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Abstract
The reinforcing members are often added on an existing structure to improve stiffness of the structure up to required level. In
general, the design targets for the reinforcing members need to be allocated for their designs. However, since the members are
additively designed, it is difficult to predict behavior of the reinforcing members and their influence on the existing structure.
Therefore, allocating the design targets is challenging task, and the targets based on engineering experience and intuition
can lead to the repetitive design cycles. This paper proposes a method for determining target stiffness of a reinforcing
member which makes an existing structure achieve the required performances. To utilize individual models of an existing
structure and the reinforcing members in a design, the system of equations of the assembled structure is decomposed by
using a substructuring technique. Additional boundary conditions are imposed on the interfaces between the structure and
members to ensure consistency between models, and the target stiffness of the member is defined by using the boundary
conditions. The optimal target stiffness and design of the members are determined through the use of a multidisciplinary
design optimization technique, analytical target cascading. This method is applied to a simple portal frame and a body-in-
white with reinforcing member of a vehicle manufactured by Hyundai Motor Company. By using the optimal target stiffness,
reinforcing member of any shape can be designed independently and at little cost, without access of the existing structure
model.

Keywords Target stiffness allocation · Reinforcing member · Structure reinforcement · Complex structure ·
Design optimization · Analytical target cascading

1 Introduction

When a structure undergoes certain changes, including a
modification in use, the environment, regulations, or the
operating conditions, the structure should be reinforced to
deal with such alterations (Yang and Liang 2011). The
changes to a structure can be dealt with by updating
its shape, size, and material, but this is occasionally not
cost-effective. Because the existing structure should be dis-
carded, including the structure itself, and because of the
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added costs for the required design and manufacturing.
Another way to utilize an existing structure without dis-
carding it is by adding some specially designed reinforcing
members, which can be easily found in vehicle structural
designs. For example, vehicle manufacturers develop high-
performance trim level vehicle models by adding reinforc-
ing members on an existing body structure of a base trim
level vehicle model. To achieve the ride and handling perfor-
mance required for a high-performance vehicle, reinforcing
members specialized for a specific stiffness of the vehi-
cle are designed. Strut tower bars located underneath the
hood are designed to improve the global torsional stiffness
of the vehicle structure (Takamatsu et al. 1992). Lower tie
bars mounted around the subframes are specially designed
to improve the local stiffnesses of the suspension structure.
By utilizing these reinforcing members, several models with
different purposes can be developed under a reduced time
frame and cost in terms of development and production.

When the design and model of an existing structure
already exists, the design of the reinforcing members is
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generally conducted individually by allocating stiffness
targets. These targets allow the existing structure to satisfy
the required stiffness level. For example, the stiffness,
mass, durability, and natural frequency are allocated to the
reinforcing members using target values. With these design
targets, the design of the members can be rapidly conducted
and reviewed, and a stand-alone design procedure of the
reinforcing member can be achieved. However, because the
members are additively and newly designed, it is difficult to
identify their behavior in an assembled structure. Therefore,
identifying the guidelines and targets is a challenging task,
involving engineers to determine the targets based on their
engineering experience and intuition. Because the targets
are determined based on experience, the assembled structure
may not satisfy the design requirements, and the optimality
of the design cannot be guaranteed. If the design does
not meet the requirements, the design targets are revised
again using intuition, followed by repetitive design cycles
(Austin-Breneman et al. 2012).

Because the problem consists of two disciplines, namely
the existing structure and the reinforcing members, a
multidisciplinary design optimization (MDO) can be a
solution (Martins and Lambe 2013). MDO methods can
be classified into two groups. The first, a multidisciplinary
feasible (MDF) method, optimizes systems by uniting
distributed subsystems through a multidisciplinary analysis
(MDA). A bilevel integrated system synthesis (BLSS)
(Sobieszczanski-Sobieski et al. 2000) and concurrent
subspace optimization (CSSO) (Sobieszczanski-Sobieski
1988) are representative MDF methods. The other type
is an individual discipline feasible (IDF) method, which
achieves an optimization in a distributed environment.
Collaborative optimization (CO) (Braun 1997), BLISS-
2000 (Tosserams et al. 2010) and analytical target cascading
(ATC) (Kim 2001) are representative IDF methods. Typical
MDO methods focus on solving multidisciplinary systems
consisting of pre-decomposed disciplines and specific
linking variables between the disciplines. For example,
ATC, which was developed to optimize hierarchical
systems, can be used to derive a target value as a linking
variable. The ATC method is widely used in the design
of dynamic systems for which the disciplines can be
easily decomposed (Kim et al. 2003, 2016; Kokkolaras
et al. 2004). However, in contrast to dynamic systems,
where linking variables between the components, such as
stiffness coefficients and damping coefficients, are clearly
defined, it is difficult to define linking variables between
the structure and its members. Therefore, early research
into the application of ATC to a static structure design
defined the linking variables between components, such as
the bending or torsional stiffness, based on the intuition of
the engineers (Kang et al. 2014). However, because these
linking variables, which were defined as a partial stiffness

of substructures, cannot express the complete behavior of a
substructure, it is difficult to guarantee the feasibility and
optimality of the assembled structures. To derive an accurate
target stiffness for a reinforcing member, the structural
relation between the structure and members should be
reviewed precisely through a system of equations.

