
RESEARCH PAPER

Optimization of elastic spring supports for cantilever beams

Ersin Aydin1
& Maciej Dutkiewicz2 & Baki Öztürk3 & Mustafa Sonmez4

Received: 3 February 2019 /Revised: 15 November 2019 /Accepted: 27 November 2019
# Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
In this study,a new approach of optimization algorithm is developed. The optimumdistribution of elastic springs onwhich a cantilever
Timoshenko beam is seated and minimization of the shear force on the support of the beam is investigated.The Fourier transform is
applied to the beam vibration equation in the time domain and transfer function, independent from the external influence, is used to
define thestructural response.For all translationalmodesof thebeam, theoptimumlocationsandamountsof the springsare investigated
so that the transfer function amplitude of the support shear force is minimized. The stiffness coefficients of the springs placed on the
nodes of the beam divided into finite elements are considered as design variables. There is an active constraint on the sum of the spring
coefficients taken as design variables and passive constraints on each of them as the upper and lower bounds. Optimality criteria are
derived using the LagrangeMultipliersmethod. The gradient information required for solving the optimization problem is analytically
derived. Verification of the new approach optimization algorithmwas carried out by comparing the results presented in this paper with
those ones from analysis of themodel of the beamwithout springs, with springswith uniform stiffness andwith optimal distribution of
springs which support a cantilever beam tominimize the tip deflection of the beam found in the literature. The numerical results show
that the presented method is effective in finding the optimum spring stiffness coefficients and location of springs for all translational
modes.The proposed method can give designers an idea of how to support the cantilever beams under different harmonic vibrations.

Keywords Optimal springs . Shear force minimization . Beam vibration . Optimal stiffness . Transfer functions . Timoshenko
beam on elastic foundations

1 Introduction

Beams are widely used in constructions, particularly in brid-
ges, buildings, frame structures, beam-floors, supporting
structures. Design of support for structures is an important
element of engineering practise. In addition to the basic func-
tion of maintaining the structure in stability, proper support
influences the optimal work of the structure. Beams are used
as structural elements in many engineering problems and there
are a large number of studies in the literature about transverse
vibration of uniform isotropic beams (Gorman 1975). For
many years, researchers have been interested in issues related
to the optimization of structural support in order to improve
the properties of elements such as reducing the maximum
deflections, bending moments (Imam and Al-Shihri 1996),
increasing natural frequency and buckling coefficient (Won
and Park 1998; Liu et al. 1996), reducing stress and strain
(Marcelin 2001). Prager and Rozvany (Prager and Rozvany
1975) presented the optimal locations of supports and steps in
yield moment. Wang (Wang 1993; Wang 2003; Wang 2004;
Wang 2006)and Wang et al. (Wang and Chen 1996; Wang
et al. 2004; Wang et al. 2006; Wang et al. 2010) presented
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detailed analysis of the location of supports and parameters of
supports for different cases. In the paper (Wang and Chen
1996), the formulas for computing eigenvalue sensitivity with
respect to location of in-span occurrence with application of
normal mode method are presented.The eigenvalue sensitivity
depends on the slope of Eigen function as well as a force term
which depends on the specific occurrence. The quantitative
data can be used to find locations of in-span occurrences to
maximize the fundamental eigenvalue of a structure member.
Wang and Chen (Wang and Chen 1996) propose the genetic
algorithms for the optimization problem of beam with rigid
and elastic supports. Using genetic algorithms, the gradient
information is not needed. The optimum location and the min-
imum stiffness of internal support for beams with different end
conditions are presented in the work ofWang (Wang 2003). In
another study, Wang (Wang et al. 2004) investigated the de-
sign sensitivity analysis for the deflection of a beam or plate
structure with respect to the position of a simple support using
the discrete method. Also a heuristic optimization algorithm,
called the evolutionary shift method, is presented for support
position optimization with the objective of minimizing the
maximum deflections. The minimum stiffness of a simple
support that increases a natural frequency of a beam to its
upper limit is developed by Wang et al. (Wang et al. 2006)
for various boundary conditions. The sensitivity analysis of
the bending moment is investigated with regard to the move-
ment of a simple support position by using the adjoint variable
method. In this procedure, both elastic and rigid supports are
taken into account, and a closed-form expression for the mo-
ment derivative is generated. On the basis of the design sen-
sitivity, a heuristic optimization algorithm is applied to mini-
mize the maximal bending moment under multiple load cases.
In order to improve the structural performance, an optimiza-
tion scheme of minimization of maximal absolute bending
moment in a planar frame was presented by Wang (Wang
2006) to find optimal design of the support position. The
structural deflection is substantially reduced without addition-
al material. The Rayleigh–Ritz method is employed to deter-
mine the minimum stiffness location of the elastic point sup-
port for raising the fundamental natural frequency of a rectan-
gular plate to the second frequency of the unsupported plate in
thepaper of Wang et al. (Wang et al. 2010). Courant and
Hilbert (Courant and Hilbert 1953) stated that the optimum
locations, if the supports are rigid,should be at the nodal points
of a higher vibration mode, and the fundamental frequency is
correspondingly raised. Akesson and Olhoff (Akesson and
Olhof 1988) studied the influence on Eigen frequencies of
varying locations and stiffnesses of one or two additional lat-
eral supports for a cantilever Euler-Bernoulli beam as well as
sensitivities and cost optima are discussed. The application of
Courant’s maximum-minimum principle to the problem of
maximum increase of the lowest undamped Eigen frequency
in flexural vibration of beams is reviewed.

Analysis of support stiffness is also important in buckling
problems (Timoshenko and Gere 1961). In many cases, the
choice of proper support stiffness or in the extreme case, the
resignation from it in a specific location does not worsen the
working conditions of the element. Maurizi and Rossit
(Maurizi and Rossit 1987) analysed case of the effect of finite
rigidity of the intermediate supports. They focused on charac-
teristic equation of transverse vibrations of clamped beams
with an intermediate translational constraint. Rao (Rao
1989) presented the explicit and exact frequency and mode-
shape expressions for the clamped-clamped uniform beams
with intermediate elastic support.Kukla (Kukla 1991) dealt
with the problem of free vibration of a combined system
consisting of a Timoshenko beam and multi-mass oscillators.
The formulation and solution of the problem comprises the
systems of the beamwith many oscillators, which are attached
to it at arbitrary points. The solution is found by applying the
Green function method. The effect of an oscillator on the
frequencies of the combined system is investigated. The au-
thor presents the influence of the location of two and three-
degree-of-freedom oscillators attached to a cantilever beam on
a few first frequencies of the vibration systems. Won and Park
(Won and Park 1998) proposed a procedure to find the loca-
tion of optimal support positions of a structure while varying
its support stiffness in which the fundamental eigenvalue of
the structure is maximized. The optimal design for beam struc-
tures including position and stiffness of supports are also
discussed in other papers (Mroz and Rozvany 1975;
Rozvany 1975; Szelag and Mroz 1978; Mroz and Lekszycki
1982; Garstecki and Mroz 1987; Dems and Turant 1997;
Bojczuk and Mroz 1998; Mroz and Haftka 1994). Bojczuk
and Mroz (Bojczuk and Mroz 1998b) had presented a method
for trusses. Ching and Gene (Ching and Gene 1992) devel-
oped various sensitivity equations for eigenvalue sensitivity
analysis of planar frames with variable joint and support loca-
tions. Liu et al. (Liu et al. 1996) presented a method to derive
the equations of eigenvalue rate with respect to the support
location using the generalized variational principles of the
Rayleigh quotient. Son and Kwak (Son and Kwak 1993) de-
veloped a sensitivity formula of eigenvalues with respect to
the change of boundary conditions by using material deriva-
tive concept based on variational formulation. A theoretical
formulation was presented by Sinha and Friswell (Sinha and
Frishwell 2001) for estimating support location. Buhl (Buhl
2001) demonstrated a method for support distribution using a
continuum type topology optimization. Olhoff and Taylor
(Olhoff and Taylor 1998) studied optimal design of non-uni-
form, elastic, continuous columns with unspecified number of
available interior supports.Olhoff and Akesson (Olhoff and
Akesson 1991) studied support optimization of a column to
maximize the buckling load. Jihang and Weighong (Jihang
andWeighong 2006) studied to maximize the natural frequen-
cy of structures and presented the support layout design that
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corresponds to optimization of boundary conditions.
Albaracinet al. (Albaracin et al. 2004) investigated the prob-
lem of a uniform beam with intermediate constraints and
theends areelastically restrained against rotation and transla-
tion. Friswell and Wang (Friswell and Wang 2007) developed
a procedure to calculate the minimum stiffness and the optimal
position of one or two elastic supports lying along the free
edge opposite to the restrained boundary edge of the plate.
Kong (Kong 2009) analysed the vibration of plates with var-
ious boundary and internal support conditions and proposed a
computational technique to determine the optimal location
and stiffness of discrete elastic supports in maximizing the
fundamental frequency of both isotropic plates and composite
plates. The magnitude of mass and stiffness of a linear spring
that supports a beam element are well known key parameters
affecting the free vibration characteristics of a beam in the
existing literature. In addition to this, the offset of each linear
spring, which supports a beam, is also the predominant pa-
rameter (Lin 2010). Zhu and Zhang (Zhu and Zhang 2010)
proposed an integrated layout optimization method to deal
with the simultaneous design of structure and support layout.
Fayyah and Razak (Fayyah and Razak 2012) studied the effect
of deterioration in the elastic bearing support stiffness on the
dynamic properties of structural elements, in order to deter-
mine the sensitivity of dynamic properties as a tool for mon-
itoring the condition of supports. Aydin (Aydin 2014) inves-
tigated the optimal spring distribution including both optimal
value of the stiffness coefficients and optimal locations of
springs at thefirst-three modes. The study of Aydin (Aydin
2014) includedthe minimizationofboth the tip displacement
and the tip absolute acceleration of a cantilever beam.

