
https://doi.org/10.1007/s00158-019-02457-7

RESEARCH PAPER

An adaptive hybrid expansion method (AHEM) for efficient
structural topology optimization under harmonic excitation

Junpeng Zhao1 ·Heonjun Yoon2 · Byeng D. Youn2,3,4

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
One challenge of solving topology optimization problems under harmonic excitation is that usually a large number of
displacement and adjoint displacement vectors need to be computed at each iteration step. This work thus proposes an
adaptive hybrid expansion method (AHEM) for efficient frequency response analysis even when a large number of excitation
frequencies are involved. Assuming Rayleigh damping, a hybrid expansion for the displacement vector is developed, where
the contributions of the lower-order modes and higher-order modes are given by the modal superposition and Neumann
expansion, respectively. In addition, a simple (yet accurate) expression is derived for the residual error of the approximate
displacement vector provided by the truncated hybrid expansion. The key factors affecting the convergence rate of the
truncated hybrid expansion series are uncovered. Based on the Strum sequence, the AHEM can adaptively determine the
number of lower-order eigenfrequencies and eigenmodes that need to be computed, while the number of terms that need to
be preserved in the truncated Neumann expansion can be determined according to the given error tolerance. The performance
of the proposed AHEM and its effectiveness for solving topology optimization problems under harmonic excitation are
demonstrated by examining several 2D and 3D numerical examples. The non-symmetry of the optimum topologies for
frequency response problems is also presented and discussed.

Keywords Frequency response · Topology optimization · Adaptive hybrid expansion · Modal superposition ·
Neumann expansion · Non-symmetry

1 Introduction

Topology optimization for dynamics problems has been
extensively studied since the early 1990s (Dı́aaz and
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Kikuchi 1992; Ma et al. 1993; Bendsøe and Sigmund 2003;
Deaton and Grandhi 2014). The existing research generally
falls into three categories: eigenfrequency problems (Dı́aaz
and Kikuchi 1992; Pedersen 2000; Du and Olhoff 2007; Yi
and Youn 2016), frequency response problems (Ma et al.
1993; Olhoff and Du 2005; 2016; Shu et al. 2011; Kang
et al. 2012; Li et al. 2018), and dynamic response problems
(Min et al. 1999; Jang et al. 2012; Zhang and Kang 2014a;
Zhao and Wang 2016; Yan et al. 2016; Zhao and Wang
2017; Behrou and Guest 2017). Solutions to the first kind
of problems aim to improve the inherent characteristics of
the structure, while the goal of addressing the latter two
kinds of problems is to improve the dynamic responses,
such as displacement, velocity, acceleration, and stress,
generated by the structure under external loads. It is worth
noting that there are also some researches on topology
optimization driven to control of structures, either for active
or passive problems. Interested readers are referred to the
published works (Gonçalves et al. 2016, 2017; Padoin
et al. 2019; Zhang and Kang 2014a, b; Zhang et al. 2018)
and the references therein. This work focuses on topology
optimization for frequency response problems.
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Topology optimization for frequency response problems
has been studied based on the homogenization method
(Ma et al. 1993), density-based approach (Olhoff and Du
2005; Yoon 2010; Olhoff and Du 2016), level-set-based
approach (Shu et al. 2011; Li et al. 2018), and evolutionary
structural optimization method (Vicente et al. 2015). Ma
et al. (1993) proposed a dynamic compliance minimization
formulation for topology optimization problems under
harmonic force excitation. Jog (2002) developed a density-
based approach to minimize the average input power and
displacement amplitude under periodic loads. Tcherniak
(2002) formulated a topology optimization problem to
maximize the magnitude of the steady-state response of
resonating structures. Olhoff and Du (2005) proposed an
incremental frequency method for minimizing dynamic
compliance subject to harmonic force excitation. Olhoff
and Du (2016) further developed a generalized incremental
frequency method. Shu et al. (2011) presented a level-
set-based approach to minimize frequency response at
the specific points or surfaces on the structure. Kang
et al. (2012) investigated the optimal distribution of
damping material in vibrating structures subject to harmonic
excitation. Niu et al. (2018) compared some commonly
used objective functions in topology optimization for
frequency response problems. Silva et al. (2019) performed
a critical analysis for using the dynamic compliance as
the objective function for topology optimization of one-
material structures under harmonic excitation. Most of these
studies only considered the excitation for a given frequency;
however, the structural responses over a specific frequency
interval also need to be considered for many practical
applications (Wijker 2008; Yu et al. 2013; Zhu et al. 2016;
Liu et al. 2019).

When solving topology optimization problems under har-
monic excitation over a specific frequency interval, a prac-
tical issue is that the frequency response analysis required
at each iteration would be computationally intensive when
the number of excitation frequencies is large, especially for
large-scale problems. Many prior efforts have been devoted
to finding a way to cope with this challenge. Ma et al. (1993)
applied the mode displacement method (MDM) to solve the
frequency response topology optimization problems within
the homogenization design framework. Tcherniak (2002)
employed the mode acceleration method (MAM) to com-
pute the frequency responses of the structure. Jensen (2007)
employed the Padé approximants to represent the frequency
responses over a given frequency interval. Yoon (2010)
investigated the effectiveness of the MDM, the Ritz vec-
tor method (RVM), and the quasi-static Ritz vector method
(QSRVM) for evaluating the frequency response functions
within the density-based topology optimization framework.
Liu et al. (2015a) performed a comparative study among

the MDM, MAM, and the full method for structural topol-
ogy optimization under harmonic excitation, and found that
the MAM is preferable when multiple excitation frequen-
cies are considered due to its balance between efficiency
and accuracy.

Although it has been shown that some model-order
reduction methods, such as the MAM, RVM, and QSRVM,
are effective for solving frequency response topology
optimization problems, there still exist some issues that may
affect their performance. During topology optimization, the
structure may evolve dramatically and its eigenfrequencies
and eigenmodes also may change substantially. Therefore,
the MAM and RVM may not always be able to ensure
the accuracy of the responses at all iterations with a fixed
number of lower-order eigenfrequencies or Ritz vectors
(Zhao et al. 2018; Gu et al. 2000). In addition, the centering
frequency of the QSRVM may be close to or may even
coincide with some eigenfrequency of the structure at
some iteration; this is disadvantageous for generating the
quasi-static Ritz vectors. Recently, Wu et al. (2015, 2016)
developed a combined method of modal superposition
and model-order reduction for efficient frequency response
analysis of proportionally damped systems. This combined
method can adaptively determine the number of lower-
order eigenfrequencies and eigenmodes to be computed,
and compensates for the contribution of other unknown
higher-order eigenmodes through the use of a model-
order reduction method. This combined method has been
employed to solve (concurrent) topology optimization
problems for frequency responses (Zhao et al. 2018, 2019).
However, a reliable criterion for determining the number
of basis vectors for the model-order reduction method
is still lacking. Actually, it can be observed from their
examples that the relative residual error usually is larger
than the given error tolerance (e.g., see Fig. 6 in Zhao
et al. (2018), where the given error tolerance is ε = 10−8).
This drives the research interest in adaptively determining
the number of eigenfrequencies and eigenmodes to be
computed for efficient frequency response analysis in
topology optimization.