This paper presents a method for determining target
stiffness of a reinforcing member which makes an existing
structure achieve required stiffness. To utilize individual
models of an existing structure and a reinforcing member,
a system of equations for each model is derived from
the assembled structure using a substructuring technique.
New boundary conditions are introduced at the interfaces
between the structure and members to ensure consistency
between individual models and to define the target stiffness
of the reinforcing member. By utilizing each model as a
discipline and the target stiffness as a linking variable, the
optimal target stiffness allowing the assembled structure
to satisfy the required stiffness is determined using ATC.
Based on the derived target stiffness of the member, an
independent design of a member of any shape, without
access of a model of the existing structure, can be
achieved while guaranteeing the stiffness of the assembled
structure.

The remainder of this paper is organized follows: In
Section 2, individual models and the target stiffness are
derived from a system of equations of assembled structure
by using a substructuring. In Section 3, an optimization
scheme based on the ATC method is described to deter-
mine and allocate the optimal target stiffness of the member.
In Section 4, examples are offered as an examination of
the proposed method. First, a simple portal frame of a
reinforcing member is employed as an example to analyt-
ically illustrate the proposed method. The method is then
applied to the design of a reinforcing member of a vehicle
body-in-white (BIW). The design problem and result of a
reinforcing member on a vehicle are then described. Finally,
some concluding remarks are given in Section 5.

2 Decomposition of structure and definition
of target stiffness

Decomposed substructures offer design process advantages
over assembled structures. Because a model of an existing
structure already exists, it is more reasonable to build an
individual model of new reinforcing member and utilize
individual models in the design process. If they are
combined into a single model, the model will become much
more complex than before, and more cost will be required
for an analysis. In addition, by deriving the design targets,
reinforcing members can be designed independently, and
an expensive model of the existing structure is no longer
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required. This can reduce time and cost in individual design
of the reinforcing member.

In this section, to utilize decomposed models, the
existing structure and the reinforcing member are derived by
decomposing system of equations of assembled structure.
Additional boundary conditions (B.C.) are introduced on
each model to achieve consistency between models. Based
on the boundary conditions, the target stiffness of the
reinforcing members is defined.

2.1 System of equations

An analysis of a structure can be classified according to the
linearity of the behavior and the time-variance of the load.
According to the linearity between the applied load and the
deformation of the structure, an analysis can be classified
into linear and non-linear approaches. Besides, according
to the time-variance of the load applied to the structure,
or a consideration of the inertia effect of the structure, an
analysis can be classified as being static or dynamic. For
general explanation, the proposed method is developed by
using linear static model, which is most widely used (Adams
2008). Equation (1) shows the system of equations used for
a linear static structure (Zienkiewicz et al. 1977).

Ku = F (1)

where K represents the stiffness matrix of a structure and
u represents the displacement of each structure node. In
addition, F represents the external forces applied to each
node.

For an easier explanation of the decomposition of the
system of equations, a simple portal frame structure with
a reinforcing member is introduced in Fig. 1. A member
with a dashed line represents a reinforcing member, and a
member with a solid line represents an existing structure.
From the perspective of substructuring, because both are
part of the assembled structure, the existing structure
and the reinforcing member are called the upper and
lower substructures, respectively. The prefixes “upper” and
“lower” represent the relative vertical relationship of the
substructures in the physical hierarchy of the structure. In

Upper substructure (U)

Lower substructure (L)

Interface (I)

Fig. 1 Portal frame structure with reinforcing member

Section 2, an existing structure and a reinforcing member
are referred to as upper and lower substructures to explain
the substructuring procedure. Nodes can be classified
into three groups according to where they belong: the
upper substructure, the lower substructure, and interface
between the upper and lower substructures. Each node is
denoted as filled square, triangle, and circle in Fig. 1,
respectively. Based on the classification of the nodes, a
system of equation of assembled structures can be rewritten
as follows:
⎡
⎣
KUU KUI 0
KIU KII KIL

0 KLI KLL

⎤
⎦

⎡
⎣
uU

uI

uL

⎤
⎦ =

⎡
⎣
FU

FI

FL

⎤
⎦ (2)

where subscripts represent the classification of nodes. U , I ,
and L represent the upper substructure, interface between
the substructures, and the lower substructure, respectively.
Since the nodes on interface are included in both members
of the upper and lower substructures, KII can be rewritten
as follows (3):

KII = K(U)
II + K(L)

II (3)

K(U)
II is the partial stiffness matrix of interface nodes

related to the upper substructure, and K(L)
II is related to the

lower substructure. The other stiffness matrices are solely
dependent on the upper or lower substructure. KUU , KUI ,
and KIU are related to the upper substructure, whereas KIL,
KLI , and KLL are related to the lower substructure. Based
on the dependency of the stiffness matrix, the system of
equations can be decomposed as (4) by introducing a new
term, FC .

[
KUU KUI

KIU K(U)
II

] [
uU

uI

]
=

[
FU

FI − FC

]

[
K(L)

II KIL

KLI KLL

] [
uI

uL

]
=

[
FC

FL

]
(4)

where FC = K(L)
II uI + KILuL

It is important to note that the physical meaning of FC

is the vector of internal forces that occur at the interface
between the upper and lower substructures. FC couples
two decomposed system of equations into assembled one.
Since the reinforcing member is additionally designed
on the existing structure, interface nodes would be some
nodes of the existing structure model. Therefore, additional
calculation of stiffness matrix of the existing structure is
not required, and the existing structure model with a little
modification of boundary conditions can be used. Above
decomposition procedure can also be performed on the
models of commercial finite element analysis software.
Tasks needed to be done on the both substructure models
are identifying node numbers on interfaces and applying
corresponding boundary conditions on them. Therefore,
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the decomposition scheme can be easily applicable to real
industrial fields.

