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Abstract
In this work, a density-based method is applied for synthesizing compliant mechanisms using topology optimization. This
kind of mechanisms uses the elastic strain as the basis for kinematic actuation and it is widely used in precision mechanical
devices, in biomedical engineering, and recently in MicroElectroMechanical Systems (MEMS). Geometrical and material
(compressible hyperelasticity) nonlinearities are taken into account to obtain mechanisms near real-world applications. A
strength criterion for the optimization problem is applied, to design compliant mechanisms that fulfill the desired kinematic
tasks while complying with a stress threshold. The addition of a stress constraint to the formulation also aims to alleviate
the appearance of hinges in the optimized design. Employing benchmark examples, we investigate the influence of a
nonlinear formulation with a stress constraint in the final designs. It is shown that material nonlinearity plays an important
role for stress constraint problems. The use of a projection scheme helps to obtain optimized topologies with a high level
of discreteness. The Method of Moving Asymptotes (MMA) is applied for design variables updating and the required
derivatives are calculated analytically by the adjoint method.

Keywords Density-based method · Compliant mechanisms · Geometrical nonlinearities · Compressible hyperelasticity ·
Stress constraint

1 Introduction

In static problems, where the degree of mobility is zero,
linear equilibrium analysis is enough to predict the struc-
tural behavior, and it is a valid approach for a vast num-
ber of engineering applications. However, when dealing
with mechanism design, the degree of mobility is always
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greater than zero and an output displacement is predicted for
each degree of mobility. For this problem, the displacement
requirements can be larger than a linear study is capable
of predicting. Although a linear analysis is useful in a first
approach, for real-life applications, the mechanism synthe-
sis must be performed with a nonlinear assumption. A class
of mechanisms that have been extensively studied during
the last decades is the compliant mechanism (Howell 2012),
which is widely used in aerospace structures, biomedical
area, electronic devices, and so forth. One of the main
applications of compliant mechanisms is in MicroElec-
troMechanical Systems (MEMS), where the devices are
manufactured in very small sizes (μm–nm) and etched in
a single material layer with subsequent under-etching (Sig-
mund 1997). Due to the reduced size and manufacturing
features, the design of these mechanisms does not allow
the use of pins, hinges, and other components that are
very common in traditional, rigid-body mechanisms. The
motion and the kinematic tasks that the mechanism is
desired to fulfill cannot be done through kinematic pairs,
i.e., with all mobility concentrated in the joints formed by
two or more rigid elements. Therefore, all the kinematic
actuation is provided through the body elastic strain.
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The density-based topology optimization (Bendsøe and
Sigmund 2003) has been one of the most general and
systematic approaches applied to synthesize MEMS. It is
important to mention that the topology optimization of
compliant mechanism is not restricted to density-based
methods, but it can be solved through other approaches
like level-set methods (Luo et al. 2008), phase-field
methods (Takezawa et al. 2010), and topological derivate
approach (Lopes and Novotny 2016), to cite a few.

A well-known problem when designing compliant mech-
anisms using the topology optimization method is the
appearance of hinges (one-node-connected elements) in the
optimized design. This numerical problem is inherent to
formulations that use geometrical aspects in their descrip-
tion, as displacements and mechanical advantage (Wang
2009). The most recent advances to alleviate the one-node-
connected element problem in a density-based approach are
the use of a robust formulation (Wang et al. 2011), a strain-
based formulation (Lee and Gea 2014), a compliance-based
formulation (Zhu et al. 2014), the use of geometric con-
straints to the problem (Zhou et al. 2015), and the addition
of physical constraints like stress (De Leon et al. 2015). The
latter approach is applied in this work and it is discussed in
the following sections.

The topology optimization method has been largely
applied to problems assuming linear elasticity theory.
However, only a limited number of works considering
geometrical and/or material nonlinearities can be found in
the literature, what can be explained by the computational
issues caused by the addition of geometrical nonlinearities
to the problem. The internal forces can vary excessively in
some regions of the domain where the density is going to
zero (void), interfering in the balance between internal and
external forces. In the finite element method (FEM) point of
view, low-density elements overly distort, which may lead
the structural stiffness matrix to become negative definite.
This issue can make most of the iterative methods to lose
the path for convergence.

Many approaches have been proposed to deal with
the convergence problem in the topology optimization of
geometrically nonlinear problems. The work of Buhl et al.
(2000) was the first to relate this issue and it suggested
to remove nodes connecting low-density elements from the
equilibrium analysis since they are not important to the
structural integrity. In the work of Bruns and Tortorelli
(2001), a hyperelastic model is used to represent the
constitutive material law and there is no observation about
convergence problems. In Bruns and Tortorelli (2003), a
strategy of removing and reintroducing elements of the
sensitivity computation is applied and the authors argue that
it reduces the problem size, making the convergence faster.
This strategy is closely related with that of node removing
cited before since low-density elements are removed and

nodes may be withdrawn depending on the neighborhood.
The work of Bruns and Sigmund (2004) exploits the
synthesis of mechanisms that exhibit snap-through behavior
using the technique of removing and reintroducing elements
and several examples of punctual loading and thermal
activate mechanisms are shown. Wang et al. (2014) suggest
that the void areas could be computed using a linear
analysis and the equilibrium in the areas compounding the
base material would be performed by a Newton-Raphson
scheme. To do this, an interpolation strategy based on a
Heaviside-type filter is applied.

An investigation of a hyperelastic constitutive material
law to model the stress-strain relation in geometrically
nonlinear topology optimization problem is the goal of
the work of Klarbring and Strömberg (2013). A set of
functionals representing hyperelastic materials are tested
and compared with the Kirchhoff-Saint Venant model
(Hooke law). The authors concluded that all models
performed very well for nonlinear problems, with the only
exception being the Kirchhoff-Saint Venant model. The
explanation is that all models give more stiffness to the
elements, avoiding excessive distortion in low-density areas.
In Lahuerta et al. (2013), a deep mathematical investigation
on why the nonlinear material models outperform the linear
approach for large displacement problems is presented. The
authors conclude that polyconvex models can conduct the
convergence problem more stably. That is the reason why
models based on polyconvex functions as the compressible
hyperelastic ones have a better performance compared with
the linear Hooke law.

