
https://doi.org/10.1007/s00158-019-02481-7

RESEARCH PAPER

Topology optimization for periodic multi-component structures
with stiffness and frequency criteria

Simon Thomas1 ·Qing Li1 ·Grant Steven1

Received: 15 September 2019 / Revised: 29 November 2019 / Accepted: 12 December 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
Design of engineering structures may benefit from reduction in assembly complexity through use of periodic components,
in which uniform sub-structures combine to form a relatively simple topology. The benefits of periodic structures include
lower manufacture costs as well as ease of assembly. Recent developments in periodic topology optimization have shown its
efficacy for addressing a range of design objectives. However, constraints such as assembly conditions and the connection
configuration of periodic sub-components present limiting factors in the application of periodic optimization to real-world
engineering problems. This study addresses the current knowledge gap in periodic optimization assembly through inclusion
of common interfacing connections between periodic components, such as screws, welds, or rivets, thus accounting for real
assembly conditions. A bi-directional evolutionary structural optimization (BESO) method and solid isotropic material with
penalization (SIMP) method are presented, for stiffness and frequency criteria, which simultaneously optimizes the topology
of the periodic components and the joint configuration connecting components. Elemental sensitivities are derived and
utilized to drive the design of both the periodic component and the connection layouts. Iterative updating of the topological
design, guided by elemental sensitivities, allows for optimization of the periodic topology for given objective functions.
To demonstrate the effectiveness of the proposed method, optimized structures are explored through different periodicities.
Application of the methodology presented in this study will assist in providing new design capabilities to reduce the costs
of manufacturing, transport, and assembly through optimized periodic components.

Keywords Multi-component connection layout · Periodic structures · Topology optimization · Stiffness · Frequency

1 Introduction

Topology optimization aims to find the optimal layout of
material within a given design domain to maximize desired
performance such as stiffness, natural frequency, conduc-
tion, buckling, or a combination thereof (Bendsøe 2009).
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Topology optimization has emerged as a field of study
greatly impacting industry over recent years, in which
numerous effective approaches have been developed and
validated. These include homogenization (Bendsøe and
Kikuchi 1988; Ma et al. 1993; Hassani and Hinton 1998),
solid isotropic material with penalization (SIMP) (Bendsøe
and Sigmund 1999; Sigmund 2001; Tcherniak 2002), evolu-
tionary structural optimization (ESO) (Xie and Steven 1993,
1994, 1996, 1997; Yang et al. 1999; Rong et al. 2000; Huang
and Xie 2010), and level set methods (Wang et al. 2003;
Allaire et al. 2004; Shu et al. 2011). Topology optimiza-
tion algorithms generally fall into the categories of density
method or boundary method. The density method encom-
passes the homogenization, SIMP, and ESO methodologies
while the boundary method was developed more recently
and involves algorithms such as the level set method. Each
of the different methods provides their own benefits to
applications of topology optimization in different areas
(Rozvany 2009; Huang and Xie 2010; Sigmund and Maute
2013; van Dijk et al. 2013; Xia et al. 2018).
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The SIMP algorithm discretizes a design domain into finite
elements where the relative density of each element becomes
the design variables of the optimization problem. The
material properties follow a power law scheme, penalizing
intermediate density elements and driving the topology to an
optimized binary state of solid and void material (Bendsøe
and Sigmund 1999; Sigmund 2001; Tcherniak 2002). ESO
operates similarly to SIMP; however, binary element states
are enforced as either solid or void material. In the original
formulations of ESO, void material was wholly removed
from the FEA model, known as hard kill, which prompted
criticism due to potential of highly non-optimal solutions
(Zhou and Rozvany 2001; Rozvany 2009). A soft-kill BESO
variant was subsequently developed, which utilizes the
SIMP power law, allowing void elements to be retained
within the mesh. It may then be said that soft-kill BESO
is a special case of standard SIMP, with discretely updated
density states (Huang and Xie 2010). There exists ongoing
debate as to the optimal application of BESO and its relation
to other topology optimization algorithms (Munk et al. 2017;
Huang and Xie 2010; Xia et al. 2018). The Level set method
forms structural boundaries through a higher-dimensional
scalar function, in which the “level” of the function is “set”
such that the topological boundary is represented by the iso-
contours of the Level set function which may be updated by
Hamilton-Jacobi equations (Wang et al. 2003; Allaire et al.
2004; Shu et al. 2011; van Dijk et al. 2013).

The application of topology optimization optimization
algorithms to real-world problems has been somewhat
hindered due to the focus of most current literature on single
component structures (Bendsøe 2009; Sigmund and Maute
2013; Xia et al. 2018). However, most engineering structures
comprise of multiple sub-components, which at a structural
level are connected via an interfacing such as adhesive,
screws, welds, or rivets. Layout of such interfacing elements
must be incorporated with topology optimization of
individual sub-components to ensure desirable performance
of multi-component systems. While some preliminary work
for multi-component optimization has been carried out, it
is under-studied in comparison with optimization for single
components (Li et al. 2001b; Zhu et al. 2016).

Some engineering structures require large components
and often exhibit complex material layouts which results
in high manufacturing, transport, and installation costs. An
appealing way to deal with such an engineering issue is
to use multiple identical sub-components which are small
relative to the design domain, and thus more easily man-
ufactured and transported. Topology optimization of such
repetitive sub-components, known as periodic optimization,
enables compromise between system complexity and costs
(Zhang and Sun 2006; Huang and Xie 2008; Zuo 2009;
Chen et al. 2010; Xie et al. 2012), which is particularly
attractive in mass-production and simplicity of assembly.