On the other hand, non-linear models such as models
with material and geometrical non-linearity can be expected
to be decomposed in the same way as the linear models.
It is necessary to follow above decomposition procedure
steps considering their non-linearities in the system of
equations. Based on the decomposed system of equations,
independent analyses of the upper and lower substructures
can be conducted.

2.2 Analysis of the existing structure

Based on the decomposition explained in Section 2.1, the
system of equations for the upper substructure, i.e., the
existing structure, is expressed as follows (5):
[
KUU KUI

KIU K(U)
II

] [
uU

uI

]
=

[
FU

FI − FC

]
(5)

As shown on the left side of Fig. 2, a lower substructure
is removed from the upper substructure, and FC is added
as an additional external force at interface nodes. From
the structural perspective, FC expresses the stiffness of the
lower substructure. Therefore, if FC accurately expresses
the behavior of a lower substructure, the global behavior of
the upper substructure without the lower substructure will
be exactly that of the upper substructure in an assembled
structure. The precise value of FC that produces consistency
between the upper and lower substructures is determined
through an MDO method, as described in Section 3.

The analysis model of the upper substructure consists
of elements that belong only to the upper substructure.
Nodes which are only belong to the upper substructure
and on interfaces are considered in an analysis of the
upper substructure. The boundary conditions of the upper
substructure consist of two parts. The first is the original
boundary condition of the assembled structure, which
is imposed on the upper substructure. This typically
consists of a Dirichlet boundary condition, which represents
constraints of the assembled structure, and a Neumann
boundary condition, which represents the external forces

FC

uI

Fig. 2 Additional boundary conditions for upper (left) and lower
(right) substructures

applied to the assembled structure. The other boundary
condition is a Neumann boundary condition that represents
the stiffness of the lower substructure. The results of the
analysis also consist of two parts. The first is a performance
measure of the assembled structure, containing quantities
that represent the performances of the structure such as
the stiffness, compliance, and stress. Such performances
are considered as design objectives or constraints of the
assembled structure. The other analysis result involves the
displacement of nodes on interfaces. This displacement
defines the target stiffness of the lower substructure and is
utilized as a boundary condition in the lower substructure
analysis to ensure consistency between the designs of
the upper and lower substructures. A detailed description
of the lower substructure boundary conditions and their
optimization are presented in Sections 3 and 2.3. The
proposed model, boundary conditions, and results of an
analysis of the upper substructure are summarized in
Table 1.

2.3 Analysis of the reinforcingmember

As with the upper substructure, and based on the decom-
position described in Section 2.1, a system of equations
for the lower substructure, i.e., the reinforcing member,
can be expressed through (6).

[
K(L)

II KIL

KLI KLL

] [
uI

uL

]
=

[
FC

FL

]
(6)

Figure 2 shows the physical meaning of the system of
equations for the lower substructure. Here, FC is the internal
force at interface nodes in assembled structure, and part of
the external force propagated from the upper to the lower
substructure. uI is the displacement of interface nodes for
the lower substructure according to FC . Therefore, uI and
FC represent the stiffness of the lower substructure, which
affects the behavior of the upper substructure. Therefore, for
consistency in the analysis results of the upper and lower
substructures, the exact values of uI and FC should be
determined. To determine the exact values, uI and FC will

Table 1 Details of upper substructure analysis

Description

Model Upper substructure only, without lower substructure

B.C. Original B.C. imposed on upper substructure

Neumann B.C. representing stiffness of lower

substructure, FC

Result Performance measure of upper substructure

Displacement of interface nodes which will be

allocated to lower substructure, uI
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be utilized as a linking variable of optimization, as described
in Section 3.

As with the upper substructure, an analysis model of
the lower substructure consists of elements that belong
only to the lower substructure. Nodes considered in the
analysis are those that belong to the lower substructure and
are located at the interface. The boundary conditions of
the analysis also consist of two parts. The first condition
is the original boundary condition imposed on the lower
substructure. However, typical boundary conditions such
as constraints and external forces are not directly applied
to the lower substructures since reinforcing members are
additively designed and they are located inside of the upper
substructure. Therefore, for an independent analysis, the
second part of the boundary condition should be determined
considering the possibility that the first part of the boundary
condition may be absent. The second boundary condition
can be imposed based on the external force propagated
through the upper substructure. The propagated force
can be expressed as either the displacement of interface
nodes (uI ) or the internal force applied to these nodes
(FC). As mentioned above, if no constraints are originally
applied to the lower substructure, an independent analysis
cannot be conducted using only the internal force FC

because the structure is not constrained. Therefore, to
make an independent analysis possible, uI is utilized as a
Dirichlet boundary condition in the form of an enforced
displacement.

Because uI , i.e., the displacement of interface nodes,
is an enforced displacement boundary condition of the
analysis, the results of the analysis constitute the reaction
force at these nodes. This force has the same physical
meaning as the internal force FC . Therefore, if FC resulting
from an analysis of the lower substructure has the same
value as FC , which is used as a boundary condition of the
upper substructure, consistency between two independent
analyses can be established. To summarize, uI is the
analysis result for the upper substructure, and used as a
Dirichlet boundary condition in the lower substructure at the
same time. Conversely, FC is used as a Neumann boundary
condition in the upper substructure, and appears as a result
of the analysis in the lower substructure. The optimization
process of matching uI and FC between two independent
analyses is described in Section 3. The model, boundary
conditions, and results of analysis of the lower substructure
are summarized in Table 2.