In the vibration of cantilever beams constructed on elastic
foundations, the position and the rigidity of these supports are
a matter of concern. The design and distribution of elastic
supports supporting these beams will vary in different vibra-
tions of the beam. Commonly displacement-based methods
and research can be demonstrated, as well as force-based
methods. Sometimes internal forces can exceed the yield
limits, which is important for damage.Furthermore, the effect
of the springs above these internal forces in case of the differ-
ent vibration modes should be examined and the sensitivity of
the behaviour parameters according to these design variables
must be revealed.In this study, the optimization of locations
and amounts of the springs are investigated to minimize the
support shear force corresponding to all translational modes of
a cantilever beam supported by elastic springs. A new method
has been shown for the analysis and design of the support
conditions of the beams based on the elastic foundation, in
order to find optimal values of the stiffness of the springs
using transfer functions of support shear force for different
modes of vibration. The equation of motion, the transfer func-
tion of the support shear force, and the equations for their
amplitudes are derived. For the optimization problem defined

on the basis of the Lagrange multipliers method, the optimal-
ity criteria and the analytical formulation of sensitivities are
derived. An algorithm is proposed to find the optimal spring
coefficient and the location of the springs. The proposedmeth-
od is tested on a numerical example with both optimization-
related analyses and frequency and time-domain calculations.

In many studies available in the literature, displacements and
in some studies, the acceleration is minimized and they are
displacement-based methods. Many studies are focused on max-
imizing the fundamental frequencies. In this study, a force based
method is aimed. Reduction of displacements is important and
the minimizing of the specified forces is also another important
aspect of engineering. The main advantage of this study is that it
is an alternative to displacement based methods. From the engi-
neering point of view, the yield of internal forces is undesirable.
In this way, it is important to minimize the forces. Furthermore,
the sensitivity equations given in this study are analytically de-
rived and are defined depending on the transfer functions. In the
literature, there is a gap on optimal support design using different
modes. This study proposes to find optimal springs whichare
based oncantilever beams by using different vibration modes.
Using the equations derived for the proposed method, it assists
in selecting the most suitable support positions through the dif-
ferent spring-supported beams provided.

2 Theoretical background of the analysed
problem

The problem is focused on a cantilever Timoshenko beam
supported by elastic springs. For the proposed method, the
structural system can be different as beams, frames and
truss systems, while the general equations andthe method
given here do not change. In the case where the cantilever
beam subjected to supporting springs and its nodal dis-
placements and rotations are shown in Fig. 1(a),let us
consider cantilever Timoshenko beam of length L, solid
square cross section A, bending stiffness EI and elastic
springs supporting the beam. The beam is subjected to
vertical support acceleration. There is a lumped mass at
tip of the beam. In order to model the cantilever beam and
the supporting springs, the beam is divided into n finite
elements. Translational and a rotational component of the
beam motion are defined at each node. The potential lo-
cations of the springs are defined at each node. The initial
node is defined from the left except for the fixed end. The
spring supports act only in the vertical direction. In the
specified locations of the beam, stiffness coefficients k =
{k1,k2,…,kn} of supporting springs indicate the design
variables; and n presents the number of design variables.
Let ui and θi be assigned as the dynamic transverse dis-
placement and the angle of rotation at the ith node of the
beam. As shown in Fig. 1(a), while the dynamic
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d i sp l acemen t vec to r can be p re sen t ed as u =
{u1,θ1,…,un,θn}

T, M and K denotes the mass and stiffness
matrices of beam model and C denotes the structural
damping matrix that are determined as either mass pro-
portional damping or stiffness proportional damping. The
element stiffness matrix k for Timoshenko beams is given
as (Przemieniecki 1968):

k ¼ EI

L3 1þ ϕð Þ

12 Sym
6L L2 4þ ϕð Þ
−12 −6L 12
6L L2 2−ϕð Þ −6L L2 4þ ϕð Þ

2
664

3
775 ð1Þ

whereI present the second moment of area and ϕ ¼ 12EI
GκAL2,

the element mass matrix m is written as follows

m ¼ ρAL

1þ ϕð Þ2
m1 Sym

m2 m5

m3

m4

−m4

m6

m1

−m2 m5

2
64

3
75þ ρAL

1þ ϕð Þ2
r

L

� �2

m7 Sym
m8 m9

−m7

m8

−m8

m10

m7

−m8 m9

2
64

3
75

ð2Þ

Let r ¼
ffiffiffi
I
A

q
denote the radius of gyration of cross-section

and the elements of element mass matrix be given as

m1 ¼ 13

35
þ 7ϕ

10
þ ϕ2

3
m2 ¼ 11

210
þ 11ϕ

120
þ ϕ2

24

� �
Lm3

¼ 9

70
þ 3ϕ

10
þ ϕ2

6
m4 ¼ −

13

420
þ 3ϕ

40
þ ϕ2

24

� �
Lm5

¼ 1

105
þ ϕ

60
þ ϕ2

120

� �
L2 m6

¼ −
1

140
þ ϕ

60
þ ϕ2

120

� �
L2m7 ¼ 6

5
m8

¼ 1

10
−
ϕ
2

� �
Lm9 ¼ 2

15
þ ϕ

6
þ ϕ2

3

� �
L2m10

¼ −
1

30
−
ϕ
6
þ ϕ2

6

� �
L2 ð3Þ

When the system does not have any spring, the equation of
motion can be written as follows:

Mu tð Þ þ Cu˙ tð Þ þ Ku tð Þ ¼ −Mrug tð Þ ð4Þ

whereu tð Þ; u̇ tð Þ andu(t) are acceleration, velocity and dis-
placement vectors, respectively. The r denotestheinfluence
vector asr={1,0,…,1,0}. ug tð Þ is defined as vertical support
acceleration. If Fourier Transformation is applied on Eq. (4),

U(ω)andUg ωð Þ are the Fourier Transformation of u(t)-
and ug tð Þ. In this case, the Eq. (4) is rewritten as

K þ iωC−ω2M
� �

U ωð Þ ¼ −MrUg ωð Þ ð5Þ

whereω denotes the circular frequency of the excitation, and

i denotes
ffiffiffiffiffiffi
−1

p
. As shown in Fig. 1(a), if the beam is supported

by elastic springs, Eq. (5) is modified into

KþKsð Þ þ iωC−ω2M
� �

Us ωð Þ ¼ −MrUg ωð Þ ð6Þ

Here Ks denotes the stiffness matrix of the supporting
springs. Us(ω)is the Fourier Transform of the displacements
after the springs are included. A transfer function is defined as
follows

eU ωð Þ ¼ Us ωð Þ
Ug ωð Þ ð7Þ

If ω=ωnis selected here, the ground motion will be defined
as a harmonic motion with natural circular frequency ωn.
Using Eq. (7), Eq. (6) can be rewritten as

AeU ωnð Þ ¼ −Mr ð8Þ

MakingeU ωnð Þ here presents the transfer function of the
displacements calculated at the nthnatural circular frequency.
The matrix A, which includes the design variables as
{k1,k2,…,kn}. A is given as

A ¼ KþKsð Þ þ iωnC−ω2
nM ð9Þ

Fig.1 (a) Cantilever beam based on elastic springs and its nodal displacements and rotations (b) The amplitude of the transfer function of the support
shear force for uncontrolled and controlled cases
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Here K, M and C are certain. The Kscovering the design
variables will be found. If Eq. (8) is arranged as follows

eU ωnð Þ ¼ −A−1Mr ð10Þ

The transfer function of displacement vector is found in
Eq. (10) (Takewaki 1998).The transfer function of elastic
force in the nodes is obtained by multiplying the displacement
vector with the total stiffness matrix and the transfer function
vector of the elastic forces (Aydin and Boduroglu 2008) as
follows

F ωnð Þ ¼ − KþKsð ÞA−1Mr ð11Þ

3 Optimization problem

In the literature, some optimization problems have been de-
veloped in order to find the optimum values of the spring
locating points or spring constants:reducing the maximum
deflections and bending moments (Imam and Al-Shihri
1996), increasing natural frequencyand buckling coefficient
(Won and Park 1998; Liu et al. 1996), reducing the stress
and strain (Marcelin 2001), minimizing the stiffness of inter-
nal support for beams (Wang 2003), minimizing tip deflection
(Friswell and Wang 2007) and tip absolute acceleration
(Aydin 2014).

In Fig. 1, the shear force response on the support of a
cantilever beam implies the internal force behaviour of the
beam. The yield of support shear force may cause shear dam-
age in the beam. It is important to design the location and
rigidity of the elastic supports that the cantilever beams often
encounter in practical engineering applications to prevent
shear damage. These vibrating beams can be exposed to dif-
ferent excitation frequencies. Thus, it is also important to use
different modes in the design of the elastic supports of the
beams under different harmonic excitations.

