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Abstract
In a recent publication, an approach to optimize the orientation of anisotropic materials was presented. This strategy was
embedded into the thermodynamic topology optimization based on growth. In this paper, we show that the thermodynamic
orientation optimization can also be used in more classical approaches to topology optimization. We furthermore enhance
the approach by a novel filtering technique to provide control over the smoothness of the pathway of principal material
directions, i.e., the curvature of fibers. The filter is based on a convolution operator and is applied to the material stiffness
tensor, so that the filtering technique is not directly bounded to the actual parameterization for the design variables. To this
end, the topology is defined by a continuous density approach with penalization of intermediate densities (SIMP) solved
via the optimality criteria method (OCM). A set of three continuous Euler angles is used as additional design variables
to describe the local material rotation of the anisotropic base material. The thermodynamic optimization of the material
orientation is performed by evolution of the Euler angles to minimize the elastic energy. The related evolution equations are
derived by means of the Hamilton principle, well-known from material modeling.

Keywords Topology optimization · Anisotropic material · Material orientation filter · Continous fiber angle optimization ·
Thermodynamic optimization

1 Introduction

Material laminates or fiber-reinforced materials have a
high stiffness-to-weight-ratio and are thus of particular
interest in the automotive and aerospace industries to further
reduce energy consumption while maintaining structural
integrity. These materials possess anisotropic mechanical
properties, so that the optimal (local) orientation of the
materials must be considered in addition to the topology
of the structure. Considerable research effort went into
topology optimization over the last decades. Most topology
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optimization approaches are based on density formulation,
i.e., the design variable is a factor to the material stiffness
tensor. Usually, the objective is to find a discrete “black-
and-white” solution containing either full material or void
within a given design space. Different approaches were
developed, including “bidirectional evolutionary structural
optimization” (BESO), the “level-set” method, “phase-
field” methods, and probably the most popular “solid
isotropic material with penalization” (SIMP) in conjunction
with different mathematical solution algorithms such
as the “optimality criteria method” (OCM), “sequential
linear/quadratic programming” (SLP/SQP), and “method of
moving asymptotes” (MMA). The most popular approaches
are reviewed in Sigmund and Maute (2013) and Deaton
and Grandhi (2014). Optimization algorithms based on
thermodynamic principles were developed and compared
with mathematical optimizers to provide a more physical
approach to optimization (Junker and Hackl 2015; Jantos
et al. 2016). Thermodynamic topology optimization also
proved to be suitable for optimization with additional
design variables (Jantos et al. 2018; Gaganelis et al. 2019):
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differential equations, which serve as an update scheme
for the design variables, are directly derived from the
thermodynamic extremum principle, which are common in
material modeling.

Most of these optimization approaches assume isotropic
materials. Nevertheless, different approaches were devel-
oped to optimize the orientation of anisotropic materials
either by solving the topology and material orienta-
tion optimization simultaneously or sequentially. Common
approaches do not introduce additional design variables
for the material orientation. Instead, the principal material
direction is assumed to coincide with the principal stress
or strain direction which is reasonable for “shear-weak”
materials (Hörnlein et al. 2001; Bendsøe and Sigmund
2003; Gea and Luo 2004; Kočvara and Stingl 2007; Klar-
bring et al. 2017). “Discrete material optimization” (DMO)
became quite popular due to its simple formulation based on
multi-material topology optimization (Stegmann and Lund
2005; Hvejsel and Lund 2011; Niu et al. 2010): the stiff-
ness tensor of each individual material is defined by an
anisotropic base material rotated by a set of fixed angles.
Thus, each material phase represents a different material
orientation, and implementations for multi-material opti-
mizations are applied for the solution. Thus, density filter
techniques can be applied in DMO to control the mini-
mum size of areas containing a single material orientation
(Blasques and Stolpe 2012; Sørensen and Lund 2015). For
each additional material, an additional design variable must
be added, and the calculation effort increases with addi-
tional possible material orientations so that the method,
especially for three-dimensional problems, becomes less
efficient. The restriction to a prescribed set of orientations is
resolved in “continuous fiber angle optimization” (CFAO),
in which additional (local) design variables are included to
parameterize a continuous rotation of an anisotropic base
material. For two-dimensional cases, the addition of a single
angle is sufficient, whereas for the three-dimensional case
at least three or up to six additional design variables can
be defined to parameterize the rotation (Stuelpnagel 1964).
The rotation of the three-dimensional fourth-order material
tensor can be reformulated to a rotation of a six-dimensional
second-order material tensor (Mehrabadi and Cowin 1990).
Most CFAO approaches consider two-dimensional prob-
lems focusing on laminates for shells and plates (Honda
et al. 2013; Brampton et al. 2015; Hoglund and Smith
2016). Far less research is dedicated to three-dimensional
CFAO (Nomura et al. 2015; Petrovic et al. 2018). The least
restricted optimization is the “free material optimization”
(FMO) (Zowe et al. 1997; Haslinger et al. 2010; Peder-
sen and Pedersen 2017), in which the individual entries of
the material stiffness tensor are defined as design variables.

Although this is the least restricted approach and yields
potentially the most optimal design, the results are usually
nonmanufacturable, i.e., most approaches do not consider
discrete “black-and-white” solutions for the topology and
the results are not bounded to a prescribed (set of) base
material(s).

To improve the manufacturability of topology optimiza-
tion results, filtering or projection techniques are often used,
although they were intentionally introduced to resolve mesh
dependence and checkerboarding due to the non convex
minimization problem (Sigmund and Petersson 1998; Sig-
mund 2007). Checkerboarding or other undesirable numeri-
cal effects related to the material orientation are not reported
except for mesh dependence when using sensitivity-based
optimization (Nomura et al. 2015; Hoglund and Smith
2016). Nevertheless, constraints or filtering techniques to
control the smoothness of the material orientation path-
ways within CFAO approaches are of interest to include
manufacturing constraints regarding fiber curvature in con-
junction with, e.g., fiber-reinforced composites (Mazum-
dar 2001), (electro-magnetic) aligned steel fibers in con-
crete (Mu et al. 2017; Li et al. 2018) or fiber-reinforced-
fused deposition modeling (Tekinalp et al. 2014). To this
end, a specialized parameterization and projection scheme
was developed in Nomura et al. (2015) that is compat-
ible with classical filtering techniques: the orientation is
parameterized by the components of an orientation vector
defined in a natural coordinate system, including isopara-
metric shape functions to resolve the quadratic constraint
for the unit length of the orientation vector in Cartesian
coordinates. No filtering techniques are available for the
three-dimensional case based on angles or other intuitive
parameterizations.