2.4 Target stiffness of the reinforcingmember

Based on the decomposition results, the target stiffness of
the lower substructure, i.e., the reinforcing member, can be
defined based on the force applied to the member and the
displacement produced by such force. The target stiffness

Table 2 Details of lower substructure analysis

Description

Model Lower substructure only

B.C. Enforced displacement of Dirichlet B.C.

allocated from upper substructure, uI

Results Performance measure of lower substructure

Reaction force at interface nodes representing

stiffness of lower substructure, FC

of the reinforcing member consists of FC and uI . The
displacement is utilized as a boundary condition of the
reinforcing member and can be utilized as an evaluation
method. The reaction force and analysis results for the
reinforcing member compose a quantification metric for the
stiffness of the member. To allocate the target stiffness to
the member, FC and the resulting uI will be analyzed and
determined in the optimization of the existing structure.
At the reinforcing member level, the design details for the
member that satisfy the allocated target stiffness will be
determined. If the method is applied for dynamic models,
FC and uI of every time step of the analysis should be
considered to achieve consistency between decomposed
models. Therefore, target stiffness is defined by using FC

and uI of every time step to extend the method to dynamic
models. Details of the derivation of the optimal target
stiffness are described in Section 3.

3 Optimization and allocation of target
stiffness

In this section, an optimization scheme and a detailed
formulation are described to find the optimal target stiffness
and design for the reinforcing member. Description of
the target stiffness allocation problem is supplied in
Section 3.1. For a systematic optimization of the structure,
a modified ATC method is employed. In Section 3.2, a
brief introduction of the ATC method with a quadratic
penalty function is described. In Section 3.3, details of
the optimization scheme and associated formulations are
described.

3.1 Description of the target stiffness allocation
problem

Through the decomposition presented in Section 2, the
target stiffness is defined based on decomposed models
of the existing structure and reinforcing member. The
objective is to find optimum target stiffness and design
of the reinforcing member which maximize performance
of the existing structure. In the existing structure, target
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stiffness of the reinforcing member is the only variables
which need to be determined. The structure has design
requirements such as compliance and displacement which
need to be maximized, minimized, or within specified
boundary according to the requirements. Design problem of
the target stiffness can be defined as following formulation:

min
FC

fobj,U (FC)

s.t. gU (FC) ≤ 0 (7)

where fobj,U and gU represent objective function and design
requirements of the existing structure, respectively.

In the reinforcing member, geometric dimensions such as
radius, thickness, and length are design variables that need
to be determined. The member also has its design objective
and requirements such as mass. Thus, design problem of the
reinforcing member is defined as follows:

min
xL

fobj,L (xL)

s.t. gL (xL) ≤ 0 (8)

where fobj,L and gL represent objective function and design
requirements of the reinforcing member, respectively. It
is important to note that coupling variable FC in (7) is
calculated through the reinforcing member as a function of
its design variables, xL.

The target stiffness problem consists of two subproblems
with their own formulations. The problem has following
characteristics. First, each formulation represents physical
objects, and they are under hierarchical relationship. The
reinforcing member physically belongs to the existing struc-
ture, and multiple reinforcing members can be attached to a
single existing structure. Second, FC exists in both existing
structure and reinforcing member. Thus, individual opti-
mization of each formulation cannot guarantee consistency
of the variable. Therefore, concurrent design methodology
such as MDO is needed. Third, the target stiffness is design
variable in the existing structure, while it is the response in
the reinforcing member.

3.2 Analytical target cascading

ATC is an MDO method developed for optimization of
multidisciplinary systems with a hierarchical structure. ATC
has following main characteristics. First, it derives the
optimal design of entire systems by repeating separate
optimization of each individual discipline. Owing to this
feature, ATC is suitable for hierarchical system that consists
of the object oriented disciplines (Allison 2004). Second,
consistency of linking variables achieved by minimizing
penalty function. Third, target linking variables of lower
discipline are derived as a result of optimization. In an
upper level discipline, these linking variables are treated
as design variables of the optimization problem. In lower

level disciplines, the same linking variables are discipline
responses, which are derived from a discipline analysis.
Since these features coincide with the characteristics of the
problem, ATC is the most suitable MDO method and is
applied to the problem at hand.

An ATC optimization scheme is shown in Fig. 3. One
component is located under a single upper level discipline,
and several lower level disciplines are followed by the
component. Linking variables representing the targets exist
between the disciplines at different levels. Many modified
methods to improve the convergence property of the original
ATC method are available (Li et al. 2008; Michalek and
Papalambros 2005). In this study, an ATC method using
a quadratic penalty function, which has been widely used,
is employed (Tosserams et al. 2006). The optimization
formulation used for the general disciplines is shown in (9).

min
x̄ij

fij
(
x̄ij

) + π
(
cij

) +
∑
k∈lij

π(c(i+1)k)

= fij
(
x̄ij

) +
∥∥∥wT

ij cij
∥∥∥2 +

∑
k∈lij

∥∥∥wT
(i+1)kc(i+1)k

∥∥∥2

s.t. gij
(
x̄ij

) ≤ 0

hij
(
x̄ij

) = 0

x̄ij = [
xij, rij, t(i+1)k1 , · · · , t(i+1)kn

]

cij = (
tij − rij

)
(9)

fij, gij, and hij represent the original objective function,
inequality constraint, and equality constraint, respectively.
In an objective function, a quadratic penalty function,
π

(
cij

)
, is added to the original objective function to make

the linking variables consistent over the disciplines. cij
represents the inconsistency of the linking variable and will
be minimized as the optimization is carried out. w is the