A key issue inhibiting the widespread application of topo-
logy optimization is the difficulty in transition between opti-
mized designs and practical manufacturing. For instance,
casting and extrusion production are two common fabrica-
tion methods, each of which exhibits significant complications
when attempting to fabricate the complex designs produced
by topology optimization processes (Zhou et al. 2002).
Further research addressed manufacturing concerns from
a milling and lithography perspective which may produce
uniformly too thin or too thick components, with an exten-
sion to topology optimization methodology presented which
was able to account for these manufacturing uncertainties
with little decrease in system performance (Sigmund 2009;
Schevenels et al. 2011). Length scale control is also a crit-
ical factor in machinability, preventing formations of small
voids or intricate component sections, often addressable
with appropriate filtering techniques (Sigmund and Peters-
son 1998; Sigmund 2007). Furthermore, cost of design may
be included within the optimization process concurrently
optimizing for performance and manufacturability (Liu and
Ma 2015). A comprehensive review of component manufac-
turing limitations as related to topology optimization may
be found in the reference material (Zhang et al. 2011; Liu
and Ma 2016).

Multi-component optimization has drawn attention
through different applications in literature, such as place-
ments of fixture positions (Menassa and DeVries 1989,
1991), location of spot welds (Chirehdast and Jiang 1996),
profile of adhesive bonding (Jiang and Chirehdast 1997),
and configuration of discrete joint elements (Li et al.
2001b), which were largely based upon topology optimiza-
tion techniques developed for single component structures
(Chickermane and Gea 1997). Zhu et al. proposed to embed
non-design sub-components within a macro-design domain
(Zhu et al. 2017), enabling structural integration of small
load-bearing components within a larger assembly, which
exhibits significant advantages in design of complex struc-
tures (Qian and Ananthasuresh 2004). Zhang et al. adopted
finite circle method to enforce non-overlap constraints
between components to approximate a complex component
through a set of circles with varying size and placement
(Zhang et al. 2011). Liu and Kang explored the embedding
field to address multi-component problems by modeling
material interfaces between components, providing more
realistic modeling of assembly conditions (Liu and Kang
2018). Note that placement of interfacing material such as
screws, welds, or rivets may represent a special case of
the embedding problem, where limited work is available
to tackle such specific features (Qian and Ananthasuresh
2004). More recent work on multi-component optimization
subdivided the structure into a multi-component assembly
of bars (Hoang and Jang 2017; Wang et al. 2018), which
are movable and morphable allowing them to approximately
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conform to similar design achieved through classical single
component optimization.

A significant feature of multi-component systems is
structural periodicity, which refers to multiple identical sub-
structures in a system. Periodic structures are widely used
in engineering and architecture, some examples including,
brick walling, tiling, trusses, bridge frames, and aircraft
hulls. The pervasive use of periodicity is attributable to its
simplicity of application and facilitation of cost reductions
in manufacturing, assembly, and handling (Xie et al. 2011).
Two key types of periodic topology optimization have been
explored in literature: infinite periodicals and finite period-
icals. The former has drawn much more extensive attention
through an inverse homogenization procedure (Sigmund
1994), whereas the latter received relatively less attention.
The fundamental difference between the two approaches
resides in the scale of the structures considered. Infinite
periodicals rely upon the presumption of repeating bound-
ary conditions of each unit cell, allowing the FEA to be con-
ducted in a unit cell domain. This has been commonly seen
in microstructural design for materials, such as bone-lattice
or honeycomb core of sandwich structures (Sigmund 1994;
Hassani and Hinton 1998; Rodrigues et al. 2002). On the
other hand, finite periodic structures do not necessarily
exhibit repeating boundary conditions across unit cells. The
lack of uniformity in structural behavior of each unit cell
substantially increases the complexity of the topology opti-
mization problem, as the entire structure must be modeled
rather than reduction to a single unit cell. Alternatively,
the macro-structure design domain is divided into a finite
series of unit cells, exhibiting a specific type of periodic-
ity such as translational, cyclic, or reflectional, as seen in
Fig. 1 with the white square indicating the same periodic
element within each of the iterated unit-cells. An exam-
ple of 2D translational periodicity is the subdivision of a
rectangular design domain into an m by n set of cells (a
1 by 1 representing typical single component design) with
each unit cell exhibiting an identical design. In spite of its
importance, there has been limited work available on finite
periodic topology optimization to date, with most focusing
on stiffness criteria (Zhang and Sun 2006; Huang and Xie
2008; Xie et al. 2012) and some extending to frequency and
conductivity criteria (Zuo 2009; Chen et al. 2010).

It should be noted that the nature of finite periodic opti-
mization consists of a trade-off between structural simplic-
ity and structural performance. A fully optimized single cell
topology may exhibit a relatively sophisticated configura-
tion, thereby requiring higher manufacturing costs, although
highly efficient, while a periodically optimized topology
of unit cells may be simpler to manufacture and transport
yet less efficient due to the inclusion of material in the unit
cell design which is efficient in some, but not all, periodic
cell locations within the macro-topology (Zhang and Sun
2006; Huang and Xie 2008; Chen et al. 2010).

1.1 Problem statement

A significant knowledge gap exists in current literature pre-
venting the widespread adoption of topology optimization
in the commercial engineering industry. Standard topol-
ogy optimization is a useful and effective methodology for
optimization of single components while existing multi-
component optimization has been shown effective in allo-
cation of interfacing material and periodic optimization is
a proposed cost-effective method for industry applications.
In literature, however, coupled topology optimization of
realistic connection and periodic multi-components remains
an open research question. This study aims to explore the
knowledge gap between the three aforementioned topol-
ogy optimization approaches through the presentation of
a unified multi-component periodic topology optimization
approach. The underlying method is applicable to many dif-
ferent objective functions and topology optimization algo-
rithms but is explicitly be examined herein for stiffness and
frequency criteria utilizing BESO and SIMP methodology.
The study is expected to provide a method for production
of cost efficient and multi-criteria designs, facilitating better
manufacturability, transportability, and replicability in real
engineering practice.

