of
RBDO, (2) the errors introduced by the decoupled loop strat-
egies, and (3) the accuracy of the optimization algorithm. The
research described in this paper focuses on the first two points.
First, the existing decoupled strategies are all based on
FORM. However, the results in the literature show that the
moment methods are slightly more accurate than FORM in
some cases (Huang and Du 2006; Dai et al. 2008; Acar et al.
2010). Second, the transformation of probabilistic constraints
is based on the reliability information of optimal points rather
than areas, which will inevitably cause errors. In this paper, a
sequential optimization and moment-based reliability assess-
ment (SOMRA), which includes the moment-based reliability
assessment method and a corresponding decoupled loop strat-
egy, is proposed. It provides the same results as the conven-
tional nested optimization structure, but it is more efficient.

In the following sections, the SOMRA is described in de-
tail. The optimization framework and the mathematical model
of the SOMRA are introduced in Section 3.1. The method for
calculating the probabilistic constraint shifting scalar is pre-
sented in Section 3.2. A modified factor of the probabilistic
constraint shifting scalar is introduced in Section 3.3. In
Section 3.4, an inactive constraint checking method is
employed to further improve the efficiency. Finally, the flow-
chart and procedure of the proposed SOMRA are presented in
Section 3.5.

3.1 Optimization framework andmathematical model
of the SOMRA

The decoupled loop strategy performs deterministic optimiza-
tion and reliability assessment sequentially to solve the RBDO
problems. The well-recognized framework of the decoupled
loop strategy is illustrated in Fig. 1. The whole optimization
process mainly consists of four parts: initialization, determin-
istic optimization, reliability assessment, and convergence
conditions. The reliability assessment part applies the methods
mentioned in Section 2. The deterministic optimization part is
the core procedure and is described in detail first; the other
three parts will be introduced in subsequent sections.

The mathematical model includes the key information of
an optimization problem. The main difference between deter-
ministic optimization and probabilistic optimization is
reflected in constraint functions. The construction of the ap-
propriate equivalent deterministic constraints is critical during
iteration. Corresponding to the feasible design space (FDS)
consisting of deterministic constraints, the space as defined

by the probabilistic constraints is called an RDS (Shan and
Wang 2008). The difference between the FDS and the RDS
depends on the reliable information of the design points.
Based on the decoupled loop strategy and inverse MPP, Du
and Chen (2003) presented the mathematical model of SORA
during the iterative process:

minf D;μ Vð Þð Þ
s:t:g D;V−Sk

� �
≤0 ð13Þ

where Sk is the estimated difference between the inverse MPP
and the reliable design point in cycle k. It is relatively easy to
obtain the relationship between the MPP and the mean value
of X via deviation. Benefiting from the MPP-based method
itself, SORA transforms the probabilistic constraints into de-
terministic constraints based on the design variables. Actually,
the transformation between the probabilistic constraints and
equivalent deterministic constraints is a translation of the per-
formance function in the domain of independent variableX, as
shown by (13). However, the moment-based reliability assess-
ment cannot provide the MPP directly. It provides the PDF of
the performance function, which works well in calculating the
difference between FDS and RDS from the perspective of the
values of the performance function. In other words, for the
limit state equation Z = g(D,X) = 0, we can obtain the devia-
tion between probabilistic constraints and equivalent deter-
ministic constraints from the respective of the dependent var-
iable Z. Thus, the mathematical model of the SOMRA during
iteration can be expressed as follows:

minf D;μ Vð Þð Þ
s:t:g D;Vð Þ þ λk ≤0 ð14Þ

where λk is the probabilistic constraint shifting scalar, which
defines the difference between the deterministic and probabi-
listic performance functions in cycle k. It is obvious that the

Initialization

Convergence conditions

Deterministic optimization

End

Y

N

Reliability assessment

Fig. 1 Frame of the decoupled loop strategy
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transformation of SOMRA is a movement of the performance
function in the domain of dependent variable Z. Figure 2a and
b illustrate how SORA and the SOMRA transform probabi-
listic constraints into equivalent deterministic constraints, re-
spectively, by taking a two-dimensional performance function
as an example. From Fig. 2b, it is obvious that the SORA class
methods approximate the probabilistic constraint by calculat-

ing the shifting vector AB

!

, and the proposed SOMRA ap-
proximates the probabilistic constraint by calculating the
shifting scalar BC.

3.2 Probabilistic constraint shifting scalar calculation

The PDF and CDF of the performance function are obtained
through the MEM or Edgeworth series expansion methods
mentioned in Section 2.2. However, the PDF does not strictly
follow a normal distribution in most cases, even though the
basis function of the method mentioned above is the Gauss
function and the random variables are normally distributed.
Therefore, the shifting scalar calculated by the required reli-
ability index will cause a large error and divergence of the
algorithm. The PDF is then used to inversely calculate the
reliability index corresponding to the required reliability of
R. At the beginning of optimization cycle k, the reliability
index βk is expressed as follows:

βk ¼ F−1 Rð Þ ð15Þ
where R denotes the value of the probabilistic constraint and
F−1 denotes the inverse function of the CDF of the perfor-
mance function at the optimal point Vk in the previous cycle
k − 1. For the performance function subject to the standard
normal distribution, the value of the function is equal to the
product of the failure probability corresponding reliability in-
dex and the standard deviation. The symbol L is then defined
to represent this value, and we obtained the new limit state
surface of Z − L = g(D,X) − L = 0. The difference between the
SOMRA and SORA class methods is the limit state surface

obtained by transforming the performance function from the
perspective of the dependent variable (the value of the perfor-
mance function). When Z = g(D,X) ≤ L is satisfied, the prob-
abilistic constraint is almost satisfied. Therefore, the step
length L is a rough estimate of the shifting scalar. With mean
μk
g Vð Þ and standard deviation σk

g Vð Þ, we determine the step

length Lk at the design point Vk:

Lk ¼ σk
g Vð Þ � βk ð16Þ

It is found that the skewness of the performance function is
not equal to zero in most cases, which means that the mean μk

f the performance function at the design point Vk is not equal
to g(Vk). However, the optimization process is actually the
iterative movement of the design variable V in the feasible
region. To locate Vk on the limit state surface of the probabi-
listic constraint precisely, a compensation value α is added to
Lk:

αk ¼ μk
g Vð Þ−g Vk� � ð17Þ

By using (16) and (17), the probabilistic constraint shifting
scalar λk∗ can be expressed as:

λk* ¼ Lk þ αk ð18Þ

Then, a deterministic optimization and reliability assess-
ment are conducted on the updated optimization model based
on the shifting scalar λk∗. λ1∗ in cycle 1 is set equal to zero.
The reliability of those violated probabilistic constraints in
cycle k − 1 should be improved markedly using the proposed
probabilistic constraint shifting scalar. If some probabilistic
constraints are still not satisfied, we repeat the procedure cycle
by cycle until the objective converges, and the reliability re-
quirement is achieved when the difference in the shifting sca-
lars between two consecutive cycles is small enough.

Thus, similar to SORA, the proposedmethod accomplishes
the transformation from probabilistic constraints to equivalent
deterministic constraints. However, the proposed method

(a) (b)
Fig. 2 Transforming probabilistic constraint to equivalent deterministic constraint. a SORA. b SOMRA
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converges to a different design point than DLM for some
numerical examples. Therefore, it is necessary to develop a
local modified factor of shifting scalar to improve the accura-
cy of the proposed strategy, as introduced in Section 3.3.

3.3 Local shifting modified factor calculation

Research shows that the accuracy of the equivalent determin-
istic boundary of the SORA depends on the nonlinearity
around the inverse MPP, but the accuracy of the proposed
method depends on the integration of the nonlinearity from
the deterministic design point to the corresponding reliable
design point, which results in the equivalent deterministic
constraints deviating from the actual probabilistic constraints,
which the fundamental cause for why SOMRA gives an in-
correct result. However, the deviation is difficult to modify
because of the basic attribute of the performance function.
Some tests show that the limit state surface around the optimal
point calculated by SOMRA deviates greatly from the actual
limit state surface when the optimal point calculated by
SOMRA converges to an erroneous point. For convenience
of discussion, we still take a two-dimensional function as an
example. Its limit state surface is the cross section of the two-
dimensional function with the value of shifting scalar. It is
impossible to construct the true limit state surface because
the shape of the two-dimensional function is certain and the
shifting scalar is the same across the domain. This is the direct
cause of deviation.

It is obvious that only the shifting scalar can be modified.
Meanwhile, in FORM, the relationship between a point and its
MPP can be expressed approximately by explicit formulation.
Additionally, the relationship can be utilized to correct the
shifting scalar. Therefore, to construct the approximate limit
state surface, a modified factor based on MPP is proposed to
carry out global correction of a shifting scalar.

By using the method of Lagrange multipliers, Shan and
Wang (2008) give:

vu*i ¼ −β ∂g=∂vui
� �

*=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ ∂g=∂vuið Þ2*

q
; i ¼ 1;…; n ð19Þ

where * denotes the point on the state limit surface; u denotes
the standard normal distribution space; vu*i is the component

of theMPPVu∗; the derivatives ∂g=∂vui
� �

* are evaluated at the

MPP Vu∗; and β is the reliability index. By using the transfor-
mation vui ¼ vi−uvið Þ=σvi , we can transform (19) back to the
original design space:

vi* ¼ μvi−βσ
2
vi ∂g=∂við Þ*=:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ σvi ∂g=∂við Þ*
� �2q

ð20Þ

where vi∗ denotes a component of the point in the original
design space corresponding to the MPP in the normalized
variable space. We approximate the direction cosine part,

∂g=∂við Þ*=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ σvi ∂g=∂við Þ*
� �2q

, in (20) by evaluating it at

the corresponding mean point by substituting (∂g/∂vi)∗ with
∂g=∂μvi

� �
. Thus, we have (Shan and Wang 2008):

vi* ≅ μvi−βσ
2
vi ∂g=∂μvi

� �
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ σvi ∂g=∂μvi

� �� �2q
ð21Þ

The difference d between the equivalent deterministic con-
straint and deterministic constraint can be approximately
expressed as:

d ≅ g μVð Þ−g V*ð Þ ð22Þ

To simplify d, a first-order Taylor series expansion at the
point μV is employed to approximate the performance func-
tion. By using (21) and (22), d can be rewritten as:

d ≅ g μVð Þ− g μVð Þ þ ∑
n

i¼1
∂g=∂μvi � vi*−μvi

� �
 �

¼ β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ σvi ∂g=∂μvi

� �� �2q
ð23Þ

The modified factor Fk based on the optimal point Vk in
cycle k can be expressed as a proportionality coefficient as
follows:

Fk ¼ d=dk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ σvi ∂g=∂μvi

� �� �2q
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ σvki

∂g=∂μvki

� �� �2
r

ð24Þ

Finally, with the shifting scalar λ∗ calculated in
Section 3.2, we obtain the modified probabilistic constraint
shifting scalar λk in cycle k:

λk ¼ Fk � λk* ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ σvi ∂g=∂μvi

� �� �2q
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ σvki ∂g=∂μvki

� �� �2
r

� σkg Vð Þ � βk þ μk
g Vð Þ−g Vk� �� �� � ð25Þ

With the shifting scalar λ, the construction procedure of the
equivalent deterministic constraints considers the performance
function around the optimal point rather than the monolithic
translation. Because each probabilistic constraint has its own
PDF and reliability index, each probabilistic constraint has its
own shifting scalar. The stopping criteria for the SOMRA are
as follows: (1) the Euclidean norm of the difference of the
optimal design points between two consecutive cycles is small
enough, and (2) all the reliability requirements are satisfied.

