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Abstract
Despite a solid theoretical foundation and straightforward application to structural design problems, 3D topology
optimization still suffers from a prohibitively high computational effort that hinders its widespread use in industrial design.
One major contributor to this problem is the cost of solving the finite element equations during each iteration of the
optimization loop. To alleviate this cost in large-scale topology optimization, the authors propose a projection-based reduced-
order modeling approach using proper orthogonal decomposition for the construction of a reduced basis for the FE solution
during the optimization, using a small number of previously obtained and stored solutions. This basis is then adaptively
enriched and updated on-the-fly according to an error residual, until convergence of the main optimization loop. The method
of moving asymptotes is used for the optimization. The techniques are validated using established 3D benchmark problems.
The numerical results demonstrate the advantages and the improved performance of our proposed approach.
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1 Introduction

Topology optimization, first introduced by Bendsoe (1989)
has matured over the last few decades (Xia and Breitkopf
2014, 2017) and has had a significant influence on design
optimization research.
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The classical topology optimization problem consists of
optimizing material distribution in two or three dimensions
so as to minimize the structural compliance, i.e., finding
the density distribution over a voxel grid for a chosen volume
fraction under a prescribed set of external loads and boundary
conditions. Density-based methods are today themost widely
used by engineers along with level-set methods (Zhou et al.
2019), topological derivative procedures (Allaire et al. 2004;
Norato et al. 2007), and phase field techniques (Xia et al.
2018), etc (Ferro et al. 2019). A comprehensive review of
developments in topology optimization post 2000 may be
found in Deaton and Grandhi (2014).

With the modern day mastery of additive manufacturing
techniques, topology optimization is increasingly being
applied in the design of engineered materials for aerospace
applications (Meng et al. 2019b). However, it is surprisingly
far from attaining mainstream popularity among structural
engineers, despite nearly two decades of research that have
been devoted to the subject. One of the key challenges
in topology optimization has been dealing with large-scale
or high-dimensional design problems that could involve
millions or even billions of degrees of freedom (Aage
et al. 2017). During each iteration of the optimization
process, we need to solve the equilibrium equations for the
computation–intensive numerical/finite element (FE) model
characterizing the discretized structure. This central and still
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unresolved issue of prohibitively high computational effort
casts an ever-present pall on its large-scale application to
industrial design.

High-performance computing approaches have been
proposed in the literature surveyed to deal with this problem
and are expectedly successful (Mahdavi et al. 2006; Aage
and Lazarov 2013; Aage et al., 2015, 2017), but most, if
not all, require an increase in computing resources to realize
their full potential in reducing the computational time.

Reanalysismethods have been used in topology optimization
since the seminal paper of Kirsch and Papalambros (Kirsch
and Papalambros 2001) in 2001, where they proposed a uni-
fied approach for structural reanalysis in topology optimization.
Wang et al. (2007) and Amir et al. (2009) proposed methods
based on the use of Krylov subspaces. In a different paper,
Amir et al. (2010) proposed the construction of a reduced
basis using the combined approximations method. Reanalysis
methods were also used in Amir et al. (2012), He and Jiang
(2012), and Kirsch and Bogomolni (2004). Yoon (2010)
used eigenmodes and Ritz vectors for the reduced basis in
topology optimization for vibration response. Gogu (2015)
extended the approach of Kirsch and Papalambros (2001)
and used Gram–Schmidt orthonormalization to construct a
reduced basis on-the-fly based on the violation of an error
residual. A survey of the available literature reveals a recent
resurgence of interest in reanalysis in topology optimization
(Zheng et al. 2017; Sun et al. 2018; Senne et al. 2019).

Reduced-order modeling (ROM), in particular, super-
vised manifold learning has become a popular approach in
a variety of fields today including computational mechan-
ics and structural optimization (Dutta et al. 2018). The basic
premise of projection-based ROM (Amsallem et al. 2015)
involves mapping the higher dimensional physics onto a
lower dimensional space through an appropriate reduced
basis calculated using various methods depending on the
nature of the problem at hand. While the field is still in its
infancy (given the magnitude of potential improvements),
the results obtained thus far have been more than promis-
ing. Principal components analysis (PCA) (Amsallem et al.
2015; Pearson 1901), proper generalized decomposition
(PGD) (Chinesta et al. 2011), hyper-reduction (Ryckelynck
et al. 2006), and reduced basis methods (Hoang et al. 2016)
are the three prominent schools of this field today. Of
these, PCA, also called proper orthogonal decomposition or
POD (Berkooz et al. 1993; Xiao et al. 2009; Dulong et al.
2007; Raghavan and Breitkopf 2013; Raghavan et al. 2013a;
Raghavan et al. 2013b; Meng et al. 2018; Madra et al. 2018;
Xiao et al. 2018; Meng et al. 2019a), is an a posteriori statis-
tical method that learns the covariance structure of complex
multivariate data.

With the very recent exceptions of Alaimo et al. (2018),
Ferro et al. (2019), and Choi et al. (2019), to the knowledge
of the authors, virtually no work has been done on coupling

topology optimization with POD. The work of Ferro et al.
(2019) involves applying POD to the density map and
yields a very efficient numerical scheme which loses
precision depending on the number of modes. Since their
ROM was not computed “on-the-fly,” i.e., with constant
monitoring using the full-field model, could have resulted
in the dependence of their obtained optimized topology
density map on basis size. In addition, Choi et al. (2019)
presented a novel approach to ROM-supplemented topology
optimization using inexact linear solutions by incremental
SVD during the initial stages of the optimization (when
the accuracy is not expected to be as strict), and
Krylov subspace methods with ROM recycling closer to
convergence, where greater accuracy is expected.