2Multi-component modeling

Components within multi-component assemblies are mech-
anically or chemically bonded. At a structural level, this
bonding exists as a material interfacing in the overlapping

Fig. 1 Periodicity examples
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regions between two components. Typical bonding methods
include screws, welds, rivets, adhesives, and clamps. The
design and placement of this interfacing material may be
subject to realistic manufacturing constraints such as the
size of machinery, the discrete size of the utilized joint,
and a minimum assembly spacing (Li et al. 2001b). A
simple example of this premise is the space requirement of
a screwhead around the screw-shaft, requiring a minimum
separation between two neighboring screw joints. Often,
interfacing regions between components only require a
small fraction of the region to be populated, with joint
material, to satisfy mechanical requirements. The design
engineer may then wish to optimally place these joints to
minimize the requisite amount of connective material and
improve system performance.

2.1 Joint discretization and component meshing

The connection interface region between two components
may be discretized into an array of potential joint locations,
accounting for the manufacturing limitations of the intended
joint type, which often come in standardized sizes and
materials. Consider an overlapping region between two
plates of dimensions x by y connected via rivets of a given
diameter D, separated by a manufacturing spacing of �c,
as seen in Fig. 2. A simple M by N fixed grid mesh may
be utilized to model the interface region, and joints may be
approximately modeled through an m by n set of elements
corresponding to the geometric size of the intended joint
type D, while a specified gap �e

c of void elements may then
buffer each discrete joint location relative to the governing
manufacturing constraints �c. An example of this meshing
procedure may be seen in Fig. 2.

The fixed grid mesh utilized in the interface region
must also match the overlapping region of each of the
components to allow for seamless meshing of the full
structure. The simplest approach is to utilize a fixed grid
mesh for each component, the sizing of which is governed
by the discretized interface region. Due to the subdivision
of a continuum structure into discrete elements of a limited
mesh density, some degree of approximation in the meshing
allocation is required to simultaneously model the joint
sizing, gap sizing, and component sizing with an integer
number of fixed grid elements. An appropriate meshing may

be specified on a case by case basis dependent on intended
joint type, spacing requirements, and component geometry.
The multi-component topology optimization process is
designed to allocate an optimal distribution of joints and
thus the simplification of joint modeling may be justified.
Application of topology optimization methods, such as
SIMP and BESO, may selectively trend the distribution of
joint material over successive iterations, as guided by the
sensitivity analysis. A final design may then be produced
with more rigorous modeling methods, which extrapolates
the optimal rivet locations from the optimized model.
An illustrative example of this process is seen in Fig. 3
for a theoretical component interface within a mechanical
system.

3 Sensitivity analysis

The BESO and SIMP algorithms utilized throughout this
study are driven by a topological sensitivity analysis. The
sensitivity for each element is derived from finite element
formulation by quantifying the influence of each element
on a specific objective function. The sensitivity pattern
subsequently guides the inclusion and exclusion of material
in the next design iteration. The topological design is
trended towards an optimum state over successive iterations
subject to given design constraints, such as volume fraction.
The derivation of sensitivities for a wide variety of
multi-physical and multi-functional optimization criteria is
possible (Yang et al. 1999; Li et al. 1999; Huang et al. 2010;
Sigmund and Maute 2013); however, the examples in this
study will be limited to stiffness and frequency criteria, the
mathematics of which is briefly discussed in the following
sections.

3.1 Stiffness criterion

The static equilibrium condition allows calculation of nodal
displacements within the finite element model as a result of
an applied load, as

{f} = [K]{u} (1)

where {f} is the global force vector, [K] is the global
stiffness matrix, and {u} is the global nodal displacement

Fig. 2 Example connection
interface discretization

2274 S. Thomas et al. 



vector (Cook and et al 2007). The stiffness of the structure
may then be related to the inverse of the mean compliance
C, the total strain energy from the applied load seen in (2).
Stiffness optimization may be considered as a minimization
of mean compliance for a given volume criterion (Huang
and Xie 2010).

C = 1

2
fTu (2)

Application of a material interpolation scheme allows for
elements within the finite model to exhibit variable material
properties, as governed by a power law as,

ρi = ρ0xi, Ei = E0x
p
i , νi = ν0 (3)

where xi is the relative density of the i − th element;
ρi , Ei , and νi are the elemental density, Young’s modulus
and Poisson’s ratio, respectively; ρ0, E0, and ν0 are the
properties of the solid material, and p is a penalty factor
(Bendsøe and Sigmund 1999; Sigmund 2001). The relative
density xi may be assigned a value from xmin to 1, and
the penalty factor is commonly set to p = 3, while the
minimum relative density often takes on a small value such
as xmin = 0.001 (Huang and Xie 2010).

The change in mean compliance with respect to the
change in elemental relative density may be quantified and
utilized as an elemental sensitivity αe

i , as,

αe
i = ∂C

∂xi

= −1

2
x

p−1
i {uei }T [Ke

i ]{uei } (4)

where {uei } is the elemental nodal displacement vector and
[Ke

i ] is the elemental stiffness matrix of the i − th element
when solid (xi = 1) (Xie and Steven 1997; Sigmund 2001;
Huang and Xie 2010).

3.2 Frequency criterion

The dynamic behavior of a structure may be modeled
through use of an eigen-value problem, as,

([K] − ω2
j [M]){uj} = 0 (5)

where [K] is the global stiffness matrix, [M] is the global
mass matrix, and ωj is the j − th natural frequency with
{uj} being the corresponding eigen-vector (Huang and Xie
2010). The Rayleigh quotient, seen in (6), links the eigen-
vectors with their corresponding natural frequencies (Xie
and Steven 1996).