In this paper, we present a simultaneous topology and
continuous fiber angle optimization (CFAO) approach for
the three-dimensional case. The design variables are the
local density and the rotation of a prescribed anisotropic
base material described by a set of Euler angles. We intro-
duce a novel filtering technique to adjust the smoothness
of pathways of the material orientation. The filter provides
control over the fiber curvature and is based on convo-
lution operators which are well-known in topology opti-
mization. The proposed filter method “filters” the material
stiffness tensor. Thus, the filter technique does not depend
directly on the actual parameterization for the design
variables and is applicable for the filtering of periodic
and/or ambivalent design variables, e.g., Euler angles.
The approach for the material orientation optimization is
adapted from Jantos et al. (2018) in which the mate-
rial orientation optimization was part of a thermodynamic
topology optimization based on the Hamilton principle.
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However, it is not clear if the mentioned material orienta-
tion optimization can be applied to common mathematical
optimization, whose numerical behavior differs signifi-
cantly from the topology optimization approach in Jantos
et al. (2018) which is based on structural growth. Thus,
we investigate the coupling of the thermodynamic mate-
rial orientation optimization with classical topology opti-
mization strategies. To this end, the topology is described
by a continuous density interpolation with penalization
(SIMP). The topology optimization is solved exemplarily
via OCM. We show that well-developed classical topol-
ogy optimizers can be enhanced by the thermodynamic
optimization based on the Hamilton principle for addi-
tional design variables. The modifications for the inclu-
sion of the material orientation optimization to a given
topology optimization are minor, and the optimization algo-
rithms themselves are decoupled from each other. Numer-
ical results are given to show the influence of the filter
parameter and convergence behavior compared to isotropic
optimization.

This article is structured as follows: model derivations
are presented in Section 2, including the material orientation
optimization and the material orientation filter. In Section 3,
quasi-two-dimensional and three-dimensional numerical
results are investigated with respect to their convergence
behavior, mesh independence, and properties of the
proposed material orientation filter. Finally, we conclude
our work in Section 4.

2Model derivation

2.1 Elastic material

For interpolation between void and solid material, we use a
SIMP approach (Bendsøe and Sigmund 2003) and apply it
to an anisotropic elasticity tensor; hence,

E(χ, α) = χp
E

R(α) (1)

where the density variable χ(x) ∈ ]0, 1] ∀ x ∈ � is used to
define the topology. The exponent p = 3 provides a penal-
ization of intermediate densities χ ∈ ]0, 1[, which yields
distinct “black-and-white” solutions for the topology. The
anisotropic elasticity tensor E

0 is rotated by means of
rotation matrices Q. Several possibilities for the parame-
terization of Q are possible, c.f. Stuelpnagel (1964). We
chose the most simple one, which is the representation in
terms of three Euler angles α(x) = (ϕ(x), ν(x), ω(x)) as
originally introduced in Junker (2014) and adapted for opti-
mization in Jantos et al. (2018). It turned out that more
sophisticated parameterizations, e.g., Rodrigues parameters
or quaternions, increase the numerical effort without pro-
viding additional benefit. The definition of Q = Q(α)

is not unique. However, one possible representation, which
describes subsequent rotations firstly around the z-axis by
ϕ followed by a rotation around the rotated x-axis by ν and
again around the re-orientated z-axis by ω, is given by the
following:

Q(ϕ, ν, ω) =
⎛
⎝

cos ϕ cos ω − cos ν sin ϕ sin ω − cos ν cos ω sin ϕ − cos ϕ sin ω sin ν sin ϕ

cos ω sin ϕ + cos ν cos ϕ sin ω cos ν cos ϕ cos ω − sin ϕ sin ω − cos ϕ sin ν

sin ν sin ω cos ω sin ν cos ν

⎞
⎠ . (2)

To avoid implementations of a fourth-order material ten-
sor, we apply the Mehrabadi–Cowin notation (Mehrabadi
and Cowin 1990) to define the rotated six-dimensional
second-order material tensor as follows:

E
R
6 (α) = Q6(α)T · E0

6 · Q6(α) (3)

with the orthogonal six-dimensional rotation matrix Q6,
which simply consist of the entries of Q, and the six-
dimensional second-order base material tensor E0

6, given in
Mehrabadi–Cowin notation. The effective material tensor in
Mehrabadi–Cowin notation becomes the following:

E6(χ, α) = χp Q6(α)T · E0
6 · Q6(α) , (4)

which can be easily transformed into the classical Voigt
notation (Mehrabadi and Cowin 1990).

2.2 Topology optimization

2.2.1 Optimality criteria method

Although it is possible to derive a thermodynamic topol-
ogy optimization and the material orientation optimization
with the Hamilton principle in a closed form (Jantos et al.
2018), we use a separated topology optimization to show
that the proposed material orientation optimization can be
combined with other (established) topology optimization
algorithms. For instance, we apply the well-known OCM,
introduced by Bendsøe in Bendsøe and Sigmund (2003) and
Sigmund (2001), due to its rather simple implementation
and efficient and fast convergence behavior for the com-
pliance minimization under volume constraint. A compara-
tively fast convergence is of particular interest to show that
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the proposed material orientation optimization can “catch-
up” (comparable fast convergence) with common topology
optimization algorithms to keep the number of required iter-
ation steps at a minimum. Thus, it can be expected that
more sophisticated optimization algorithms for the topol-
ogy optimization could be combined with the proposed
material orientation optimization, such as the “method of
moving asymptotes” or “sequential linear/quadratic pro-
gramming.” However, this is beyond the scope of the present
work.