In this work, inspired by Kirsch and Papalambros (2001)
and Gogu (2015), we improve the computational efficiency
by mapping displacement field quantities of the large-scale
problem to a low-dimensional space through an appropriate
basis, which we calculate using POD. To render the method
more accessible on a workstation, we use an iterative
solver for the full-field solution. The method of moving
asymptotes (MMA) is used for the optimization as an
alternative to the classical optimality criteria (OC) method,
based on a dedicated version of sensitivity analysis.

The remainder of the paper is organized in the following
manner: in Section 2, the theoretical formulation is formally
presented beginning with classical topology optimization,
followed by the reduced-order basis construction and sensi-
tivity analysis. In Section 3, we summarize the algorithm for
on-the-fly basis construction using POD. Section 4 details
the numerical investigations using benchmark 3D compli-
ance minimization problems followed by a discussion. The
paper closes with concluding comments and recommenda-
tions for future work.

Extension to non self-adjoint problems is discussed in the
Appendix.

2 Theoretical formulation

The mathematical formulation of the discrete material
distribution problem may be expressed as follows:

min
ρ

c(ρ) = FT U = UT KU

N∑

e=1

veρe = vfracV < V

0 ≤ ρe ≤ 1, e = 1, . . . , N

KU = F (1)

where c is the compliance of the structure, ρ is the vector
of design variables consisting of the individual element (e)
densities ρe, F is the external forces vector, U is the FE
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displacement vector, K is the global stiffness matrix of
the structure, ve the volume of an element e, and V the
maximum prescribed volume for the entire structure. The
number of elements in the 2D/3D grid is N .

Using a modified solid isotropic material with penaliza-
tion model Amir et al. (2010), the density of an element can
be expressed as follows:

Ee(ρe) = Emin + ρ
p
e (Enominal − Emin) (2)

For topology optimization of large-scale structures, the
bulk of the computational cost expectedly stems from
the requirement to compute the numerical solution of the
equilibrium equations at each iteration:

KU = F (3)

Computing this full-field solution for large-scale topology
optimization problems involves the inversion of a very large
system of equations that can consist of up to millions
or billions (Aage et al. 2017) of degrees of freedom.
To improve the scalability of the approach to allow for
implementation on parallel computing systems eventually
(not treated in this particular paper), the FEA for the full-
field solution is performed using a preconditioned conjugate
solver for improved scalability, similar to Mahdavi et al.
(2006) except using an incomplete Cholesky decomposition
of K as the preconditioner.

The authors must point out that the PCG with incomplete
Cholesky is no longer the state of the art solver, and
computation times using multi-grid preconditioning (Tatebe
1993), the current gold standard according to the literature,
may well be different from those listed in this work.

The basic operations are given in Algorithm 1, which is
a standard procedure that may be found in any textbook

on numerical methods. However, the iterative solution is
still computationally expensive since it involves a large
number of degrees of freedom, but also because of the
preconditioning phase due to the poorly conditioned matrix
K (large variations between nearly void Emin and solid
Emax). To alleviate this issue, we propose a ROM procedure
in the following subsections.

2.1 Projection-based reduced-order modeling

To reduce the computational effort during an iteration of
the optimizer loop, we map the displacement field quantity
(i.e., U ) of the above large-scale problem (3) to a low-
dimensional space through an appropriate orthonormal
basis� (i.e.,�T � = I ) calculated on-the-fly using solution
snapshots from the previous iterations.

The basis � = [φ1 . . . φNb
] is obtained using an effective

set of Nb “snapshots” of the displacement field U temp =
[U1, U2, . . . , UNb

] each obtained by solving (3) during the
main optimization, centered around the mean snapshot ū =
(
∑Nb

k=1 Uk)/Nb. (Later on, we will show that � may be
calculated by singular value decomposition (svd) of U temp).

The problem projected onto the reduced basis transforms
into the reduced system:

�T KUrb = �T F (4)

where Urb is the approximate solution to the higher
dimensional displacement vector, obtained by a linear
combination of the projection coefficients (α):

Urb = �α + ū (5)

Equation (4) thus becomes:

�T K(�α + ū) = �T F (6)

The main consequence is that any of the displacement vector
snapshotsUi may be expressed as a finite basis linear combina-
tion:

Ui ≈ Ui
rb = ū +

m∑

k=1

αi
kφk = ū + �αi (7)

where the αi depend on the choice of the basis �. The error
residual is given by the following:

ε2rb = ‖ KUrb − F ‖2
‖ F ‖2 = ‖ K(�α + ū) − F ‖2

‖ F ‖2 (8)

corresponding to the relative error between the internal forces
stemming from the approximate reduced basis solution and
the actually applied forces. If the approximate solution Urb

were exact, the residual would be zero because the exact
solution would satisfy the equilibrium equations KU = F .

The goal then is to use Urb in place of U for the
optimization depending on the error threshold εrb. If this
error is unreasonable, we then run the full-field FE, i.e.,
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Equation (3) at that particular loop iteration to get a fresh
displacement vector that will then be used to refine the basis.
Note that in order to retain generality as far as possible, we
will hold off on presenting the exact method of calculating
the basis until the end of this section, the reason being that
much of this section is relevant regardless of the choice of
�. The exact basis updation scheme is described in the next
subsection

2.2 Sensitivity analysis

When the ROM, i.e., Urb is used in place of the FE
solution, the original objective function (compliance) may
be expressed as follows:

c(ρe) = UT
rbK(ρe)Urb = (�α + ū)T K(ρe)(�α + ū) (9)

The use of this expression, however, entails the verifica-
tion of some additional constraints. The first constraint
represents the Galerkin projected, i.e., reduced system of
equations (replacing the original FE):

KrbUrb = Frb or

�T KUrb = �T K(�α + ū) = �T F (10)

The second constraint must be on the snapshots U1 . . . UNb

used for generating the orthogonal basis vectors, having
each (by definition) been obtained through the solution of
the full equilibrium equation during the particular iteration
that they were added to the set of snapshots:

KiUi = F where i = 1, 2 . . . Nb (11)

where Ki is simply the stiffness matrix for which the snapshot
vectorUi was obtained. In the completely general case, the sen-
sitivity of the compliance calculated using the ROM is poten-
tially different from the sensitivity for the original problem.