ω2
j = kj

mj

, kj = {uj}T [K]{uj}, mj = {uj}T [M]{ui} (6)

An alternative implementation of the material interpola-
tion scheme, seen in (7), may be introduced for frequency
analysis which helps prevent the manifestation of artificial
localized modes of vibration within low density regions of
the model which exhibit very large mass to stiffness ratios
(Pedersen 2000).

ρi = ρ0xi, νi =ν0,

Ei = E0∗
(

(xmin−x
p
min)/

(
1−x

p
min

) (
1−x

(p−1)
i

)
+x

p
i

)
(7)

Fig. 3 Illustrative example of
interface optimization process
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The change in the j − th natural frequency ωj with
respect to the change in elemental relative density xi of the
i − th element may be quantified and utilized as a modal
sensitivity αe

ij , as,

αe
ij = ∂ωj

∂xi

= 1

2ωj

{uij}T
(
1 − xmin

1 − x
p
min

px
p−1
i [Ke

i ] − ω2
j [Me

i ]
)

×{uij} (8)

where {uij} is the elemental modal eigen-vector and [Ke
i ]

and [Me
i ] are the elemental stiffness and mass matrices

respectively of the i − th element when solid (xi = 1). The
modal eigen-vector {uj} must be normalized with respect
to [M]. An elemental sensitivity may then be formed as a
weighted average of each of the modal sensitivities αe

ij , as

αe
i =

∑N
j=1 wjα

e
ij

N
(9)

where wj is a weighting factor for the j − th mode and N

is the total number of modes in the objective function. The
weighting factors may be prescribed values from −1 to 1,
indicating the degree of maximization or minimization of a
given natural frequency as determined from the respective
frequency objective function.

3.3 Multi-criteria sensitivity

A multi-criteria sensitivity αe
mc may be formulated by

combining the sensitivities from different design criteria,
specifically mean compliance and natural frequency in this
study. The sensitivities may be calculated using a linear
weighting function as seen in (10), where w is a weighting
factor from 0 to 1, αe

c are the compliance sensitives and αe
f

are the frequency sensitivities.

αe
mc = w

αe
c

|αe
c |max

+ (1 − w)
αe

f

|αe
f |

max

(10)

4 Topology optimization procedures

The underlying methodology of multi-component periodic
topology optimization is independent of the update process
utilized to drive the topological design. This study presents
results utilizing BESO and SIMP; a brief discussion of
each method is included below (Sigmund and Maute 2013;
Huang and Xie 2010).

4.1 Mesh independent filter

Direct use of elemental sensitives obtained from low-order
elements may lead to checkerboard patterns, producing
unrealistic designs (Bendsøe and Sigmund 1995). This issue

can be alleviated through application of a mesh indepen-
dence filter, of which several variations have been presented
(Sigmund and Petersson 1998; Li et al. 2001a; Bourdin
2001; Huang and Xie 2007).

4.1.1 BESO filtration

The BESO filtration scheme improves convergence and
inhibits large fluctuation of the objective function (Huang
and Xie 2007, 2010). It operates independently of the rel-
ative density of a given element, making it applicable to
both soft- and hard-kill variations of BESO. Firstly, nodal
sensitivities αn

j are calculated from the elemental sensitivi-
ties αe

i as,

αn
j =

M∑
i=1

wiα
e
i , wi =

1 − rij∑M
i=1 rij

M − 1
,

M∑
i=1

wi = 1 (11)

where j is the considered node, M is the total number of
elements connected to the j−th node, and rij is the distance
between the centroid of the i − th element and the j − th

node. Secondly, the nodal sensitivities are re-distributed
back to elemental sensitivities relative to a specified filter
radius rmin as,

α̂e
i =

∑N
j=1 w(rij )α

n
j∑N

j=1 w(rij )
, w(rij ) = rmin − rij (12)

where the filtered elemental sensitivity α̂e
i becomes a

weighted average of nodal sensitivities αn
j , where N is

the total number of nodes within the specified radius from
the centroid of the i − th element. Finally, the filtered
sensitivities are averaged with the historical sensitivities
across the design iterations such that the sensitives are a
composite of the previous sensitivity patterns, as,

αK = α̂e + αK−1

2
(13)

whereK is the current iteration in the topology optimization
process.

4.1.2 SIMP filtration

The SIMP filtration process is very similar to that of the
BESO filter process; however, it avoids the use of nodal
sensitives and includes the elemental relative densities in the
algorithm (Sigmund and Petersson 1998; Sigmund 2001),
as,

α̂e
i = 1

xi

∑N
j=1 Ĥij

n∑
j=1

Ĥij xjα
e
j , Ĥij = rmin − rij (14)

where the Ĥij term is a convolution operator determined
relative to the specified filter radius rmin and the distance rij
from the centeroid of i − th element from the centeroid of
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the j − th element, where N is the number of elements with
a positive Ĥij value.

4.2 Periodic sensitivity

The topological update process relies upon the calculated
elemental sensitivities to generate a new design. As the per-
tinent design of a periodic structure is the unit cell, the
utilized sensitivities must be related to the unit cell. This is
achieved through compression of a topology-wide sensitiv-
ity pattern to a unit cell sensitivity pattern, seen in Fig. 4.
Specifically, through the calculation of an averaged elemen-
tal sensitivity αe

iuc from the corresponding sensitivities of
each iterated unit cell within the macro-structure, as,

αe
iuc =

∑U
k=1 α̂e

ik

U
(15)

where αe
ik is the sensitivity of the i − th corresponding

element in the k − th iterated unit cell and U is the total
number of iterated unit cells. In this way, the structure-
wide sensitivity is compressed into a periodic sensitivity for
topological design of the recurring unit cells.