The design of large displacement compliant mechanisms
is the main goal of the work of Liu et al. (2017). In this
work, the application of a hyperelastic material model is
introduced. A question that arises is that, since compliant
mechanisms use their strain to gain mobility, strength
requirements are mandatory along with the optimization
problem.

Therefore, besides the problem of taking into account
large displacements, the computation of stress in topology
optimization problems is another challenge but just a few
works are found on this subject (Moon and Yoon 2013;
Deng et al. 2019). The work of De Leon et al. (2015)
presented the application of a stress constraint for the com-
pliant mechanism synthesis using a linear formulation. In
that work, many insights were obtained from the applica-
tion of a stress constraint in the well-known problem of
maximizing the output port displacement of the mecha-
nism. Moreover, the addition of a stress constraint on the
problem resulted in mechanisms with a better compliance
distribution, avoiding the appearance of common problems
in such designs as one-node-connected hinges. Although
very insightful, the results are not realistic for practical
purposes, since they are based on linear elastic theory.
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As presented above, just a few works are found
considering large displacements in topology optimization,
as well as in computing stress in density-based problems.
By the best knowledge of the authors, coupling these two
important disciplines is an open field of research, and the
present work aims to contribute in that way.

2 Finite elasticity

In this section, the finite elasticity formulation is developed,
to establish the equilibrium equations and the solution of
the nonlinear problem. Considering an elastic body in space,
the displacement of a particle with initial position Xi can be
described, for instance as in Atkins and Fox (2005)

x = u + X, (1)

where xi is the particle position after displacement and ui is
the displacement field.

Differentiating (1) with respect to its original position Xi ,
the deformation gradient is obtained

F = ∇u + δ, (2)

where ∇ represents the gradient operator and δ is the
Kronecker sign

δij =
⎡
⎣

1 0 0
0 1 0
0 0 1

⎤
⎦ for i, j = 1, 2, 3. (3)

Once the deformation gradient is defined, the right
Cauchy-Green tensor is written as

C = FT F, (4)

and it is easy to notice that, for a rigid-body motion (for
instance, pure rotations), C = δ.

The right Cauchy-Green tensor is a very important
measure in elasticity theory, and by means of it is possible
to define the Green-Lagrange deformation tensor

G = 1

2
(C − δ) , (5)

where, for small deformations the infinitesimal deformation
tensor is obtained.

2.1 Constitutive relation

The stress-strain behavior of a material can be modeled
in different ways. The most common approach in solid
mechanics to represent the behavior of a material is the
Kirchhoff-Saint Venant material law. This interpolation
predicts a linear response of the stress-strain relation, and it
is a valid approach when the material is under small strains.

However, as stated before, in the topology optimization
of geometrically nonlinear problems, the regions in the

domain representing voids can show very strained elements.
If the element in the mesh distorts excessively, some
numerical issues can make the iterative algorithm to lose the
path for convergence. In Lahuerta et al. (2013), a thorough
investigation on how constitutive laws behave in topology
optimization problems came up with the conclusion that
hyperelastic materials that are policonvex (Ball 1977)
perform better in such problems compared with hyperelastic
materials that do not exhibit policonvexity as the Kirchhoff-
Saint Venant, for instance.

In this work, a compressible Neo-Hookean hyperelastic
material is applied (Klarbring and Strömberg 2013), defined
by the function

� = 1

2
λ (ln J )2 + μ

2
(tr(C) − 3) − μ ln J, (6)

where J = det(F) is the Jacobian, tr(C) is the trace of
the right Cauchy-Green tensor, and μ and λ are the Lamé
constants

λ = νE

(1 + ν)(1 − 2ν)
, μ = E

2(1 + ν)
, (7)

where E and ν are the elastic modulus and Poisson ratio,
respectively.

Figure 1 shows the behavior of the compressible Neo-
Hookean material presented in (6) and the classical, largely
applied, Kirchhoff-Saint Venant law in the uniaxial test,
where τ is the Cauchy stress and γ is the stretch. It can
be seen a different behavior for large deformations. The
Kirchhoff - Saint Venant material model tends to τ → 0
when γ → 0 and in traction τ → ∞ when γ → ∞. The
Neo-Hookean material model does not show this behavior.
Therefore, there is a probability that the material model
based on the linear relation may fail in modeling areas
forming voids.

Moreover, hyperelastic models are path independent
and they can be derived by a strain energy function,

Fig. 1 Comparison between two models in the uniaxial test
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�(C), as can be seen in (6). A thorough investigation on
hyperelastic models can be found in several good textbooks,
as in Curnier (1994) and Holzapfel (2000).

Deriving this function with respect to a strain measure,
one can find a stress-strain relationship. For instance,

S = ∂�

∂G
, (8)

where � is the potential representing the stored strain
energy and G is the Green-Lagrange deformation tensor.
In this case, using the Green-Lagrange tensor, the stress
measure obtained (S) is its energy conjugate pair, the so-
called second Piola-Kirchhoff stress tensor.

For the potential used in this work, (6), the second
Piola-Kirchhoff stress, becomes:

S = λ ln(J )C−1 + μ(δ − C−1) , (9)

where ∂J
∂G = JC−1 is applied. Therefore, for a plane stress

hypothesis

C33 = −λ ln(J )

μ
+ 1 . (10)

The tangent constitutive relation is obtained by means of
the second derivative of (6)

D = ∂2�

∂G∂G
, (11)

This relation is important since the iterative method
applied in this work needs to linearize the structural stiffness
of the body, what is described in the next section.