In this study, the optimization problem is defined as to find
the stiffness coefficients of spring kiwhichminimize the trans-
fer function amplitude of the support shear force of cantilever
beam evaluated at the nth natural circular frequencyωn of the
model beam as shown in Fig. 1(a). The transfer function am-
plitude of support shear force is decreased to attain the mini-
mum value in any modes as shown in Fig. 1(b). It should be
noted that the springs attached to the cantilever beam increases
the natural frequency of the beam as it causes an increase in
rigidity as shown in Fig. 1(b).

The proposed optimization problem to find the optimal spring
coefficients and the locations of the springs is expressed as

Design variables k¼ k1; k2;…; knf g ð12Þ

MinimizeV kð Þ ¼ ∑n
s¼1sign ∅isð Þ Fs kð Þj j ð13Þ

Subject to0≤k j≤kup j ¼ 1; 2;…; nð Þ ð14Þ

∑n
i¼1k j ¼ K ð15Þ

where|Fs(k)| and V(k) are transfer function amplitudes of shear
force in nodes correspondingtothe vertical degrees of freedom
and the transfer function amplitude of the support shear force,
respectively. The mode number considered is noted as i and
sign(∅is) presenting the sign of the sth elements of the
ithnormalizedmode vector.The transfer function amplitudes
of the support shear force mentioned here can be calculated
for any vibration mode as will be mentioned later. In Eq. (15),
the parameter K denotes the total stiffness coefficient of the
springs. Another important issue is the total amount of the
coefficients of the springs on which the beam is based. If this
amount passes a certain value, it will increase the support
force. This will be checked in the algorithm that is intended
to prevent thissituation. An active constraint on the sum of the
stiffness coefficient of the springs in Eq. (15) and passive
constraints on the upper kupand lower bound of stiffness coef-
ficient of each spring have been given in Eq. (14).

The sign (− or +) placed at the beginning of the amplitude
of the transfer function of any elastic force |Fi| in Eq. (13)
indicates the sign of ith element (corresponds to translational
degree) in the mode vector of consideration. The amplitudes
of the transfer functions, which are used, do not indicate real
displacement or forces. However, they are functions that ex-
press the dynamic behaviour of the system independent of the
external force. Here, the displacement amplitude and internal
forces amplitudes found by transfer functions are examined.
Because the values of the transfer functions defined in the
frequency domain are complex numbers. Therefore, since
the absolute values are studied here, this sign is taken as a sign
of the elements (in the translational degree) of the normalized
mode vector to take into account the directional effects in
modal behaviour. If the signs are taken into account in the
problem, the value and the direction of support force changes.
Otherwise, the transfer functions amplitude are always posi-
tive and in the same direction. We know that the sign of the
behaviour values corresponding to the freedom of some
modes are sometimes negativeorpositive. Therefore, the sign
of the support shear force is sometimes positive and some-
times negative, and this results in the optimization of being
the problem of maximization or minimization.For a better
understanding of the proposed method, an Appendix section
has been created, showing some basic calculations of a canti-
lever beam with two finite elements and four degrees of
freedom.

The transfer function amplitude of support shear force is
calculated by eq. (13) taking into account the absolute values
of complex terms corresponding to the shear forces in the
nodes. The method includes the transfer function amplitude
ofF(ω) and taking into account the sign of the forces in modal

Optimization of elastic spring supports for cantilever beams 59



behaviour. In order to better explain the relationship between
|Fs(k)|and V(k), the following figure is given in detail for the
first six modes Fig 2.

In thestudy of Aydin (Aydin 2014), the objective functions
are the transfer function amplitude of the tip displacement and
tip absolute acceleration. Minimizing displacements with op-
timum placement of springs is important to reduce deforma-
tions and is a common practice in engineering applications.
This has led to the emergence of displacement-based methods.
In addition to reducing displacements, it is also important to
minimize the displacement of the structural elements and to
support them with optimum springs for this purpose. In this
study, a force-based optimum spring design method, which is
expressed by transfer functions defined according to different
discrete modes, is shown that different optimum spring de-
signs can occur according to displacement based method.
An increase in forces can cause stresses in the material to
exceed the yield limit. In this respect, in addition to minimiz-
ing displacement or accelerations, minimizing forces can be
important.

3.1 Optimality criteria for support shear force

The generalized Lagrangian L for the problem of optimal
spring placement in terms ofthe support shear force can be
written in terms of Lagrange Multipliers λ, {μj} and {νj},
objective function and the mentioned constraints as follows:

L k j;λ;μ j; υ j

� �
¼ V kð Þ þ λ ∑n

j¼1 k j−K
� �� �

þ ∑n
j¼1μ j 0−k j

� �þ ∑n
j¼1υi k j−kup

� � ð16Þ

The optimality criteria without upper and lower bound
constraints on stiffness coefficients can be derived from

stationary conditions of Lagrangian L (μ = 0, ν = 0) with
respect to λ and kj,

∂V
∂k j

þ λ ¼ 0 j ¼ 1; 2;…; nð Þ 0 < k j < kup ð17Þ

∑n
j¼1k j−K ¼ 0 ð18Þ

Here the partial derivative of objective function according
to design variable kj is expressed as ∂V

∂k j
. Eq. (17) for lower

and upper constraints is changed as follows:

∂V
∂k j

þ λ≥0 k j ¼ 0 ð19Þ

∂V
∂k j

þ λ≤0 k j ¼ kup ð20Þ

A new algorithm in case of support shear force as an ob-
jective function is proposed due to modified classical steepest
direction search algorithm.For the solution of the problem, the
method shown by Aydin (Aydin 2014) was used to minimize
the tip deflection. In (Aydin 2014) for the optimization of the
springs, the author adapted the SDSA method given by
Takewaki (Takewaki 1998).

3.2 Sensitivity analyses

To determine the optimal position of spring supports, both the
sensitivity of objective functions and the natural frequency
corresponding to the position of the support areinvestigated.
The sensitivity information allows both the search direction
and the optimal position of the spring support. It will act ac-
cording to the intended algebraic sensitivity information.
Eq. (10) is differentiated with respect to kj as given below

1 2 3 4 5 6

Transfer Function Forces in First Mode

1 2 3 4 5 6

Transfer Function Forces in Second Mode

1 2 3 4 5 6

Transfer Function Forces in Third Mode

1 2 3 4 5 6

Transfer Function Forces in Fourth Mode

1 2 3 4 5 6

Transfer Function Forces in Fifth Mode

1 2 3 4 5 6

Transfer Function Forces in Sixth Mode

Fig. 2 The relationship betweenthe amplitudes of shear forces (|Fs(k)|) in nodes and the support shear force (V(k))
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∂A
∂k j

eU þ A
∂eU
∂k j

¼ 0 j ¼ 1;…; nð Þ ð21Þ

∂eU
∂k j

¼ −A−1 ∂A
∂k j

eU ð22Þ

If Eq. (11) is differentiated with respect to kj, the order
derivatives of F is written as

∂F
∂k j

¼ ∂Ks

∂k j
− KþKsð ÞA−1 ∂A

∂k j

� �eU ð23Þ

wherefU has been derived in Eq. (10). The calculation of ∂Ks
∂k j

is easy since the components of theKs are linear function of kj.
The quantity of Fiin Eq. (11) in a complex form can be written
as

Fi ¼ Re Fi½ � þ Im Fi½ � ð24Þ
whereFiis the transfer function values of the i

th node displace-
ment in complex form. The first order sensitivity of the
quantityFi in Eq. (23) can be expressed as

∂Fi

∂k j
¼ Re

∂Fi

∂k j

	 

þ Im

∂Fi

∂k j

	 

ð25Þ

The absolute values of Fican be written as

Fij j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re Fi½ �ð Þ2 þ Im Fi½ �ð Þ2

q
ð26Þ

If |Fi|is differentiated with respect to the j
th stiffness coeffi-

cient kj, the first order sensitivities of the absolute values of
transfer function amplitude of the ith node forceis found to be

∂ Fij j
∂k j

¼ 1

Fij j Re Fi½ � Re
∂Fi

∂k j

	 
� �
þ Im Fi½ � Im

∂Fi

∂k j

	 
� �� �
ð27Þ

The first order sensitivity of the transfer function amplitude
of the support shear force is expressed as the sum of the sen-
sitivities of the transfer function of support shear forces

∂V
∂k j

¼ ∑n
s¼1sign ∅isð Þ ∂ Fsj j

∂k j
ð28Þ

wherei is defined as the mode number considered and sign(∅-

is) presents the sign according to the sthelements of the ith

mode vector∅i. The elementsof ith mode vectorcorrespond
to the translational components of motion, not rotational parts.
The moments in the nodes do not have an effect on the calcu-
lation of the shear force of support.The parameter ∂V

∂k j
repre-

sents the first order partial differentiation of transfer function
amplitude of the support shear force with respect to design
variable kj.The components of matrix A consist of K, Ks, M,

C and ω= ωi. The added spring matrixKs, the damping matrix
C and the ith natural circular frequency of the beam ωi are
functions of design variables. In order to derive the first order
sensitivity of matrix A, the partial derivative with respect to
design variables kj should be obtained.