4.3 Optimization algorithms

BESO and SIMP utilize the filtered sensitivities to drive
topological variation within the design domain in an
iterative process, progressively morphing the structural
topology towards an optimum (Huang and Xie 2010;
Sigmund and Maute 2013). The design domain of the
proposed periodic optimization algorithm is the unit cell,
which utilizes the compressed filtered sensitivity pattern to
update its design. The updated unit cell is then iterated to
form the macro-structure, as seen in Fig. 4.

4.3.1 BESO update procedure

BESO iteratively updates the topology through assignment
of either solid (x = 1) or void (x = xmin) status
to corresponding elements within the design domain. In

soft-kill, xmin ≈ 0.001 and hard-kill xmin = 0. In the
hard-kill scheme, void elements are entirely removed from
the model, allowing for faster computational times, and
may be considered a special case of the soft-kill method
with a penalty factor tending towards infinity (Huang and
Xie 2010).

At each design iteration, a new volume target is
established (16), dictating the desired volume for the next
iteration, relative to a prescribed evolutionary rate ER

which is typically around 1% as,

VK < V ∗ : VK+1 = VK(1 + ER),

VK > V ∗ : VK+1 = VK(1 − ER) (16)

where the current volume VK is compared with the
volume criterion V ∗, dictating the direction of volumetric
movement. When the volume target is reached, the volume
remains constant with equal material volume added and
removed at each iteration (Huang and Xie 2010).

The application of a simple ruleset determines the void
and solid status of each element in the next design iteration,
seen in (17). The total solid volume must meet the next
volume target VK+1 and a maximum addition ratio ARmax

must not be exceeded, which is set by the user to limit
oscillation between solid and void material. To drive the
variation of elemental material status, an ordered ranking of
elemental sensitives is assessed, from highest to lowest, and
progressed through individually with a given element being
solidified if its sensitivity rank satisfies the criterion, as,

VK+1 > Vs→s + Vv→s , VK+1ARmax > Vv→s (17)

where Vs→s is the total volume of solid to solid material
to remain in its current status; Vv→s is the total volume to
be changed from void to solid material. All the elements
which fail the upgraded criterion are voided; once the
maximum material addition limit is reached, all further void
elements remain void regardless of their sensitivities. A
similar procedure for BESO element updating may be found
in the reference material (Huang and Xie 2010).

The BESO procedure may be terminated when one
of two conditions is met, either once the total iterations

Fig. 4 Periodic sensitivity and synchronization of topology update
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exceeds a prescribed iterative limit Kmax or the fluctuations
in the objective function fK over recent iterations is less
than a specified threshold τ while the volume criterion V ∗
is satisfied, mathematically as,

K > Kmax, or

Vk = V ∗ : |∑N
i=1 fK−i+1 − ∑N

i=1 fK−N−i+1|∑N
i=1 fK−i+1

≤ τ (18)

where K is the current iteration, VK is the current volume,
and 2N is number of considered recent iterations (Huang
and Xie 2010). A criticism of the BESO algorithm involves
the termination criterion, in which the topology may not
be considered mathematically converged, as termination
may occur despite ongoing changes to the topological
design between iterations (Zhou and Rozvany 2001; Huang
and Xie 2010; Sigmund and Maute 2013). Nevertheless,
consideration of few last iteration results makes the
termination more justifiable.

The elemental removal/voiding process functions slightly
differently for connection interface BESO than in standard
applications. Due to the discrete nature of joints, such as
a single screw, the constituent elements within the mesh
modeling a given joint location must be removed as whole
units, a process known as grouped ESO (Lencus et al. 2002).
The sensitivity score αJ for a given joint location may
then be calculated as a weighted average of the constituent
elemental sensitivities within the joint, as seen in (19),
where N is the number of elements in the given joint, αe

i

is the elemental sensitivity, and ve
i is the elemental volume.

The joint locations with the lowest mean scores are then
selected for removal.

αJ =
∑N

i=1 αe
i v

e
i∑N

i=1 ve
i

(19)

The bi-directional solution for ESO in single component
optimization relies upon a continuous sensitivity distribu-
tion, allowing the natural expansion of the mesh in areas
of high value. However, the spacing between joint locations
may inhibit the accurate allocation of sensitivity scores to
voided joint locations by the standard BESO filter, an issue
especially prevalent at low material volumes with sparse
joint patterns. Alternatively, the internal sensitivity distri-
bution of a given joint location may be examined relating
the centroid of sensitivity scores to the centroid of the joint
location, thus producing a vector indicating the preferential
direction of material addition/movement. This process may
be seen in (20), where xe

i and ye
i are the elemental centroid

coordinates and xc and yc are the joint centroid coordi-
nates. Joint material may then be added, or an existing joint

translated, to a voided joint location as directed by the
sensitivity vector.

V = Vx i + Vyj,

Vx =
∑N

i=1 αe
i

(
xe
i − x

j
c

)
N

,

Vy =
∑N

i=1 αe
i

(
ye
i − y

j
c

)
N

(20)

A joint removal rate may be prescribed, removing an
integer number of whole joints per iteration with the lowest
mean sensitivity. Similarly, a joint addition rate may be set,
allowing for up to a specified number of new joints to be
added into vacant joint locations as indicated by the highest
magnitude internal sensitivity vectors of the existing joints.
Successive removal and addition of joints at low material
volumes may result in the clumping of joint locations.
To account for this issue, a volume addition threshold
is set, under which no further joint additions are made.
Alternatively, the joints with the highest magnitude vectors
are translated to vacant neighboring locations, as indicated
by the sensitivity vector, as opposed to a new neighboring
joint being added. Removal of material continues until a
specified volume criterion is met. Addition of material may
occur above the volume addition threshold and translation
of joints occurs under the volume addition threshold.