Following Kirsch and Papalambros (2001) and Gogu
(2015), the conventional way to calculate themodified sensitiv-
ity is by using the adjoint equation, using Lagrange multipliers
μi, λi, i = 1 . . . Nb for the two constraints in (10) and (11).

The modified objective function may then be represented
as follows:

c(ρe) = (�α + ū)T K(�α + ū) − 2μT [�T K(�α + ū) − �T F ]

−
Nb∑

i=1

λT
i (KiUi − F) (12)

This expression may be simplified as follows:

c(ρe) = [αT �T K�α − 2μT (�T K�α − �T F)] + [2ūT K�α + ūT Kū

−2μT �T Kū] − [
N∑

i=1

λT
i (KiUi − F)] = c1(ρe) + c2(ρe) + c3(ρe) (13)

where c1, c2, and c3 are the termswithin the square brackets.

Each of the three terms may then be individually
evaluated as follows:
∂c1

∂ρe

= 2(α − 2μ)T
∂�T

∂ρe

K�α + 2(α − μ)T �T K�
∂α

∂ρe

+(α − 2μ)T �T ∂K

∂ρe

�α + 2μT ∂�T

∂ρe

F (14)

∂c2

∂ρe

= 2(α − μ)T �T K
∂ū

∂ρe

+ 2(α − μ)T �T ∂K

∂ρe

ū + ūT ∂K

∂ρe

ū

2(α − μ)T
∂�T

∂ρe

Kū + 2
∂αT

∂ρe

�T Kū + 2
∂ūT

∂ρe

Kū

= 2[(α − μ)T �T + ū]K ∂ū

∂ρe

+ [2(α − μ)T �T + ū] ∂K

∂ρe

ū

+2
∂αT

∂ρe

�T Kū + 2(α − μ)T
∂�T

∂ρe

Kū (15)

and the last term:

∂c3

∂ρe

= −
Nb∑

i=1

λT
i

∂Ki

∂ρe

Ui −
Nb∑

i=1

λT
i Ki

∂Ui

∂ρe

(16)

In order to solve the adjoint equation, we remember that we
are free to choose the Lagrange multipliers as we see fit. A
useful substitution is μ = (α + �T ū) giving the following:
∂c1

∂ρe

= −2(α + 2�T ū)T
∂�T

∂ρe

K�α − 2ūT K�
∂α

∂ρe

−(α + 2�T ū)T �T ∂K

∂ρe

�α + 2(α + �T ū)T
∂�T

∂ρe

F (17)

and
∂c2

∂ρe

= 2
∂αT

∂ρe

�T Kū − 2ūT �
∂�T

∂ρe

Kū − ūT ∂K

∂ρe

ū (18)

From the above, we end up with the following:
∂c

∂ρe

= −2(α + 2�T ū)T
∂�T

∂ρe

K�α − (α + 2�T ū)T �T ∂K

∂ρe

�α

+2(α + �T ū)T
∂�T

∂ρe

F − 2ūT �
∂�T

∂ρe

Kū

−ūT ∂K

∂ρe

ū −
⎡

⎣
Nb∑

i=1

λT
i

∂Ki

∂ρe

Ui +
Nb∑

i=1

λT
i Ki

∂Ui

∂ρe

⎤

⎦ (19)

which may further be simplified to the following:
∂c

∂ρe

= −UT
rb

∂K

∂ρe

Urb + 2UT
rb�

∂�T

∂ρe

(F − KUrb)

−
⎡

⎣
Nb∑

i=1

λT
i

∂Ki

∂ρe

Ui +
Nb∑

i=1

λT
i Ki

∂Ui

∂ρe

⎤

⎦

= −UT
rb

∂K

∂ρe

Urb + 2UT
rb�

∂�T

∂ρe

	F −
⎡

⎣
Nb∑

i=1

λT
i

∂Ki

∂ρe

Ui +
Nb∑

i=1

λT
i Ki

∂Ui

∂ρe

⎤

⎦(20)

The above equation is a generalized version of the expression
obtained by Gogu (2015), in the context of an orthonormal
basis � and including the effect of the mean snapshot ū, and
is valid for any reduced approach in the Galerkin family.
(Note that if the mean ū were assumed to be = 0 (centered
snapshots), the second set of terms within parentheses would
vanish yielding the same exact expression as in Gogu 2015).

To go further and obtain a final expression, we present
the updation strategy in the next subsection.
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2.3 On-the-fly reduced basis construction
and updation strategy

In the last equation of the previous subsection, we still need
to determine λ1..λNb

and ∂�
∂ρe

so as to obtain ∂c
∂ρe

, and these
will depend on the particular updation strategy, which is
explained in detail in this subsection.

After i ≥ Nb iterations of a classical topology optimiza-
tion procedure, we expect to have already calculated Nb dis-
placement vectors (U1 . . . UNb

) by the usual process of invert-
ing the full equilibrium equations in (3). As hinted earlier, the
subspace generated by these Nb previously calculated vectors
can be used to calculate a reduced basis� that could be used to
estimate the displacement vector for the next iteration (i+1).