Assuming Rayleigh damping, this study develops a
hybrid expansion for the displacement vector, where the
contributions of the lower-order modes and higher-order
modes are given by the modal superposition and Neumann
expansion, respectively. A simple expression for the residual
error of the approximate displacement vector provided by
the truncated hybrid expansion is derived. Key factors
affecting the convergence rate of the truncated hybrid
expansion series are uncovered. Finally, an adaptive hybrid
expansion method (AHEM) is proposed, where the number
of lower-order eigenfrequencies and eigenmodes to be
computed can be determined using the Strum sequence
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(Bathe 2014), while the number of terms to be preserved
in the truncated Neumann expansion can be determined
according to the given error tolerance. The performance
of the proposed AHEM and its effectiveness for solving
topology optimization problems under harmonic force
excitation are demonstrated by studying several 2D and 3D
numerical examples.

The rest of this paper is organized as follows. Section 2
gives a brief review of the topology optimization problem
under harmonic excitation. Section 3 presents the theory and
computational procedure for the adaptive hybrid expansion
method. Section 4 gives three numerical examples to
demonstrate the performance of the proposed AHEM and its
effectiveness for solving topology optimization problems.
Finally, the conclusions of this work are outlined in
Section 5.

2 Frequency response topology
optimization problems

This section briefly reviews topology optimization and
solution methods for minimizing frequency responses (more
details can be found in the relevant literature (Yoon 2010;
Liu et al. 2015a)).

2.1 Density-based approach andmaterial
interpolation scheme

The density-based approach is employed to perform
topology optimization in this work. Assume that the design
domain is meshed into Ne elements, then a design variable
ηe is assigned to the eth element to indicate if it is full
of material or void. To obtain clear designs, the SIMP
(solid isotropic material with penalization) model (Bendsøe
1989; Zhou and Rozvany 1991) is applied for material
interpolation as

De = g(ηe)Ds

ρe = ηeρs
(1)

where Ds and ρs are the elasticity matrix and structural
density of the solid material, respectively. To alleviate the
appearance of localized modes in topology optimization of
dynamics problems, the following polynomial interpolation
function (Zhu et al. 2009) is used in this work.

g(ηe) = αη
p
e + (1 − α)ηe (2)

where p > 1 is a penalty exponent and 0 < α < 1 is used to
prevent the ratio ηe/g(ηe) from becoming too large when ηe

approaches zero. In numerical implementation, p = 3 and
α = 15/16 are typically used.

2.2 Formulation of frequency responseminimization

The semi-discrete momentum equation of a damped
structure under an external load can generally be written as

Mü(t) + Cu̇(t) + Ku(t) = f(t) (3)

where M, C, and K are the global mass, damping, and
stiffness matrices, respectively; f(t) is the global force
vector corresponding to the load applied to the structure; and
u(t), u̇(t), and ü(t) are the time-dependent displacement,
velocity, and acceleration vectors, respectively.

When harmonic excitation is considered, the response is
also harmonic and has the same frequency as the excitation
frequency, but with different phases. By letting f(t) =
Re(Feiωt ) and u(t) = Re(Ueiωt ), it is obtained that

(−ω2M + iωC + K)U = F (4)

where i = √−1 is the complex unit. The global stiffness
matrix K and mass matrix M can be obtained by assembling
the corresponding element stiffness and mass matrices,
respectively. The element stiffness matrix ke and mass
matrix me can be computed as

ke = g(ηe)k0
e,me = ηem0

e (5)

where

k0
e =

∫
Ωe

BTDsBdΩ (6)

m0
e = ρs

∫
Ωe

NTNdΩ (7)

with N being the matrix of shape functions and B the matrix
of shape function derivatives.

In addition, Rayleigh damping C = αrM + βrK is
assumed in this work, and the coefficients αr and βr are
considered to be design-independent. Furthermore, it is also
assumed that the load vector F has no spatial dependency on
the excitation frequency ω.

Finally, topology optimization for minimizing the fre-
quency response of structures under an external harmonic
force excitation can be formulated as

min
η

: Jd = 1
ωb−ωa

∫ ωb
ωa

J (ω, η,U, Ū)dω

s.t . : (−ω2M + iωC + K)U = F, ω ∈ [ωa, ωb]
: G0 =

(
Ne∑
e=1

ηeve

)
− ςV ≤ 0

: 0 ≤ ηe ≤ 1, 1 ≤ e ≤ Ne

(8)

As discussed in many previous works (Ma et al. 1993; Yoon
2010; Shu et al. 2011; Liu et al. 2015b; Zhu et al. 2018),
the mean value Jd of a target response J (ω, η,U, Ū) over a
frequency interval is taken as the objective function; ωa and
ωb are the lower and upper bounds of the frequency interval,
respectively; Ū is the conjugate of displacement vector U;
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ve is the volume of the eth element; V is the volume of the
design domain; and ς is the prescribed volume fraction of
the design domain.

2.3 Solutionmethod

2.3.1 Calculation of the objective function

In order to perform topology optimization, the objective
function and its sensitivities need to be calculated at
each iteration. As described in Section 2.2, the objective
function is defined as an integration of the target response,
which is an implicit function of ω, over a given frequency
interval. When applying a numerical quadrature technique
to evaluate the value of the objective function, it can be
approximated as

Jd =
Nf∑
n=1

wnJ (ωn, η,Un, Ūn) (9)

where Nf is the number of integration points, ωn and
wn are the corresponding frequency points and weights
for numerical integration, and Un and Ūn denote the
displacement vector and its conjugate corresponding to the
nth frequency points.

It is well known that the frequency response curves
usually have sharp peaks around the resonant frequencies.
Therefore, usually a large number of integration points are
needed to accurately calculate the value of the objective
function when the frequency interval [ωa, ωb] contains
some resonant frequencies (Yoon 2010; Liu et al. 2015a;
Allaire and Michailidis 2018). Noting that the displacement
vectors corresponding to each integration point have to be
computed, efficient frequency response analysis is desired.