2.2 Total Lagrangian formulation

Among the most applied formulations to describe the body
kinematics in geometrically nonlinear analysis, the Total
Lagrangian formulation (Belytschko et al. 2014; Bathe
2010) is by far the most known for problems in solid
mechanics. In this formulation, all matrices and integrals are
computed in the undeformed configuration.

Using the total Lagrangian formulation to describe
the kinematics of a body in a static analysis, the
following equilibrium equation is written, using the virtual
displacements principle∫

0V

SδGd0V =
∫

0V

fbδud0V +
∫

0S

fsδusd0S, (12)

where fb and fs are the body and surface forces respectively,
S is already defined, δG is the component of the Green-
Lagrange deformation tensor corresponding to the virtual
displacement δu, δus is the virtual displacement vector
related to the surface 0S and 0V is the volume body in the
undeformed configuration.

However, due to the high level of nonlinearity in these
relations, the best way is to linearize (12) and reduce this
approximation iteratively (Wriggers 2008).

2.2.1 Incremental analysis

In the incremental analysis, the equilibrium is sought in the
instant t + 	t based on the known results for the instant t .
For the incremental analysis, displacements, deformations,
and stresses are expressed respectively as

t+	tu = tu + 	u , (13)
t+	tG = tG + 	G , (14)
t+	tS = tS + 	S , (15)

where 	u, 	G, and 	S are the increments to be
determined. Inserting (13) in the Green-Lagrange tensor and
using (14), the increment in deformation is written as

	G = ϑ + η , (16)

where ϑ is a tensor representing the linear part of the
deformation increment

ϑ = 1

2

(
∂	ui

∂0Xj

+ ∂	uj

∂0Xi

+ ∂	uk

∂0Xi

∂tuk

∂0Xj

+ ∂tuk

∂0Xi

∂	uk

∂0Xj

)
,

(17)

and η is a tensor representing the nonlinear part of the
deformation increment

η = 1

2

(
∂	uj

∂0Xi

)(
∂	ui

∂0Xj

)
. (18)

After some algebraic manipulations and using the
decomposition in (15), the equilibrium relation stated in
(12) is written in the instant t + 	t as∫

0V

	S δ	G d0V +
∫

0V

tS δη d0V

=
∫

0V

t+	t fb δ	u d0V +
∫

0S

t+	t fs δ	us d0S

−
∫

0V

tS δϑ d0V . (19)

Equation (19) is in continuous form, an efficient solution
to solve it out is to write it using a finite element
formulation (Belytschko et al. 2014; Wriggers 2008). The
terms of (19) can be written in discretized form as follows:∫

0V

BT
LDBL d0V = KL

∫
0V

BT
NLSBNL d0V = KNL

∫
0V

t+	t fb δ	u d0V +
∫

0S

t+	t fs δ	us d0S = fext

∫
0V

tS δϑ d0V = fint , (20)

where D and S were presented previously. Matrices BL and
BNL can be sought in a vast number of finite elements
books, for instance, in Bathe (2010) and Belytschko et al.
(2014).
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The residual vector is defined as

tr = t+	t fext − t fint , (21)

and a nonlinear problem, written in finite element form, is
stated as

tK	u = (
tKL + tKNL

)
	u = tr . (22)

There are several methods used to find the body final
configuration in geometrically nonlinear analysis. One of
the most simple and largely applied is the Newton-Raphson
method (Crisfield 1996). The equilibrium is obtained when
the body internal forces equal the external load applied in
the body, i.e., tr ≈ 0 in a given tolerance.

2.3 Stress measure

As it can be noticed in the theoretical development
presented in the early section, the second Piola-Kirchhoff
stress tensor plays an important role in representing the
artificial nodal internal forces that balance the external load
applied to the structure in the FEM problem.

However, this measure has no physical meaning in
practice, and it is necessary to replace the second Piola
tensor by a measure that is capable of physically describe
the stress field. One candidate for that is the Cauchy
stress, an important measure in elasticity theory since it is
defined under the deformed body configuration, which is in
equilibrium.

The Cauchy stress tensor can be recovered through the
second Piola-Kirchhoff as

χ = J−1FSFT . (23)

As this equation returns a 2 × 2 symmetric matrix, the
three terms can be written into vector form by doing τ =
(χ11 χ22 χ12)

T .
Since the Cauchy stress vector is known, the von Mises

equivalent stress is easily obtained for a plane stress state
from

σvm =
(
τT Vτ

) 1
2

, (24)

with V being the auxiliary matrix:

V =
⎡
⎣

1 − 1
2 0

− 1
2 1 0

0 0 3

⎤
⎦ , (25)

and now the biaxial stress state of the element can be
represented by a scalar. This quantity is used in this work to
describe the body stress field.

3 Topology optimization problem

In this work, the so-called output port displacement
approach (Sigmund 1997) is applied along with the use of
external springs. Although some other formulations have
been presented along the years for compliant mechanisms
design, in the authors’ point of view this formulation
still produces mechanisms with very high kinematic
performance compared with others. Wang (2009) points out
that this kind of formulation inherently shows hinges in the
final design, what is an artifact found by the algorithm to
enhance performance. However, it can not be viewed as
a drawback, since kinematically efficient mechanisms are
synthesized.

Then, the idea is to use this formulation and avoid the
hinges through a physical constraint like stress. The main
modifications in the original formulation are the nonlinear
equilibrium requirement for the residual and the stress
constraint added to the problem.