3.4 Inactive constraint checking criterion

It is unnecessary to conduct reliability assessment and to cal-
culate the shifting scalar for inactive probabilistic constraints
during the optimization process, as these processes reduce the
efficiency. Using the UDRM, we can roughly judge whether
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the constraints are active. When obtaining the statistical mo-

ments, the reliability index βk
c can be expressed as follows:

βk
c ¼ μk

g Vð Þ=σ
k
g Vð Þ ð26Þ

where μk
g Vð Þ and σ

k
g Vð Þ denote the mean and standard deviation

of the performance function, respectively. We can roughly
judgewhether the probabilistic constraints are active as follows:

1) Inactive when βk
c−βr > ε. βr is the required reliability in-

dex and ε is a small positive number; we choose ε = 0.3βr.
2) Active when βk

c−βr ≤ε.

For inactive probabilistic constraints, the procedures for
PDF modeling and shifting scalar calculation can be omitted.

The statistical moments will be recalculated in each iteration.
Thus, the error prediction does not accumulate.

Here, we calculate the probabilistic constraint shifting scalarλ
of SOMRA. By using the mathematical model of the SOMRA,
the number of reliability assessments will be reduced significant-
ly at the cost of adding several deterministic optimizations.

3.5 Flowchart and procedure of the proposed method

The flowchart of the SOMRA method is given in Fig. 3. It
consists of five procedures:

1) Definition of the initial design point d0. In cycle k(k ≥ 2),
the initial design point is taken as the optimal point of the
previous cycle.

Table 1 Summary of the optimization results for numerical example 1.11

RBDO method MCS
(107)

DLM SOMRA DLM SOMRA DLM SORA

λ∗ λ λ∗ λ
UDRM+MEM UDRM+Edgeworth PMA

d 2.8421,
3.2320

2.8452,
3.2281

2.9115,
3.1337

2.8471,
3.2261

2.8411,
3.2280

2.9114,
3.1331

2.8461,
3.2223

2.8163,
3.2769

2.8164,
3.2768

f(d) 1.3258 1.3264 1.3721 1.3264 1.3337 1.3733 1.3339 1.3038 1.3038

Relative error (%) – 0.1158 2.7958 0.1797 0.0958 2.8059 0.2438 1.2032 1.2000

No. of reliability assessments – 108 7 6 102 7 6 126 8

No. of deterministic optimizations – 1 7 6 1 7 6 1 4

No. of constraint evaluations – 1404 369 386 1326 369 398 2652 332

β1 – 2.0012 2.0060 2.0012 2.0335 2.0104 2.0329 1.8577 1.8552

β2 – Inf. Inf. Inf. Inf. Inf. Inf. Inf. Inf.

Initialization(d(0),k=1)

Calculate the shifting scalar and 
update the mathematical model 

(if k=1, =0)

Converge?

Deterministic optimization

End

Y

N

Active constraints?
N

Y

Reliability assessment

Calculate the k* by reliability 
index kand standard deviation k

Calculate the shifting scalar k by 
modified factor Fk and k*

Calculate the statistical moments 
by UDRM and GAUSS-

HERMITE quadrature rule

The PDF and the CDF estimated 
by MEM or Edgeworth series 

expansion

Active constraints?

Y

Nk=k+1

Fig. 3 Flowchart of the SOMRA
method
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2) Computation of the probabilistic constraint shifting scalar
λ according to the proposed method. The shifting scalar λ
will be used to update the mathematical model. In the first
cycle, λ is set as zero.

3) Optimization of the updated mathematical model using
sequential quadratic programming (SQP).

4) Reliability assessment using the method introduced in
Section 2. When obtaining the mean and standard devia-
tion, inactive constraint checking is carried out to judge
whether PDF estimation and shifting scalar calculation
are necessary.

5) End RBDO if the convergence conditions are reached;
otherwise, go back to step (1).

4 Applications

In this section, three numerical examples and an engineering
application are presented to demonstrate the effectiveness of the
SOMRA. For each example, the DLM is based on the

performance measurement approach (PMA), and the SORA,
the DLM moment-based method, and the SOMRA proposed
in this paper are used for optimization. In addition, the optimi-
zation results of the DLM based on Monte Carlo simulation
(MCS) and the SOMRA based on probabilistic constraints
shifting scalar λ∗ are given in the first two examples. The sam-
pling size of MCS is ten million. The result of DLM+MCS as
the reference standard and the relative error is expressed as:

Relative error ¼ Xt−Xk k
Xk k � 100% ð27Þ

where X denotes the design variables of the reference standard
and Xt denotes the design variables of different methods. SQP
is used to solve deterministic optimization problems and PMA.
For every example, the optimal solution of the design variables
and objective function, the number of reliability assessments,
the number of optimizations, and the number of constraint func-
tion evaluations are given. Additionally, the actual reliability
index of the design results is assessed through MCS with a
sampling size of ten million. All program codes are tested in
“MATLAB2016a,” and the SQP algorithm is realized by the
optimization routine “fmincon.”