2.3.2 Sensitivity analysis

To solve topology optimization problems, sensitivity
analysis is an indispensable step to quantify the influence
of each design variable on the structural performance
(Sigmund 2011). For convenience, we denote the dynamic
stiffness matrix as S = −ω2M + iωC + K in the following
discussion. According to the adjoint method (Yoon 2010),
we can obtain the following equation:

dJ

dηe

= ∂J

∂ηe

+ 2Re

(
λT

(
∂S
∂ηe

U − ∂F
∂ηe

))
(10)

where
∂S
∂ηe

= −ω2 ∂M
∂ηe

+ iω
∂C
∂ηe

+ ∂K
∂ηe

(11)

The adjoint displacement vector λ satisfies

Sλ = −
(

∂J

∂U

)T

(12)

Since this work only considers the case of design-
independent loads, ∂F/∂ηe = 0, consequently (10) is
simplified to

dJ

dηe

= ∂J

∂ηe

+ 2Re

(
λT ∂S

∂ηe

U
)

(13)

Applying (13) for every frequency ωn(n = 1, · · · , Nf )

can obtain the adjoint displacement vectors λn(n =
1, · · · , Nf ). Consequently, the sensitivity of the objective
function can be obtained as:

dJd

dηe

=
Nf∑
n=1

wn

∂J

∂ηe

∣∣∣∣
ω=ωn

+ 2Re

⎛
⎝

Nf∑
n=1

wnλ
T
n

∂Sn

∂ηe

Un

⎞
⎠ (14)

It can be seen from (12) that the adjoint problem can
also be treated as a frequency response analysis problem,
and Nf adjoint displacement vectors need to be obtained
for sensitivity analysis. For self-adjoint problems, the
adjoint displacement vectors can be obtained by scaling the
corresponding displacement vectors; therefore, little extra
computation effort is needed. In contrast, for non-self-
adjoint problems, the adjoint displacement vectors have to
be solved via (12) for each frequency; thus, an efficient
frequency response analysis method is also desired for the
calculation of the adjoint displacement vectors.

2.4 Numerical procedure

Once the sensitivity information is obtained, the design
variables can be updated by using the MMA (Svanberg
1987). The flowchart for solving topology optimization
problems under harmonic force excitation is shown
in Fig. 1. The most time-consuming steps at each
iteration are the computations of the displacement and
adjoint displacement vectors; therefore, efficient frequency
response analysis is the key to reduce the huge overall
computational cost.

3 A novel approach for efficient frequency
response analysis: adaptive hybrid
expansionmethod

This section presents a novel approach for efficient
frequency response analysis, namely adaptive hybrid
expansion method (AHEM). The AHEM can make the
frequency response analysis adaptive, thereby enabling
efficient computation. Suppose that F = F0h(ω), where F0

and h(ω) represent the spatial distribution and frequency-
dependence of force excitation, respectively. In this case, it
is only necessary to solve the equations SU0 = F0; then, the
displacement vector U can be obtained as U = U0h(ω).
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Fig. 1 Flowchart of topology optimization for minimizing frequency
responses

3.1 A hybrid expansion of the displacement vector

Suppose that 0 < ω2
1 ≤ ω2

2 ≤ · · · ≤ ω2
N are the eigenvalues

of the structure and φ1, φ2, · · · φN are the corresponding
eigenvectors. These eigenvectors are normalized by the
mass matrix; thus, they satisfy

�TM� = I
�TK� = �

(15)

where � = [φ1, φ2, · · · φN ], and � =
diag(ω2

1, ω
2
2, · · · , ω2

N).
According to the modal superposition method, the

response of the structure can be expressed by a linear
combination of all the eigenvectors as

U0 = �q = �LqL + �HqH (16)

with

�L = [φ1, φ2, · · · φl]
�H = [φl+1, φl+2, · · · φN ]
qL = [(−ω2 + iαrω)IL + (iβrω + 1)�L]−1�T

LF0

qH = [(−ω2 + iαrω)IH + (iβrω + 1)�H]−1�T
HF0 (17)

where the number l of lower-order modes will be
determined later. The matrices involved in (17) are defined
as

IL = Il×l

IH = I(N−l)×(N−l)

�L = diag(ω2
1, ω

2
2, · · · , ω2

l )

�H = diag(ω2
l+1, ω

2
l+1, · · · , ω2

N) (18)

Since it is expensive or impossible to compute all the
eigenvalues and eigenvectors, here, we develop a hybrid
expansion for the displacement response, where the lower-
order response is computed by the modal superposition
method, while the higher-order response is given by a
Neumann expansion.

The higher-order response can be given as

�HqH = �H[(iβrω + 1)�H(IH + −ω2 + iαrω

iβrω + 1
�−1

H )]−1�T
HF0

= 1

iβrω + 1
�H(IH − γ�−1

H )−1�−1
H �T

HF0 (19)

where γ = (ω2 − iαrω)/(iβrω + 1).
When the spectral radius ρ(γ�−1

H ) < 1, according to the
Neumann expansion theorem, we have

(IH − γ�−1
H )−1 =

+∞∑
n=0

γ n�−n
H (20)

Substituting (20) into (19) yields

(iβrω + 1)�HqH = �H

(+∞∑
n=0

γ n�−n
H

)
�−1

H �T
HF0

=
+∞∑
n=1

γ n−1�H�−n
H �T

HF0

=
+∞∑
n=1

γ n−1uH,n (21)

where

uH,n = �H�−n
H �T

HF0 (22)

Both �H and �H in (22) are unknown. However, notice
that

K−1 = �L�−1
L �T

L + �H�−1
H �T

H (23)

thus, we have

uH,1 = (K−1 − �L�−1
L �T

L)F0 (24)
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and when n ≥ 2,

uH,n = �H�−n
H �T

HF0

= �H�−1
H �T

HM�H�
−(n−1)
H �T

HF0

= �H�−1
H �T

HMuH,n−1

= (K−1 − �L�−1
L �T

L)MuH,n−1 (25)

Premultiply (24) and (25) by K and noticing that K�L =
M�L�L, we further have

KuH,1 = (I − K�L�−1
L �T

L)F0 = (I − M�L�T
L)F0 (26)

and when n ≥ 2,

KuH,n = (I − K�L�−1
L �T

L)MuH,n−1

= (I − M�L�T
L)MuH,n−1 (27)

Equations (26) and (27) imply that the vectors uH,n(n =
1, 2, · · · ) can be obtained iteratively by solving a series of
static problems sharing the same stiffness matrix.