The optimization problem is defined as:

min
ρ

: f (ρ) = lT u

s.t. : r(u(ρ)) = 0

: fv(ρ) =
∑

i∈Ne
¯̃ρi(ρ)vi

V
� V ∗

: fs(ρ) = max (σ (u(ρ))) � σ ∗

: 0 � ρi � 1, i ∈ Ne , (26)

where r(ρ) is the residual vector, u is the vector containing
the displacement of all degrees of freedom, ρ is the vector
of design variables, Ne is the set containing all elements in
the design domain, and ¯̃ρi is the physical density associated
with the ith design element. The vector l takes zero in
all positions except for the position corresponding to the
output degree of freedom, which is set to one. The total
volume of the design domain is V , V ∗ is the allowed
volume fraction and vi is the volume of the ith element. The
vector σ contains the element stress measures, to be defined
further, and σ ∗ is a chosen threshold for the maximum stress
allowed.

The element stiffness matrices Ki are function of
the Young modulus of the solid material. This mate-
rial is interpolated according to the well-known SIMP
method (Bendsøe and Sigmund 1999)

Ei = Emin + ¯̃ρi
k
(E0 − Emin) , (27)

where E0 is the stiffness of the solid phase, Emin is a small
stiffness attributed to regions to avoid ill-conditioning and k

is the penalization parameter, usually set as 3.
A very known issue in topology optimization using a

density-based approach is the appearance of checkerboard
patterns (Sigmund and Petersson 1998) and the dependency
on the mesh size in the final design (Dı́az and Sigmund
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1995). To overcome the difficulties imposed by these
numerical issues, in this work, a mesh-independent density
filter is applied (Bourdin 2001; Bruns and Tortorelli 2001):

ρ̃i =
∑

j∈Ne,i
w(xj )vjρj∑

j∈Ne,i
w(xj )vj

(28)

w(xj ) = R − |xj − xi |
R

, (29)

where R is the filter radius, a given parameter in the
problem.

Defining the physical element density to be a weighted
average of design variables in a neighborhood inside a
circle of radius R allows the optimization problem to
converge to solutions free of checkerboard patterns and
mesh dependence. However, the simple application of a
density filter to the design variables will lead the solution
to a certain degree of gray transition areas between the
solid and void phases. These intermediate densities can be
disregarded by simple thresholding for simpler problems
such as compliance or weight minimization.

However, for complex physic problems as, for instance,
compliant mechanisms and/or stress, post-processing at the
final stage is a more complicated task. In the work of Svärd
(2015), a complete explanation on one disadvantage of
using the SIMP approach or any other fixed grid approach is
presented: if the boundary of the underlying topology is not
aligned with the FE mesh, this transition is irregular. These
jagged boundaries in the topology lead to artificial stress
concentrations that will result in differences between the
optimized topology (where the stress constraint is satisfied)
and the underlying smooth topology. In that work, a method
called IVE (Interior Value Extrapolation) is proposed to
circumvent the problem of stress evaluation at the jagged
boundaries by extrapolating the stress in the interior of the
structure to its boundary.

Another work dealing with this stress inconsistency in
the boundaries is in Da Silva et al. (2019), where a two-
step approach based on the robust formulation proposed
by Wang et al. (2011) is applied. In that work, a transition
boundary between void and solid phases is allowed and a
stress interpolation scheme is applied.

In both works (Svärd 2015; Da Silva et al. 2019), smooth
boundaries are obtained with a good correspondence
between the irregular and extracted boundaries.

Although this interpretation is important, as it can be
seen in the works aforementioned, in this work we do
not use a post-processing step because our present goal is
to investigate the influence of stress constraint combined
with material and geometry nonlinearities on the compliant
mechanism design. The addition of post-processing steps
might be a promising subject for future research.

The only resources applied here are filtering techniques
to obtain optimized topologies as sharp as possible.

3.1 Projection filtering

A tool that has been widely used to alleviate gray transition
areas is the implementation of projection methods (Guest
et al. 2004). During the optimization process, all the filtered
density values above a threshold η are projected to 1 and
values below it to 0.

To ensure differentiability, in this work, the projection
method applies a smoothed Heaviside function (Guest et al.
2004):

¯̃ρi = tanh(βη) + tanh(β(ρ̃i − η))

tanh(βη) + tanh(β(1 − η))
, (30)

where β determines the slope (sharpness) of the curve
and η the threshold value. It is easy to notice that, for a
β = 1, the projection function has no practical effect.
Most of the times, the projection technique is applied along
with a continuation method. This approach clearly slows
the convergence but produces final designs with much
better local minima. However, due to a high degree of
nonlinearity between the physical density and the stress
field, a numerical procedure must be applied to avoid loss of
convergence during β updating. The MMA code allows the
asymptotes modification to turn the updating less or more
conservative. Guest et al. (2011) proposed a modification
in MMA to start with a very conservative guess using high
values for β in the beginning of the optimization problem.

However, here we refrain from starting the problem with
a large value for β to avoid numerical issues. Instead of
it, we use a β-continuation approach applying the strategy
also proposed by Guest et al. (2011) at every update of the
projection scheme. In that work, a small modification in the
optimizer parameters is proposed to turn the problem stable.
When the penalization curve slope (β) changes, the MMA
is restarted (k = 0) and the distance between asymptotes is
set to

s = 0.2

β + 1
, (31)

where the parameter s dictates this distance, in the same way
as in Svanberg (2002).

3.2 Stress constraint in topology optimization
problems

Stress-based problems are a great challenge in topology
optimization, no matter if it is either a linear or nonlinear
framework. The singularity problem arises when some
element density approaches 0 and vanishes from the design
space, creating degenerated subspaces. These subdomains
with zero measure often contain the global optimum
but represent regions where the algorithm cannot reach,
making it converge to very poor local minima. This
problem was first identified and fully explained using
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trusses structures (Kirsch 1990; Cheng and Jiang 1992). By
means of functions that relaxed all the design space, these
problematic subdomains are smoothed and the algorithm
is allowed to reach better local minima. One example
of such functions is the ε-relaxation technique (Cheng
and Guo 1997). Later, in Duysinx and Sigmund (1998)
and Duysinx and Bendsøe (1998), the problem was
extended to continuum problems.