Discipline
Local DVs

Local objective

Local constraints

Discipline

Discipline

( 1)i lP −

ijP

ijx

ijf

,ij ijg h

1( 1)i kP + 2( 1)i kP + 3( 1)i kP +

ijt ijr

( 1)i k+t ( 1)i k+r

Fig. 3 ATC formulation for hierarchical system
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penalty weight for the quadratic function and is updated at
every iteration. The updating rule for the penalty weight is
shown in (10).

w(κ+1) = βw(κ) (10)

where β is an updating parameter and a value of between
2 and 3 is usually assigned. Convergence of the ATC is
evaluated based on an inconsistency in the linking variables.
If the maximum inconsistency of the linking variables
is smaller than the specified tolerance, the optimization
is terminated. The mathematical convergence criterion is
expressed through (11).

max
(∣∣∣c(κ)

ij

∣∣∣
)

≤ ε (11)

3.3 Optimization scheme and formulation

Optimization is conducted using a modified ATC. The
input and output of each level and optimization scheme
are described in Fig. 4. At the existing structure level, the
design objective and constraints of the assembled structure
are considered as a response. Here, FC is employed as
a design variable to determine the target stiffness of the
reinforcing member, considering both the objective and
constraints. As FC is determined, FC and uI are allocated
to the reinforcing member as a target stiffness. At the
reinforcing member level, the target stiffness and design
objective, such as the mass, are considered as a response.
The allocated displacement, uI , is utilized as a Dirichlet

Existing structure (upper substructure)

Analysis/
Optimization

}target

U TS=x F
obj,U

U

TS I

f⎧
⎪
⎨
⎪ =⎩

g
u u

Analysis/
Optimization

L

TS

⎫
⎬
⎭

x
u

obj,

response

L

L

TS

f⎧
⎪
⎨
⎪
⎩

g
F

Reinforcing member (lower substructure)

target

TS

TS

F
u

response

TSF

Fig. 4 Optimization scheme for target stiffness allocation

boundary condition of the analysis. If the resulting reaction
force is the same as the allocated FC , the reinforcing
member satisfies the target stiffness. Unlike the typical ATC
method, among the allocated linking variables, only FC is
sent back to the existing structure level. This is because an
analysis of the existing structure is a bijective function of
FC and uI . Therefore, consistency between levels can be
guaranteed using only FC , which is a difference between
the original ATC and the proposed method. An optimization
formulation of the existing structure level is shown in (12).

min
xU

∥∥∥w(κ)T
(
Ftarget
TS − Fresponse

TS

)∥∥∥2 + fobj,U (xU)

s.t. gU (xU) ≤ 0

where xU = Ftarget
TS (12)

For the reinforcing member level, optimization is
conducted under the formulation shown in (13). Here, FTS

and uTS represent allocated value of the target stiffness
FC and uI , respectively. A flowchart of the optimization
process is shown in Fig. 5.

min
xL

∥∥∥w(κ)T
(
Ftarget
TS − Fresponse

TS (xL)
)∥∥∥2+fobj,L (xL)

s.t. gL (xL) ≤ 0

where xL = [
r1, t1, l1, · · ·

]
(13)

Each optimization problem can be solved by using
gradient-based optimization algorithms, where gradient
information is calculated by using finite difference method
in this research.

4 Examples

In this section, the proposed method is applied to two
examples, namely reinforcing members of the portal frame
and BIW of the vehicle, and the results are discussed.

4.1 Portal framewith reinforcingmember

A simple portal frame, which is detailed in Section 2 to
describe the proposed method, is employed using a detailed
description and formulations.

4.1.1 Problem description

A simple portal frame described in Fig. 6 is considered.
Assume that structure A is under external forces applied
from the side of the structure. To improve the rigidity,
structure B is added to structure A as a reinforcing member.
The objective of the design is finding a target stiffness and a
lightweight design of structure B, considering the required
rigidity of the assembled structure.
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Initial 

design

Optimization of 

existing structure

Target 

stiffness

Stiffness of 

reinforcing member

Converged?

Detail design & 

target stiffness

Optimization of 

substructure N

Optimization of 

substructure …

Optimization of 

substructure 2

Optimization of 

reinforcing member 1

Yes

No

Fig. 5 Flow chart of target stiffness allocation

Both structures consist of beam elements with pipe cross-
sections. The cross-section of structure A has an outer radius
of 15 mm and a thickness of 1 mm. The outer radius and
thickness of the cross-section of structure B are design vari-
ables. The design boundary of the radius and the thickness

Fig. 6 Details of the portal
frame example

t

1000N

Structure A

Structure B x

yr

1m

0.5m

0.5m

1000N

are 7.5 to 22.5 mm and 0.5 to 1.5 mm, respectively. The
design objective is to find a target stiffness and a lightweight
design for the reinforcing member that satisfies the design
requirements. The design requirement is achieving the dis-
placement of node 4 less than 12 mm. Dimensions, cross-
section, external force, and node numbers are expressed in
Fig. 6.

4.1.2 Analysis and formulation

An analysis diagram of the structures is supplied in Fig. 7.
To simplify the optimization problem, some elements of
the force and displacement are neglected considering the
characteristics of the structure. Because a deformation of
the structure occurs in the x–y plane, Fz, Mx , and My

are not considered. The target stiffness of structure B is
defined by Fy , Mz, uy , and θz of nodes 1 and 2 considering
the structural symmetry. System of equations of structures
are developed based on Euler–Bernoulli beam theory and
implemented in MATLAB code. The boundary conditions
and results of the analysis of each structure are described in
Table 3.