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

X
2

X
1

Deterministic Equivalent deterministic

MCS(P1) DLM+MEM(P2) *(P3)

prob(g
2
(X))

g
2
(X)

prob(g
1
(X))

g
1
(X)

CRDS

2.8 2.9

3.1

3.2

3.3

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

X
2

X
1

Determinstic Equivalent deterministic

MCS(P1) DLM+MEM(P2) Itr(P4)

prob(g
2
(X))

prob(g
1
(X))

g
2
(X) g

1
(X)

CRDS

2.8 2.9

3.1

3.2

3.3

(a) (b)
Determinstic

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

X
1

Equivalent deterministic

MCS(P1) DLM+MEM(P2) (P5)

g
2
(X)

prob(g
2
(X))

prob(g
1
(X))

X
2

CRDS

g
1
(X)

2.8 2.9

3.1

3.2

3.3

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

X
2

X
1

Determinstic

g
1
(X)

prob(g
1
(X))

g
2
(X)

prob(g
2
(X))

Equivalent deterministic

MCS DLM+PMA SORA
CRDS

2.8 2.9

3.1

3.2

3.3

(c)                 (d)

Fig. 4 Limit state functions of numerical example 1.1. a Shifting scalar λ∗ in the last cycle. b Shifting scalar λ∗ at the point d2. c Shifting scalar λ in the
last cycle. d Result of SORA

Sequential optimization and moment-based method for efficient probabilistic design 395



4.1 Numerical example 1

Example 1.1 (Bichon et al. 2008) has two random design
variables and two probabilistic constraints. All the random
variables are statistically independent and have normal distri-
butions as follows:

find d ¼ d1; d2½ �T
min f dð Þ ¼ d1−3:7ð Þ2 þ d2−4ð Þ2
s:t: P gi Xð Þ≤0ð Þ≥Φ βið Þ; i ¼ 1; 2

where g1 Xð Þ ¼ �X 1sin 4X 1ð Þ � 1:1X 2sin 2X 2ð Þ
g2 Xð Þ ¼ X 1 þ X 2 � 3

0≤d1≤3:7; 0≤d2≤4;X i∼N di; 0:12
� �

; i ¼ 1; 2

β1 ¼ β2 ¼ 2; d 0ð Þ ¼ 2:5; 2:5½ �T

The optimization results are shown in Table 1. This prob-
lem has only one active constraint g1. Clearly, the optimization
result of the SOMRA converges to the same point as the DLM
for the moment-based reliability assessment method, which
significantly reduces the number of reliability assessments.
The result of the shifting scalar λ∗ causes a large error as

predicted, which means that the modified factor F of the
shifting scalar does work. However, the SORA gives the same
result as DLM+ PMA, although there is no correction of the
shifting vector in the optimization process of SORA. In sum-
mary, compared with MCS, the accuracies of all the methods
are acceptable based on the results of the objective function
and reliability indexes, excluding the SOMRA based on the
shifting scalar λ∗. The SOMRA based on MEM provides the
best design point with a slightly lower efficiency than SORA.

Figure 4 is presented to further demonstrate the effective-
ness of the SOMRA with the PDF estimation method of the
MEM. The black dashed line and red solid line denote the limit
state surface of the deterministic constraints and the equivalent
deterministic constraints with different shifting scalars, respec-
tively. For convenience of discussion, we define the RDS cal-
culated by different reliability assessment methods as the cal-
culation RDS (CRDS), which is the limit state surface of prob-
abilistic constraints. The blue dashed-dotted line denotes the
CRDS of different reliability assessment methods, which con-
sists of points meeting the probabilistic requirements after se-
quential testing in the FDS. The optimal design points of the
different methods are also shown in Fig. 4.

Figure 4a shows the optimization result with the shifting
scalar λ∗. As the distance from the optimal point increases, the
deviation from the limit state surface of the equivalent determin-
istic constraint to the CRDS boundaries increases, leading to a
poor result. Figure 4b shows the limit state surface of the equiv-
alent deterministic constraint using the actual optimal point cal-
culated by DLM +MEM as the iteration point. When the
boundaries of the equivalent deterministic constraint exactly in-
clude the reliable optimal point P2, the optimal point P4 based
on the equivalent deterministic constraint is out of the CRDS,
meaning that P4 is unreliable. In the next cycle, the limit state
surface of the equivalent deterministic constraint will be smaller
based on the reliability information of P4, and the real reliable
optimal pointP4 will be discarded. Figure 4c shows the result of
the shifting scalar λ corrected by the modified factor F. It is
observed that the limit state surface of the equivalent

Table 2 Summary of the optimization results for numerical example 1.2

RBDO method MCS (107) DLM SOMRA DLM SOMRA DLM SORA
UDRM+MEM UDRM+Edgeworth PMA

d 2.7913,
3.2720

2.7836,
3.2725

2.7897,
3.2703

2.7816,
3.2724

2.7897,
3.2694

2.7723,
3.3360

–

f(d) 0.5735 0.5762 0.5766 0.5771 0.5780 0.4927 –

Relative error (%) – 0.1794 0.0543 0.2257 0.0709 1.5523 –

No. of reliability assessments – 110 6 200 5 63 –

No. of deterministic optimizations – 1 6 1 5 1 –

No. of constraint evaluations – 1430 390 2600 333 6679 –

β1 – 2.0186 2.0159 2.0217 2.0251 1.5270 –

β2 – Inf. Inf. Inf. Inf. Inf. –
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deterministic constraint around the optimal design point has a
significant improvement in the fitting accuracy of the CRDS.
The small deviation between the SOMRA and moment-based
DLM further demonstrates the effectiveness and necessity of the
modified factor F. Figure 4d shows the SORA result. Although
there is no correction of the shifting vector in the SORA, the
limit state surface of the equivalent deterministic constraint fits
CRDS well. The SORA and DLM+PMA converge to almost
the same optimal design point; however, convergence occurs
only when the nonlinearity of limit state surface around the
optimal point is sufficiently low.