A finite element (FE) approach is used to solve the
underlying linear elastic mechanical problem. We denote
quantities discretized at the integration (Gauß quadrature)
points by ( ·̃ ), quantities discretized at the nodes by ( ·̂ ),
and element-wise–defined quantities by ( ·̄ ). The discretized
compliance minimization under volume constraints reads as
follows:

min
χ̄ ,ᾱ

: c = Û
T · K · Û =

Ne∑
e=1

û
T · k̄ · û

subject to: � = 1

�

∫
�

χ dV = 1

�

Ne∑
e

χ̄e �e,

K · Û = F̂ ,

0 < χmin ≤ χ ≤ 1 (5)

where c denotes the compliance energy defining the
objective of the optimization. The quantities Û and F̂

denote the global nodal displacement and force vector,
respectively. The global (assembled) stiffness matrix is
represented by K , and the element stiffness matrix is
defined by k̄. The total number of elements is denoted
by Ne and the element’s volumes by �e. The element-
wise–discretized design variables are denoted by χ̄ for
the density variable and ᾱ for the material orientation.
The prescribed (relative) structure volume is given by �

and a minimal density χmin = 0.001 prevents singular
stiffness matrices. The element stiffness matrix is defined as
follows:

k̄ = k̄(χ, α) =
∫

�e

BT · E(χ̄ , ᾱ) · B (6)

with the material tensor E(χ̄ , ᾱ) according to (4) given in
its Voigt notation. The operator matrix is denoted by B and
yields the strains discretized in the integration points by
ε̃ = B · û, including linear shape functions for the finite
elements.

We apply the OCM algorithm for the update of the
density according to Sigmund (2001). The only required
modification to the OCM is the application of the rotated
anisotropic material tensor given by (4). The element

sensitivity for the element density variable χ̄ can be derived
with the adjoint method and reads as follows:

∂c

∂χ̄
= −û

T · ∂ k̄

∂χ̄
· û (7)

with

∂ k̄

∂χ̄
=

∫
�e

BT ·
(
p χ̄p−1

E
R(ᾱ)

)
· B dV (8)

for the proposed anisotropic material with the rotated
material stiffness tensor E

R(ᾱ) according to (3) in its
Voigt notation. The Euler angles from the previous iteration
step are applied for the calculation of the sensitivities and
kept constant within the (explicit) OCM update step. It is
well-known that the minimization given in (5) becomes
ill-posed for p > 1, resulting in mesh dependence
and checkerboarding (Sigmund and Petersson 1998). To
regularize the topology optimization problem, we apply the
well-known sensitivity filter introduced in Sigmund (2001)
with the filter radius denoted by rχ .

2.3 Material orientation optimization

2.3.1 Evolution equations

A common approach for material orientation optimiza-
tion is to align the fibers of the materials with principal
stress or strain directions. For the proposed method, this
is not feasible due to the (later introduced) filtering tech-
nique to smooth the fiber path of the material orientation.
The filter reduces the admissible set of material orienta-
tions which may exclude the principal stress/stain direc-
tions. This issue is confirmed by numerical examples (see
Section 3.4.1). In addition, the combination of a stress
based orientation with the proposed material orientation fil-
ter showed poor convergence behavior: the application of
the principal stress direction can yield significant changes
in the local material orientation which are reversed by the
filter-yielding oscillations of the design variables between
iterations. Thus, we apply the thermodynamic optimiza-
tion based on dissipative processes that was introduced in
Jantos et al. (2018) to describe a continuous and smooth
evolution of the orientation. The approach is based on the
Hamilton principle, which has been proven to be beneficial
for material modeling based on thermodynamic extremum
principles (Junker and Hackl 2014; Junker et al. 2019).
More details about the Hamilton principle and related vari-
ational techniques may be found, e.g., in Berdichevsky
(2009), Pulte (1989), Capecchi and Ruta (2010), Hamil-
ton (1834), Hamilton (1835), and Bedford (1985). The
Hamilton principle for dissipative continua reads as follows:

δG +
∫

�

∂D
∂α̇

· δα dV = 0 (9)
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with the Gibbs energy

G =
∫

�

1

2
σ ·[E(χ, α)]−1 ·σ dV −

∫
�

b·u dV −
∫

∂�

t ·u dA .

(10)

The Gibbs energy with respect to the stresses σ serves
as objective function for the optimization and could be
replaced by any other appropriate objective functional.
Additional constraints could also be added to the variational
principle (see, e.g., Jantos et al. (2018, 2019)). However, this
is beyond the scope of the present work.

The dissipation function D defines the form of the
later derived evolution equation, which serves as an
update scheme. Within the framework of thermodynamic
material modeling, the dissipation function D corresponds
to the amount of energy dissipated during microstructural
evolution. An experimental evidence has been presented in
Junker et al. (2015). Within optimization, the dissipation
function is added to include numerical damping and
regularize the optimization algorithm. Since we want to
decouple the material orientation optimization from the
topology optimization, which is solved via OCM, we define
a dissipation function that depends only on the material
orientation variables α. We define a viscous approach
analogous to Jantos et al. (2018) with the following:

D = 1

2

ηα

χp

||σ ||2
1 − cos2 ν

∣∣∣
∣∣∣Q̇ · Q−1

∣∣∣
∣∣∣2

= ηα

χp

||σ ||2
1 − cos2 ν

(
ϕ̇2 + ν̇2 + ω̇2 + 2 ϕ̇ ω̇ cos ν

)
. (11)

where ηα is in terms of physics a viscosity, but serves here
as a numerical damping parameter. In contrast to Jantos
et al. (2018), we add the penalized density χp to yield
a higher dissipation for regions with lower density. Thus,
the material orientation is not evolving in “void” regions,
which improves the numerical stability. For further details
on the other terms and a detailed derivation of the following
relations, we refer to Jantos et al. (2018).

The variation of (9) must be evaluated with respect to
all system variables, which are the displacements u and
the material orientation parameters α. The density variable
χ is solved via the OCM and is considered as a “known”
parameter within the material orientation optimization. The
variation with respect to the displacements u results in
the balance of linear momentum in its weak form, which
yields the same stiffness matrix as given in (6) within the
finite element approach. The variation with respect to the
orientation parameters α = {ϕ, ν, ω} yields the evolution
equations as follows:

˙̄α =
⎛
⎝

˙̄ϕ
˙̄ν
˙̄ω

⎞
⎠ = χ̄p

√
2 ηα σ̄

⎛
⎝

p̄ϕ − p̄ω cos(ν̄)

p̄ν[1 − cos2(ν̄)]
p̄ω − p̄ϕ cos(ν̄)

⎞
⎠ (12)

with

p̄k =
∫

�e

−1

2
σ 6 · ∂E−1

6

∂αk

· σ 6 dV =
∫

�e

1

2
ε6 · ∂E6

∂αk

· ε6 dV

(13)

which are called driving forces within the framework of
material modeling and fulfill the propose of sensitivities.
The derivative of the material stiffness with respect
to the material orientation parameters is given by the
following expression:

∂E6

∂αk

= χp

[(
∂Q6

∂αk

)T

· E0
6 · Q6 + Q6

T · E0
6 · ∂Q6

∂αk

]
.