This means that the corresponding (approximate) dis-
placement vector is obtained using the ROM in (5), which
calculates the reduced state variables at the current iteration
(i + 1) (and, thus, an approximation of U ) by solving the
equilibrium equations projected on the subspace generated
by the Nb displacement vector snapshots.

At iteration (i + 2), a new approximation of the displace-
ment vector can still be calculated using the ROM with the
same subspace generated by the first Nb displacement vec-
tors. This processmay be applied until the approximate solution
using the ROM is no longer sufficiently accurate, based, for
example, on a threshold on the value of the residual εrb in (8),
at which point, we use (3) to get a fresh snapshot vector to
replace the oldest stored vector, and thus refine the basis �.

So whenever the ROM is used, we have Nb basis vectors
that are only updated as and when the residual exceeds
our pre-specified tolerance, by re-running (3) and replacing

the oldest snapshot vector.1 When the residual is below the
tolerance, we use Urb instead.

This means that we do not use a continuously evolving
basis � in this work past the first Nb iterations (that are
used to determine the initial basis), rather our basis is only
updated using a fresh FE solution to modify U temp when the
error residual εrb in (8) is unacceptably high. If the residual
is within the tolerance, we reuse the existing �.

The basic approach is given in Algorithm 2.
In addition, when the reduced basis � is used to get Urb,

K1 . . . KNb
and U1 . . . UNb

are not continuous functions of
the current density ρe (having been previously obtained
during the basis-changing iterations). This in turn applies to
the basis � (obtained from the snapshots Ui). So most of
the terms in the previously obtained expression will vanish.

This ultimately means that we recover the classical
expression for the sensitivity for our particular approach,
i.e.,

∂c

∂ρe

= −UT
rb

∂K

∂ρe

Urb (21)

In the next subsection, we complete this section by
describing the procedure of constructing � from the FE
solutions U1 . . . UNb

using PCA.

2.4 Construction of ROM (� and Urb) using PCA

As explained earlier, we map the displacement field quantity
of the above large-scale problem (i.e., U ) to a low-
dimensional space through an appropriate orthonormal
basis �. The higher dimensional data may then be
reconstructed by linear combination of the projection
coefficients α using (5), thus leading to the reconstruction
error in (8). The PCA approach in this paper uses singular
value decomposition to calculate � using the matrix of
the M displacement vector snapshots to minimize this
reconstruction error.

The basic idea behind “economical” singular value
decomposition (SVD) of a real matrix DN×M where N >

M is expressing it as under:

D = ��V T (22)

where �N×M and V M×M are both unitary/orthogonal
matrices and �M×M is a diagonal matrix (i.e., �ij = δij). It
can be easily shown that � is the matrix of eigenvectors of
the square covariance matrix Cv = DDT while the elements
along the “diagonal” of � squared are its eigenvalues.

1Refining the basis by discarding the older less relevant information in
favor of more recent information is a fairly standard strategy, also used
by Gogu (2015)
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Constructing the centered snapshot matrix D using M

stored FE solutions centered around the mean snapshot ū:

D = [U1 − ū . . . UM − ū] (23)

gives the reduced basis � composed of the first Nb columns
of �, where the number of modes Nb is selected according
to the energy criterion:

εPCA = 1 −
∑Nb

i=1 si
∑M

j=1 sj
(24)

Note here that since the actual calculation process here
involves a relatively small Nb (total number of snapshots)
in the first place, compared to the number of degrees of
freedom in the full-field model, we can use all theNb modes
without truncation, i.e., Nb = M .

Algorithm 2 is then completed with details about the
construction of �, and therefore Urb as shown below in
algorithm 3.

3 Benchmark tests

To demonstrate the effectiveness of the approach presented
in this paper, we first compare the PCA-based approach
with an ROM based on Gram–Schmidt orthonormalization

(Gogu 2015) for a 2D benchmark compliance minimiza-
tion problem. Next, we use two benchmark 3D tests and
minimize the structural compliance with the classical SIMP
(single isotropic material with penalization) assumption.
The elastic parameters: maximum and minimum (dimen-
sionless) Young’s moduli Enominal = 1 and Emin = 10−9,
Poisson’s ratio ν = 0.3. The penalty factor p = 3 and a
density filter radius of 1.5 has been applied in both cases.

As an alternative to the frequently used optimality criteria
approach (Saxena and Ananthasuresh 2000; Yin and Yang
2001; Sigmund 2001), we have used the method of moving
asymptotes (Svanberg 1987, 2002) for the optimization
loop in this work. This method is based on a convex
representation of the objective function and is conveniently
adapted to the problem of topology optimization due to its
ease of use. The method has already been demonstrated to
work very well on a vast variety of topology optimization
problems (Bendsoe and Sigmund 2004; Aage and Lazarov
2013), and lends itself to increased scalability due to the
separable nature of the convex approximation.

3.1 2D case: ROM comparison between
Gram–Schmidt and PCA

As has been mentioned in the introductory section, a ROM
approach for topology optimization using Gram–Schmidt
orthonormalization was proposed in Gogu (2015). To com-
pare our proposed approach, i.e., PCA-based on-the-fly
reduced-order model, we use the same classical bench-
mark 2D Messerschmitt–Bolkow–Blohm (MBB) problem
(Fig. 1) to assess computational effort, time and accuracy.