Another method is the so-called qp-approach (Bruggi
2008) where the same idea presented by the classical
ε-relaxation scheme of smoothing the design space is
modified to interact with the SIMP approach. The relaxation
of element stress is performed in the following way

σi = ¯̃ρi
q
σvm,i , (32)

where σi is the relaxed stress measure, ¯̃ρi is the element
physical density, q is a relaxation parameter, and σvm,i

is the von Mises effective stress of the element (without
SIMP penalization) obtained by the Cauchy stress tensor, as
depicted in (24).

However, mainly for computational reasons, the local
nature of stress in continuum media becomes another issue
to overcome. Several approaches have been proposed to deal
with pointwise constraints. One of them is the use of an
augmented Lagrangian function to the formulation (Pereira
et al. 2004), rewriting the problem and putting the
element stress constraint into the objective function. A
comparison study of local and global stress constraints for
compliant mechanisms design can be found in Pereira and
Cardoso (2018). Although effective, this approach can be
computationally expensive, that is why we refrain from
using local constraints in this work.

Another difficulty is that the set of active constraints
can become large as approaching the optimum (Duysinx
and Bendsøe 1998). To make the problem computationally
manageable, a stress relaxation (32) along with an
aggregation scheme proposed by Le et al. (2010) is applied.

Moreover, a global p-norm approach (Duysinx and
Sigmund 1998) is used with the modification proposed
by Le et al. (2010) to transform the pointwise constraint
problem into a single one.

The global p-norm is applied as

σpn = c

⎛
⎝ ∑

i∈Nσ

viσi
p

⎞
⎠

1
p

, (33)

where Nσ is the set of elements to be constrained, vi is the
elemental volume, σi is the element relaxed stress measure,
and c is a corrector applied to give physical meaning to
the stresses and it is better explained in the original work
of Le et al. (2010). The parameter p is the stress norm
value, which for linear problems this value should be used
around 12 or greater (Zhou and Sigmund 2017). However,

the higher this number, the higher the degree of nonlinearity
imposed on the problem. In the framework applied in this
work, a value that suited well was 8. It is important to
mention that values greater than this can be applied to p

parameter to better approximate the infinity norm (the real
maximum value), but this investigation is not on the present
scope.

Therefore, the function defined by (33) approximates the
maximum stress of the domain, and its value is used in the
stress constraint for the optimization problem depicted in
(26) so that

max(σ ) ≈ σpn → fs = σpn , (34)

As the goal of the present work is to impose a limit on
the maximum stress in the mechanism, applying a global
p-norm to represent the stress constraint works successfully.

4 Sensitivity analysis

To give the first-order information required by the
mathematical algorithm to continuously update the design
variables, a sensitivity analysis must be performed. It is
important to remember that both the density filter and
the projection technique applied in this work modify the
element-wise physical density, and the chain rule must
be computed to correctly recover the changes (Sigmund
2007). The density filter, projection function, and the
volume constraint derivatives are straightforward and will
be neglected here, for the sake of brevity.

The adjoint method is applied to calculate the gradient of
the objective and stress functions.

4.1 Objective function gradient

The gradient of the objective function is computed using the
adjoint method (Bruns and Tortorelli 2001) as:

df

d ¯̃ρi

= df

du
du

d ¯̃ρi

+ λT

(
dr
du

du

d ¯̃ρi

+ ∂r

∂ ¯̃ρi

)
, (35)

where r = fext − fint is the residual and

∂fext

∂ ¯̃ρi

= ∂fext

∂ui

= 0 , (36)

i.e., the external forces are independent of displacement and
design variables. Therefore, the dependency of the residual
is only on the internal nodal forces and can be easily
obtained by

∂r
∂ui

= −∂fint

∂ui

= −K , (37)

where K is the structural stiffness matrix.
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Therefore, (35) is rewritten as

df

d ¯̃ρi

=
(

df

du
− λT K

)
du

d ¯̃ρi

+ λT ∂r

∂ ¯̃ρi

, (38)

and, excepting the derivative of displacement in respect to
densities from the right-hand side, the other two derivatives
are easy to compute. Making advantage of the adjoint
method, we choose λ such that the computation of du/d ¯̃ρi

is not necessary, i.e., making Kλ = l.
Then, after some algebraic manipulations, (35) becomes

df

d ¯̃ρi

= −λT k ¯̃ρi
k−1

(E0 − Emin) f0int , (39)

where f0int is the internal forces vector computed without
penalization, i.e., using Ei = E0.

4.2 Stress constraint gradient

As demonstrated earlier, the stress is evaluated as the p-
norm of the vector containing the equivalent von Mises
stresses; therefore, an adjoint problem is written as

dfs

d ¯̃ρi

= c

[
dfs

du
du

d ¯̃ρi

+ ∂fs

∂ ¯̃ρi

+ λT
σ

(
dr
du

du

d ¯̃ρi

+ ∂r

∂ ¯̃ρi

)]
, (40)

rearranging the terms

dfs

d ¯̃ρi

= c

[
du

d ¯̃ρi

T (
dfs

du
− λT

σ K
)

+ ∂fs

∂ ¯̃ρi

+ λT
σ

∂r

∂ ¯̃ρi

]
, (41)

here, the same idea is applied and we choose λσ such that
Kλσ = dfs

du .