4.3.2 SIMP optimality criteria

The SIMP methodology assigns each element an updated
relative density value x for the subsequent iteration of
the optimization process relative to its sensitivity value.
Intermediate density values are driven towards a binary
result of xmin or 1 due to the penalization factor p > 1,
typically with p = 3 the recommended value (Bendsøe and
Sigmund 1999).

The topological design is driven via one of a variety of
algorithms, including sequential linear programming (SLP),
method of moving asymptotes (MMA) and the optimality
criterion (OC) method (Sigmund and Maute 2013). For its
simplicity, the OC procedure is adopted here as,

xnew
e =

⎧⎨
⎩

max (xmin, xe−m) , if : xeB
η
e ≤max (xmin, xe−m)

xeB
η
e , if : max (xmin, xe−m)<xeB

η
e<min (1, xe+m)

min (1, xe+m) , if : min (1, xe+m)≤xeB
η
e

Be = − ∂c
∂xe

λ ∂V
∂xe

(21)

where xmin is the minimum relative density, m is the move
limit, η is the damping coefficient, λ is the Lagrangian
multiplier, and V is the volume (Bendsøe and Sigmund
1995; Sigmund 2001). The filtered sensitivities compressed
to a unit cell are used in this procedure.
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The SIMP algorithm may be terminated once conver-
gence is achieved or a maximum iteration limit is reached.
As opposed to the BESO methodology which utilizes a
convergence criterion based upon the stabilization of the
objective function, the SIMP methodology may utilize a
convergence criterion based upon the stabilization of the
topological change, as,

max
i∈Nuc

∣∣∣xnew
i − xold

i

∣∣∣ ≤ τ (22)

where xnew
i and xold

i are the updated and previous elemental
relative densities, Nuc is the set of elements in the unit cell,
and τ is the convergence threshold (Sigmund 2001).

As with the BESO method, a slight alteration to the stan-
dard SIMP procedure is required to apply topology opti-
mization to the connection interface region. As joints must
exist as whole units, each of the constitutive elements within
a joint must exhibit the same material properties. In the
SIMP algorithm, this requires each element within a joint
location to exhibit the same relative density value. Updating
of the joint interface is achieved through reduction of joint
elements to a mean sensitivity value, as in (19), which is
treated by the optimality criterion as a single element. Thus,
updated relative density value of the joint describes the rel-
ative densities of all constituent joint elements. Joint values
exhibiting intermediary relative density values in the con-
verged model may be interpreted as joints of varying size.

5 Design examples

BESO is utilized as the primary algorithm for the generation
of results due to its ease of application, clear binary outputs,
and suitability for both compliance- and frequency-based
criteria.

5.1 Cantilever structure

Topology optimization literature often utilizes benchmark
case studies to illustrate the application of proposed
algorithms. Single component topology optimization is
often applied to a clamped cantilever beam with a lateral
loading at the end of the beam (Huang and Xie 2010;
Sigmund and Maute 2013; Xia et al. 2018). An example
of the BESO process applied to this case study for a 60%
volume constraint may be seen at the top of Fig. 5(a). The
component’s dimensions are 120 by 40 by 5mm, made of
steel with a 100N loading applied and a filter radius of
5mm meshed with 126 by 42 by 4 hexahedral elements.
The resultant topological design exhibits a compliance of
0.74Nmm and may be smoothed for manufacture. Some
degree of periodicity may be enforced on the cantilever
structure, as may be seen in the second result set of Fig. 5(b)

for a 2 by 1 periodic cantilever structure. The structural
periodicity results in the unit cell exhibiting dimensions
of 60 by 40 by 5mm, which is optimized for a 60%
volume constraint as with the single component example.
The optimized compliance value achieved is raised due to
the enforcement of periodicity to a value of 0.85Nmm.

The application of simple periodicity within a single
component structure, as seen in Fig. 5(b), does not
realistically model assembly conditions. The premise of
periodic design is the separate fabrication of unit cells
and assembly into a macro-structure; thus, multi-component
assembly should be incorporated into the finite element
model and optimization process. The same concept of a
cantilever case study may be extended to a multi-component
cantilever system consisting of two components connected
via a series of joints in an overlapping region. Simultaneous
optimization of the components and interface joint region
may then be applied, for a prescribed component volume
and joint quantity. An example of this premise may be seen
in the third result set of Fig. 5(c), for a two-component
steel cantilever beam system connected via eight joints. The
component dimensions are both 80 by 40 by 5mm, meshed
with 84 by 42 by 4 elements, with an overlapping region of
40 by 40mm, which is joined via 2.15mm aluminum rivets
modeled as a joint sizing of m = n = 2 and �e

c = 2. The
total length of the model remains 120mm as in the single
component model, with a new component volume constraint
of 45% such that the total material volume is equivalent
between the single and two-component models. As may
be seen, the addition of joint interfacing and separation of
the system into two-components increases the optimized
compliance value to 0.95Nmm. Furthermore, periodicity
may be enforced in the multi-component optimization, as
seen in the final result set of Fig. 5(d) for a 2 by 1
multi-component periodic. In this scenario, the optimized
compliance value is increased both by the multi-component
design and the periodicity to a value of 1.14Nmm.
The addition of each new fabrication requirement to the
optimization model increases the final compliance value,
highlighting the current disparity between most topology
optimization literature and real engineering designs.