(14)

The evolution (12) can be used as an update scheme by
applying the explicit time discretization as follows:

ᾱi+1 = ᾱi + t ˙̄α∣∣
i

(15)

where the index i denotes quantities at the previous iteration
step and the updated design for the current iteration step is
denoted by i+1. The time increment t and the viscosity ηα

together account for the numerical damping and are defined
as follows:

t

ηα
= m

π

4
||E0|| (16)

where ||E0|| normalizes the driving forces p̄k in conjunction
with σ̄ . The factor π

4 and the move limit m = 0.2 adjust the
maximum angle increment per iteration.

2.3.2 Material orientation filter

The purpose of the material orientation filter is to control
the smoothness of the anisotropy, i.e., the curvature of
fibers, but also to ensure mesh independence. Euler angles
cannot be filtered directly by means of a convolution
operator due to their periodicity. For example, the harmonic
mean of two angles αk = {0, π} would yield a “filtered”
result of α∗

k = π
2 , which is obviously wrong because

the “filtered” result should be either 0 or π since both
describe effectively the same material orientation. We solve
this issue by introducing a filtering technique on the
effective material tensor instead of the rotation parameters
to circumvent the problem of periodicity. The effective
material tensor is filtered after each design update by
means of a convolution operator. After the filtering step, the
orientation parameters must be retrieved from the filtered
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material tensor. The whole filtering procedure is divided as
follows:

α
material−−−−−→

definition
E6

convolution−−−−−−→
filter︸ ︷︷ ︸

filtering

E
∗
6

dimension−−−−−→
reduction

E
∗
3

spectral−−−−−−−−→
decomposition

Q∗ parameter−−−−−→
recovery︸ ︷︷ ︸

extracting variable(s)

α∗

(17)

where “filtered” quantities are denoted by (·)∗. In the first
step, the effective material tensor must be evaluated as given
by (4), which depends on the density χ . Thus, the material
orientation is weighted by the actual material density. This
is reasonable because the orientation of “void” material has
less to no influence on the filtered orientation.1

The second step is the actual filtering. The filtered
material tensor for the element e is via a convolution
operator as follows:

E
∗
6

∣∣
e

=

Ne∑
f

�f wα(xf e) E6|f
Ne∑
f

�f wα(xf e)

. (18)

1This dependence could be removed by filtering the rotated base
material tensor ER instead of the effective material tensor E.

For simplicity, we apply a linear convolution operator
(weight function) analogously to the sensitivity filter of the
density variable as follows:

wα(xf e) = max

(
0, 1 − xf e

rα

)
(19)

where filter radius rα for the material orientation filter can
be chosen independently from the filter radius rχ for the
sensitivity filter of the density variable.

The orientation parameters, which yield the filtered
effective material E∗

6, are required to process further design
updates. The third step of (17) is to calculate the associated
three-dimensional second-order material tensor E∗

3, whose
eigenvectors coincide with the normals of the material
symmetry planes (i.e., principal material directions) and
whose eigenvalues coincide with the stiffness in the
corresponding direction (i.e., Young’s modulus) (Cowin and
Mehrabadi 1987). The associated material tensor is given as
follows:

E
∗
3 =

⎛
⎝

(E∗
6)11 + (E∗

6)12 + (E∗
6)13 (E∗

6)16 + (E∗
6)26 + (E∗

6)36 (E∗
6)15 + (E∗

6)25 + (E∗
6)35

(E∗
6)16 + (E∗

6)26 + (E∗
6)36 (E∗

6)12 + (E∗
6)22 + (E∗

6)23 (E∗
6)14 + (E∗

6)24 + (E∗
6)34

(E∗
6)15 + (E∗

6)25 + (E∗
6)35 (E∗

6)14 + (E∗
6)24 + (E∗

6)34 (E∗
6)13 + (E∗

6)23 + (E∗
6)33

⎞
⎠ . (20)

The spectral decomposition of E
∗
3 yields an orthogonal

basis for orthotropic materials that coincides with a
“filtered” rotation matrix Q∗: the eigenvectors define the
three (independent) directions of the rotated basis of the
base material. The eigenvalues correspond to the Young’s
moduli in each direction and can be used to determine
which axis of the base material corresponds to which
eigenvector. For example, if the Young’s moduli of the
base material are Ez > Ey > Ex , then the first
eigenvector (largest eigenvalue) corresponds to the z-axis,
the second eigenvector corresponds to the y-axis, and the
last eigenvector (smallest eigenvalue) corresponds to the
x-axis. Due to the symmetry of the material tensor, the
solution for Q∗ is not unique, especially for transverse
isotropic materials that yield two identical eigenvalues.
Nevertheless, this is uncritical for practical application as
long as any ambivalent solution of Q∗ yields the correct
rotated material tensor for the finite element analysis. The
eigenvectors of non-orthotropic material tensors do not form
an orthogonal basis and the computation of the rotation
matrix Q∗ is not trivial (Cowin and Mehrabadi 1987). Thus,
we apply the material orientation filter only to orthotropic

materials (representative for all its subset materials, such as
transverse isotropic materials).