The computation of dfs

du is performed using the chain rule

dfs

du
= ∂σpn

∂σsum

∂σsum

∂σi

∂σi

∂σvM

∂σvM

∂τ

∂τ

∂u
, (42)

and the following relation is written to help the calculus

σsum =
∑
i∈Nσ

viσi
p = v1σ

p

1 + v2σ
p

2 + ... + vnσ
p
n . (43)

The computation of all terms in (42) is straightforward.
The exception is the last term because of the base changes
needed to obtain the Cauchy stress. The dependency of the
Cauchy stress on the displacements is written as

∂τ

∂ui

= ∂J−1

∂ui

FSFT + J−1 ∂F
∂ui

SFT

+J−1F
∂S
∂ui

FT + J−1FS
∂FT

∂ui

. (44)

Then, the complete vector to the adjoint problem is given
by

∂fs

∂ui

= c

(
σ

1
P

−1
sum viσ

P−1
i

¯̃ρi
q 1

σvMi

Vτi

)T

×{[A] + 2J [B + C]}T , (45)

where

A =
(
−J−1C−1BL

)T

FSFT (46)

B =
(
F−T BL

)T

SFT + 1

2
(FDBL)T FT (47)

C =
(
FSF−T BL

)T

. (48)

Since the stress is derived from the non-penalized strain
energy function, there is no explicit dependency of von
Mises stress on the design variables

∂fs

∂ ¯̃ρi

= c σsum
1
P

−1viσi
P−1q ¯̃ρi

q−1
σvmi

. (49)

Once defined the derivatives and the adjoint vector,
the sensitivity of the stress constraint with respect to the
projected design variable is

dfs

d ¯̃ρi

= c
(
σsum

1
P

−1viσi
P−1q ¯̃ρi

q−1
σvMi

+λT
σ k ¯̃ρi

k−1
(E0 − Emin) f0int

)
, (50)

and this term, as well as the objective function and volume
constraint, must be multiplied by the sensitivity of the
density filter and projection on the physical densities,
according to the chain rule.

5 Numerical examples and discussion

For compliant mechanisms design using topology optimiza-
tion, some benchmark problems are largely applied to test
the formulation efficiency. In this work, two types of com-
pliant mechanisms will be shown: the inverter displacement
and the gripper mechanism. Figure 2 shows a sketch of the
design domain for the two examples, where the black areas
indicate passive elements, i.e., elements that remain solid
(ρ = 1) during the optimization and do not enter in the
stress computations (/∈ Nσ ). In the inverter mechanism, they
are defined next to points where input and output forces act,
and in the gripper mechanism, a larger area of passive ele-
ments is imposed on the region defined to accommodate
the workpiece. In both examples, the finite mesh is com-
posed by quadrilateral regular elements of dimension 1 by
1, what means that the mesh is formed by 11,250 elements
for the inverter mechanism and 10,350 elements for the
gripper.

The material properties are common to both mechanisms,
and the Silicon is chosen to model the solid phase.
According to Cook (2006), this material has a yield strength
around 1 GPa depending, for instance, on the surface
polishing among other features. The elastic modulus is set
as E0 = 180 (GPa), the void phase is Emin = 1 × 10−9E0,
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Fig. 2 Sketches of the case problems studied in this work

the SIMP penalization parameter is k = 3, ν = 0.3 is the
Poisson ratio, and the domain has a length L = 150 (μm).
For the Newton-Raphson scheme, a convergence tolerance
is obtained when the 2-norm of the residual vector reaches
r ≤ 1 × 10−4. For the incremental analysis, the input force
is divided into 4 step-loads.

The projection filter parameters are η = 0.5 and a
continuation scheme is applied to β, starting with 1 and
doubling until 32 at each 25 iterations. At each β updating,
the MMA is restarted and initialized using (31) to set
distances. The move limits are set to 0.65 and 1.05 for
tightening or expanding asymptotes during optimization,
respectively.

Regarding the stress penalization parameter q, 1 is used
until the problem convergence; then, it is updated to 0.5.
For all examples, the thickness of the mechanisms is set to
7 μm. The radius of the density filter is R = 5.6 (μm) in all
examples unless when it is explicitly stated in the text.

5.1 Displacement inverter mechanism

The displacement inverter shown in Fig. 2a is the test case
that will be extensively studied. Several tests are performed
to check the formulation effectiveness.

5.1.1 Effect of material nonlinearity in FE mesh

The first test is to check the influence of the Neo-Hookean
material in the optimization procedure. The extra stiffness
obtained may help the Newton-Raphson method to be
more robust. The application of material nonlinearity to
geometrical nonlinear problems in topology optimization is
not new, it has been applied in several works as in Bruns and
Tortorelli (2001) and Wang et al. (2014). The goal of this
test is to check the influence of the Neo-Hookean material
in preventing hinges.

To do this, a problem with no density filtering technique
is used. The idea is to investigate whether a stiffer mesh can
avoid the checkerboard pattern alone, without the density
filter resort. In order to prevent the stress constraint to
shadow conclusions, the example is presented with σ ∗ =∞.

By the result obtained in Fig. 3, it can be seen that the
Neo-Hookean material plays no effective role in preventing
one-node-connected elements in the mesh.

It is clear that springs have a direct influence in
the mechanism kinematics, in some cases preventing the
appearance of hinges. Setting stiffer springs in the output
port results in mechanisms that deliver high forces but small
displacements. This approach results in hinge-free designs,
as it is discussed in Pedersen et al. (2001). However, the
output kinematics is very limited. This is the reason why
some formulations based on global stiffness measures found
in literature prevent hinges successfully. Moreover, setting
a high stiffness for the input spring keeping the same input
force limits the displacement. In our particular case, this is
highly undesirable.

Therefore, a study on different input forces is performed
to guarantee the optimized topologies that will be studied
have good kinematic performance. For all examples, the
input and output springs are set to kin = 2 × 10−3 (N/μm)
and kout = 2 × 10−4 (N/μm), respectively.

Fig. 3 Topology obtained with the hyperelastic polyconvex model (6)
without density filtering
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Fig. 4 Deformed meshes for several input forces. The volume
constraint of 20% is active in all designs

Figures 4 and 5 show results for deformed and stress
plots for several input forces. These results do not have
stress constraint applied and were used to evaluate the

Fig. 5 Stress plots for several input forces. The volume constraint of
20% is active in all designs
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displacements and maximum stress levels when increasing
the input force.