5.2 Simply supported bridge

Periodic topology optimization is a significantly smaller
field than single component topology optimization and as
such there is no universal case study within the literature.
However, a commonly considered case is that of a two-
dimensional simply supported bridge structure under a
central loading (Huang and Xie 2008). The nature of
periodic topology optimization then allows for any arbitrary
m by n periodicity to be applied translationally to the bridge
structure. An example of this premise may be seen in Fig. 6,
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Fig. 5 Topology optimization of single and multi-component cantilever structures

which juxtaposes single component topology optimization
with a 4 by 1 translational periodic topology optimization
for a volume constraint of 50%. The bridge dimensions are
400 by 100 by 20mm, modeled with a steel material and
a central 1000N load. Each unit cell in the periodic design
is 100 by 100 by 20mm. The single component topology
optimization achieves an optimized compliance of 2.8Nmm

and the 4 by 1 periodic a 4.8Nmm compliance, an increase
of approximately 70% in the periodic topology, as seen in
Fig. 6.

Each of the concepts in the previous examples may be
utilized to extend the premise of a simple case study topology
to that of a periodic multi-component assembly. A similar
bridge topology to the variant seen in Fig. 6 may be formed
consisting of multiple periodic components. Due to assembly
and interfacing requirements there must exist overlapping
regions between sub-components, connected via interfacing

joints. This may be achieved through a sandwich design
of periodic plate components. An example of this premise
may be seen in Fig. 7 for a 4 by 2 periodic bridge topology
connected via a fully populated set of rivets (a), with the
periodic unit cell seen on the right of the figure (b).

The following example results, in Figs. 8, 9, 10, 11,
and 12, illustrate several optimized m by n periodic multi-
component bridge topologies subjected to a central vertical
loading of 1000N . The target component volume reduction
is set to 50% with a joint volume criterion of 4 joints per
overlapping interface. The dimensions of each of the steel
plate components’ cross sections are 100 by 100mm with
a thickness of 5mm for the outer plates and 10mm for
the inner plates. Each adjacent plate is separated within
the cross-sectional plane by a 10 by 10mm spacing and
a depth spacing of 1mm, such that a repeating periodic
cell in the macro-topology has dimensions of 110 by 110
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Fig. 6 Topology optimization of simply supported bridge structure for single component and 4 by 1 periodic

by 22mm. The joints are modeled as aluminum rivets with
a 3.2mm shaft diameter and a 5.5mm head diameter. A
6mm separation between each rivet location is set to account
for assembly conditions and to prevent contact between
adjacent rivets, and this manifests as an m = 3, n = 3, and
�e

c = 3 joint meshing, where a fixed grid is utilized with
element cross-sections of 1 by 1mm. The evolutionary rate
is set to 1% for component volume and the joint removal and
addition rates are set to 2 and 1 respectively, per interface
region. The convergence threshold is set to 0.001 and the
filter radius is 5mm. Each of the optimizations begins with
a fully populated design space of 100% component volume
and 49 joints per interface region.

Figure 8 depicts a 2 by 1 optimized periodic topology
achieving a final compliance value of 14.2Nmm from an
initial value of 9.1Nmm, an increase of 56% in compliance
for the 50% component volume reduction, and an interface
volume reduction of over 90%. Figure 9 depicts the

optimized result for a 5 by 1 periodic with an initial
compliance value of 30.9Nmm and an optimized value
of 126.2Nmm, an increase of 126%. Figure 10 depicts
an optimized result for a two-dimensional periodicity of
4 by 2, in which an initial compliance value of 10.4Nmm is
raised to 21.3Nmm for a compliance increase of 105%. The
optimization seen in Fig. 11 for a 7 by 2 periodic depicts
an initial compliance of 17.0Nmm raised to 44.7Nmm,
an increase of 164%. A variety of results for other
m by n periodicities may be found in Fig. 12, or in the
accompanying data set (Thomas 2019).

The concept of multi-component periodic optimization
may be extended to more complex periodic systems. This
increase in complexity may include aspects such as a variety
of unique periodic cells, three-dimensional optimization,
self-interlocking components, multiple joint types within
interface regions, or more complex unit cell geometry. An
example of this premise may be seen in Fig. 13 in which

Fig. 7 4 by 2 multi-component
periodic bridge topology
example
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Fig. 8 2 by 1 multi-component periodic bridge topology optimization

two simply supported bridge structures, subjected to central
loading, are formed via three-dimensionally optimized
self-interlocking periodic components, connected via pin
joints/bolts. As a result of the self-interlocking constraint

between the periodic cells, the connection interface pattern
optimization is restricted to a single quadrant of the periodic
design, each interface reduced to 3 joint locations. The first
example (a) depicts a 3 by 2 periodic topology in which the

Fig. 9 5 by 1 multi-component periodic bridge topology optimization
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Fig. 10 4 by 2 multi-component periodic bridge topology optimization

Fig. 11 7 by 2 multi-component periodic bridge topology optimization
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Fig. 12 Various multi-component periodic bridge topology optimization results

optimized output design exhibits a final compliance value
of 7.5Nmm, increased from the initial value of 4.2Nmm.
This equates to a 75% increase in compliance for a 60%
reduction in component volume. The second example (b)
depicts a 5 by 2 periodic with a significantly larger spacing
between each periodic cell. The optimized design exhibits
a final compliance value of 9.0Nmm, raised from an
initial value of 2.9Nmm, an increase of 216% for a 75%
component volume reduction.

In each of the depicted results for multi-component
periodic optimization, the joint volume target is achieved
relatively early in the optimization processes, as illustrated
by the large compliance gains in the early iterations. The
component topologies then stabilize around the ultimate
joint locations, with a significant reduction in subsequent
compliance gains per iteration. A disparity in the iterations
required to reach the volume criterion in components and
interfacing regions may be addressed through a reduction
in joint removal rate or updating the joint interfacing every
n − th iteration. The evolutionary rate, joint removal and

addition rates, number of joints, and volume criterion are
user-assigned variables and may be chosen from a wide
range of viable values.