By substituting (21) into (16), it can be found that

U0 = �LqL + 1

(iβrω + 1)

+∞∑
n=1

γ n−1uH,n (28)

For practical computation, usually only a finite number
of terms can be used to compute the response. By only
preserving the first q terms for the higher-order response
in (28), a truncated hybrid expansion of the displacement
response can be obtained as

Ua = �LqL + 1

(iβrω + 1)

q∑
n=1

γ n−1uH,n (29)

The truncated hybrid expansion usually converges very
fast because, in addition to the lower-order effect being
taken account by the terms �LqL, the higher-order effect of
the load F0 is also considered when constructing the vectors
uH,n (hereafter referred to as basis vectors). When solving
topology optimization problems under harmonic excitation,
the frequency response analysis needs to be performed
automatically at each iteration; thus, it is desired to develop
an adaptive method to automatically determine how many
eigenmodes and basis vectors need to be involved in the
truncated hybrid expansion.

It is noteworthy that, because of the mass-orthogonality
of the lower-order and higher-order eigenmodes (i.e.,
�T

LM�H = 0), it can be found that

�T
LMuH,n = �T

LM�H�−n
H �T

HF0 = 0 (30)

Thus, the basis vectors uH,n are mass-orthogonal to the
lower-order eigenmodes.

3.2 Computation of the residual error
for the truncated hybrid expansion

This subsection develops an efficient method for computing
the residual error of the truncated hybrid expansion in (29).
The error of the displacement vector is

U0 − Ua = 1

(iβrω + 1)

+∞∑
n=q+1

γ n−1uH,n (31)

Consequently, the residual of the force vector is

F0 − SUa = S(U0 − Ua)

= (−γM + K)

⎛
⎝ +∞∑

n=q+1

γ n−1uH,n

⎞
⎠ (32)

Substituting (22) into (32) and noticing that K�H =
M�H�H, we have, when q ≥ 1,

F0 − SUa = (−γM + K)

⎛
⎝ +∞∑

n=q+1

γ n−1�H�−n
H �T

HF0

⎞
⎠

= −
+∞∑

n=q+1

γ nM�H�−n
H �T

HF

+
+∞∑

n=q+1

γ n−1M�H�
−(n−1)
H �T

HF0

= γ qM�H�
−q
H �T

HF0

= γ qMuH,q (33)

Therefore,

||F0 − SUa||2 = |γ |q ||MuH,q ||2 (34)

Since M and uH,q are independent of the excitation
frequency ω, and |γ |q is monotonic increasing with respect
to the increasing of the excitation frequency, (34) implies
that the residual norm is also monotonic increasing with
respect to the increasing of the excitation frequency and
attains its maximum at ω = ωb. Thus, only the residual error
at ω = ωb needs to be computed to evaluate the accuracy of
the truncated hybrid expansion.

Furthermore, according to (32), we also have

||F0 − SUa||2 = |γ |q ||M�H�
−q
H �T

HF0||2
= ||M�H(|γ |q�

−q
H )�T

HF0||2 (35)

Noticing that ρ(|γ |q�
−q
H ) = (ρ(γ�−1

H ))q and ρ(γ�−1
H ) =

|γ |/ω2
l+1 < 1, thus, the residual norm usually decreases

very fast as q increases. This also explains why usually
preserving only a few terms in the truncated hybrid
expansion would be sufficient to achieve accurate results.
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3.3 An adaptive hybrid expansionmethod
for efficient frequency response analysis

This subsection newly proposes an adaptive hybrid expan-
sion method (AHEM) for efficient frequency response
analysis. Here, we only consider the case of frequency-
independent excitations (i.e., h(ω) is a constant); however,
there is no difficulty to generalize the proposed procedure
for solving problems involving frequency-dependent exci-
tations. To make the frequency response analysis method
adaptive, two issues have to be addressed. The first issue is
how many lower-order eigenpairs are required; the second
one is how many terms need to be preserved in the truncated
hybrid expansion.

To address the first issue, note that the convergence
condition of the Neumann expansion is that ρ(γ�−1

H ) =
|γ |/ω2

l+1 < 1, and |γ | =
√

ω4+α2
r ω2

β2
r ω2+1

attains its maximum

|γb| =
√

ω4
b+α2

r ω2
b

β2
r ω2

b+1
at ω = ωb; thus ω2

l+1 should

be larger than |γb|. To address the second issue, the
analysis in Section 3.2 reveals that only the residual norm
corresponding to ω = ωb needs to be computed to
determine whether the current truncation of the hybrid
expansion is accurate enough. If not, more terms can be
computed until the given accuracy is satisfied.

Furthermore, the overflow issue may occur when (29)
is directly employed to calculate the displacement vector
Ua because the coefficient γ n−1

b grows exponentially when
γb > 1 (which happens often in practical applications
because γb ≈ ω2

b). Here, we propose a simple method to
alleviate this issue: normalizing all basis vectors by the mass
matrix M, so that not only φT

i Mφi = 1(i = 1, · · · , l), but
also vT

H,nMvH,n = 1(n = 1, 2, · · · ), where vH,n denotes the
normalized basis vectors.

Now a robust and adaptive computational procedure for
efficient frequency response analysis can be formulated as:

1. Calculate the truncation frequency ωf =
max(ωb,

√|γb|/τ), where τ ≤ 1 is a constant.
2. Determine the number l of eigenfrequencies in [0, ωf]

using the Strum sequence.
3. Obtain the first l lowest eigenfrequencies ω1, · · · , ωl

and the mass-orthogonal eigenvectors φ1, · · · , φl

through generalized eigenvalue analysis.
4. Compute the modal coordinates qL for the lower-order

eigenmodes at ω = ωb.
5. Compute the approximate displacement vector Ua =

�LqL at ω = ωb.
6. Compute the force residual

�F = F0 − (−ω2
bM + iωbC + K)Ua.

7. Calculate the relative residual error δ = ||�F||2/||F0||2
and set q = 0.

8. While δ ≥ ε do:

(a) q = q + 1.
(b) Obtain the vector v̄H,q by solving the equation

Kv̄ = rq , where

rq =
{

(I − M�L�T
L)F0, if q = 1

(I − M�L�T
L)MvH,q−1, if q ≥ 2

(36)

(c) Compute βq =
√
v̄T

H,qMv̄H,q and the normalized

basis vector vH,q = v̄H,q/βq .
(d) Compute the coefficient cq as

cq =
{

β1/(iβrωb + 1), q = 1
γbβqcq−1, q ≥ 2

(37)

(e) Update the approximate displacement vector

Ua = Ua + cqvH,q .