The problem parameters have been set as follows:
150×50 and 600×200 (voxel) FE mesh/grid, nominal, and
minimum (dimensionless) Young’s moduli Enominal =1 and
Emin = 10−9, Poisson’s ratio = 0.3, a maximum allowable
volume fraction νf of 0.5, a penalization factor p = 3,
and a density filter radius of 1.5, with the optimization
iterations stopped when the density variation within any of
the elements is less than 1%.

In order to ensure the convergence of each result of
every test, we may set a larger value for the maximum
number of iterations: here we set 6000, just to be on the
safer side. For both ROM, the number of PCA modes Nb

Fig. 1 2D Messerschmitt–Bolkow–Blohm (MBB) benchmark
problem
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Fig. 2 Optimal topologies
generated using the Gram–
Schmidt with rmin = (a) 1.5, (b)
2.0, (c) 2.5, PCA with rmin = (d)
1.5, (e) 2.0, (f) 2.5 and reference
routine with rmin = (g) 1.5, (h)
2.0, (i) 2.5 for 150 × 50 2D grid

is selected as 4, residual threshold εrb is selected as 0.01.
All these parameters are fixed, allowing us to change the
filter size rmin on both convergence speed and accuracy
of the objective function. The optimized topology and
corresponding computing results are summarized in the
following discussion.

Figure 2 gives the optimal topologies obtained using the
reference routine (i.e., without any ROM), the PCA-based
ROM as well as the Gram–Schmidt approach, on a FE mesh
of grid resolution 150 × 50 (resolution given in voxels).
From the figure, we can see that the three topologies are
visually indistinguishable, which means both ROMs yield
almost identical design results to that obtained with the
reference full order model in the 2D case.

The corresponding results are summarized in Table 1 and
Fig. 3.

One can see from Table 1 that various minuscule features
(like a tiny hole that appears in the “optimal” topology)
fade away before our naked eyes with a slight increase of
filter size from 1.5 to 3 for each computation method in
each column. However, the boundary of optimal topology

for all models gets smoother but fuzzier as we increase
the filter size, which may lead to the illusion of the hole
getting smaller or even disappearing. We may also draw
a conclusion from the table that less optimization time is
needed if we use a larger value of filter size (within the
adequate range) for any method (reference, PCA and Gram–
Schmidt), but larger values of filter size lead to a poorer
optimal compliance. It is noteworthy that when using filter
size rmin = 3, the performance shows a downtick which
indicates us there is an optimal filter size.

Moreover, by comparing the PCA approach and Gram–
Schmidt routines, we find that the PCA method requires
less optimization time and a remarkably fewer number of
full solutions (but more iterations) than the Gram–Schmidt
method for the same filter size. This validates the PCA
ROM as more efficient than the Gram–Schmidt at each
iteration step. As far as accuracy of the final objective
function is concerned, PCA and Gram–Schmidt methods
are basically similar. If we investigate in detail, the former
has a slightly higher precision than the latter. To explain
the advantage of the PCA approach over Gram–Schmidt

Table 1 Comparison of performance for 150 × 50 2D grid resolution

Method Filter itrns Relative Density Full FE Optimal

rmin error (c) variation solutions compliance

1.5 412 0 0.010 412 198.0312

Reference 2.0 391 0 0.010 391 200.8855

2.5 224 0 0.009 224 208.2528

3.0 322 0 0.010 322 212.4484

1.5 408 0.00191 0.009 175 198.0274

PCA 2.0 394 0.0004 0.007 162 200.8847

2.5 227 0.00149 0.009 89 208.2497

3.0 395 0.01483 0.010 101 212.4169

1.5 402 0 0.009 265 198.0312

Gram– 2.0 388 0.000060 0.010 246 200.8867

Schmidt 2.5 224 0.00173 0.008 131 208.2492

3.0 643 0.04749 0.006 190 212.3475
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Fig. 3 Residual comparison between Gram–Schmidt and PCA with (a) εrb = 0.1, Nb = 4 and (b) εrb = 0.1, Nb = 10 (c) Nb = 40 εrb = 0.1, (d)
Nb = 4 εrb = 0.05, and (e) εrb = 0.05 Nb = 10 (f) εrb = 0.01 Nb = 4

in accuracy, it is instructive to analyze the evolution of
the residual throughout the whole iteration process. From
Fig. 3, we can very clearly see that PCA method has a
clearly lower residual than the Gram–Schmidt method when
solving for intermediate displacement vectors during the
entire optimization process.

Under the same control precision of design density (1%,
here), PCA approach always converges earlier and has
a higher convergence accuracy compared to the Gram–
Schmidt method for a given rmin, a clear improvement in
both efficiency and accuracy in this 2D case. We may
therefore conclude that the PCA method outperforms the
Gram–Schmidt method, at least for this particular 2D
benchmark problem.

Fig. 4 First 3D test case and boundary conditions

It is important to note that none of this is counter-intuitive,
since the Gram–Schmidt is basically an approximation
to the POD with the modes directly obtained from the
snapshots by orthonormalization rather than going through
the procedure of finding the optimal modes through SVD.

3.2 3D case 1: simply supported beam

This test case is a 3D variant of theMBB benchmark problem
(Fig. 4)—a simply supported beam under flexion in 3D.

The optimization iterations have been stopped when the
density variation within any of the elements is less than 1%
(or when 100 iterations have been completed).

We focus on the influence of varying the ROM error
threshold εrb and the number of snapshots Nb used to
construct the basis �, as well as the scalability of the
approach with grid resolution.

3.2.1 Scalability of performance with grid resolution

Four different grids were considered here in increasing
order of resolution: a coarse 96×24×64 grid, a finer
108×27×72 grid, an even finer grid (132×33×88), and a
high-resolution 156×39×104. The 3D topology results are
shown in Fig. 5a–d.