The last step of the proposed material orientation filter
requires the recovery of the Euler angles from the rotation
matrix Q∗. The Euler angles are calculated with respect to
the rotation matrix given in (2) by Slabaugh (1999) as follows:

|Q∗
33| < 1 :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ν = arccos(Q∗
33)

ϕ = atan2

(
Q∗

13

sin ν
, − Q∗

23

sin ν

)

ω = atan2

(
Q∗

31

sin ν
,

Q∗
32

sin ν

) (21)

Q∗
33 = 1 :

{
ν = 0
ϕ + ω = atan2

(
Q∗

21, Q
∗
11

) (22)

Q∗
33 = −1 :

{
ν = π

ϕ − ω = atan2
(
Q∗

21, Q
∗
11

) (23)

with the inverse tangent function atan2 (·, ·) defined by the
following:

atan2 (y, x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

arctan
( y

x

)
for x > 0

arctan
( y

x

) + π for x < 0 and y ≥ 0

arctan
( y

x

) − π for x < 0 and y < 0
π
2 for x = 0 and y > 0

−π
2 for x = 0 and y < 0

(24)
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which preserves quadrant information of the angles. Either
ϕ or ω can be chosen arbitrarily for cases (22) and (23),
resulting in infinite solutions for ν = {0, π}. The non-
uniqueness of the solution, as well as the ambiguity of
the Euler angles, is uncritical for practical application for
the same reason as the non-uniqueness of Q∗: the Euler
angles are used for “internal” calculations (i.e., they do not
carry any history information and are also not used for
visualization).

The main purpose of the Euler angles is to ensure the
definition of feasible orthogonal rotation matrices. The
non-uniqueness of the solutions for the Euler angles is
resolved for the finite element analysis by the symmetry
of the effective material tensor (each ambivalent solution
yields the same material tensor). The non-uniqueness is
also uncritical for the design update: the driving forces (≈
sensitivities) for the rotation parameters are calculated for
each element separately. Thus, the increment for the update
fits with the local parameterization and is not influenced
by the ambiguity of neighboring elements. The particular
choice for the rotation parameterization does not influence
the calculation of the sensitivities for the density variable,
which depend on the rotation matrix, but not explicitly on
the rotation parameters. Nevertheless, it is possible that
the numerical values of the Euler angles are sporadically
changing by ±π between each optimization step, which
reveals to be problematic if the values of the Euler angles
are used for visualization of the material orientation. Thus, it
is recommended to apply the symmetry axes of the material
tensor for visualizations, i.e., the eigenvectors of E∗

3 or the
basis vectors of the rotation matrix Q∗. The usage of Euler
angles is not mandatory for application of the proposed
material orientation filter. The filter is applicable for other
material orientation parameterizations as long as a mapping
E

R(α) → α or Q(α) → α exists.

2.4 Optimization sequence

The results of SIMP are known to the depend on initial con-
ditions for the design variable resulting from the nonconvex
minimization problem (Sigmund and Petersson 1998; Rion
and Bruyneel 2006). We apply the common initial condition
for the density variable χ0 = �, which is a homogeneous
distribution that fulfills the volume constraint. The initial
material orientation of anisotropic materials strongly influ-
ences the change of the topology in the first iteration steps:
the topology optimization tends to “fall” in a local mini-
mum which depends on the (non-optimal) initial material
orientation. This can be resolved by continuation methods
for the material anisotropy (Nomura et al. 2015). Another
possibility is to apply the optimal material orientation for
the initial (homogenous) density distribution as initial con-
dition. This could be done by a preceded optimization

Fig. 1 Flowchart for the proposed method

based on the update scheme in (15) with χ = �. For the
applied compliance minimization, the principal stress direc-
tions are known to be the optimal orientation at least for
“shear-weak” materials.2 Thus, we circumvent the addi-
tional calculation effort of a preceded material orientation
optimization by applying the principal stress directions as
initial conditions for the material orientation based on the
FE solution with an isotropic material. In the very first FE
step, we homogenize the anisotropic elasticity tensor E6

2We tested our material orientation optimization for a homogenous
density distribution without filtering: the results coincide with the
principal stress direction with a relative compliance difference less
then 0.5%
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Fig. 2 Boundary conditions for the Messerschmidt–Bölkow–Blohm
(MBB) beam. The initial material orientation is based on the principal
stresses for a mesh with 10 × 30 × 1 elements

using the Haar measure, c.f. Hackl (1999). This yields the
isotropic elasticity tensor as follows:

E
iso
6 (χ) = π

(2π)3

∫ 2π

ϕ=0

∫ π

ν=0

∫ 2π

ω=0
Q6

T · E6(χ, α)

·Q6 sin ν dω dν dϕ (25)

with χ = χ0 = � to calculate the principal stresses in
each element. The implementation to find the local initial
material orientation from the principal stresses is based on
the material orientation filter: the spectral decomposition of
the three-dimensional second-order stress tensor is carried
out by replacing the associated three-dimensional second-
order material tensor E∗

3 in (18).
After the initial conditions for the design variables have

been defined, the iterative optimization is carried out, which
includes alternating single FE solution steps and design
updates. This corresponds to the usual operator split applied
in structural optimization. The density χ and the material
orientation α are updated simultaneously but separately
after each FE step: both update algorithms are based on
an explicit discretization, i.e., the update depends only on
the known design from the current iteration i (given by
χ̄i and ᾱi) and the resulting element displacements ûi =
û(χ̄i , ᾱi ) and strains ε̃i = ε̃(χ̄i , ᾱi ) calculated via the
FEM by solving K(χ̄i , ᾱi ) · Û i = F̂ . Thus, the update
for the topology and the update for the material orientation
are decoupled and can be implemented separately. The
optimization procedure is illustrated in Fig. 1.3

The L∞ norm of the error of the density variable χ is
usually used as a convergence criterion for OCM. This is not
reasonable for the presented model because the change in
the material orientation is not accounted for. The definition
of an appropriate quantity for the change in the material
orientation is difficult (or impossible) due to the periodicity
of the Euler angles. Thus, we take into account the relative

3A monolithic solution for the displacements and the design is not
considered here which would result in a solution via an iterative non-
linear FEM with increased number of degrees of freedom, and thus a
more complex implementation. However, a monolithic solution could
improve the convergence behavior and may require less iterations
resulting in an overall reduced calculation time.

Fig. 3 Boundary conditions for the L-shaped cantilever. The initial
material orientation is based on the principal stresses for a mesh with
1800 elements

change in the structural compliance (objective function, see
(5)) as follows:

crel = |ci − ci−1|
ci

< ctol = 10−5 (26)

as a convergence criterion, which automatically includes the
influence of all design variables.