The convergence history of the objective function is
depicted in Fig. 5. The results are given by the strategies of
the MEM-based SOMRA and DLM. Notably, in the DLM,
iteration requires computations because of the reliability as-
sessment. However, in the SOMRA, one reliability assess-
ment follows one optimization, and only six reliability assess-
ments are performed in this example.

To illustrate the necessity of the modified factor in the
decoupled loop strategies, the objective function in example

1.1 is adjusted slightly by substituting f(d) = (d1 − 3.7)2 + (d2
− 4)2 with f(d) = (d1 − 3)2 + (d2 − 4)2. The new optimization
example 1.2 is expressed as:

find d ¼ d1; d2½ �T
min f dð Þ ¼ d1−3ð Þ2 þ d2−4ð Þ2
s:t: P gi Xð Þ≥0ð Þ≤Φ βið Þ; i ¼ 1; 2

where g1 Xð Þ ¼ −X 1sin 4X 1ð Þ−1:1X 2 sin 2X 2ð Þ
g2 Xð Þ ¼ X 1 þ X 2−3
0≤d1≤3:7; 0≤d2≤4;X i∼N di; 0:12

� �
; i ¼ 1; 2

β1 ¼ β2 ¼ 2; d 0ð Þ ¼ 2:5; 2:5½ �T

Table 2 shows the optimization results of numerical exam-
ple 1.2. The result of the SOMRA with shifting scalar λ is
given, and the SOMRA exhibits good consistency of conver-
gence. Moment-based RBDO methods give more accurate
results than those of MPP-based RBDO methods in this nu-
merical example. The result of the PDF estimation method of
MEM is slightly more accurate than that of the Edgeworth
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series expansion. The result of SORA is not given because of
non-convergence.

Figure 6a shows the limit state surface of the MEM-based
SOMRA in the last cycle. The limit state surface of the equiv-
alent deterministic constraint g1 fits well with CRDS around the
optimal design point; thus, the SOMRA has a good consistency
of convergence. Similar to the shifting scalar λ∗, the optimal
design point of DLM+PMA is considered to be the optimal
design point, and the limit state surface of the equivalent deter-
ministic constraint of the SORA is given in Fig. 6b. Clearly, the
contour of the equivalent deterministic constraint around the
optimal design point deviates from CRDS. The optimal design
point of DLM+PMA has two MPPs, which are located on the
left and right side of the saddle point on the limit state surface of
the deterministic constraint. The inverse MPP on the right side
is selected to construct the shifting vector in the SORA. The
optimal design point in such a situation is out of CRDS and on
the left side of the result of DLM+PMA, and the inverse MPP
calculated by PMA is on the left side of the saddle point of the
deterministic constraint. In the next cycle, the inverse MPP will
be on the right side of the saddle point, causing the optimization
to oscillate until the maximum number of iterations is reached.

Taking the points on the limit state surface of deterministic
constraints as the MPP, the corresponding design points can

be obtained by using (20) under the assumption of a first-order
Taylor series expansion. The reliability indexes of constraints
g1 and g2 are both set to 2. Figure 7a shows the result of the
limit state surface based on the inverse calculation of theMPP.
The equivalent deterministic constraints fit the CRDS well,
except, in the areas around the saddle point denoted by a
rectangular box. Figure 7b is the local magnification of
Fig. 7a around the saddle point. Point D has two MPPs of
points DMPP1 and DMPP2on both sides of the saddle point of
the limit state surface of the deterministic constraint. The
noticeable deviation between the equivalent deterministic
constraint and CRDS occurs when the deterministic con-
straints have saddle points at which the first derivative of
the constraint equals zero. The points in the inverted trian-
gle region constructed by the red solid line above have a
corresponding MPP of reliability index equal to 2 on the
limit state surface of deterministic constraint, but they do
not fulfill the required probability. When the optimal point
is located on the limit state surface between DMPP1 and
DMPP2 in the first cycle, the SORA will not converge or
provide a misleading result. Existing SORA class methods
do not provide a solution distinguishable from the MPP
candidates. The region that results in non-convergence in-
creases with the standard deviation of the random

Table 4 Summary of the optimization results for numerical example 2

RBDO method MCS
(107)

DLM SOMRA DLM SOMRA DLM SORA

λ∗ λ λ∗ λ
UDRM+MEM UDRM+Edgeworth PMA

d 2.4894,
2.6696

2.4924,
2.6602

2.4867,
2.6742

2.4867,
2.6742

2.4924,
2.6602

2.4924,
2.6601

2.4924,
2.6602

2.4854,
2.6873

2.4854,
2.6873

f(d) 2.1894 2.1874 2.1909 2.1908 2.1874 2.1875 2.1874 2.1923 2.1923
Relative error (%) – 0.2703 0.1461 0.1461 0.2703 0.2729 0.2703 0.4971 0.4971
No. of reliability assessments – 63 26 10 63 26 10 45 15
No. of deterministic optimizations – 1 13 5 1 13 5 1 5
No. of constraint evaluations – 819 1022 373 819 1012 379 1476 630
β1 – 1.9783 2.0117 2.0129 1.9783 1.9754 1.9774 2.0472 2.0472
β2 – 2.0072 2.0013 2.0009 2.0072 2.0084 2.0061 1.9870 1.9870