Figure 6a and b compare the traditional (without
ROM) topology optimization performance with the PCA-
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Fig. 5 Optimized 3D topologies for the MBB beam problem, using four different grids with increasing resolution (a) 96×24×64 grid, b finer
108×27×72 grid) (c) finer grid (132×33×88) and d 156×39×104 obtained using PCA

Fig. 6 a Typical 132×33×88 grid comparison of computational effort between traditional and PCA approach (b) Scalability of ROM performance
with grid size using four different grid resolutions - comparison of computational effort with and without ROM
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Fig. 7 96×24×64 and 132×33×88 grids—comparison of PCA computational effort for different Nb (no truncation) and εrb = 0.05

Fig. 8 132×33×88 grids—semilog plot comparison of PCA computational effort for different Nb (no truncation) and εrb = 0.05
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Table 2 Performance comparison for various Nb over 100 iterations
for the first 3D test case (using a 132×33×88 grid)

Nb calls to Calls to Break CPU time Compliance

(modes) FEM ROM point (sec)

2 29 71 24 1930.1 20.846

4 24 76 22 1748.4 20.333

6 22 78 24 1641.1 19.72

8 23 77 28 1590.3 19.553

10 10 90 20 864.29 14.902

14 14 86 28 1064.9 15.188

18 36 74 36 2252.5 24.678

20 42 58 40 2515.0 31.331

coupled approach, for 100 iterations, and the scalability
of the savings, respectively. The break point represents
the transition where more calls have been made to the
ROM rather than the full-field model. It is immediately

evident that the number of function calls to the full-
field FEM drops off and stabilizes as the number of calls
to the significantly less computationally intensive PCA
routine increases gradually (after the first Nb iterations and
progressively stabilizes). This leads to a dramatic reduction
in computational time and effort as seen from the CPU times
required for each case.

It is thus clear that coupling the ROM using the on-
the-fly calculated PCA basis significantly improves the
computational efficiency of the overall optimization routine.
This improvement scales up with the grid resolution. Next,
we will attempt to identify some ”best practices” for
choosing appropriate Nb and εrb.

3.2.2 Performance of ROMwith varying Nb and εrb

For this parametric study, we have used all the snapshots
without truncation of the basis (Nb = M). In the first part,
we vary Nb (number of modes/snapshots) from 2 to 20, so

Fig. 9 132×33×88 grid
comparison of PCA
computational effort for Nb = 5
modes and varying εrb (no
truncation)
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Fig. 10 132×33×88 grid—semilog plot comparison of PCA computational effort for different εrb (no truncation) and Nb = 5 (below) zoomed in
to the marked region

as to compare the number of calls to the ROM with calls
to the full-field solution, as earlier. The threshold is fixed
at εrb = 0.1. The results are shown in Fig. 7a, b for two
different grid resolutions and Fig. 8.

These results are summarized in Table 2. It is interesting
that there is no monotonic relationship between Nb and the
number of full-field calls, and 10 modes being the ideal
basis size for this particular problem.
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Table 3 Performance comparison for various εrb over 100 iterations
for the first 3D test case (using a 132×33×88 grid)

εrb Calls to Calls to Break CPU time Compliance

FEM ROM point (sec)

0.01 48 52 62 2506.5 20.156

0.02 32 68 28 1931.0 20.098

0.05 29 71 24 1815.0 20.158

0.1 24 76 12 2018.9 20.422

Figures 9 and 10 show the influence of varying the error
threshold εrb from 0.01 to 0.2 on the performance of the
ROM-coupled topology optimization, when the number of
snapshots/modes Nb is fixed at 5. There is an “expectedly”
monotonic trend in the number of full-field calls with
reducing εrb.

The above results are summarized in Table 3.
While calls to the ROM/full-field model are a crucial

performance indicator, it is important to distinguish between
a reduction in full-field calls and a reduction in CPU time.
If a full-field call is followed by a single ROM call before
we require another full-field call, we have gained nothing
from the ROM. The CPU time reduction is therefore the
final litmus test for the ROM.

Summing up, the error threshold determines the position
of the “break/transition point” where the optimizer makes
more calls to the ROM compared to the full-field FE solution,
since raising εrb increases the admissibility of the ROM solu-
tionUrb, thus increasing the number of calls to the ROMwhile
reducing the calls to the full-field FEM. However, there is a
tradeoff since increasing the threshold beyond a certain point
reduces the precision of the solution, thus potentially reduc-
ing the performance of the procedure. For this particular
problem, 0.05 appears to be a reasonably good choice.

One would expect increasing Nb to improve the ROM but
this is not necessarily the case. By increasing Nb, we increase
the amount of information in the ROM but also the number
of less relevant modes, leading to a loss of efficacy. The
number of modes to be retained for this particular problem
appears to be around 10 where both computational effi-
ciency and precision are both simultaneously maximized.
Too few (or too many) modes retained will reduce the
performance of the ROM, at least for this case.

3.3 3D case 2: MBB beam

We next consider another classical 3D benchmark topology
optimization test case: the original Messerschmitt–Bolkow–
Blohm/MBB problem in 3D. The boundary conditions of
the beam are given in Fig. 11. Just like in the previous test

case, we study the effect of Nb, εrb, and grid resolution (for
scalability). The elastic parameters are the same as before,
i.e., Young’s moduli (maximum and minimum), Poisson’s
ratio. vfrac is chosen as 0.1, the penalization = 3, and the
density filter radius is 0.5.

In addition, three different maximum allowable volume
fractions vfrac have been considered: 0.1, 0.2, and 0.3.