3 Numerical results

3.1 Parameters and boundary conditions

For numerical investigations, we apply the orthotropic
material tensor (Voigt notation) as follows:

(
E

0
)−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
E1

− ν12
E1

− ν13
E1

0 0 0
1

E2
− ν23

E2
0 0 0

1
E3

0 0 0
1

2G23
0 0

sym 1
2G13

0
1

2G12

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(27)

Fig. 4 Boundary conditions for the bending problem. The initial
material orientation is based on the principal stresses for L = 2 and a
mesh with 30 × 60 × 1 elements
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Fig. 5 Boundary conditions for
the three-dimensional examples:
a cantilever supported on one
side subject to a downward
pointing load on the lower
middle of the opposite free end,
b cuboid supported by floating
bearings at the lower corners
subject to a downward pointing
load in the middle of the upper
surface, c circular L-shaped
cantilever supported by locating
bearings at the lower corners
subject to a downward pointing
load on the lower middle of the
opposite free end, and d cube
supported by locating bearings
at the lower corners subject to a
downward pointing load in the
middle of the lower surface

(a) (b)

(c) (d)

with

E1 = 10 × 103 ν12 = 0.4 G12 = 10 × 103

E2 = 50 × 103 ν13 = 0.3 G13 = 20 × 103

E3 = 250 × 103 ν23 = 0.2 G23 = 50 × 103

with E3 > E2 > E1. E3 corresponds to the first principal
material direction (highest stiffness), E2 to the second, and
E1 to the third. The parameters for the OCM are the same

as in Sigmund (2001). The viscosity and time increment
for the evolution equation of the material orientation
optimization are defined in (16). Different filter radii rα
will be applied to investigate the influence of the material
orientation filter. The influence of rχ (sensitivity filter
radius for the density variable) is not investigated because
there is extensive research in the literature. Figures 2, 3,
and 4 show the boundary conditions and the initial material
orientation for the quasi-two-dimensional (discretization
by a single finite element in the third spatial direction)
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Fig. 6 Topologies obtained for the MBB beam with prescribed structure volume � = 50%. Results after convergence with ctol = 10−5 and after
300 iterations
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Fig. 7 Change in the normalized stiffness within 100 iteration steps
for the for the MBB beam corresponding to Fig. 6
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It. step: 300
Stiffness: 5.32

It. step: 300
Stiffness: 14.90

Fig. 8 Topologies obtained for the L-shaped cantilever with 2304 elements for an orthotropic and isotropic material. Filter radii rα = rχ = 0.025.
Results after convergence with ctol = 10−5 and after 300 iterations. Prescribed structure volume � = 50%

benchmark problems applied in the following sections. The
three-dimensional examples evaluated in Section 3.5 are
given in Fig. 5.

The principal material directions are visualized by dashes
with the length scaled to the local density χ and are defined
by the rotation Q(α∗) · ek , where ek are the corresponding
base unit vectors. Due to the orthotropic material, the three
principal directions define an orthogonal base. The first and
second principal material directions result to be parallel
to the plane of quasi-two-dimensional problems. This is
reasonable because the third principal material direction
yields the least stiffness and is, therefore, orientated out-
of-plane where no loads are applied (Jantos et al. 2018).
Thus, only the first principal material direction is displayed
for better clearance for quasi-two-dimensional cases. The
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Fig. 9 Change in the normalized stiffness within 100 iteration steps
for the corresponding results given in Fig. 8 with prescribed structure
volume � = 50% and additionally for � = {30, 75}%
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Fig. 10 Topologies and material orientations obtained for the MBB
beam with (left column) and without (right column) application of the
material orientation filter. The sensitivity filter radius is rχ = 0.075 for
all cases and rα = 0.075 for the cases with applied material orientation

filter. Only the material direction of every forth element is illustrated
for the mesh with 240 × 80 × 1 elements (except for the close-up in
(a) and (b))

structure is validated quantitatively by its stiffness, which is
defined as the inverse of the structural compliance c given
in (5) normalized to the stiffness of the first FE solution step
with E

iso
6 (χ = �) given in (25) (Figs. 6 and 7).

3.2 Convergence behavior

We investigate the convergence behavior of the proposed
method in comparison with the optimization for an isotropic
material with E(χ)6 = E

iso
6 (χ) given in (25), which yields

the Young’s modulus E ≈ 82.4×103 and the Poisson’s ratio
ν ≈ 0.153. The final results after convergence according
to (26) and after 300 iterations are given in Fig. 6 for the
MBB beam and in Fig. 8 for the L-shaped cantilever. The
evolution of the normalized stiffness within the iteration
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process is given in Fig. 7 for the MBB beam and in Fig. 9
for the L-shaped cantilever.

The stiffness of the anisotropic structure is about three
times higher than that of the (orientation-homogenized)
isotropic material. The resulting topology for the orthotropic
material also differs from the isotropic case. Thus, a
(simultaneous) optimization of the material orientation and
topology is essential to find an optimal design for structures
made of anisotropic materials.

The proposed method yields a smooth convergence of
the structural stiffness and does not impair the conver-
gence of the OCM for the topology optimization. For the
MBB beam, the anisotropic case is converging even faster
than the isotropic case and yields converged results after
63 iterations. The results for the isotropic case still change
noticeably after 144 iterations. However, this observation
cannot be concluded for the results given in the following
section in which the number of required iteration steps for
the anisotropic case is similar to the isotropic case. This also
applies to the L-shaped cantilever: the number of iteration

steps until convergence is higher by 12 steps for the
anisotropic case. The proposed convergence criterion given
in (26) seems reasonable for the anisotropic case: the rela-
tive change in the structural stiffness between the converged
and the 300th iteration step is less than 1%. This is also
observed for the L-shaped cantilever. Thus, the proposed
model seems to converge towards a (local) optimum. The
proposed material orientation filter serves as regularization
to the material orientation optimization which yields pre-
sumably a well-posed problem. The results given in the
following section affirm this assumption and show (weak)
mesh dependence of the results without the material orien-
tation filter and mesh-independent results by applying the
proposed filter.

3.3 Mesh independence

Mesh dependence of results obtained with a sensitivity-
based CFAO without regularization of the material orienta-
tion are reported in Nomura et al. (2015) and Hoglund and
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Fig. 11 Topologies and material orientations obtained for the L-
shaped cantilever with (left column) and without (right column) appli-
cation of the material orientation filter. The sensitivity filter radius is
rχ = 0.0375 for all cases and rα = 0.0375 for the cases with applied

material orientation filter. The material direction is illustrated for every
element of the mesh with 5184 elements and every fifth element for
the mesh with 20,736 elements
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Smith (2016). Thus, we investigate the mesh dependence
of the proposed material orientation optimization with and
without the proposed material orientation filter. The (mesh-
independent) sensitivity filter for the topology optimization
is applied so that only the mesh dependence of the material
orientation optimization is investigated. The results for the
MBB beam, the L-shaped cantilever, and the bending prob-
lem with different mesh resolutions are given in Figs. 10, 11,
and 12, respectively.