Table 3 Summary of the optimization results for numerical example 1.3

RBDO method MCS
(107)

DLM SOMRA DLM SOMRA DLM SORA
UDRM+MEM UDRM+Edgeworth PMA

d 2.9950,
3.1774

2.9910,
3.1833

2.9901,
3.1899

2.9453,
3.2547

2.9622,
3.2321

2.9985,
3.1710

2.9985,
3.1709

f(d) 1.1737 1.1697 1.1602 1.1250 1.1340 1.1793 1.1795

Relative error (%) – 0.1632 0.3074 2.1047 1.4606 0.1671 0.1691

No. of reliability assessments – 214 8 190 8 120 14

No. of deterministic optimizations – 1 8 1 8 1 7

No. of constraint evaluations – 2782 422 2470 398 3242 577

β1 – 2.0121 1.9301 1.9756 1.9431 2.0160 2.0103

β2 – Inf. Inf. Inf. Inf. Inf. Inf.
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variables, the second derivative of the limit state surface of
the performance function, and the reliability index.

To illustrate the effectiveness of the SOMRA in different
distribution types, the numerical example 1.3 with design vari-
able of uniform distribution is performed. In this example, when
calculating the statistic moment, the Gauss-Hermite quadrature
is replaced by the Gauss-Legendre quadrature according to PDF
of uniform distribution. Example 1.3 is expressed as follows.

find d ¼ d1; d2½ �T
min f dð Þ ¼ d1−3:7ð Þ þ d4−4ð Þ2
s:t: P gi Xð Þ≥0ð Þ≤Φ βið Þ; i ¼ 1; 2

where g1 Xð Þ ¼ X 1sin 4X 1ð Þ−1:1X 2sin 2X 2ð Þ
g2 Xð Þ ¼ X 1 þ X 2−3
0≤d1≤3:7; 0≤d2≤4;X i∼U di−0:1; di þ 0:1ð Þ; i ¼ 1; 2

β1 ¼ β2 ¼ 2; d 0ð Þ ¼ 2:5; 2:5½ �T

Table 3 shows the optimization results of numerical exam-
ple 1.3. The result of the SOMRA with shifting scalar λ is
given. All the methods give satisfactory results. The methods

of DLM+ PMA and SORA have good consistency that there
is little difference between the results of them. And the
SOMRA is more efficient with acceptable accuracy.
Therefore, the convergence performance of SOMRA is good
for design variables with uniform distribution.

4.2 Numerical example 2

This example has two random design variables and three
probabilistic constraints. All the random variables are statisti-
cally independent and have normal distributions as follows:

find d ¼ d1; d2½ �T

min f dð Þ ¼ d1 þ d2−8ð Þ2
30

þ d1−d2−15ð Þ2
120

s:t: P gi Xð Þ≤0ð Þ≥Φ βið Þ; i ¼ 1; 2; 3

where g1 Xð Þ ¼ 5−exp 0:8X 1−1:5ð Þ−exp 0:7X 2−0:2ð Þ
10

g2 Xð Þ ¼ 0:5� X 1−1ð Þ2 þ X 2−5

g3 Xð Þ ¼ X 1 þ X 2 þ 4:5ð Þ2
120

þ X 1−X 2−2:5ð Þ2
30

−2:3

0≤d1≤4; 0≤d2≤5;X i∼N di; 0:32
� �

; i ¼ 1; 2; 3

β1 ¼ β2 ¼ β3 ¼ 2; d 0ð Þ ¼ 3; 3½ �T

The optimization results are shown in Table 4. Some of the
conclusions are similar to those of numerical example 1.1. The
difference is that the convergence of the shifting scalar λ∗ is
worse for example 2. With the same number of reliability
assessments, UDRM+MEM is more accurate than UDRM+
Edgeworth, although the result of UDRM+Edgeworth is ac-
ceptable. However, although SORA gives the optimal solu-
tion in the CRDS among the reliability methods based on the
MPP, the accuracy of the solution is the worst because the
accuracies of the reliability methods are low.

Figure 8a and b show the boundary of the constraint in the
last cycle with the shifting scalars λ and λ*, respectively.
There is an interesting phenomenon in which the shifting
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scalars λ∗ and λ of the SOMRA obtain the same results. The
optimal design points are located at the intersection of the limit
state surface of equivalent deterministic constraints g1 and g2.
The equivalent deterministic constraints calculated by shifting
scalar λ fit the CRDS better than those of shifting scalar λ∗.
Unlike numerical example 1, the number of active constraints
is equal to that of the design variables in example 2. That is,
the optimal point is determined by the intersection of the limit
state surface of the active equivalent deterministic constraints.

The intersection converges to the optimal design point
resulting from the gradient algorithm. However, oscillation
occurs during the convergence process due to the low accura-
cy of the limit state surface calculated by shifting scalar λ∗,
and the efficiency of optimization decreases. The convergence
history of the objective function is depicted in Fig. 9.