As in the previous test case, we will focus on the influence
of different vfrac ((

∑N
1 ve)/V ), ROM error threshold εrb,

and the number of snapshots Nb used to construct the basis
�, as well as the scalability with grid resolution.

3.3.1 Performance and scalability of ROM

Three different grid resolutions (in voxels) were considered
in this work: a fairly coarse 12×12×72 grid, a finer
24×24×144 grid, and (c) very fine grid 48×48×288.

The volume fraction vfrac = 0.1 here.
Figure 12 shows the optimized topologies generated

by the TopOpt–PCA algorithm, which are, as expected,
visually indistinguishable from those obtained without
using the ROM. The results are shown in Fig. 13.

3.3.2 Performance of ROMwith varying Nb and εrb

In the first part, we have used all the snapshots without
truncation of the basis, and varied Nb (number of
modes/snapshots) from 2 to 20, and compared the number
of calls to the ROM with calls to the full-field solution, with
the threshold εrb = 0.1 (fixed). In the second part, we show
the influence of varying the error threshold εrb from 0.02
to 0.1 on the performance of the ROM-coupled topology
optimization routine. The number of snapshots/modes Nb

here is fixed at 8.
The results are shown in Figs. 14, 15, and 16. with a

summary given in Tables 4 and 5.
From the above results, it is clear that Nb and εrb are

vital parameters, which are unfortunately problem and grid
resolution dependent.

Fig. 11 Boundary conditions for the second test case: 3D MBB beam
problem
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Fig. 12 Comparing optimized
3D topologies for the MBB
beam problem, using three
different grids with increasing
resolution a coarse 12×12×72
grid, b finer 24×24×144 grid),
and c very fine grid
(48×48×288) obtained using
PCA

Fig. 13 Comparing number of
function calls to FE solver vs.
PCA using Nb = 4 modes (10
total snapshots) and εrb = 0.1
for three grids with increasing
resolution)
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Fig. 14 Performance of PCA varying a Nb (without truncation and εrb = 0.01) and b εrb (using Nb = 8 modes) on a 24×24×144 grid

3.3.3 Effect of material volume fraction

Finally, we consider three different vfrac = 0.1, 0.2, and 0.3
in order to study the evolution of the computational savings
with increasing material volume fraction. The results are
shown in Fig. 17 below:

The corresponding optimized topologies are shown
below in Fig. 18: It is interesting to note that the material
volume fraction has a striking influence on the ROM
performance. As we increase material volume fraction, the
proportion of calls to the ROM increases. In Bendsoe and
Sigmund (2004), it is noted that for low vfrac (i.e., below
10%), the convergence of the topology optimization routine
becomes more tedious due to oscillations. The benefit of
using the ROM is in being able to avoid unnecessary full-
field calculations by extracting the most relevant modes
(of the density map).

3.4 Discussion

The PCA algorithm significantly enhances the performance
of the topology optimization routine with a significant
reduction in computational effort and CPU time in all
test cases investigated. We note that the improvement in
performance scales up with the grid resolution. It is also
clear that there is an improvement in the reduction in

computational effort as we increase the volume fraction—
though this may simply be because the higher volume
fraction problem would be expected to converge faster.

A conceivably less obvious advantage of the “on-
the-fly” ROM, applied to the displacement vector, with
constant monitoring for precision using the full-field model
as a stand-by, very likely allows for a basis size (Nb)-
independence of the optimized density map. It stands to
reason that if εrb were inflated to an unreasonable level, we
would lose this benefit.

4 Perspectives: extension of approach
to non self-adjoint problems

We have, in this paper, focused on developing an ROM
approach for self-adjoint problems, with a primary focus on
the popular compliance minimization. Consider now a typi-
cal compliant mechanism design problem (shown in Fig. 19)
The input end A is subjected to a horizontal concentrated load
Fin = 100 towards the right. Our objective is to maximize
the displacement uout of output point B.

Here, we consider the simplest possible type of compliant
mechanism in which the displacement (Uout) is prescribed
at a given node or set of nodes using the sparse vector
L̃.
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Fig. 15 24×24×144 grid—semilog plot comparison of PCA computational effort for different Nb (no truncation) and εrb = 0.01
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Fig. 16 24×24×144 grid—semilog plot comparison of PCA computational effort for different εrb and Nb = 8 modes
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Table 4 Performance comparison for various Nb for 500 iterations for the second 3D test case (using a 24×24×144 grid)

Nb Calls to Calls to Break CPU time Compliance

(modes) FEM ROM point (sec)

2 279 221 144 3591.6 51.286
4 285 215 254 4509.6 52.166
6 271 229 236 4002.0 52.963
8 286 214 292 4006.2 52.969
10 271 229 292 4107.3 52.761
14 277 223 272 4317.7 52.130
18 274 226 356 4348.7 52.186
20 266 234 374 5246.6 52.211

Table 5 Performance
comparison for various εrb for
500 iterations for the second
3D test case (using a
24×24×144 grid)

εrb Calls to Calls to Break CPU time Compliance

FEM ROM point (sec)

0.02 245 255 434 6047.5 52.969

0.05 232 268 378 4258.3 52.967

0.07 220 280 336 4040.7 52.964

0.1 214 276 292 4006.2 52.969

0.2 186 314 124 3750.4 52.962

Fig. 17 ROM (PCA using
Nb = 8 modes without
truncation and εrb = 0.1)
performance for three different
volume fractions (vfrac) 0.1, 0.2
and 0.3 on a 24×24×144 grid
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Fig. 18 3D topologies for the
three volume fractions a 0.1, b
0.2, and c 0.3 on a 24×24×144
grid