The material orientation optimization without the mate-
rial orientation filter yields visually mesh-independent
results for the bending problem and only slight mesh depen-
dence for the L-shaped cantilever: the unfiltered results of
the L-shaped cantilever yield unsteady material pathways
near the inner corner of the design space. Those unsteady
pathways do not occur if the material orientation filter is
applied, resulting in smooth pathways for the material ori-
entation. Two typical effects of the smoothing due to the
material orientation filter can be seen in Fig. 10a: within
the connection of the lower two trusses, the fiber pathways
are shaped in a smooth turn following the structure surface.

On the other hand, the two left trusses merge into the third
right truss with both fiber pathways converging to the path-
way within the third truss. The undesired contrary behavior
of non-smooth pathways is observed when our filter has not
been applied, cf. Fig. 10b.

Mesh dependence can be observed for the MBB beam,
although the results only differ for the coarse mesh with
60 × 20 × 1 elements. This could lead to the assumption
that the mesh independence of the material orientation
optimization is bounded by mesh convergence, i.e., if
the mesh is fine enough, the method becomes mesh-
independent. Nevertheless, affirmation of this assumption
requires more sophisticated research on different boundary
problems, which is beyond the scope of the present work.
We conclude that although reasonable results are obtained
without the material orientation filter, mesh independence
can only be ensured by using the proposed material
orientation filter. In addition, the material orientation filter
can be used to control the smoothness of the material
orientation pathways, i.e., the curvature of fibers. This
property is investigated in detail in the following section.

Fig. 12 Topologies and material
orientations obtained for the
bending problem (L = 2)
without application of the
material orientation filter. The
sensitivity filter radius is
rχ = 0.05. The material
direction of every element is
illustrated for the mesh with
60 × 30 × 1 elements, every
second element for the meshes
with 100 × 50 × 1 elements, and
every twelfth element for the
mesh with 200 × 100 × 1
elements
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α

Fig. 13 Material orientation obtained for the MBB beam with 30 ×
10×1 elements having different filter radii rα = {0.15, 0.3, 0.45, 0.60}
for an anisotropic material with a homogeneous density distribution.
The quarter circles with secant-length of 2 rα (or its half) are aligned
to the fiber path

Fig. 14 Material orientation obtained for the L-shaped cantilever beam
with 2304 elements having different filter radii rα = {0.03, 0.12} for
an anisotropic material with a homogeneous density distribution. The
quarter circles with secant-length of 2 rα are aligned to the fiber path

Fig. 15 Results with ctol = 10−5 obtained for the MBB beam with
120 × 40 × 1 elements with rχ = 0.0375 and different filter radii
rα = {0.0375, 0.075, 0.1125, 0.15}

Fig. 16 Change in the normalized stiffness corresponding to the
results given in Fig. 15
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3.4 Material orientation filter properties

3.4.1 Material orientation optimization without topology

In this section, we investigate the influence of the filter
radius rα of the proposed material orientation filter on
the smoothness of the material orientation pathways on
examples without topology optimization, i.e., we apply full
material in the whole design space � = 1 ↔ χ = 1 ∀ x ∈
� (the influence of rα in conjunction with the topology
optimization is given in the next section). The resulting
material orientations for different values of rα are given
in Fig. 13 for the MBB and in Fig. 14 for the L-shaped
cantilever. Quarter circles with secant-length of 2 rα (or its
half) are aligned to the fiber path.

The material orientation filter yields smooth material
orientation pathways in all cases. As expected, the pathways
become smoother with increasing filter radius rα . Thus,
the resulting material orientations do not coincide with

the principal stress direction used as initial condition (see
Figs. 2 and 3) and depend on the particular value for the
filter radius rα . The quarter circles with secant-length of 2 rα
coincide with the largest fiber path curvature (smallest arc
radius) within the structure. Following simple trigonometric
relations, it can be concluded that the maximum fiber

curvature is constrained to
(√

2 rα

)−1
by the proposed

material orientation filter.

The structural stiffness is decreased with increasing filter
radius rα which results from the reduced set of admissible
material orientations: it is not possible for the optimization
to develop strong fiber curvatures so that the optimization
yields a “worse optimum.” This effect is analogous to the
reduced set of possible topologies by applying larger filter
radii rχ which increase the minimum member size. The
effect of the filter radius rα on the resulting topology for
a simultaneous optimization of the topology and material
orientation is discussed in the next section.

Fig. 17 Results with
ctol = 10−5 obtained for the
bending problem with
60 × 30 × 1 elements (L = 2)
with rχ = 0.05 and different
filter radii
rα = {0.05, 0.1, 0.15, 0.2}

2149Topology optimization with anisotropic materials, including a filter to smooth fiber pathways



Fig. 18 Results obtained for the
bending problem with
240 × 60 × 1 elements (L = 4)
with rχ = 0.025 for an
anisotropic material with
different filter radii
rα = {0.025, 0.125} and for an
isotropic material. The material
direction is illustrated for every
seventh element

3.4.2 Influence on shape and topology

Figures 15, 16, 17, and 18 show the results of the presented
quasi two-dimensional benchmark problems with varying
filter radius rα for the proposed material orientation filter.
The sensitivity filter radius rχ is fixed for each boundary
problem. As for the previous results, quarter circles with
secant-length of 2 rα are aligned to the fiber path (except
for the results in which the filter radius is to small to be
displayed properly).

The benchmark problems show the same properties
related to the material orientation filter radius rα: the
material orientation pathways are smoothed, i.e., the fiber
curvature is reduced, with increasing rα , especially at
corners and truss connection points. As before, the quarter
circles with secant-length of 2 rα coincide with the largest
fiber curvature within the structures resulting in a maximum

curvature constrained to
(√

2 rα

)−1
.