5.3 Effects of initial joint discretization

Specification of appropriate joint type is a large contribut-
ing factor to the final optimized design. Various initial
discretizations may be utilized, each corresponding to a
specific joint type (sizing and spacing) desired by a design
engineer. Figure 14 examines three different initial joint dis-
cretizations for a 3 by 1 multi-component periodic topology:
(a) 3.2mm rivets with joint meshing of m = 3, n = 3, and
�e

c = 3; (b) 4.5mm rivets with a joint meshing of m = 4,
n = 4, and �e

c = 4; and (c) 5.5mm rivets with a joint mesh-
ing of m = 5, n = 5, and �e

c = 5. The joints are modeled to
have an equivalent cross-sectional area as the intended rivet
type, despite the square cross-sectional geometry in the FEA
model. Each of the modeled cases utilizes a different target
joint constraint for each for the interface regions, such that
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Fig. 13 3D self-interlocking multi-component periodic topology optimization

the total joint material volume in each case is approximately
equivalent. As may be seen, (a) utilizing five 3 by 3 element
joints for a total connection area of 45mm2 per interface
achieved a final compliance value of 25.1Nmm, (b) utiliz-
ing three 4 by 4 element joints for a total connection area
of 48mm2 per interface achieved a final compliance value
of 25.2Nmm and (c) utilizing two 5 by 5 element joints

for a total connection area of 50mm2 per interface achieved
a final compliance value of 29.1Nmm. Despite a slightly
lower total connective area, the larger number of connection
points produced comparatively lower compliance values.
This is primarily due to two factors: the requirement of
excessive low-value material to surround large joint loca-
tions (to account for the rivet head sizing) and a reduction

Fig. 14 3 by 1 multi-component periodic optimized designs for various initial discretizations
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in geometric complexity with lower numbers of interface
connection points.

5.4 Multi-criteria optimization example

Frequency-based topology optimization can be a volatile
process for periodic multi-component structures, typically
prone to geometric disconnections and poor convergence.
To deal with these issues, it is often easiest to apply frequency
optimization in conjunction with a more stable criterion such
as stiffness. Figure 15 displays several optimization results
for a 4 by 1 periodic fixed bridge structure subjected to

two lateral loading cases. The multi-criteria optimization is
conducted for minimization of mean compliance and maxi-
mization of the first natural frequency for a range of weighting
factors, utilizing (10). As seen in Fig. 15, larger weighting
factors produce stiffer topologies (lower compliance)
but a lower first natural frequency, whereas the lower
weighting factors produce less-stiff topologies but higher
first frequencies. It is noted that the optimized designs
vary both in periodic component and connective layout for
the different weighting factors. Application of this process
to engineering designs will allow a compromise between
dynamic (natural frequency) and static (stiffness) criteria.

Fig. 15 Multi-criteria optimization for 4 by 1 periodic fixed bridge structure
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Fig. 16 BESO and SIMP comparison for spot-welded multi-component periodic bridge structures
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5.5 Comparison of SIMP and BESO

The proposed methodology is not limited solely to BESO
based applications; it is similarly applicable to SIMP, level-
set, and other optimization procedures. As SIMP shares
common similarities with the BESO methodology, it will be
examined as a point of comparison. A standard power law
scheme of p = 3 is adopted for material properties, a mesh-
independent filter is utilized, and the topology updated with
an optimality criterion of move limit m = 0.2.

The following optimized models, in Fig. 16, utilize
spot-weld connections between component interfaces and
are examined for a variety of periodicities; the joint
discretization, component dimensions, and mesh are the
same as for the examples in Figs. 8, 9, 10, 11, and 12.
The spot weld connection is modeled as a material interface
layer between each component, without any through-holes
into the connecting components as was seen in the previous
rivetted examples. The optimization processes for SIMP and
BESO follow different search paths in the design domain
and, as a result, arrive at different local optima designs.
However, despite being visually different, they exhibit
similar compliance values which indicates the viability
of both algorithms to the application of periodic multi-
component design.

The BESO results on average exhibit slightly lower
compliances values, the best improvement being an 8.1%
compliance reduction, and the worst comparison being a
1.4% compliance increase compared with the SIMP results
achieved in Fig. 16. The performance discrepancy is likely
due to the inclusion of some gray-material existing in the
SIMP designs, or due to the SIMP designs converging
too quickly and being locked in a local-minima, while
the BESO translation of joints helps prevent the algorithm
being locked in non-optimal designs. However, the SIMP
formulation utilized was a basic OCmethod and may exhibit
improved results from more sophisticated SIMP algorithms.
As with most literature on the comparison between SIMP
and BESO results, each algorithm brings its own pros and
cons (Rozvany 2009; Huang and Xie 2010; Sigmund and
Maute 2013; Xia et al. 2018). The comparative results
illustrated in Fig. 16 produce little variation in optimized
objective functions indicating the application of either
method will yield acceptable results.

6 Concluding remarks

This study presents a topology optimization framework
for the design of periodic multi-component structures.
The coupled optimization of component topology with
connective layout addresses real assembly issues faced in
the engineering design not typically accounted for in single

component topology optimization procedures. Application
of periodic topology optimization enables fabrication of
smaller identical components with optimized designs and
joint layouts for large-scale structural systems, significantly
reducing design complexity and manufacturing cost as
well as easing assembly/packing/transport requirements.
A number of examples are provided to demonstrate
the effectiveness of the proposed topology optimization
procedure for periodic multi-component systems, with
stiffness and frequency criteria, and is shown to be
applicable to BESO and SIMP methodologies.
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