For a cantilever beam model, both eigenvector and eigen-
values are found from the following equation

K þ Ksð ÞΦi ¼ ΩiMΦi ð29Þ
whereΦi andΩiare the i

th eigenvector and the ith eigenvalue of
the beam structure, respectively. If both sides of Eq. (29) are

multiplied byΦT
i , Eq. (29) can be rearranged as follows

ΦT
i K þ Ksð ÞΦi ¼ ΩiΦ

T
i MΦi ð30Þ

Let mi ¼ ΦT
i MΦi and ki ¼ ΦT

i KþKsð ÞΦi denote modal
mass and modal stiffness evaluated at the ith mode of the
beam. Eq. (30) can be rewritten in the following form:

Ωi ¼ ki

mi

ð31Þ

The first order sensitivity of the eigenvalueΩi with respect
to design variable kj is given as

∂Ωi

∂k j
¼ 1

mi

∂ki
∂k j

ð32Þ

where sensitivity of the modal stiffness with respect to design
parameter kj can be given as

∂ki
∂k j

¼ ΦT
i
∂ KþKsð Þ

∂k j
Φi ð33Þ

When Ωi=ωi
2is substituted in Eq. (32), the first order sensitiv-

ity of the ith natural circular frequency of the cantilever beam
can be obtained in the following form

∂ωi

∂k j
¼ 1

2miωi

∂ki
∂k j

ð34Þ

To derive the first order sensitivity of the matrix A, in addi-
tion to the sensitivity of the eigenvalue and the natural circular
frequency, the sensitivity of the damping matrix C should be
determined. Structural damping can be taken as either mass
proportional or stiffness proportional damping. For both of
the cases, structural damping matrix can be written as

C ¼ 2ζiωiM ð35Þ

C ¼ 2ζi
ωi

KþKsð Þ ð36Þ
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whereζi denotes the damping ratio in the ith mode. The partial
derivatives of Eqs. (35)–(36) with respect to design variable kj
can be obtained as follows:

∂C
∂k j

¼ 2ζi
∂ωi

∂k j
M ð37Þ

∂C
∂k j

¼ 2ζi
ωi

∂Ks

∂k j
−

2ζi
ωið Þ2

∂ωi

∂k j
KþKsð Þ ð38Þ

where the elements of matrix Ks are linear functions of design
parameters kj and the partial derivative of each term of Ks

matrix with respect to both k1 and kj can be obtained for the
cantilever beam as

∂Ks

∂k1
¼

1 0 … 0 0 … 0 0
0 0 … 0 0 … 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 … 0 0 … 0 0
0 0 … 0 0 … 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 … 0 0 … 0 0
0 0 … 0 0 … 0 0

2
66666666664

3
77777777775
2nx2n

∂Ks

∂k j

¼

0 0 … 0 0 … 0 0
0 0 … 0 0 … 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 … 1 0 … 0 0
0 0 … 0 0 … 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 … 0 0 … 0 0
0 0 … 0 0 … 0 0

2
66666666664

3
77777777775
2nx2n

ð39Þ

The first order sensitivity of the matrix A can be obtained

by using the sensitivity formulations ∂Ks
∂k j

, ∂C
∂k j
, ∂ωi
∂k j

and ∂Ωi
∂k j

as

follows

∂A
∂k j

¼ ∂Ks

∂k j
þ i

∂ωi

∂k j
C þ iωi

∂C
∂k j

−
∂Ωi

∂k j
M ð40Þ

In case of mass proportional structural damping, Eq. (40)
can be written as

∂A
∂kj

¼ ∂Ks

∂kj
þ i

1

2miωi

∂ki
∂kj

2ζiωiM

þ iωi2ζi
∂ωi

∂kj
M−

1

mi

∂ki
∂kj

M ð41Þ

If the structural damping is chosen to be proportional to
stiffness, Eq. (40) is as follows

∂A
∂k j

¼ ∂Ks

∂k j
þ i

1

2miωi

∂ki
∂k j

2ζi
ωi

KþKsð Þ

þ iωi

� 2ζi
ωi

∂Ks

∂k j
−

2ζi
ωið Þ2

∂ωi

∂k j
KþKsð Þ− 1

mi

∂ki
∂k j

M ð42Þ

Proposed Algorithm based on first order approximation for
support shear force is given as

Step 1. Assume the stiffness coefficients of all springs to be
kj = 0 where j = 1,...,n.

Step 2. Select vibration mode number of beam.
Step 3. Find the Eigenvalue and Eigenvectors.
Step 4. Assume the increment of the stiffnessas ΔK ¼ K

d
where d is selected as the design step number.

Step 5. Computethe transfer function amplitude (V) using
Eq. (13) and the first order sensitivities∂V∂k j

for all

design variables (kj) using Eq. (28).
Step 6. Find an index z satisfyingMax ∂V

∂k j

� �
− ∂V

∂kz ¼ 0 if the
sign of objective function is the negative. If the sign
of objective function is the positive, find an index z

satisfyingMin ∂V
∂k j

� �
− ∂V

∂kz ¼ 0

Step 7. Update V by V � ∂V
∂kz Δkz where Δkz = ΔK and the

sign between the parameters should be negative in
case ofminimization. It should be negative in case of
maximization.

Step 8. If the new value of V is less than the previous value

of V and the constraint ∑n
i¼1ki ¼ K is not provided,

continue the process and return to step 3 by adding
new stiffness coefficients.

Step 9. The new value of V is higher than the previous value
of V,stop the algorithm and calculate the sum of the

stiffness coefficients ∑n
i¼1ki ¼ Knew that it is added

up to that time.

A simplified feasible direction search algorithm isproposed
to calculate the optimal placement of springs using only the
first order approximation. The classical Steepest Direction
Search Algorithm is invalid because of the more complex
sensitivity calculations, when it is applied to the optimal
spring distribution problem based on the support shear force
for all modes control. This algorithm does not use the second
order sensitivity.Therefore, the increment of the stiffness co-
efficient added in each step is fixed by increment of added
stiffness coefficient (ΔK) in any step. In this method, the ei-
genvalues and eigenvectors of the beam are renewed by the
stiffness added to the springs in each step. At each step, it is
checked whether the objective function falls or not. The ob-
jective function is reduced and updated according to direction

obtained until the constraint ∑n
i¼1ki ¼ K is satisfied. If the

new value of V is less than the previous value of V and the

Aydin et al.62



constraint ∑n
i¼1ki ¼ K is not provided, the process continues.

When the new value of V is higher than the previous value of
V, the algorithm should be stopped even if the equality con-

straint ∑n
i¼1ki ¼ K is not provided. If the increase in K ex-

ceeds a certain value, the value of the objective function will
start to increase, which is undesirable. Then the algorithm
should be stopped.If it is not stopped, the transfer function
amplitude of the support shear force will begin to increase
and will begin to move away from convergence in the first
order derivatives.When the new value of V is higher than the
previous value of V, the algorithm should be stopped and

calculated as ∑n
i¼1ki ¼ Knew that you have added up to that

time. Accordingly, the minimum supporting shear force re-
sponse of the beam depends on the total stiffness capacity.
First-order partial derivatives are also examined in this algo-
rithm. The first order partial derivatives determine the direc-
tion of optimization and focus on the sensitive design
parameter.

In this study, a gradient based method is proposed. There
are many optimization methods to solve engineering prob-
lems. The gradient based methods need sensitivity informa-
tion. Sensitivities give us sensitive design parameters and
sensitive locations above the structural response. They may
be discontinuous for various objective functions and con-
straints. The sensitivities in this paper are continuous for the
proposed objective function and constraints. If the opposite
situation appears, this difficulty can be overcome by using
direct search approaches for optimization because direct
search algorithms do not have many mathematical require-
ments (no derivatives needed, etc.) for the optimization prob-
lems. Also, direct search techniques explore the design space
by generating a number of successive solutions to guide the
algorithm to an optimal design. The main characteristic of
these algorithms is the imitation of biological and physical
events by evolving a near-optimal solution over a number of
successive iterations (Saka et al. 2015; Sonmez 2010). One of
direct search algorithms, which is called GreyWolf Optimizer
(GWO) method (Mirjalili et al. 2014), is used in this study to
compare the results of the gradient-based method proposed to
the results obtained from GWO.Because Sonmez (Sonmez
2018) found that GWO was computationally more effective
than the Genetic algorithm, Harmony search and Ant colony

optimization algorithm. Similar to other meta-heuristic algo-
rithms, GWO has a stochastic nature when working with a set
of potential solutions. The reader may find more specific
information regarding GWO in (Mirjalili et al. 2014;
Sonmez 2018).

This study also investigates the optimal spring distribution
for each of them by considering discrete modes. Examining
the problem under the influence of narrow and / or wide fre-
quency band will give more realistic results as it will cover a
wider frequency range, considering the unpredictable nature
of random external effects. By using random vibration theory,
the mean-square of support shear force can be defined and a
power spectral density (PSD) function of the input support
acceleration is taken as a constant value or a critical excitation.
The proposed study focuses on how to optimally support the
springs if the beam vibrates in each discrete mode. The beams
examined here vibrate in certain specific resonance situations.
It can be principally important to understand the optimal
spring design that corresponds to each discrete mode
response.