The smoothing effect yields different angles for the
trusses to be optimal. These effects are especially remark-
able for the bending problem given in Fig. 18 for which the
increased filter radius rα yields a streamlined design. The
adopted angles can also yield different topologies to be opti-
mal, for example, two trusses connected by an acute angle
are merged, as observed for the MBB beam. The minimum
member size is not influenced by rα . Thus, the filter radius

rα can be used to constrain the fiber curvature indepen-
dent of the filter radius for the sensitivity filter rχ which, in
turn, can be used to constrain the minimum size of structure
members. The structural stiffness decreases with larger filter
radii. This is reasonable because larger filter radii restrict the
set of possible designs. Thus, the angle optimization seems
to work well because less restricted optimizations yield bet-
ter (quantitative) results which is also reported in Nomura
et al. (2015).

3.5 Three-dimensional examples

The examples given in the previous sections are quasi-
two-dimensional cases: the mesh is discretized by a
single element in the third spatial direction, but a three-
dimensional FE solution and optimization are applied.
In this section, we present “true” three-dimensional
examples. An isosurface representation4 is applied for better
visualization. For the three-dimensional case, the second
principal material direction is also an important information
for optimization of the orthotropic material with three
distinct material directions used here. Thus, the resulting
topologies, including the first and second principal material

4The element-wise design variables are extrapolated to the nodes of
the FE mesh and the isosurface for χ̂ = 0.5 of the linear interpolated
density field is shown.
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Fig. 19 Results for the
three-dimensional problem
given in Fig. 5a after 142
iterations. First principal
material direction in the first
line is followed by the second
principal material direction in
the second line. The results for
an isotropic material after 106
iterations is given in the third
line. Mesh with 40 × 20 × 20
elements and filter radius
rχ = rα = 0.075. Relative
structure volume � = 15%

Fig. 20 Results for the three-
dimensional problem given in
Fig. 5b. First and second
principal material direction for
an anisotropic material after 184
iterations in the first line and
results for an isotropic material
after 156 iterations in the second
line. Mesh with 32 × 32 × 16
elements and filter radius
rχ = rα = 0.1. Relative
structure volume � = 20%
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direction for the boundary problems given in Fig. 5 a and
b are presented in Figs. 19 and 20. The results for the
boundary problem given in Fig. 5 c and d (including only
the first principal material direction) are presented in Fig. 21
and Fig. 22 for varying material orientation filter radii rα .

Figure 19 shows reasonable results for the first and sec-
ond principal material direction: the first principal material
direction aligns with trusses to reinforce the bending stiff-
ness, whereas the second principal direction aligns with
the shear direction within the trusses. The third principal
direction (not displayed, but perpendicular to the first and
second) aligns with the rotation axis of the bending moment
in the trusses. Thus, a weakening of the structure against
the bending moment is avoided because the third material
direction is the least stiff. In contrast to the two-dimensional
benchmark problems, the differences in the resulting
topologies are more significant for the three-dimensional

Fig. 21 Results for the three-dimensional problem given in Fig. 5c.
First principal material direction for an anisotropic in the first and
second line with different filter radii rα = {0.1, 0.5} and for an
isotropic material in the third line. Mesh with 41,760 elements, filter
radius rχ = 0.1, and relative structure volume � = 15%

Fig. 22 Results for the three-dimensional problem given in Fig. 5d.
Mesh with 26 × 26 × 26 elements and filter radii rχ = 0.06 and
rα = {0.06, 0.12, 0.18, 0.24}. Relative structure volume � = 10%

examples. The observations regarding the influence of the
material orientation filter with increasing filter radius rα
can be reproduced for the three-dimensional case (Fig. 22):
larger filter radii smooth the fiber paths which results in
different angles of the trusses and some trusses are merged.

4 Conclusions

We presented an approach for simultaneous optimization
of the material orientation and topology optimization
for anisotropic three-dimensional materials. A continuous
density interpolation with penalization of intermediate
densities (SIMP) is applied to the topology. The anisotropic
base material is subjected to a continuous three-dimensional
rotation defined by a set of three Euler angles. Thus, the
proposed method can be classified as “continuous fiber
angle optimization” (CFAO).

The material orientation optimization is given by a ther-
modynamic optimization approach that is based on the
Hamilton principle which can be enhanced by constraints
on the material orientation. For instance, we presented a
material orientation filter to control the smoothness of the
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pathways of the principal material direction, i.e., curvature
of fibers. The material orientation filter is based on a con-
volution operator and “filters” the material stiffness tensor,
and is technically independent of the actual parameteriza-
tion for the material orientation, and is thus applicable for
the filtering of periodic and/or ambivalent design variables,
e.g., Euler angles. Nevertheless, the filter requires the exis-
tence of a mapping from the material stiffness tensor or
the rotation matrix to the orientation parameters. A map-
ping scheme was derived for the applied set of Euler angles
for an orthotropic base material. Numerical examples were
given that relate to the influence of the material orienta-
tion filter on the fiber curvature: the maximum curvature is

constrained to
(√

2 rα

)−1
by the proposed filter (with filter

radius rα). Although this relation is not derived mathemat-
ically, all numerical (two-dimensional) examples confirm
this characteristic.

We combined the material orientation optimization with
classical topology optimizers, i.e., the “optimality criteria
method” (OCM). The OCM is used as a solution algorithm
for the topology optimization, including a sensitivity filter.
The modifications required for the topology optimization
algorithm are minor: only the base material stiffness matrix
must be changed. Due to the explicit update schemes, the
optimization procedures for the topology and the material
orientation are decoupled. Numerical examples showed
that the convergence of the OCM is not impaired by the
proposed material orientation optimization, i.e., the number
of required iteration steps does not change drastically.

The proposed method for topology and material opti-
mization opens opportunities for future modifications and
studies. The rather basic OCM yields promising results.
More sophisticated solution algorithms for the topology
optimization (e.g., “sequential linear/quadratic program-
ming,” “method of moving asymptotes”), globalization
techniques, and filtering techniques (e.g., gradient-based
regularization, density filters, and morphological-based fil-
ters) could be combined with the proposed material orienta-
tion optimization to further improve the convergence and the
overall results. The material orientation optimization could
be further improved by developing more sophisticated and
different types of dissipation functions which determine the
update scheme of for the optimization. Furthermore, the
proposed material orientation filter is independent of the
applied update scheme for the design variables and could
be therefore combined with classical (sensitivity based)
optimization schemes for the material orientation.
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