(f) Update the force residual

�F = F − (−ω2
bM + iωbC + K)Ua.

(g) Calculate the relative residual norm

δ = ||�F||2/||F0||2.

9. For each frequency of interest ω in [ωa, ωb]:
(a) Compute the modal coordinates qL for the lower-

order eigenmodes.
(b) Compute the coefficients for the normalized basis

vectors

cn =
{

β1/(iβrω + 1), n = 1
γ βncn−1, 2 ≤ n ≤ q

(38)

(c) Obtain the displacement vector as Ua = �LqL +
q∑

n=1
cnvH,n.

Here, in Step 1, we set ωf ≥ ωb because the information
of all the resonant eigenfrequencies in [ωa, ωb] is necessary
for some numerical quadrature techniques (Liu et al. 2015a).
The parameter τ ≤ 1 is introduced to accelerate the possible
slow convergence of the Neumann expansion because (35)
reveals that if |γb|/ω2

l+1 ≈ 1.0, the residual norm would
converge very slow; thus, many basis vectors would have to
be generated. It can be seen that |γb|/ω2

l+1 < |γb|/ω2
f ≤

τ 2|γb|/|γb| = τ 2; thus, the convergence rate of the residual
norm will be at least of the order τ 2. Notice that only
the residual force corresponding to ω = ωb needs to be
computed when constructing the basis vectors; thus, the
residual norm is computationally inexpensive.

From the computational procedure of the proposed
AHEM, it can be found that for frequency response analysis
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under many load vectors, the lower-order eigenfrequencies
and eigenmodes can be shared when computing the displace-
ment vectors, while only the basis vectors need to be
generated for each load vector. This is the case for non-
self-adjoint topology optimization problems, where both the
displacement and adjoint displacement vectors need to be
computed at each iteration. It is worth pointing out that
when employing the AHEM, the lower-order eigenfrequen-
cies and eigenmodes can be shared when computing the
displacement and adjoint displacement vectors. Therefore,
the modal analysis does not need to be performed again
when computing the adjoint displacement, only the basis
vectors need to be calculated according to the adjoint force.

We note here that the development of the hybrid
expansion method for harmonic analysis of undamped
systems can be dated back at least to Liu et al. (1993,
1994), where the Neumann expansion was also employed
to represent the higher-order responses. In addition, Qu
(2000) and Qu and Selvam (2000) also developed a
hybrid expansion method for frequency response analysis
of undamped and viscously damped systems, respectively.
Li et al. (2014) proposed a hybrid expansion method for
frequency response analysis of non-proportionally damped
systems. However, only qualitative discussion about the
performance of the hybrid expansion method was presented
in these works; thus, they are insufficient to be employed
for solving topology optimization problems. One important
contribution of the present work is that a simple (yet
accurate) expression for the residual of the truncated hybrid
expansion (i.e., (33)) is derived. Furthermore, (34) reveals
the very important property of the residual form, and (35)
uncovers the key factors affecting the convergence rate of
the truncated hybrid expansion, which can provide a helpful
guide for parameter setting.

4 Numerical examples

This section presents three numerical examples to demon-
strate the performance of the AHEM and its effectiveness
for solving topology optimization problems under harmonic

Fig. 2 Problem definition of a 2D cantilever beam under harmonic
force excitation

excitation. The code for all examples was implemented
by MATLAB R2018b. The first example investigates the
effects of the key parameters on the performance of the
AHEM; the second example minimizes the compliance
response of a 2D MBB beam and its modified version under
harmonic loads of various excitation frequency intervals; the
third example minimizes the compliance response of a 3D
cantilever beam under harmonic loads of various frequency
intervals. The MBB beam problem not only demonstrates
the effectiveness of the AHEM for solving topology opti-
mization problems, but also exhibits that asymmetrical opti-
mal designs may be obtained even in the situation where
the design domain, the boundary condition, and the load
condition are all symmetric.

For all the examples, the Young’s modulus, Poisson’s
ratio, and structural density of the material are assumed to
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Fig. 3 a, b Frequency response analysis results obtained by the full
method, f ∈ [0, 2000] Hz
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be 70 GPa, 0.35, and 2700 kg/m3, respectively. In addition,
the linear density filter (Bruns and Tortorelli 2001; Bourdin
2001) together with the threshold projection method (Wang
et al. 2011) is employed when solving the topology opti-
mization problems. Details can be found in Zhao et al.
(2019). The method of moving asymptotes (MMA) (Svan-
berg 1987) is employed to update the design variables.

4.1 Case study 1: Frequency response analysis
of a 2D cantilever beam under harmonic force
excitation

In this subsection, a 2D cantilever beam under harmonic
force excitation is studied to demonstrate the computational
efficiency of the AHEM for frequency response analysis. As

Fig. 4 a, b Relative residual
errors of the displacement
vectors obtained by the AHEM
(τ = 0.8), f ∈ [0, 2000] Hz
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illustrated in Fig. 2, the length, width, and thickness of the
beam structure are 2.0 m, 1.0 m, and 0.01 m, respectively.
The structure is fixed at its left edge and a harmonically
varying concentrated force of magnitude 3 kN is vertically
applied at its lower right corner. For Rayleigh damping,
αr = 20.15s−1 and βr = 1.5762×10−6 s are assumed. Here,
the displacement response of the degree of freedom (DOF)
where the external load is applied is considered.

In order to perform frequency response analysis, the
structure is meshed into Ne = 200 × 100 bilinear square

elements. The displacement response of the target DOF
computed by the full method is presented in Fig. 3a. It
can be observed that among the six eigenfrequencies, f =
175.64 Hz, 640.04 Hz, 665.73 Hz, 1392.76 Hz, 1775.09
Hz, and 1843.79 Hz, in the frequency interval [0, 2000]
Hz, there are four resonant frequencies, 175.64 Hz, 665.73
Hz, 1392.76 Hz, and 1775.09 Hz. These four resonant
frequencies correspond to the four peaks in the frequency
response curve, respectively. It should also be noted from
Fig. 3b that, due to the presence of rounding errors, the

Fig. 5 a–d Relative residual errors when different numbers of basis vectors are involved in the AHEM
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relative residual error can achieve the order of 10−11 even
when the full method is employed to compute the frequency
responses.