4 Numerical example

The 6 m long cantilever beam shown in Fig. 3 is modelled as a
Timoshenko beam by dividing it into 1 m finite elements and
assuming a vertical displacement and a rotation at each
node.A vertical and anrotational displacement at each node
are considered and a total of 12 degrees of freedom are defined
in the system. The shear modulus is G = 7,94 1010 N/m2, the
correction factor κ = 5/6, the cross-sectional area A=0,05 m2,
the moment of inertia I = 2,08 10−4 m4, density of material ρ =
7,8 103 kg/m3, themodulus of elasticity E = 2,06 1011 N/m2. A
mass of 100 kg was also added to the end of the beam.
Structural damping matrix is selected as mass proportionaland
damping ratio is given as 0,02. Placements ofnodes of springs
are defined at the nodal points. The design variables
k¼ k1 k2 k3 k4 k5 k6f g denote as spring stiffness
coefficients. The first six modes of the cantilever beam, which
correspond to the translational displacements, were consid-
ered to find the optimal spring design. Initially, the total
amount of spring constant is estimated by the designer. By

Fig. 3 Model cantilever beam
with supported springs
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using the proposed algorithm, optimum values of spring co-
efficients are found. This is repeated for the first six modes.
While the algorithm is running, if the objective function is
increased, it is stopped, otherwise the objective function is
continued and the convergence is observed in the first deriv-
ative. The local optimum problem encountered in gradient-
based methods is also valid here. However, in the problem
proposed here, the stiffness coefficients must be positive. If
the optimization problem starts with a different initial value, it
may not be possible to investigate or reach the global as the
amount of stiffness to be added at each step will never be
negative. Therefore, all design variables are initially set to zero
and optimization is started.

Verification of the method was carried out by comparing
the results presented in this paper with those ones from anal-
ysis of the model of the beam without springs, with springs
with uniform stiffness and with optimal distribution of springs
which support a cantilever beam to minimize the tip deflection
of the beam (Aydin 2014).The same problem is also solved
using the GWO method and the gradient-based method in the
paper is largely confirmed by a metaheuristic method. During
the optimization, considering the first six translational modes,
the variations of objective functions are shown in Fig. 4 for
each step. Support shear force varies considerably with respect
to the springs to which they are attached. The insertion of the

springs can increase the elasticforcesin nodesand as a result
the support shear force can be increased. Therefore, the objec-
tive function in the algorithm is controlled and decreased at
every step. If there is an increase, the optimization is stopped.

On the basis of the results presented in Fig. 4, for the first
mode control, the application of optimal spring stiffness re-
duces the transfer function amplitude of the shear force com-
pared to the case with no springs by 26.499%, for the fourth
mode by 26.509% compared to the model presented in (Aydin
2014).Although it is seen that the value of the objective func-
tion is positive, it is seen that it is minimized in the positive
region. On Fig. 4 (a) itis clearly visible that the proposed
method reduces the transfer function amplitude of the support
shear force in the best way comparing to other gradient
basedmethod (Aydin 2014) and uniform design.The final
values of the target transfer function of the method aimed at
minimizing tip displacement and the result of the proposed
method are very close to each other.When the variation of
the objective functions for spring designs obtained according
to the first mode are investigated, it is clear that the uniform
design increases the objective function in the positive region.
For the second, third, fifth and sixth modes, the variation of
objective functionpresent the same trend, for both the pro-
posed method and the method presented in (Aydin
2014).When the control of the fourth mode is examined, the
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minimum value of objective function is attained by the end of
design steps in the proposed designand the result of (Aydin
2014) is also close to it.The sign of the objective function is
negative and is considered to be a maximization problem.In
the case of the control of the first, third and fifth modes, it can
be seen that the sign of the objective function amplitude is
positive, while in the case of the control of the second, fourth
and sixth modes, the sign is negative. As mentioned above,
this situation provides the problem to be a minimization or
maximization problem, which is related to the direction of
the shear force in the support.In different mode behaviour,
the direction or sign of the shear forces in the nodes changes,
and consequently the sign of the force in the support may
change.

The minimization of transfer function amplitude of tip de-
flection is not the goal of the analysis in this paper. In order to
make a comparison, the transfer function amplitude of the tip
displacement is examined for different spring designs and dif-
ferent mode control cases.Fig. 5 shows the variation of trans-
fer function amplitude of the tip displacement for different
designs in case of first sixth mode control. For the second,
third, fifth and sixth modes, the value of the transfer function
are the same in the proposed model and arepresented in
(Aydin 2014).In the case of control of the first modes, it is
seen that the last transfer function value of all spring
designsare attainat near point.When the control of the 2nd,
3rd, 4th, 5th and 6th modes is examined in terms of uniform

design, the worst performance shows uniform design. In the
first mode, the uniform design is similar inperformance
withthe other designs.The control of the fourth mode showed
the best displacement performance according to the displace-
ment optimization design.

Fig.6(a) shows the optimal distributions of springs at the
nodes. In the optimal design according to the first mode, the
large part of the total amount of the spring is added to the
fourth node (64%) and fifth node (36%). In the design accord-
ing to the tip displacement, the springs are placed at the fourth
node (52%), fifth node(41%) and sixth node (7%) so that the
purpose of the design is to minimize the tip displacement.The
large part of total springs focus close to the 4th and 5th nodes
for both minimization of the support shear force and minimi-
zation of tip displacement.The example problem is also opti-
mized by the GWO method, since it is the gradient-based
method employed here and is on a similar basis with the other
displacement minimization method compared.The results of
GWO can also be observed in both Table 1 and Fig 6.When
the results of GWO are considered for the first mode, it is seen
that the total stiffness amount is distributed to all nodes, but
mainly to the 4th (38%) and 5th (58%) nodes.According to the
results of GWO, the nodes where the stiffness is predominant-
ly distributed are the same as the nodes on which the proposed
method is focused. Although the optimal spring locations are
close to each other, the GWO performs better in the first mode
in terms of transfer function values.
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The optimal designs for control of 2nd, 3rd, 5th and 6th
modes give the sameor very approximatevalues and distribu-
tions as shown in Fig.6(b,c,e, f) in case of all optimal designs.
In the second mode, the total amount is placed in the sixth
node (Fig. 6(b)). When examining the optimum spring distri-
bution for third mode controlin Fig. 6(c), it can be seen that a
total spring coefficient at the 4th node is addedin the proposed
method and the displacement minimization.In the GWO de-
sign, the total stiffness is largely added to node 4, with very
small amounts distributed to other nodes. For the control of
the fourth mode as shown in Fig.6(d), the total amount of
springs is distributed in the 6th(70%),3rd(28%) and5th(2%)
node for proposed methodwhile it is added only to the 3rd
node for displacement based design.In the control of the
fourth mode, if the distribution of the GWO is examined, it
can be seen that the springs are mainly distributed in the 3rd
(69%)and 6th (30) nodes.In thefourth optimal control, al-
though the optimum stiffness amounts of the springs differ
with the proposed method and GWO method, the dominant
locations are the same.As can also be seen from Table 1, the
results of the proposed method are also best in terms of trans-
fer functions.Both Fig. 6(e) and Table 1, it is necessary to add
the total spring amount to node 5 according to all optimum
designs to control the fifth mode. As a result of the control of
sixth mode the total spring is focused in the second nodein
case of all optimal designs (Fig. 6(f)). The springs with large
values found in the analyses can also refer to a simple support.
The value of the support force changes with the added springs.
The addition of springs can increase or decrease this

magnitude. The aim here is to reduce the force of support
when adding the springs. The support force of a cantilever
beam will also change with the vibrating of different modes.
For beam model, the values of the optimum spring coeffi-
cients for the different modes are given in Table 1.

Figure 7 shows the variation of the frequency for each
mode duringoptimization. In particular, if the control of the
first mode is examined,at the end of the displacement optimi-
zation, it is seen that the frequency value reached is
maximum.Since the aim of this study is to minimize the shear
force on the support, the increase in frequency during design is
clearly visible in Fig.7, although it does not maximize the
frequency.In the case of the control of other modes, it appears
that the two optimal designs follow the same or similar trend
in terms of the frequency variations.

The springs added also change the natural circular frequen-
cies and mode shapes of the model, as expected. Table 2
shows the variations in natural circular frequencies for differ-
ent mode controls. In the first mode control, the first natural
frequency varies from 178,55 rad/s (proposed) to 198,78 rad/s
(uniform), while the change in the other frequencies is also
remarkable. In the control of the second mode, the second
natural circular frequency varies from 254,37 rad/s
(proposed) to 210,54 rad/s (uniform). In the control of the
third mode, the third natural circular frequency varies from
587,20 rad/s (proposed) to 567,24 rad/s (uniform). These
changes can be seen in more detail in Fig.8. It is observed that
the optimum spring designs have caused serious changes es-
pecially in the natural circular frequencies of the first-three
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modes.When the variations of all frequencies according to
different designs are examined, the largest values are generally
found in the case of uniform designs under the control of the
6thmode.