Based on the results, the boundary conditions applied
in Figs. 4b and 5b will be used to perform the proposed
investigation on the stress constraint effect in this work.

5.1.2 Effect of the stress constraint

Figure 6 shows the optimized designs for several values of
the stress constraint. From Fig. 6 a–e the only difference in
the problem is the stress limit imposed (σ ∗). It can be seen
that as the limit of maximum stress is lowered, the most
noticeable difference occurs in the hinge areas, which are
being elongated to accommodate the stress limit imposed by
the problem.

Figure 7 a–e show the plots of von Mises stress for
the optimized topologies. It can be seen the effect of the
imposed stress thresholds in the problems, where the hinge
areas are becoming more flexible. As the limit imposed to
the stress is lowered the hinge is stretched to accommodate
the strength requirement.

It is worthy to notice that the volume constraint remains
active for all examples. Optimized designs where the final
volume is below the imposed limit are not observed, as it is
described in other works dealing with topology optimization
with stress constraint (De Leon et al. 2015; Da Silva et al.
2019). However, the examples shown in this work are not
enough to draw any conclusions on whether this feature is
because of the nonlinear analysis or not.

Figure 8 shows the convergence history from one of the
problems. It can be seen stress peaks during the β updating.
Due to the strategy explained before, of restarting MMA
and tightening the asymptotes each time this parameter is
updated in the projection step, the algorithm is capable of
converging to very good optimized designs. This behavior
is maintained in all examples. The procedure of tightening
asymptotes clearly slows the convergence but results in a
very stable problem.

5.2 Gripper mechanism

The second example is the gripper mechanism. In this case,
an input spring is set as kin = 5 × 10−2 (N/μm), an
output spring is set as kout = 1 × 10−4 (N/μm). The
amount of volume allowed in the optimized design is 25%
of the total domain. In the gripper case, the optimization
problem presented in (26) is a minimization of −luT , since
a positive quantity is desired for the output displacement in
this example.

Following the idea presented in the inverter problem,
several input forces were applied to guarantee that the study

Fig. 6 Optimized design topologies for several stress thresholds (σ ∗).
The volume constraint of 20% is active in all designs

is applied to kinematically efficient grippers and taking
advantage of the geometrically nonlinear analysis.
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Fig. 7 Equivalent von Mises plots for several stress thresholds (σ ∗).
The volume constraint of 20% is active in all designs

In all tested cases the volume constraint is active, follow-
ing what is observed in the displacement inverter example.

Figure 9 shows deformed meshes for three different input
forces, in all examples other boundary conditions are the
same.

Figure 10 shows the stress plots for the input forces
investigation. Boundary conditions as shown in Fig. 10(b)
will be used to perform the remaining study.

Fig. 8 Optimization history for the mechanism in Fig. 6e

For the remaining tests with the gripper, unless clearly
stated, the input force applied to the problem is fin =
3 × 10−3 N (as in Figs. 9b and 10b).

As in the inverter example, only the lower half part of the
gripper is shown.

In Fig. 11, several optimized topologies are shown. The
main challenge imposed by the gripper is that compliance is
much more concentrated at the lever points. It can be seen
that all the conclusions drawn in the displacement inverter
can be repeated here, which means that the stress limit is
capable of spreading compliance efficiently.

Figure 12 shows the stress plot for the gripper designs.
Here, the effect of the stress limit is not so pronounced
as in the displacement inverter. As explained before, the
mobility of this kind of mechanism is more concentrated at
the lever point. Nevertheless, the algorithm is efficient in
controlling the stress level by reducing the performance of
the mechanism.

5.3 Linear× nonlinear framework

As stated before, the main goal of using a nonlinear material
is to give an extra stiffness to the model, preventing the
Newton-Raphson scheme to lose the path for convergence.
The side effect is that elements forming the hinges in the
mechanism could be stiffer than the linear material, possibly
lowering its kinematic performance. Although it can be
seen from Fig. 1 that for small strains the two material
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Fig. 9 Deformed meshes for several input forces. The volume
constraint of 25% is active in all optimized designs

models have a similar performance, for large strains the
two models behave completely different. For large tractions
forces, the Neo-Hookean model can be more flexible than

Fig. 10 Stress plots for several input forces. The volume constraint of
25% is active in all optimized designs

Kirchhoff - Saint Venant model. On the other hand, for large
compressions the opposite effect is observed.

To investigate this behavior, a comparison between the
present formulation and the linear approach for material
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Fig. 11 Optimized topologies for several stress thresholds. The
volume constraint of 25% is active in all optimized designs

and geometry is performed. Figure 13 shows results
of an optimized topology using the present formulation

Fig. 12 Stress plots for optimized grippers. The volume constraint of
25% is active in all optimized designs

(geometrical and material nonlinearities) and a linear
approach using the same boundary conditions, volume
constraint, input forces, etc.

To study the effect of the nonlinear material in the
optimized topologies shown in Fig. 13, these designs
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are analyzed using the Newton-Raphson scheme for
equilibrium but with the Hooke law modeling the stress-
strain behavior.