In order to show the influence of the error tolerance ε, the
number of required basis vectors against the tolerance level
(where τ = 0.8) is plotted in Fig. 4a. It can be seen that
the expressions ||γ q

u MuH,q ||2/||F||2 and ||SUa −F||2/||F||2
yield the same result when ε ≥ 10−12; otherwise, different
values are obtained because of the rounding errors. The
relative residual errors for all the excitation frequencies in
the interval [0, 2000] Hz for different error tolerances are
shown in Fig. 4b. It can be observed that the maximum

relative residual errors indeed occur at f = 2000 Hz
when ε > 10−10. It can also be found that the relative
residual error is not monotonically increasing with respect
to the increasing of the excitation frequency, as indicated
by our method. This disagreement should be attributed to
the rounding errors similar to those presented in Fig. 3b.
Actually, Fig. 5 reveals that when the number of involved
basis vectors is small (e.g., q = 1), the truncation
errors dominate the relative residual error curve and the
relative residual error is indeed monotonically increasing
with respect to the increasing of the excitation frequency.
Conversely, when the number of involved basis vectors

Fig. 6 a–d Influence of the value of τ on the number of required basis vectors in the AHEM
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is large (e.g., q = 30), the truncation error will be
eliminated, but the rounding errors still exist and dominate
the relative residual error curve. It can also be observed
that with the increasing of the number of involved basis
vectors, the truncation errors for low-frequency responses
vanish first; then, those corresponding to high-frequencies
gradually disappear. This is reasonable, as indicated by
our theory that the spectral radius ρ(γ�−1

H ) = |γ |/ω2
l+1

is monotonically increasing with respect to the increasing
of the excitation frequency. Thus, the lower the excitation
frequency, the faster the truncated hybrid expansion series
converges. All four cases shown in Fig. 5 demonstrate that
for the frequency interval where the truncation error is
not eliminated, the relative residual error is monotonically
increasing with respect to the increasing of the excitation
frequency, which is in a good agreement with our theoretical
analysis.

To demonstrate the necessity of introducing the parame-
ter τ , the convergence histories of the relative residual error
for four different frequency intervals, [0, 100] Hz, [0, 650]
Hz, [0, 1000] Hz, and [0, 2000] Hz, with three different val-
ues of τ , 1.0, 0.9, and 0.8, are presented in Fig. 6, where
ε is set to 10−8. It can be seen from Fig. 6b that for the
case of f = [0, 650] Hz and τ = 1.0, the relative residual
error decreases very slowly. The reason is that for this case
ρ(γb�

−1
H ) = |γb|/ω2

3 = 0.953 ≈ 1.0. If τ = 0.9 or 0.8,
ω3 < ωf < ω4, then ρ(γb�

−1
H ) = |γb|/ω2

4 = 0.218 � 1.
This also explains why the relative residual errors decrease
very fast for the cases of τ = 0.9 and 0.8. Figure 6a
and d show the influence of the value of τ on the num-
ber of required basis vectors for the cases of [0, 100] Hz
and [0, 2000] Hz, respectively. Usually, a small value of
τ implies a small number of basis vectors to be generated

Fig. 7 a, b Definition of the 2D MBB beam design problem and the
static design

at a possible price of one or more additional eigenpairs to
be computed. Figure 6c presents a special case where the
three values, 0.8, 0.9, and 1.0, of τ yield the same con-
vergence rate. This can be well understood because when
0.718 < τ ≤ 1.0, ω3 < ωf = max(ωb,

√|γb|/τ) < ω4,
thus ρ(γb�

−1
H ) = |γb|/ω2

4 = 0.7182 = 0.5155; this implies
that the introduction of the parameter τ in this case does not
affect the converge process. However, as discussed before,
in order to make the frequency response analysis adaptive
and efficient, τ < 1 is recommended.

4.2 Case study 2: Topology optimization of a 2DMBB
beam under harmonic force excitation

This subsection presents a numerical example of topology
optimization for minimizing the dynamic compliance of a
2D MBB beam. The design domain, boundary condition,
and loading condition are illustrated in Fig. 7a. The length,
width, and thickness of the design domain are 2.4 m, 0.4 m,
and 0.01 m, respectively. The lower left and right corners
of the design domain are fixed and simply supported,
respectively. A harmonically varying concentrated force of
magnitude 300 N is vertically applied at the top middle
of the design domain. The prescribed volume fraction is
0.4. Four excitation frequency intervals f = [0, 10] Hz,
[0, 250] Hz, [0, 400] Hz, and [0, 500] Hz are considered to
demonstrate the effectiveness of the AHEM as well as the
effects of the dynamic load on the optimum design.

To perform topology optimization, the design domain is
meshed into 480 × 80 bilinear square elements. The filter
radius is set to 0.04 m. Initially, the material is uniformly
distributed into the design domain. For Rayleigh damping,
the coefficients αr and βr are calculated by assuming that
the damping ratios of the initial structure satisfy ζ1 = ζ10 =
1%. The trapezoidal integration scheme with equally spaced
abscissas is employed to compute the objective function
and its sensitivity (Yoon 2010). The interval between two
adjacent abscissas is set as �f = 0.5 Hz.

The optimum designs for different excitation frequency
intervals obtained by the full method and AHEM (τ =
0.8 and ε = 10−8) are shown in Fig. 8. It can be seen
that the optimum designs obtained by the two methods for
the same excitation frequency interval are either the same
or only have a slight difference. The iterative histories of
the objective function presented in Fig. 9 and the values
of the objective function summarized in Table 1 show
that although there might be a slight difference during the
optimization process, the values of the objective function
for the optimum designs obtained by the two methods have
little difference for the same excitation frequency interval.

906



An adaptive hybrid expansion method (AHEM) for efficient structural topology...

Fig. 8 a–h Dynamic designs of the 2D MBB beam

The numbers of eigenmodes and basis vectors required
by the AHEM in each iteration, as well as the history of the
relative residual error, are plotted in Fig. 10. At least two
conclusions can be drawn: (1) The relative residual error is
strictly no larger than the given error tolerance in all the
iterations for all cases and (2) The number of eigenmodes
and basis vectors can be determined adaptively according
to the given error tolerance; no redundant eigenmodes
and basis vectors need to be computed. Consequently, the
AHEM is efficient. The efficiency advantage of the AHEM
over the full method can be found from the data listed in
Table 1. Here we point out that to reduce the CPU time, the
parfor function provided by matlab was employed with 8
workers when using the full method to perform frequency
response analysis. However, the AHEM still needs much
less CPU time compared with the full method.

The frequency response curves of the initial and optimum
designs are shown in Fig. 11. It can be found that for the
case of f = [0, 250] Hz, the frequency response curves
corresponding to the two optimum designs have some
obvious discrepancies; however, the values of the objective
function listed in Table 2 prove that the two optimum
designs have the same dynamic performance in terms of the
mean dynamic compliance.