The convergance for the derivatives of both objective func-
tions, as well as for first order derivative of transfer function
amplitude with respect to design variables according to design
step number in case of different mode control is achieved as
shown in Fig.9 and Fig. 10.The negative region of the signs of
the derivative points to a minimization problem, while being
in the positive region is an indicator of a maximization prob-
lem. This situation should be considered, as stated, in the
algorithm.As can be understood from the graphs, in the case
of both force optimization and displacement optimization, it
can be seen that derivatives approach towards zero and con-
vergence occurs. If the nonlinearity of the spring optimization
problem is considered, each added spring directly affects
frequency.For the damping and the transfer function values,
it is difficult to apply a gradient based method. Here it can be
noted that convergence takes place, as can be seen from the
changes in the analytically derived sensitivities. Comparing
the results with GWO, which is a direct optimization method,
and reaching the same values in some modes and acceptable

levels in some other modes, the analitically derived sensitivity
equations are even more valuable.

Fig. 11 shows the frequency behavior of the amplitude of
the support shear force function for the proposed model, with-
out springs, with uniform distribution of springs and themodel
presented in (Aydin 2014). The amplitude of the support force
function is reduced for all modes. The location indicated by
blue dot refers to the controlled resonant pointfor that mode.In
Fig.11(a), the worst performance is in the uniform design,
while the best performance shows the design according to
the proposed method here.For the 2nd, 3rd, 5th and 6th modes
except for 1st and 4th modes, the optimum designs according
to both purpose functions show the same performance.
Moreover, it is obvious that these optimal designs show better
performance than designs of both uniform designs andwithout
springs.In terms of uniform designs, high amplitudes are ob-
served in case of both without spring and uniform spring
design.Moreover, the frequency considered is shifted to the
larger values according to the uniform increase in stiffness.

The optimal design is investigated in the frequency domain
and the time behaviour of the support force of the optimum
designs found is also examined. The optimum design for each
mode is compared to the results achieved in the model without

(a)                                                 (b) (c)

(d)                                                 (e) (f)

0

50

100

150

200

250

0 100 200 300

1
)s/

dar(

Design Step Number

First Mode Control

Optimal design (proposed)

Optimal design (Aydin 2014)

Uniform design

0

100

200

300

400

0 100 200 300

2
)s/

dar(

Design Step Number

Second Mode Control

520

540

560

580

600

0 100 200 300

3
)s/

dar(

Design Step Number

Third Mode Control

1000

1040

1080

1120

1160

0 100 200 300

4
)s/

dar(

Design Step Number

Fourth Mode Control

1700

1720

1740

1760

1780

1800

0 100 200 300

5
)s/

dar(

Design Step Number

Fifth Mode Control

2520

2550

2580

2610

2640

0 100 200 300

6
)s/

dar(

Design Step Number

Sixth Mode Control

Fig. 7 The variation of the corresponding frequency for the first-six mode control

Aydin et al.68



springs, with uniform distribution of springs and in the model
presented in (Aydin 2014).In the case of resonance, thebehaviour
of the beam is checked by using time history analyses. Thus, the
vertical support acceleration of excitation is chosen as ug ¼ sin
ωntð Þ n = 1,..,6. As a result of the time history analyses, the
changes in the support shear force of the design for each mode
are plotted in Fig. 12. The graphics in Fig. 12 clearly show that
the optimum designs found with the investigated method can
reduce the support shear force to a stable level. In the case of
separate control of each mode, when a harmonic load corre-
sponding to that mode is applied, the variation of the support
shear force according to the two optimal designs shows that the
optimum designs give very close results. Uniform designs create
greater force values than optimum designs.In addition, the time
behaviour of the tip displacement of the cantilever beam at har-
monic forces is plotted in Fig. 13. It can be seen that the optimal
designs improve the behaviour of the beam in terms of
displacement.As can be seen from Fig. 13, optimum designs
perform better for each mode than both uniform designs and
without spring cases.

Beams are important structural elements in many different
engineering designs. In some engineering problems, the first
mode is dominant, whilethe other mode can be a priority in the
other designs. In this proposed method, whichever mode is
focused, it tries to reduce the value of the resonance case in
that mode. It has been shown that the supporting shear force
defined by the ith frequency is reduced to a minimal value
when it is compared with üniform design and without
springcase. It is important to reduce displacements by adding
springs which was presented in many previous researches. If
the support shear force is considered to be decreased by sup-
ported springs in a force-based design, the support forces can-
not reach to its yielding limits.Depending on which frequency
the designers chooses,theycan seek for an optimum control
over that frequency.

4.1 The effects of structural damping and the mesh
sensitivity

The field of damping matrix identification is one which still
holds quite a bit of intrigue in the engineering community.
This is because the modelling of damping is very complex
and is still considered somewhat of an unknown or grey area.
The effects of damping are clear, but the characterization of
damping is a puzzle waiting to be solved. The damping prop-
erties of structures are often assumed to beina modal form.
They are introduced as damping coefficients in the modal
equations. This is done not only for the sake of analytical
simplicity, but also because it is the most convenient way to
measure or estimate it. This is the way, for example, to esti-
mate the material damping in the finite-element analysis of
large flexible structures, where the modal analysis is executed,Ta
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Fig. 9 Variation of first order sensitivities with respect to design variables according to design step number incase of different mode control
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the low-frequency modesareretained, and modal damping for
these modes isassumed. The resulting damping is a propor-
tional one. In another approach, a damping matrix proportion-
al either to the mass or to the stiffness matrix, or to both, is
introduced. This technique produces proportional damping as
well. A proportional damping is used in terms of a single
mode here because it is considered on the individual vibration
control of each mode to find the optimum distribution of the
springs. It is chosen aseither a mass proportional or stiffness
proportional damping matrix because only the effect of the
single mode is considered. Both matrices have diagonal or-
thogonality characteristics. These are the classic damping ma-
trices. Stiffness proportional damping appeals to intuition be-
cause it can be interpreted to model energy dissipation arising
from the deformations. In contrast, mass proportional
damping is difficult to justify physically. Mass proportional
damping may represent the energy loss associated with a
momentumandis termed as themomentum damping.
Physically, this is incorporated by assigning a viscous damper
between each degree of freedom and its fixed reference, with
the damping constant proportional to the mass. Neither of two
damping models is appropriate for practical applications.
Rayleigh damping can also be selected in proportion to both
rigidity and mass, but the frequency and damping ratios of the
two modes should be used to calculate the proportion

coefficients. In this study, Rayleigh damping is not selected
since each mode is consideredto be single.

In this study, mass proportional damping, which can be
calculated according to a single mode, is chosen. In addition,
optimum designs are found in each mode for different
damping ratios of the beam. Fig. 14 illustrate the changes of
the objective functions according to five different structural
damping ratios. From the graphs it can be seen that the chang-
es in the structural damping ratio for the first six modes de-
crease the objective function values as expected. Furthermore,
as can be seen from the Table 3 below, the change in the
damping ratio from 0,01 to 0,05 in the first mode does not
generally change the optimum designs.In case of damping
ratio of 0,07 and 0,10, it can be seen that besides 4thand
5thnode, a small spring is added to node 4.

When the designs for different damping ratios are exam-
ined in Table 3 according to the second mode, while the
damping ratio isinbetween 0,01 −0,02, the optimum designs
are the same while the increase in the damping ratio (such as
0,05 0,07 and 0,1) changes the optimum designsat least.
While the total stiffness coefficient for the first two damping
ratios is focused on sixth node, the optimum designs for the
last three damping ratios are distributed to the first node to-
gether with the sixth node. It could be seen that different
designs emerged if the third mode are examined according
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to different damping ratios and the optimum designs
arecalculated as shown in Table 3. While the increase in
damping ratio causes the total amount of rigidity to be gener-
ally distributed to more nodes, there are some exceptions to
which this increase is added on fewer nodes. In case of in-
creasing damping ratio by 0,05 and subsequent damping ratio,
a small spring is added to node 3 as well as node 4.When the
effect of the increase in damping ratio in the control of the
fourthmode on the optimal design is examined, the increase in
damping ratio causes a small spring to be added to the fifth
node as well as the nodes 3 and 6, except when the damping
ratio is 0,05.In the control of the fifth mode, the design does
not change at all damping ratio except for the 0,10 damping
ratio, whereas in the case of damping ratio of 0,01, a little
spring is placed on node 2 as well as node 5.All designs are
the same when the sixth mode is controlled.As a result, the
structural damping is aneffectiveparameter in optimum spring
design. It is important that the designer selects the structural
damping parameter in a realistic way.

In order to examine themesh sensitivity, the 6-element sample
is reanalysed by dividing the beam into 60 elements. For each
mode, the frequencies, optimum designs and transfer function
amplitudes are calculated in both the 6-element and 60-element
beam and are shown in Table 4. In both designs, the locations of
the springs and the total spring coefficient are kept constant to
compare the optimal design. When the change of the first six

natural frequencies is examined, it canbe seen that especially the
high frequencies fall as expected in the 60-element model. This
has led to changes in optimum designs in some higher modes.
The total stiffness coefficient is distributed mainly in the fourth
and fifth node in case of 6-element model. In the 60-element
model, this is the same. Although there is no effect of mesh
sensitivity in the designs for the second, third and fifth modes,
the results for the fourth and sixth mode are different. The opti-
mum design of the elastic springs supporting the cantilever
beams requires a sufficient number of elements divided by the
number of elements to be used to model the beam.