Neumann boundary conditions representing the stiffness
of structure B are applied to structure A. As a result, the
displacements of nodes are calculated through an analysis.
The displacement of node 4 is used to evaluate the design
requirements of the structure. In addition, the displacements
of nodes 1 and 2 are allocated to structure B as a target
stiffness. In structure B, the allocated displacement is
applied as a Dirichlet boundary condition. The reaction
force at nodes 1 and 2 and the mass of structure B are
calculated through an analysis. The reaction force is used to
evaluate the stiffness of structure B. The mass of structure
B is a design objective. An optimization formulation and
a scheme for MDO are expressed in Fig. 8. Convergence
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Fig. 7 Additional boundary
conditions for structures 1000N
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criterion of optimization is expressed in (14) and ε = 0.01
is used. F 0

TS and M0
TS are parameters for normalization.

max

{∣∣∣∣∣
F

target
TS − F

response
TS

F 0
TS

∣∣∣∣∣ ,
∣∣∣∣∣
M

target
TS − M

response
TS

M0
TS

∣∣∣∣∣

}
≤ ε

(14)

Additionally, to verify optimization result of the pro-
posed method, the problem is solved by using IDF method
(Cramer et al. 1994) which is one of the most popular MDO
methods. Optimization formulation for IDF method is given
as follows:

min
x

mB (x)

s.t. gA (x) = δ4 ≤ 12

FTS − F̄TS (x) = 0

MTS − M̄TS (x) = 0

uTS − ūTS (x) = 0

θTS − θ̄TS (x) = 0 (15)

where x = [
FTS, MTS, uTS, θTS, r, t

]

4.1.3 Results

Based on the optimization formulation, the optimal design
and target stiffness of the structure are determined. A
penalty weight of 2 is used to update parameter β. The
optimum design and target stiffness of the structure are

shown in Table 4. With the initial design, the structure does
not satisfy the design requirement, i.e., displacement at node
4. After optimization, the constraint is satisfied. The mass
of structure B, which is a design objective of the problem,
is also reduced by 9.91% compared with the initial design.
The design variables and target stiffness for structure B
satisfying these performance measures are also derived.

To verify the result, it is observed that the proposed
method and IDF converged to identical design with 0.7% of
maximum relative difference. The difference can be caused
by the way of synchronizing linking variables, i.e., ATC
uses penalty objective function, while IDF uses equality
constraint. Thus, the difference can be reduced by reducing
convergence tolerance ε.

Table 5 shows the convergence of the linking variables
for structures A and B, i.e., the target stiffness for structure
B. The target column represents the target stiffness allocated
from structures A to B. The response column represents
the actual stiffness of structure B. As the optimization
proceeds, the discrepancy between the target and response
becomes smaller. At the 8th iteration, the convergence
criterion is satisfied and the linking variables FTS and MTS

are converged.

4.1.4 Independent design of the reinforcing member using
target stiffness

Based on the target stiffness, a detailed design of the
reinforcing member can be conducted rapidly and at

Table 3 Boundary condition and results of analysis of structures in the portal frame example

Description Symbols

Existing structure (structure A) B.C. Original B.C.; fixed constraint and external forces −
Neumann B.C. representing lower substructure F

target
TS , M

target
TS

Result Performance measure, displacement (constraint) δ4

Displacement of interface nodes uTS, θTS

Reinforcing member (structure B) B.C. Enforced displacement Dirichlet B.C. uTS, θTS

Result Performance measure; mass (objective) mB

Reaction force at interface nodes F
response
TS , M

response
TS
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Fig. 8 Optimization scheme of
the portal frame example Structure A

Structure B
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Table 4 Formulation and results of the portal frame example

Symbol Description Formulation Initial Optimum Remarks Unit

Proposed IDF

Objective mB Mass of structure B Minimize 0.7106 0.6402 0.6425 9.91%↓ kg

Constraint δ4 Displacement of node 4 ≤ 12 15.42 12.00 12.00 Active mm

Design r Radius of cross-section of [7.5, 22.5] 15.00 22.50 22.50 Active mm

variables structure B

t Thickness of cross-section [0.5, 1.5] 1.000 0.5883 0.5904 Satisfied mm

of structure B

Target stiffness uTS Displacement of interface nodes 1.650e-2 1.770e-2 1.778e-2 mm

θTS 1.473e-2 8.649e-3 8.649e-3 rad

FTS Reaction force at interface nodes 355.2 437.8 440.9 N

MTS 177.6 220.4 220.4 Nm

Table 5 Convergence of target stiffness during the optimization process in the portal frame example

Iteration FTS MTS

Target (N) Response (N) Relative error (%) Target (Nm) Response (Nm) Relative error (%)

1 355.10 352.55 0.720 220.41 176.27 20.0

2 352.50 375.88 6.63 220.41 187.94 14.7

3 375.85 399.97 6.42 220.42 199.98 9.27

4 399.95 418.30 4.59 220.43 209.15 5.12

5 418.29 429.05 2.57 220.43 214.53 2.68

6 429.04 434.83 1.35 220.43 217.41 1.37

7 434.82 437.81 0.688 220.44 218.91 0.694

8 437.81 439.34 0.348 220.44 219.67 0.349
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Fig. 9 Cross-section of the I-beam reinforcing member

little cost. Without the target stiffness, an analysis of the
assembled structure is necessary for re-design of structure
B. However, by utilizing the target stiffness, the design
can be carried out using only an analysis of structure B.
To verify the derived target stiffness, structure B is re-
designed with an I-beam. Structure B is analyzed using the
enforced displacement boundary conditions of uoptTS and θ

opt
TS ,

as shown in Fig. 7. The cross-section of the beam is shown
in Fig. 9. The design variables are the height of the web, the
width of the flange, and the thickness of the web and flange.
The design objective is finding the lightest beam design
that satisfies the derived target stiffness. An optimization
formulation is shown in (16).