A very interesting phenomenon can be seen from Fig. 8;
specifically, when the excitation frequency is low (e.g.,

f = [0, 10] Hz), the optimum dynamic design is very
close to the static design, as shown in Fig. 7b; and
it is symmetric about the middle vertical line of the
design domain. However, when the excitation frequency
is high (e.g., f = [0, 250] Hz), the optimum dynamic
designs become asymmetric. The optimum dynamic designs
with enforced geometric symmetry constraints for different
excitation frequency intervals are shown in Fig. 12, and
the values of the objective function are listed in Table 2.
It can be found that the optimum design with an enforced
geometric symmetry constraint has the same or a larger
objective function value compared with their counterpart
that has no enforced geometric symmetry constraint. This
means that the optimum dynamic design of the MBB beam
problem is not necessarily symmetric, as is that of the
static design (Andreassen et al. 2011). This can be well
understood because although the design domain and the
load condition are symmetric, the boundary condition is
not completely symmetric; therefore, the optimum dynamic
designs might be asymmetric.

In order to further study the influence of the harmonic
loading on the optimum design, the MBB beam problem
is modified so that the lower right corner of the design
domain is also fixed, as illustrated in Fig. 13. Thus, the
design domain, boundary condition, and loading condition
are all symmetric about the middle vertical line of the
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Fig. 9 a–d Iteration histories of the objective and constraint functions for the 2D MBB beam problem

Table 1 Computational costs for topology optimization of the 2D MBB beam design problem

Frequency interval
Total CPU time/s Iteration CPU time per iteration/s

Full method AHEM Full method AHEM Full method AHEM

[0, 10] Hz 1665 1199 397 407 3.90/0.18/0.108 2.68/0.15/0.112

[0, 250] Hz 37,806 6142 470 500 76.36/3.94/0.132 8.47/3.67/0.146

[0, 400] Hz 64,919 10,159 500 500 123.47/6.23/0.135 14.29/5.88/0.142

[0, 500] Hz 80,988 13,130 500 500 154.09/7.75/0.139 18.80/7.31/0.148

a/b/c stand for the CPU time of frequency response analysis, sensitivity analysis, and MMA updating, respectively
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Fig. 10 a–d Performance of the AHEM for the 2D MBB beam design problem

design domain. This is referred to as the symmetric
situation (Stolpe 2010). The optimum dynamic designs
for different excitation frequency intervals are shown in
Fig. 14. Surprisingly, when the excitation frequency is
high (e.g., f = [0, 400] Hz), the optimum dynamic
designs again become asymmetric. The optimum dynamic
designs obtained by imposing the geometric symmetry
constraint are shown in Fig. 15. The values of the objective
function of the optimum designs listed in Table 3 prove
that the optimum designs obtained without the enforced
geometric symmetry constraint are indeed better than
their counterparts that enforce the geometric symmetry
constraint. This demonstrates that even for problems under
the symmetric situation, the optimum dynamic designs

might be asymmetric. In addition, the computational costs
listed in Table 4 again demonstrate the efficiency advantage
of the AHEM over the full method.

To reduce the computational cost, a widely used strategy
for solving topology optimization problems with symmetric
conditions, such as the (modified) MBB beam design
problem, is to perform topology optimization on part of
the design domain with appropriate boundary and loading
conditions (Andreassen et al. 2011). However, this example
reminds us that it would be better to use the whole design
domain to perform topology optimization for dynamics
problems to reduce the risk of obtaining sub-optimal
designs. A somewhat counter-intuitive result discovered by
White and Voronin (2019) shows that asymmetric designs
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Fig. 11 a–d Frequency response curves for the initial and optimum designs of the 2D MBB beam problem

Table 2 Comparison of the values of objective function for initial and optimum designs of the 2D MBB beam design problem

Frequency interval Initial design Original design Symmetric design

Full method AHEM Full method AHEM Full method AHEM

[0, 10] Hz 0.1042 0.1042 0.01464 0.01464 0.01464 0.01464

[0, 250] Hz 0.1298 0.1298 0.01675 0.01675 0.01715 0.01716

[0, 400] Hz 0.08658 0.08658 0.01573 0.01572 0.01619 0.01618

[0, 500] Hz 0.06967 0.06967 0.01501 0.01499 0.01540 0.01541
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Fig. 12 a–h Dynamic designs of the 2D MBB beam with enforced geometric symmetry constraint

can be better than symmetric designs in certain regions
of the problem space even for the classical minimum
compliance design problems in the symmetric situation.
Here, it is found that when the excitation frequency is high,
asymmetric design may be obtained even the initial design
is symmetric. In theory, if an asymmetric design D* is
optimum, the same will be true for its mirror design D**.
Since it has been found that the symmetric design is not

Fig. 13 a, b Definition of the 2D MBB beam design problem with
modified boundary conditions and its static design

optimum, the path of the topology optimization process will
bifurcate at some intermediate design and the bifurcation
is triggered by numerical errors (e.g., f = [0, 400] Hz, as
shown in Fig. 16, the initial design is completely symmetric,
the design at iteration 25 is almost symmetric, the design
at iteration 35 is slightly asymmetric, and gradually the
topology optimization process converged to an asymmetric
design. For completeness, the first four mode shapes of
some intermediate designs are shown in Figs. 17, 18, 19,
20). Because the numerical errors may be produced by the
solver (as is demonstrated in Fig. 3b) somewhat randomly,
which optimum design will be obtained is also somewhat
random. This can be seen from the case of f = [0, 250] Hz
as shown in Fig. 14c and d, where the two small holes in the
designs are different and two optimum designs are almost
mirror to each other. This is similar to the static problems
presented in White and Voronin (2019), where “noise” is
added to the finite element solution to avoid obtaining
symmetric design when started from a symmetric initial
design. Due to the purpose of this work, a further study on
symmetry and non-uniqueness in topology optimization is
not carried out here. More examples and in-depth discussion
can be found in the published literatures (Bendsøe and
Sigmund 2003; Stolpe 2010; Rozvany 2011; Cheng and Liu
2011; White and Voronin 2019).
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Fig. 14 a–h Dynamic designs of the 2D MBB beam with modified boundary conditions

Fig. 15 a–h Dynamic designs of the 2D MBB beam with modified boundary conditions and enforced geometric symmetry constraint
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Table 3 Comparison of the values of objective function for initial and optimum designs of the 2D MBB beam design problem with modified
boundary conditions