4.3 Speed reducer design

The speed reducer shown in Fig. 10 is used to rotate an engine
and propeller with an efficient velocity in a lightweight plane
(Lee and Lee 2005). This problem has 7 statistically indepen-
dent random variables with normal distribution: gear width
(X1), gear module (X2), number of pinion teeth (X3), distance
between the bearings (X4, X5), and diameter of each shaft (X6,
X7). There are 11 probabilistic constraints related to physical
quantities, such as the bending stress, contact stress, longitu-
dinal displacement, stress of the shaft, and geometry con-
straints. The objective function minimizes the total weight.
The initial design point is selected as the result of deterministic
optimization. The description of the RBDO model of the
speed reducer is as follows:

Fig. 10 A speed reducer

Table 5 Summary of the optimization results for the speed reducer problem

RBDO method DLM SOMRA DLM SOMRA DLM SORA
UDRM+MEM UDRM+Edgeworth PMA

d 3.5765, 0.7, 17,
7.3, 7.7541,
3.3652, 5.3017

3.5765, 0.7, 17,
7.3, 7.7541,
3.3652, 5.3017

3.5765, 0.7, 17,
7.3, 7.7541,
3.3652, 5.3017

3.5765, 0.7, 17,
7.3, 7.7541,
3.3652, 5.3017

3.5765, 0.7, 17,
7.3, 7.7541,
3.3652, 5.3017

3.5765, 0.7, 17,
7.3, 7.7541,
3.3652, 5.3017

f(d) 3038.6347 3038.6347 3038.6344 3038.6344 3038.6128 3038.6125
No. of reliability assessments 880 12 880 12 528 33
No. of deterministic optimizations 1 3 1 3 1 3
No. of constraint evaluations 37,840 2215 37,840 2215 122,666 7676
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For problems with multiple random design variables and
multiple constraint optimizations, regardless of whether the
methods of PDF estimation are based on MEM or Edgeworth,
the convergence of the SOMRA is stable and accurate. As
shown in Tables 5 and 6, all methods give similar results. As
the number of random design variables increases, the advantage
of the efficiency of the proposed SOMRA becomes more obvi-
ous. Moreover, the proposed SOMRA is more efficient than
SORA. The proposed SOMRA has the same number of itera-
tions but fewer reliability assessments, meaning that the active
constraint checking is effective. With almost the same result, the
PDF estimation method of Edgeworth series expansion is more
likely to be chosen because the modeling process does not re-
quire equations to be solved. The convergence history of the
objective function is depicted in Fig. 11. As the number of
design variables increases, the efficiency improvement of the
decoupled loop strategy becomes more obvious.

4.4 Automobile crashworthiness lightweight design

The lightweight design of automobiles provides a promising
way to reduce energy consumption, and RBDO can effectively
solve the passive safety problem in lightweight vehicle design.
A vehicle front impact model is considered (Jiang and Deng

2014. The five components of the vehicle front-end structure,
namely, the crash box inner and outer plates, the front longitu-
dinal beam inner and outer plates, and the front bumper, are
closely related to the crashworthiness of vehicles. The thick-
nesses of these five components are treated as random design
variables. The design objective is the total mass M of the five
components. The constraints involve three crashworthiness in-
dexes obtained in high-speed frontal collision analysis, in which
the damage to the passenger must be controlled and a safe space
should be ensured. Therefore, the mean integration acceleration
of the left backseat a and the intrusion quantities of the upper
and lower mark points of the engine, IU and IL, are required to
be less than the given allowable values a0, IU0 , and IL0, respec-
tively. The RBDO problem is then formulated as follows:

find d ¼ d1; d2; d3; d4; d5½ �T
min f dð Þ ¼ 2:088d1 þ 0:4:4d2 þ 0:22d3 þ 1:2d4 þ 0:887d5
s:t: P gi Xð Þ≤0ð Þ≥Φ βið Þ; i ¼ 1;…; 3

where g1 Xð Þ ¼ IU Xð Þ−IU0
g2 Xð Þ ¼ IL Xð Þ−IL0
g3 Xð Þ ¼ a Xð Þ−a0;
a0 ¼ 40g; IU0 ¼ 270 mm; IL0 ¼ 180 mm
2:0mm≤d1≤3:0mm; 1:0mm≤d2≤3:0mm; 1:0mm≤d3≤2:5mm;

1:5mm≤d4≤3:0mm; 1:5mm≤d5≤3:0mm;

β1; β2;β3 ¼ 2:0;X i∼N di; 0:0052
� �

; i ¼ 1;…; 5;

d 0ð Þ ¼ 2:2; 2:2; 2:2; 2:2; 2:2½ �

A frontal impact finite element model (FEM) is established
to obtain the results, as shown in Fig. 12. The surrogate
models of the second-order polynomial response surface are
created based on 65 FEM results to improve the efficiency, as
shown in Table 7.

After RBDO analysis, the results are shown in Table 8.
RBDO based on the SOMRA gives reliable results, and the
SOMRA significantly improves the efficiency in terms of the
number of reliability assessments and constraint evaluations. In
the SOMRA, Edgeworth and MEM converge to similar points;
however, the Edgeworth converges in three cycles, while the
MEM converges in four cycles. In this example, the PMA is
replaced with the reliability index approach (RIA) because of
non-convergence, and the RIA uses the iHL-RF algorithm to

Table 6 Evaluation of the probabilistic constraints of the speed reducer problem at an optimum by MCS