min
xB

mB (xB)

s.t. Fy (xB) ≥ F
opt
TS = 437.8

Mz (xB) ≥ M
opt
TS = 220.4 (16)

where xB = [
h, b, t

]
To address accuracy and cost reduction of the indepen-

dent design, the structure B with I-beam is optimized by
using IDF method in the same way as shown in (15), and
results are compared. The optimization results are supplied

Fig. 10 Finite element model of BIW (gray) and reinforcing member
(red)

in Table 6. The weight of the structure is reduced while sat-
isfying the target stiffness as an active constraint. Structure
B with an optimal cross-section, which is designed inde-
pendently of structure A, is assembled into structure A and
analyzed to verify whether the design requirement for a
assembled portal frame is satisfied. As shown in Table 6, the
displacement of node 4 in assembled structure is reduced
from 13.42 to 12.00 mm and the design requirement is
satisfied.

Compared to result of the IDF method, which optimizes
the structure A and B simultaneously, both approaches
converged to identical design result. This result shows
that the identical design can be derived by using the
target stiffness without employing existing structure model.
Therefore, the target stiffness calculated through the
proposed method is reasonable and accurate guideline for
independent design of reinforcing member. Additionally, as
shown in Table 6, the independent design saved cost for
static analysis of the structure A, while the IDF method
performed 56 times. Even in case of the structure B, the
independent design performed static analysis only 28 times,
while the IDF method 56 times. The independent design
converged faster than the IDF method because of reduced
dimension of the optimization problem. This result shows
that the identical result can be derived rapidly and at little
cost by using target stiffness.

Table 6 Optimization results of the I-beam reinforcing member

Symbol Formulation Initial Optimum Remark Unit

Independent design IDF

Objective mB Minimize 0.6864 0.4357 0.4357 36.5%↓ kg

Constraint Fy ≥ F
opt
TS = 437.8 313.6 440.9 440.9 Satisfied N

Mz ≥ M
opt
TS = 220.4 156.8 220.4 220.4 Active Nm

Design variables h [15, 45] 30.00 45.00 45.00 Active mm

b [15, 45] 30.00 33.86 33.86 Satisfied mm

t [0.5, 1.5] 1.000 0.5000 0.5000 Active mm

Assembled structure δ4 ≤ 12 13.42 12.00 12.00 Satisfied mm

# of structure A analysis 0 56 Times

# of structure B analysis 28 56 Times
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Table 7 Boundary condition
and results of analysis of BIW
and reinforcing member

Description Symbol

BIW B.C. Original B.C.; B.C. for torsional stiffness evaluation −
Neumann B.C. representing reinforcing member Ftarget

TS

Result Performance measure, torsional stiffness (constraint) ktorsion

Displacement of interface nodes uTS
Reinforcing member B.C. Enforced displacement Dirichlet B.C. uTS

Result Performance measure, mass (objective) mRM

Reaction force at interface nodes Fresponse
TS

4.2 BIWwith reinforcingmember

The proposed method is applied to the design of a
reinforcing member of a BIW of a vehicle manufactured by
Hyundai Motor Company. Using this method, an optimal
design and the target stiffness of the reinforcing member are
derived.

4.2.1 Problem description

The stiffness of the BIW has a significant effect on the
driving performance of the vehicle. A general way to
improve the stiffness is to conduct a design optimization
of the BIW considering several stiffnesses needed to be
improved (Lim et al. 2016). However, it can also be
improved by adding some reinforcing members specially
designed for improving the specific stiffness to the existing
BIW. For example, a front strut tower bar is a well-
known reinforcing member for improving the torsional
stiffness of a vehicle (Takamatsu et al. 1992) and is
widely applied to high-performance vehicles. By utilizing
additional reinforcing members, the manufacturer can make
vehicles with different trim levels using a single BIW
rapidly and at little cost. Because reinforcing members with
similar shapes are applied to various vehicle models, and
various materials such as aluminum, steel, or carbon fiber
reinforced plastic (CFRP) are used for reinforcing members
(Lee et al. 2014), a repetitive design of the member is carried
out by the member design team. Without a proper target
stiffness of the member, an expensive BIW analysis should
be conducted for every single design cycle. However, if
the target stiffness for the member can be determined and
allocated to the team, the design cycle of the member can be
reduced.

In this study, a reinforcing member of a vehicle
manufactured by Hyundai Motor Company is considered
to improve the torsional stiffness. To establish the design
guidelines for the reinforcing member, the target stiffness is
derived through the proposed method. The design objective
is to derive the target stiffness for the reinforcing member
that satisfies the required torsional stiffness of a BIW. The
reinforcing member is located behind the rear seat. Its

shape is determined through a topology optimization that
considers the torsional stiffness of the BIW. The ABAQUS
FE model of the BIW set by Hyundai Motor Company
is utilized to evaluate the torsional stiffness. Figure 10
shows an FE model for a BIW and its reinforcing member.
Elements with gray and red color represents the BIW and
reinforcing member, respectively.

4.2.2 Analysis and formulation

To apply the proposed method in this example, the BIW and
reinforcing member are regarded as the respective upper and
lower substructures described in Section 2. As shown in the
previous example, an analysis and optimization of the BIW
and the reinforcing member are carried out separately. The
boundary conditions and results of the analyses are shown
in Table 7. Six degrees of freedom of the reaction force and
displacement at the nodes (where the reinforcing member is
attached) define the target stiffness.