The optimization problem may then be posed as follows:

max
ρ

Uout(ρ) = L̃T U = L̃T (�α + ū)

such that �T K(�α + ū) = F

N∑

e=1

veρe = vfracV < V

ρe ∈ [0, 1], e = 1, . . . , N (25)

Following Sections 2.2 and 2.3:

L(ρ, μ, λ) = L̃T K(�α + ū) − μT �T [K(�α + ū) − F ]

−
Nb∑

i=1

λT
i (KiUi − F) (26)

Using the same reasoning in Section 2.3, for the on-the-fly
updation strategy, the basis � is not a continuously evolving

Fig. 19 Displacement–inverter topology optimization problem

function of ρe, we state that ∂�
∂ρ

, ∂ū
∂ρ

as well as the last two
terms in the derivative vanish giving the following:

∂L
∂ρe

= (L̃T � − μT �T K�)
∂α

∂ρe

− μT �T ∂K

∂ρe

Urb (27)

We choose μ such that:

(�T K�)μ = Krbμ = �T L̃ (28)

where Krb is the reduced stiffness matrix from (10),
allowing for inexpensive inversion, this giving us the simple
expression for the reduced sensitivity:

∂L
∂ρe

= −μT �T ∂K

∂ρe

Urb (29)

The solution of (28) is then used to calculate the reduced
sensitivity from (29). But the system in (28) has reduced
dimensionality compared to (3), indicating that we now
have a single reduced-order system with two load cases to
solve.

We now apply both the above modified “on-the-fly”
POD ROM as well as the Gram–Schmidt orthogonalization
(Gogu 2015) and investigate the influence of the type of
ROM, Nb and εrb on the results obtained for a displacement
inverter. vfrac is set as 0.3 and the MMA algorithm is used
for the optimization. Material elastic modulus is 1, the
minimum (void) elastic modulus is 10−9, and Poisson ratio
is 0.3. The SIMP penalty factor is 3 and the filter radius
is 1.5 (using sensitivity filtering). Optimization terminates
when the maximum elemental density variation < 0.1% or
400 iterations have been completed.

On-the-fly model reduction for large-scale structural topology optimization using principal components analysis 227



Fig. 20 Optimal topologies
obtained a without ROM, b G-S,
and c POD

In the design domain shown, the upper and lower ends
on the left are simply supported, middle nodes of the left
and right boundaries are input (load) end and output end
(displacement) respectively. The structure is discretized by
100×100 square elements of unit volume. Linear springs
simulate the structural stiffness of the input end and output
end (kin = kout = 1). Figure 20 shows the optimal
topologies of the reference model, POD and Gram–Schmidt
orthogonalization (simply referred to as G-S) ROMs for
Nb = 5, εrb = 0.01.

The optimal topology obtained using the POD model
is almost the same as that of G-S model as well as
the reference model, by visual inspection, satisfying the
property of vertical symmetry and the requirements of
mechanical properties as well as actual processing and
manufacturing, indicating that the proposed method can
meet the requirements of high-accuracy design.

Table 6 compares the results of the two ROMs (POD
and G-S) by varying εrb and Nb. From Table 6, we see
that for the same ROM parameters (Nb and εrb), there are
significantly more calls to the POD ROM than the G-S,
particularly for smaller values of εrb, not to mention the
ROM is used far more frequently than the full-field solution.

We again note that CPU time is not necessarily proportional
to the number of full FE calls, since oversampling could
potentially increase the cost of updating the reduced basis,
and any reduction in full FE calls can no longer make up
for the time gap.The top speed-up for the POD ROM is
1.47 (corresponding to 1.37 for the G-S), and time-saving is
about 32% (against 27% for the G-S) and for low Nb and
high εrb, the optimization efficiency is higher.

5 Conclusions

In this paper, we have presented an approach for effi-
cient large-scale topology optimization based on coupling
of topology optimization with reduced-order modeling by
principal components analysis, using on-the-fly construc-
tion of the reduced basis with a database of previously
calculated solutions of the FE equations.

Topology optimization coupled with on-the-fly PCA
calculated basis is seen to significantly outperform the
classical approach. It is important to note that we avoid
storage of the “temporary” stiffness matrices and basis
vectors during the “basis-changing” iterations, which means

Table 6 Performance comparison of G-S ROM and POD ROM (with reference)

Method εrb Nb Calls to Calls to CPU time Speedup Relative

ROM full FE time (s) error (c)

Reference – – 0 400 132.43 1 0

5 337 63 96.48 1.37 0.35

0.01 10 330 70 106.18 1.25 0.23

G-S 40 315 85 116.77 1.13 0.20

0.001 5 228 172 105.03 1.26 0.12

10 156 244 120.78 1.10 0.05

40 181 219 127.49 1.04 0.11

5 351 49 90.3 1.47 0.27

0.01 10 346 54 103.63 1.28 0.09

PCA 40 326 74 115.59 1.15 0.06

0.001 5 279 121 102.73 1.29 0.18

10 263 137 108.74 1.22 0.07

40 259 141 134.57 0.98 0.02
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that the storage requirement is significantly reduced
compared to previous methods. The PCA approach showed
a significant reduction in computational effort over the
traditional full-field solution approach. The improvement in
performance scales well with the size of the problem.

While we have focused on the compliance minimization
problem, the current method should be applicable to
virtually any self-adjoint topology optimization problem,
regardless of the particular physics involved.

Another obvious area of immediate work is using high-
performance computing and non-intrusive asynchronous
PCA to obtain additional improvement in the computational
time and effort needed.

Finally, a formal extension of the approach to general non
self-adjoint problems is a key area of future research.
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