Reliability index β1 β2 β3 β4 β5 β6 β7 β8 β9 β10 β11

DLM PMA Inf. Inf. Inf. Inf. 2.9997 2.9982 Inf. 3.0015 Inf. Inf. 3.0005

UDRM+
Edgeworth

Inf. Inf. Inf. Inf. 3.0040 3.0012 Inf. 2.9994 Inf. Inf. 3.0009

UDRM+MEM Inf. Inf. Inf. Inf. 3.0019 2.9956 Inf. 3.0015 Inf. Inf. 3.0028

SOMRA UDRM+
Edgeworth

Inf. Inf. Inf. Inf. 2.9983 2.9997 Inf. 3.0037 Inf. Inf. 3.0003

UDRM+MEM Inf. Inf. Inf. Inf. 3.0012 3.0005 Inf. 3.0017 Inf. Inf. 2.9984

SORA Inf. Inf. Inf. Inf. 3.0023 2.9960 Inf. 3.0031 Inf. Inf. 3.0026
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Fig. 11 Convergence history of the object of the speed reducer design
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search theMPP. It is obvious that the method based on theMPP
obtains the minimal value of the objective function, while the
reliability index of the constraint g1 is 1.85, which violates the
required reliability index. The convergence history of the ob-
jective function is depicted in Fig. 13.

5 Conclusion

In this paper, a SOMRA-based decoupled loop method is
proposed to improve the accuracy and efficiency of RBDO.

The innovations of the proposed SOMRA involve a new
mathematical model for optimization iteration, a correspond-
ing calculation method of the probabilistic constraint shifting
scalar based on moment reliability analysis, and a local
shifting modified factor utilized to correct the shifting scalar.
Additionally, an inactive constraint checking criterion in terms
of the statistical moments is proposed to further improve the
efficiency of optimization. The applicability of SOMRA de-
pends on that of the moment-based reliability assessment
method, which distinguishes the SOMRA from the existing
SORA class methods.

(a) t=0 s                               (b) t=0.1 s

Fig. 12 High-speed frontal
collision. a t = 0 s. b t = 0.1 s

Table 7 Surrogate models for the performance functions in engineering applications

Crashworthiness indexes Surrogate model

Intrusion quantities of the
upper mark points IU

IU dð Þ ¼ 37:824d21 þ 12:634d1d2−21:495d1d3−20:773d1d5−135:479d1 þ 25:779d22−15:08d2d4 þ 8:781d2d5−123:145d2
þ29:194d23 þ 7:606d3d4−65:554d3 þ 31:565d24−15:874d4d5−93:243d4−14:968d25 þ 106:945d5 þ 643:436

Intrusion quantities of the
lower mark points IL

IL dð Þ ¼ 51:82d1−9:242d2 þ 8:394d3−79:998d4−64:932d5−5:156d1d2 þ 6:211d2d3 þ 14:747d1d5−5:878d2d4
−9:894d2d5−8:811d3d4−2:477d3d5 þ 7:152d4d5−15:196d21 þ 6:761d22 þ 20:438d24 þ 7:471d25 þ 275:327

The mean integration
acceleration of the left

backseat a

a dð Þ ¼ 9:449d2−1:832d1 11:69d3 þ 10:636d4 þ 6:676d5−1:232d1d2−1:329d1d4 þ 1:106d2d3−0:914d1d5−1:313d2d5
−3:759d3d4−1:1978d3d5 þ 1:225d21−2:366d22−1:353d23−0:906d24 þ 16:596

Table 8 Summary of the optimization results for the lightweight design of automobile crashworthiness

RBDO method DLM SOMRA DLM SOMRA DLM SORA
UDRM+MEM UDRM+Edgeworth RIA(iHF-RF)

d/mm 2.1960, 2.3447,
1.6266, 2.1974,
2.3160

2.2064, 2.3333,
1.6310, 2.2036,
2.2875

2.1954, 2.3453,
1.6264, 2.1971,
2.3179

2.2065, 2.3332,
1.6311, 2.2037,
2.2876

2.2067, 2.3342,
1.6264, 2.2037,
2.2671

2.2067, 2.3342,
1.6264, 2.2037,
2.2671

f(d)/kg 10.5815 10.5818 10.5818 10.5821 10.5638 10.5638

No. of reliability
assessments

675 8 645 6 226 18

No. of
deterministic
optimizations

1 4 1 3 1 6

No. of constraint
evaluations

20,925 1330 19,995 1020 52,278 3357

β1 2.0453 2.0490 2.0490 2.0530 1.8489 1.8498

β2 Inf. Inf. Inf. Inf. Inf. Inf.

β3 2.0193 2.0186 2.0182 2.0175 2.0103 2.0097
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By optimizing three numerical examples and a practical
application, the following conclusions can be drawn: (1) The
SOMRA gives almost the same result as the DLM based on
the same moment method, but with much higher efficiency.
(2) The RBDO solution of the SOMRA in this paper is slightly
more accurate than the SORA in terms of objective function
and reliability index. (3) Without the modified factor for the
shifting vector, the SORA behaves well except that the opti-
mal design point is near the saddle point of the limit state
surface of the performance function. The modified factor is
necessary for the SOMRA, and it enables the SOMRA to
perform well even though the optimal design point is around
the saddle point. (4) MEM is more accurate than Edgeworth
series expansion in the calculation of reliability based on the
same statistical moments. The proposed method is an alterna-
tive to SORAwhen (i) theMPP is hard to identify, (ii) there are
multiple MPPs, (iii) the probability is close to the median
where FORM cannot provide accurate solutions, and (iv) the
PDF or CDF is required. Thus, the proposed SOMRA has
potential in the RBDO of complex products. However, the
SOMRA has the potential to further improve the convergence
consistency of design variables compared with SORA. The
application of the SOMRA in reliability design involvingmul-
tidisciplinary analysis will be explored in our future work.
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