For optimization, the torsional stiffness of the BIW is
considered as a constraint at the upper substructure level,

BIW

Reinforcing member

target

TS

TS

F
u

response

TSF

( )
BIW

2
( ) response

BIW

target

BIW BIW torsion torsion

target

BIW

min         
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Fig. 11 Optimization scheme and formulation of BIW and reinforcing
member
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Table 8 Optimization results
of the BIW and reinforcing
member

Symbol Formulation W/o reinforcing member With reinforcing member

Initial Optimum Remarks

Objective mRM Minimize − 1.000 0.3462 65%↓
Constraint ktorsion ≥ k

target
torsion = 1 0.9230 1.273 1.263 Satisfied

Design x1 [0, 1] − 0.5000 3.889e-2 Satisfied

variables x2 [0, 1] − 0.5000 0.0000 Active

whereas the mass of the reinforcing member is considered
as the objective function at the lower substructure level.
Design variables in the lower substructure level are
geometric dimensions of the reinforcing member. An
optimization formulation is shown in Fig. 11. Details of
the evaluation method for the torsional stiffness and the
design variables of the reinforcing member are omitted for
the purposes of confidentiality. Convergence criterion for
the optimization is expressed in (17) and ε = 0.01 is used.
F 0
TS,i are normalization parameters.

max
1≤i≤24

{∣∣∣∣∣
F

target
TS,i − F

response
TS,i

F 0
TS,i

∣∣∣∣∣

}
≤ ε (17)

4.2.3 Results

Using the proposed method, an optimal design and the
target stiffness of the reinforcing member is determined.
Table 8 shows the change in mass of the reinforcing mem-
ber, torsional stiffness of the BIW, and design variables of
the reinforcing member. For the purpose of confidential-
ity, objective and constraint are normalized with their initial
and target value respectively. Design variables are normal-
ized between 0 and 1, which represent lower and upper
design boundaries, respectively. At the 17th iteration, the

Table 9 Optimal target stiffness and discrepancy between levels

Target Response Absolute

(BIW) (reinforcing member) error

FTS,1 0.5552 0.5545 6.270e-4

FTS,2 0.7408 0.7426 1.841e-3

FTS,3 0.3576 0.3559 1.704e-3

FTS,4 6.141e-2 6.296e-2 1.556e-3

FTS,5 0.1087 0.1115 2.753e-3

FTS,6 2.945e-4 -1.780e-4 4.725e-4

FTS,7 0.5157 0.5177 1.989e-3

FTS,8 0.4523 0.4511 1.250e-3
...

...
...

...

FTS,24 0.1201 0.1227 2.644e-3

convergence criterion is satisfied and the optimization is
terminated. Without a reinforcing member, the BIW does
not satisfy the required torsional stiffness constraint. How-
ever, with the optimized reinforcing member, the torsional
stiffness is increased to the required level. The mass
of the reinforcing member is reduced by approximately
65% compared with the initial design. Table 9 supplies the
derived target stiffness of the reinforcing member. Although
24 linking variables are considered, all elements of the target
stiffness converge with only small discrepancies between
levels. Target and response values of FTS,i in the table are
normalized between 0 and 1.

5 Conclusion

In this paper, a method of reinforcing member design on
a existing structure by allocating the target stiffness is
described. To utilize individual models of the structure
and its members, a system of equations of the assembled
structure is decomposed using a substructuring technique.
Additional boundary conditions are introduced to ensure
consistency between the models and define the target
stiffness of the reinforcing member. The target stiffness
of the member is optimized and allocated using an ATC
optimization scheme. Using the proposed method, the
reasonable target stiffness of the reinforcing member that
considers the design requirements of an assembled structure
can be determined through an optimization rather than
relying on intuition or engineering experience. The derived
target stiffness can also be utilized in the independent
designs of the reinforcing members.

To assess the validity and effectiveness of the method,
a simple portal frame example is employed and the
target stiffness of the reinforcing member is derived. The
boundary conditions and target stiffness of the structures
are defined according to the proposed method. Through 8
iterations of optimization, the target stiffness and design
variables of the member are successfully derived. To verify
the optimum result, the result is compared with the IDF
method and it is observed that both method obtained
identical design. To assess accuracy of the derived target
stiffness, an independent design of the reinforcing member
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with another cross-section, i.e., an I-beam, is conducted by
applying the target stiffness and boundary conditions. The
resulting I-beam reinforcing member satisfies the design
requirements of the structure, without access of the existing
structure. Accuracy and cost reduction of the independent
design are shown by comparing with the IDF method. It
is shown that independent design using the target stiffness
derives identical design with the IDF method. Through an
example, accuracy and effectiveness of the target stiffness
are verified.

The method is applied to the design of a reinforcing
member in a BIW of a vehicle manufactured by Hyundai
Motor Company. The optimal design and target stiffness of
a reinforcing member that considers the torsional stiffness
of the BIW are determined through the proposed method.
Although 24 linking variables are considered to define
the target stiffness, all linking variables converge with
reasonable discrepancies among levels, and the stiffness
targets for a reinforcing member are successfully produced,
verifying the effectiveness of the method in a large-scale
practical problem.

In this paper, the propose method is demonstrated by
using linear static models to provide a clear explanation of
idea and overall procedure. However, the method can be
extended into non-linear and dynamic models. To do this,
non-linearity in the system of equations should be carefully
assessed in the decomposition process step by step. The
target stiffness and the linking variables in the ATC should
be defined to consider every time step in dynamic analysis.
This procedure depends on characteristics of the analysis
such as type of non-linearity. Therefore, the extension
should be conducted with models of specific type of the
analysis.
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