Two tests are performed to study the effect of nonlinear-
ities in the optimized topologies:

1. the optimized topologies obtained using linear geom-
etry and material (Fig. 13a and c) are analyzed using
the Newton-Raphson scheme for equilibrium but with
linear material;

2. the optimized topologies obtained using nonlinear
geometry and nonlinear material (Fig. 13b and d)

Fig. 13 Optimized design topologies using (a) and (c) linear and (b)
and (d) nonlinear framework. The cost functions values (f ) are in μm.
In cases (a) and (b) the input force is fin = 5 × 10−3 N, in cases (c)
and (d) the input force is fin = 3 × 10−3 N

Table 1 Equilibrium analyses of optimized mechanisms of Fig. 13

Inverter mechanism

FE solution Material f (μm) fs (GPa)

Linear Linear –2.89 2.94

(1) NR Linear –3.03 3.62

NR Neo-Hookean –3.46 4.67

(2) NR Linear –3.46 4.68

Gripper mechanism

Linear Linear 1.64 1.96

(1) NR Linear 4.28 11.65

NR Neo-Hookean 3.03 4.99

(2) NR Linear 3.03 4.99

are analyzed using the Newton-Raphson scheme for
equilibrium but with linear material;

Here, all tests are performed with no stress constraint
(σ ∗ = ∞).

Table 1 shows output displacements and maximum
stresses for all examples.

For the first test case one can notice a significant differ-
ence in the mechanisms performance when a geometrically
nonlinear framework is used to find equilibrium. The only
difference in the synthesized mechanisms for the test is that
Newton-Raphson is applied. Obviously a large difference in
the maximum stress is observed as well.

For the test case 2, the Neo-Hookean material used in
the optimization is replaced with the linear law. No relevant
change neither in mechanism performance or maximum
stress are observed. The output displacement result indicates
that, for the optimized topology the Neo-Hookean material
does not decrease the mechanism kinematic performance.
The maximum stress are almost the same, what can indicate
that, at least for the non-void elements, no large strains
or rotations are observed. A first conclusion could be that
the Neo-Hookean model does not play an important role in
the response of the topologies obtained in the optimization
problem proposed in this work.

However, we notice a more stable convergence when
deformation occurs in void areas. This is not directly
investigate in this work, but it is the goal of several works
in literature (Klarbring and Strömberg 2013; Lahuerta et al.
2013), where it is conclude that hyperelastic polyconvex
models improve the convergence problem.

5.4 Nonlinear material in stress constraint problems

In the previous subsection, a quantitative study was
performed to investigate the effect of nonlinearities in
the formulation. A first conclusion is that, for problems
where a constraint in the stress is not imposed, a linear
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Table 2 Performance comparison for the stress constrained inverter
using linear material behavior

Inverter mechanism

FE solution Material f (μm) fs (GPa)

NR Neo-Hookean (Fig. 6e) − 3.09 0.89

NR linear − 2.44 1.70

Linear linear − 2.46 1.82

law for material behavior is enough and the main role of
nonlinearities is making the problem more stable.

However, it is important to investigate the effectiveness
of a nonlinear material when a stress limit is imposed to the
problem.

To do this, the synthesized mechanism obtained in
Fig. 6e, where the stress constraint is active at several
elements, is taken to be studied. The optimized topology
was obtained using a nonlinear law for both geometry and
material.

The next task is to investigate this mechanism applying
the Hooke law (linear material) and using two approaches:
Newton-Raphson scheme and a linear relation for equilib-
rium. Table 2 shows the results obtained.

It can be seen that the Neo-Hookean model performs
superior, resulting in larger displacement output and lower
maximum stress, if a constraint is imposed to the maximum
stress. These results can be explained by the behavior
of the model in traction, once very strained elements in
the mechanisms are in the right most arm. The algorithm
allows larger stretches in elements since the material
model predicts lower values for stress. This feature is very
important to the mechanism kinematic. When the material
model is replaced by the Hooke law, lower displacements
and higher maximum stresses are observed.

5.5 Important remarks

In the works of Pedersen et al. (2001), Bruns and Tortorelli
(2001), and Bruns and Sigmund (2004), a geometrically
nonlinear problem is applied for synthesizing compliant
mechanisms. The results show parts of the mechanisms
exhibiting one-node-connect elements. It indicates that the
use of a geometrical nonlinear formulation by itself does
not prevent the appearance of hinges. In the present work,
a very simple example shows material nonlinearities are
not capable of preventing hinges as well. Therefore, it is a
noticeable influence of the stress in avoiding this behavior.
As in the linear case, the stress constraint plays the role
of stretching the hinge, spreading the compliance along the
arm, fulfilling the strength requirement.

Moreover, it is important to mention that convergence
problems were observed in some cases using large input

forces. However, for the range of the applied input loads
shown in this work, no convergence issues were observed.

Therefore, the implementation of a polyconvex hyper-
elastic model by itself does not prevent ill-convergence
problems. The use of strategies like those cited in the litera-
ture review must be used to circumvent the ill-convergence
issue, like in Bruns and Tortorelli (2003).

Furthermore, the application of, for instance, arc-length
based methods (Crisfield 1996) to replace the Newton-
Raphson scheme is also advised.

6 Conclusions

In this work, a geometrically nonlinear analysis is per-
formed for synthesizing compliant mechanisms using topol-
ogy optimization. To make the algorithm stable and over-
come very known issues caused by large displacements, a
compressible hyperelastic material model is applied. The
results show that this approach successfully produces mech-
anisms near real-world applications, and it enhances the
importance of taking into account nonlinear geometrical
assumptions for such designs. The long-standing issue of
the appearance of hinges in the optimized designs is allevi-
ated by using a stress constraint in a nonlinear formulation
for both material and geometry. Beyond that, the mechanism
kinematic behavior changes significantly.

Besides the stability improvement issue, the addition of
material nonlinearity is also applied to compute the stress
in very strained elements in the mesh more accurately.
This approach worked successfully for the tested cases,
but convergence problems were still observed using larger
kinematic requirements.

The formulation presented here produces designs with
good performance and fulfilling strength criteria. This
feature is mandatory in devices where their strain is used to
provide mobility.

Complete research regarding the design of compliant
mechanisms is a work in progress, which includes important
considerations that were not covered here. For instance,
fatigue life and buckling effects analyses are very important
disciplines to be taken into account.
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