5 Conclusions

Beams are structural elements that are important in many engi-
neering problems. Timoshenko cantilever beam resting on
springs are investigated, the best supporting conditions are stud-
ied and compared to the results obtained in the model without
springs, with uniform distribution of springs and tothe optimal
design model presented in literature.New approach of optimiza-
tion algorithm is developed.The beamis modelled with finite
elements and springs which are optimally designed andplaced
at node points. The equation of motion of the cantilever beam
in the time domain is transformed into frequency domain equa-
tion by Fourier Transform. In the frequency domain, a new
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transfer function is defined for the support shear force of the
beam and the optimization problem is madeto minimize it.
Sensitivity equations required for optimization problem are ana-
lytically derived and a solution algorithm is proposed to find the
optimal spring locations and its stiffness coefficients. The pro-
posedmethod is testedwith the numerical example. As a result of
the analyses, the following results can be summarized:

& The support conditions of the beams, which are important
for engineering works, seriously affect the force behaviour
of the beam,

& Changing of the spring supports influences on vibrations
of the beam in different modes,

& Spring distributions are found to minimize the support
shear force for different modes, and the optimal spring
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designs are shown to improve behaviour in both time do-
main and frequency domain,

& The springs supporting the beam can also increase the forces
as well as change the dynamic properties. An increase of
internal force may cause the yielding of the material. From
this point of view, the design of the elastic supports that
minimizes the support force for any modescan be useful for
many engineering applications,

& Different support conditions for different modes arise. In
this case, it is necessary to show how the beam is subjected
to a dynamic load,

& The results of the proposed gradient based method are
proved to be accurate by comparing the results with a
metaheuristic optimization method (GWO) and the same
or acceptable results for many modes.

& The analysis showed that the total stiffness chosen by the
designer, the structural damping ratio, the number of finite
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Fig. 14 The effects of structural damping ratio on the transfer function amplitude of support shear force

Table 3 Optimal spring
coefficients in the case of different
structural damping ratio

Mode
Number

Structural Damping
Ratio

Spring Coefficients (MN/m)

ζ k1 k2 k3 k4 k5 k6
1 0,01 – – – 52,2667 27,7333 –

0,02 – – – 51,20 28,8 –
0,05 – – – 51,2 28,8 –
0,07 – – 0,266,667 51,2 28,5333 –
0,10 – – 0,533,333 51,2 28,2667 –

2 0,01 – – – – – 17,8667
0,02 – – – – – 17,8667
0,05 131,022 – – – – 16,5565
0,07 178,667 – – – – 16,08
0,10 220,356 – – – – 15,6631

3 0,01 – – – 87,7795 – –
0,02 – – – 87,7795 – –
0,05 – – 146,299 86,3165 – –
0,07 – – 643,716 81,3423 – –
0,10 – – 11,9965 75,783 – –

4 0,01 – – 46,8667 – – 143,133
0,02 – – 52,5667 – 443,333 133,00
0,05 – – 131,733 – – 58,2667
0,07 – – 129,833 – 7,60 52,5667
0,10 – – 126,667 – 19,6333 43,70

5 0,01 – – – – 288,00 –
0,02 – – – – 288,00 –
0,05 – – – – 288,00 –
0,07 – – – – 288,00 –
0,10 – 24,96 – – 263,04 –

6 0,01 – 426,00 – – – –
0,02 – 426,00 – – – –
0,05 – 426,00 – – – –
0,07 – 426,00 – – – –
0,10 – 426,00 – – – –
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elements selected and the mode number of consideration
are important parameters that affect the optimum design of
the springs supporting the beam.

& The proposed method is effective to decrease the support
shear force by optimal springs. In addition, the presented
method gives designers an idea abouthow to support vi-
brating beams in different modes.

The method shown in this paper is characterized by high
efficiency of reducing the shear force on the support and is a
helpful tool in the design of beams under dynamic loads.

6 Replication of results

In this study the newapproach of optimization algorithmwith use
of gradient based method is developed for the purpose of the
minimizationof theshear forcesupport.Due toobjective function,
for finding the optimal location and amount of springs, the new
algorithm takes into consideration the situationwhen thedirection
of the internal forces changes in differentmodes and this direction
change iscalculatedby taking intoaccount thepositiveornegative
signs in the calculation of the support shear force.

The methodology consists of the following steps:assuming
the stiffness coefficients of all springs supporting the beam to
be kj=0 where j=1,...,n, selecting vibration mode number of
beam, finding the eigenvalue and eigenvectors, assuming the
increment of the stiffness, computing the transfer function am-
plitude (V) and the first order sensitivities, finding an index ‘z’

satisfyingMax ∂V
∂k j

� �
− ∂V

∂kz ¼ 0 if the sign of objective function is

the negative. If the sign of objective function is the positive, we

find an index ‘z’ satisfyingMin ∂V
∂k j

� �
− ∂V

∂kz ¼ 0, and thenwe

updateV. If the function V meets the criterion, it is assumed to
be the solution, otherwise the steps of the algorithm are repeated.
Detailed steps of the algorithm are presented in the paper.
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APPENDIX

CANTILEVER BEAM MODEL WITH TWO ELEMENTS

For a better understanding of the problem, let us do a numerical
analysis and show a step on a cantilever beam model with 2
elements and 4 degrees of freedom as shown in Fig. 15. The
cantilever beam (length is 6 m) is modelled as a Timoshenko
beam by dividing it into 3 m finite elements and assuming ver-
tical displacements and rotations at each node. Two vertical and
rotational displacements at each node are considered and a total
of 4 degrees of freedom are defined in the system. The shear
modulus is G= 7,94 1010 N/m2, the correction factor κ=5/6, the
cross-sectional area A=0,05 m2, the moment of inertia I= 2,08
10−4 m4, density of material ρ= 7,8 103 kg/m3, the modulus of
elasticity E= 2,06 1011 N/m2. A mass of 100 kg is also added to
the end of the beam. Structural damping matrix is selected as
mass proportional and structural damping ratio is assumed as

0,02. The total stiffness is assumed to be K ¼ 9x106N=m and

the amount of additional stiffness in each step is calculated as Δ
K ¼ 9x106

300 ¼ 30000 N=m where design step number (d) is se-
lected as 300.

Table 4 The effects of mesh
sensitivity on the optimal springs Mode Number

Model 1. Mode 2. Mode 3. Mode 4. Mode 5. Mode 6. Mode
6-Element ωi 29,88 187,99 526,31 1030,47 1705,29 2538,13

k1 (MN/m) – – – – – –
k2 (MN/m) – – – – – 426,00
k3 (MN/m) – – – 52,5667 – –
k4 (MN/m) 51,20 – 87,7795 – – –
k5 (MN/m) 28,80 – – 443,333 288,00 –
k6 (MN/m) – 17,8667 – 133,00 – –
Σki(MN/m) 80,0 17,8667 87,7795 190,00 288,00 426,00
VB(ωi) 9946,23 −436,282 0,003393 −275,249 154,563 −40,4373
UT(ωi) 8,51E-04 3,25E-05 5,47E-06 1,54E-06 4,87E-07 1,60E-07

60-Element ωi 29,88 187,93 524,96 1020,93 1667,27 2450,97
k1 (MN/m) – – – – – –
k2 (MN/m) – – – – – –
k3 (MN/m) – – – 190,00 – –
k4 (MN/m) 53,0667 – 87,7795 – – 426,00
k5 (MN/m) 26,9333 – – – 288,00 –
k6 (MN/m) – 17,8667 – – – –
Σki(MN/m) 80,00 17,8667 87,7795 190,00 288,00 426,00
VB(ωi) −16,244,7 −2181,55 410,249 −3213,03 4057,03 −3710,51
UT(ωi) 8,92E-04 3,67E-05 6,65E-06 1,67E-6 8,02E-7 3,38E-7
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Using element stiffness andmassmatrices, the global stiffness
and mass matrices of the 4 degree of freedom beam are found as
follows

K ¼
3; 74406 0; 00000 −1; 87203 2; 80804
0; 00000 11; 2807 −2; 80804 2; 78380

−1; 87203
2; 80804

−2; 80804
2; 78380

1; 87203
−2; 80804

−2; 80804
5; 64033

2
64

3
75*107 ð43Þ

M ¼
868; 698 0; 000 150; 651 −109; 277
0; 000 201; 01 109; 277 −75; 8064

150; 651
−109; 277

109; 277
−75; 806

534; 349
−183; 223

−183; 223
100; 505

2
64

3
75

ð44Þ

In the first step, the system’s natural circular frequencies are
calculated as ωi ={29,8,881,189,4,946,366,731,694,69}rad/s
from the eigenvalue-eigenvector analysis. The first eigenvector
normalized to the tip degree of freedom of the system is found as
∅1 ={0,3,357,330,192,635 100,000 0,232,286}. The damping
matrix of the beam model can be calculated in proportion to
the mass as follows.

C ¼ 2ζω1M ¼ 2*0; 02*29; 8881*

868; 698 0; 000 150; 651 −109; 277
0; 000 201; 01 109; 277 −75; 8064

150; 651
−109; 277

109; 277
−75; 806

534; 349
−183; 223

−183; 223
100; 505

2
64

3
75 ¼

1590; 92 0; 000 275; 901 −200; 13
0; 000 368; 127 200; 130 −138; 831

275; 901
−200; 13

200; 13
−138; 831

978; 601
−335; 552

−335; 552
184; 063

2
64

3
75 ð45Þ

The stiffness matrix of the springs added and its partial
derivations with respect to k1 and k2 are given below

KS ¼
k1 0 0 0
0 0 0 0
0
0

0
0

k2
0

0
0

2
64

3
75 ∂Ks

∂k1
¼

1 0 0 0
0 0 0 0
0
0

0
0

0
0

0
0

2
64

3
75 ∂Ks

∂k2
¼

0 0 0 0
0 0 0 0
0
0

0
0

1
0

0
0

2
64

3
75 ð46Þ

The calculation of matrix A given in Eq. (9) is as follows

A ¼ KþKsð Þ þ iω1C−ω2
1M¼

3; 74406 0; 00000 −1; 87203 2; 80804
0; 00000 11; 2807 −2; 80804 2; 78380

−1; 87203
2; 80804

−2; 80804
2; 78380

1; 87203
−2; 80804

−2; 80804
5; 64033

2
64

3
75*107 þ

k1 0 0 0
0 0 0 0
0
0

0
0

k2
0

0
0

2
64

3
75

þ i*29; 8881*

1590; 92 0; 000 275; 901 −200; 13
0; 000 368; 127 200; 13 −138; 831

275; 901
−200; 13

200; 13
−138; 831

978; 601
−335; 552

−335; 552
184; 063

2
64

3
75−29; 88812*

868; 698 0; 000 150; 651 −109; 277
0; 000 201; 01 109; 277 −75; 8064

150; 651
−109; 277

109; 277
−75; 806

534; 349
−183; 223

−183; 223
100; 505

2
64

3
75

¼
3; 66646*107 þ 31040; 3*i 0; 0000000þ 0; 0000000*i −1; 88549*107 þ 5383; 06*i 2; 8178*107−3904; 7*i

0; 0000000þ 0; 000000*i 1; 12627*108 þ 7182; 47*i −2; 8178*107 þ 3904; 7*i 2; 79057*107−2708; 71*i
−1; 88549*107 þ 5383; 06*i

2; 8178*107−3904; 7*i
−2; 8178*107 þ 3904; 7*i
2; 79057*107−2708; 71*i

1; 82429*107 þ 19093; 3*i
−2; 79167*107−6546; 9*i

−2; 79167*107−6546; 9*i
5; 63135*107 þ 3591; 24*i

2
664

3
775

ð47Þ
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Initial values of design variables (k1and k2) are assumed to
be zero, The modal mass for 1st mode and the partial deriva-
tive of first eigenvalue with respect to k1 and k2 are obtained as

m1 ¼ ΦT
1MΦ1¼

0; 335733
0; 192635
1; 00000
0; 232286

8>><
>>:

9>>=
>>;

868; 698 0; 000 150; 651 −109; 277
0; 000 201; 01 109; 277 −75; 8064

150; 651
−109; 277

109; 277
−75; 806

534; 349
−183; 223

−183; 223
100; 505

2
64

3
75 0; 335733 0; 192635 1; 00000 0; 232286f g ¼ 679; 458

ð48Þ

∂Ω1

∂k1
¼ 1

m1

∂k1
∂k1

¼ 1

679; 458

0; 335733
0; 192635
1; 00000
0; 232286

8>><
>>:

9>>=
>>;

1 0 0 0
0 0 0 0
0
0

0
0

0
0

0
0

2
64

3
75 0; 335733 0; 192635 1; 00000 0; 232286f g

¼ 0; 000165892 ð49Þ

∂Ω1

∂k2
¼ 1

m1

∂k1
∂k2

¼ 1

679; 458

0; 335733
0; 192635
1; 00000
0; 232286

8>><
>>:

9>>=
>>;

0 0 0 0
0 0 0 0
0
0

0
0

1
0

0
0

2
64

3
75 0; 335733 0; 192635 1; 00000 0; 232286f g

¼ 0; 00147176 ð50Þ

The transfer function vector is calculated as

eU ω1ð Þ ¼ −A−1Mr¼
−0; 0000142032þ 0; 0135566i
0; 00000110433þ 0; 00777842i
0; 0000155147þ 0; 040379i
0; 0000140347þ 0; 00937945i

8><
>:

9>=
>;
ð51Þ

The transfer function vector of elastic forces are obtained as
follows

F ω1ð Þ ¼ KþKsð ÞeU ω1ð Þ¼
−428; 114þ 15038; 9i
79; 6148þ 4703; 22i
131; 217þ 20322; 7i
−12; 1448−7616; 93i

8><
>:

9>=
>; ð52Þ

where the elements ofKs are zero in the first step. The absolute
value of the F(ωn) are given as

F ω1ð Þj j¼
15045; 00
4703; 89
20323; 10
7616; 94

8><
>:

9>=
>; ð53Þ

The transfer function amplitude of the support shear force
is found as

V ωnð Þ ¼ ∑
2

s¼1
sign ∅isð Þ Fs ω1ð Þj j

¼ sign ∅11ð Þ F1 ω1ð Þj j þ sign ∅13ð Þ F2 ω1ð Þj j
¼ sign 0; 335733ð Þ15045; 00

þ sign 1; 00000ð Þ20323; 10
¼ þð Þ15045; 00þ þð Þ20323; 10 ¼ 35362; 8 ð54Þ

where s is defined as the number of degree of freedom corre-
sponding to the translational modes. The first order sensitivity
with respect to the k1 and k2are given as

Fig. 15 Cantilever beam with 2 elements
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∂F
∂k1

¼ ∂Ks

∂k1
−KsA−1 ∂A

∂k1

� �eU¼
−1; 50914*10−5−3; 26491*10−4i
−5; 72376*10−8−4; 40133*10−6i
−1; 70528*10−7−1; 745*10−5i

1; 54417*10−6 þ 3; 74729*10−5i

8>><
>>:

9>>=
>>;
ð55Þ

∂F
∂k2

¼ ∂Ks

∂k2
−KsA

−1 ∂A
∂k2

� �eU¼
2; 67383*10−5 þ 1; 06866*10−3i
3; 53174*10−6 þ 5; 56696*10−5i
7; 5875*10−6 þ 5; 10216*10−5i
−5; 71166*10−6−1; 40692*10−4i

8>><
>>:

9>>=
>>;ð56Þ

The absolute values of first order sensitivities of the elastic
force in two nodes are calculated as

∂ F1j j
∂k1

¼ 1

F1j j Re F1½ � Re
∂F1

∂k1

	 
� �
þ Im F1½ � Im

∂F1

∂k1

	 
� �� �

¼ 1

15045; 00
−428; 114ð Þ* −1; 50914*10−5

� �þ 15038; 9ð Þ* −3; 26491*10−4
� � � ¼ −0; 000325929 ð57Þ

∂ F1j j
∂k2

¼ 1

F1j j Re F1½ � Re
∂F1

∂k2

	 
� �
þ Im F1½ � Im

∂F1

∂k2

	 
� �� �

¼ 1

15045; 00
−428; 114ð Þ* 2; 67383*10−5

� �þ 15038; 9ð Þ* 1; 06866*10−3
� � � ¼ 0; 00106747 ð58Þ

∂ F2j j
∂k1

¼ 1

F2j j Re F2½ � Re
∂F2

∂k1

	 
� �
þ Im F2½ � Im

∂F2

∂k1

	 
� �� �

¼ 1

20323; 10
131; 217ð Þ* −1; 70528*10−7

� �þ 20322; 7ð Þ* −1; 745*10−5
� � � ¼ −0; 0000174508 ð59Þ

∂ F2j j
∂k2

¼ 1

F2j j Re F2½ � Re
∂F2

∂k2

	 
� �
þ Im F2½ � Im

∂F2

∂k2

	 
� �� �

¼ 1

20323; 10
131; 217ð Þ* 7; 5875*10−6

� �þ 20322; 7ð Þ* 5; 10216*10−5
� � � ¼ 0; 0000510695 ð60Þ

The first order sensitivities of transfer function amplitude
of the support force with respect to design variables (k1and k2)
are obtained as follows
∂V
∂k1

¼ sign ∅11ð Þ −0; 000325929ð Þ

þ sign ∅13ð Þ −0; 0000174508ð Þ ¼ −0; 00034338

ð61Þ

∂V
∂k2

¼ sign ∅11ð Þ 0; 00106747ð Þ

þ sign ∅13ð Þ 0; 0000510695ð Þ ¼ 0; 00111854

ð62Þ

∂V
∂k

¼ −0; 00034338 0; 00111854f g ð63Þ

Max
∂V
∂k

� �
−
∂V
∂k1

¼ 0; 00111854−0; 00034338≠0 ð64Þ

Max
∂V
∂k

� �
−
∂V
∂k2

¼ 0; 00111854−0; 00111854 ¼ 0 ð65Þ

In Eq. (65), there is a z=2 index which satisfies the opti-
mality condition. All spring stiffness coefficients are updated
as follows

k1 ¼ 0 k2 ¼ 0þ ΔK ¼ 30000 N=m ð66Þ

According to this value, the cycle continues until the total

stiffness coefficient (K ) is reached in the end of step 300. In
each step, all calculations are updated such as eigenvalue,
eigenvectors, objective function and sensitivities. Some basic
calculations in each step are summarized briefly where the
objective function is minimized.
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