Frequency interval Initial design Original design Symmetric design

Full method AHEM Full method AHEM Full method AHEM

[0, 10] Hz 0.0623 0.0623 0.00752 0.00752 0.00752 0.00752
[0, 250] Hz 0.1076 0.1076 0.009765 0.009765 0.01005 0.01005
[0, 400] Hz 0.07237 0.07237 0.009383 0.009381 0.009801 0.009801
[0, 500] Hz 0.0583 0.0583 0.009096 0.009104 0.009607 0.009606

4.3 Case study 3: Topology optimization
of a 3D cantilever beam under harmonic force
excitation

This subsection presents a numerical example of topology
optimization for minimizing the dynamic compliance of a
3D cantilever beam. The design domain and boundary and
load conditions are illustrated in Fig. 21a. The length, width,
and thickness of the design domain are 1.0 m, 0.5 m, and
0.1 m, respectively. The left edge of the design domain is
fixed. Nine harmonically varying concentrated loads of each
magnitude 1 kN are simultaneously and uniformly applied
on the lower right edge of the design domain. The prescribed
volume fraction is 0.4. Four excitation frequency intervals
f = [0, 30] Hz, [0, 200] Hz, [0, 300] Hz, and [0, 600] Hz
are considered.

The optimum designs for different excitation frequency
intervals are shown in Fig. 22. Here, only the results
obtained by the AHEM are provided because the use
of the full method becomes impractical due to the huge
computational cost. The iteration histories of the objective
function and volume fraction for different excitation
frequency intervals are shown in Fig. 23. The frequency
response curves for the initial and optimum designs are
shown in Fig. 24. It can be observed from Fig. 23 that

for all cases the optimization process is converged and the
constraint is always satisfied. It can be seen from Fig. 22 that
for all cases clear designs are obtained. When the excitation
frequency is low (e.g., f = [0, 30] Hz and [0, 200] Hz),
the optimum dynamic design is similar to the static design.
For the case of f = [0, 30] Hz, no eigenfrequency of
the initial design is contained in the excitation frequency
interval. During the topology optimization process, the
eigenfrequencies become larger and the first resonant
eigenfrequency of the structure is driven away from the
excitation frequency interval. For the case of f = [0, 200]
Hz, there are three eigenfrequencies, f = 38.5 Hz, 146.5
Hz, and 160.8 Hz in the excitation frequency interval.
Among these three eigenfrequencies, only the frequency of
160.8 Hz is a resonant eigenfrequency; it corresponds to
the peak value presented in the frequency response curve
of the initial design. During topology optimization, this
resonant eigenfrequency is driven away from the excitation
frequency interval. When the excitation frequency is high
(e.g., f = [0, 300] Hz and [0, 600] Hz), the dynamic
design is quite different from the static design, and the
optimum designs for different excitation intervals are also
different from each other. In addition, as shown in Fig. 24,
the frequency responses have been reduced substantially by
redistributing the materials in the design domain although

Table 4 Computational costs for topology optimization of the 2D MBB beam design problem with modified boundary conditions

Frequency interval Total CPU time/s Iteration CPU Time per iteration/s

Full method AHEM Full method AHEM Full method AHEM

[0, 10] Hz 1638 1152 393 407 3.89/0.18/0.107 2.66/0.16/0.112
[0, 250] Hz 37091 6345 462 461 76.36/3.88/0.126 9.91/3.71/0.136
[0, 400] Hz 60136 9029 462 489 123.85/6.19/0.127 12.44/5.89/0.133
[0, 500] Hz 82299 11042 500 473 156.63/7.84/0.128 15.87/7.34/0.134

a/b/c stand for the CPU time of frequency response analysis, sensitivity analysis and MMA updating, respectively
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Fig. 16 a–l Intermediate designs of the 2D MBB beam problem with modified boundary conditions, f ∈ [0, 400]Hz

Fig. 17 a–d Mode shapes of the initial design of the 2D MBB beam with modified boundary conditions
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Fig. 18 a–d Mode shapes of the design of the 2D MBB beam at iteration 25 with modified boundary conditions

Fig. 19 a–d Mode shapes of the design of the 2D MBB beam at iteration 35 with modified boundary conditions

Fig. 20 a–d Mode shapes of the final design of the 2D MBB beam with modified boundary conditions
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Fig. 21 a, b Definition of the
3D cantilever beam design
problem and its static design

Fig. 22 a–d Dynamic designs of
the 3D cantilever beam
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Fig. 23 a–d Iteration histories of dynamic designs of the 3D cantilever beam

one or more resonant eigenfrequencies of the optimum
designs remain in the excitation frequency interval for the

Table 5 Comparison of the values of objective function for initial and
optimum designs of the 3D Cantilever beam design problem

Frequency interval Initial design Optimum design

[0, 30] Hz 6.537 0.9139

[0, 200] Hz 24.57 0.9687

[0, 300] Hz 17.29 1.301

[0, 600] Hz 9.251 1.454

cases of f = [0, 300] Hz and [0, 600] Hz. The values of
the objective function listed in Table 5 also demonstrate the
substantial improvement of the dynamic performance of the
optimum designs over the initial design.

The numbers of eigenmodes and basis vectors required
by the AHEM in each iteration, as well as the history of
the relative residual error, are presented in Fig. 25. Again,
it can be observed that the relative residual error is below
the given error tolerance in the iterations of all cases. In
addition, the AHEM can determine adaptively the number
of eigenmodes and basis vectors to be computed for the
given error tolerance. It is noted that for the case of f =
[0, 30] Hz, no eigenmode is needed at all iterations, and
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Fig. 24 a–d Frequency response curves for the initial and optimum designs of the 3D cantilever beam problem

the number of basis vectors to be computed is also very
small. For the case of f = [0, 600] Hz, the number of
eigenmodes that need to be computed is usually less than
10, and the number of involved basis vectors is less than
30. It can be thus concluded that the AHEM is efficient
for solving topology optimization problems under harmonic
excitation.

5 Concluding remarks

This study developed an efficient frequency response anal-
ysis method, namely adaptive hybrid expansion method

(AHEM), for structural topology optimization under har-
monic force excitation over a given frequency interval.
When solving such problems, one main challenge is how
to accurately and efficiently compute the displacement and
adjoint displacement vectors for a large number of excita-
tion frequencies in the frequency response analysis. Assum-
ing Rayleigh damping, a hybrid expansion for frequency
response is developed, where the contributions of the
lower-order and higher-modes are given by the modal super-
position and Neumann expansion, respectively. The number
of lower-order eigenpairs that need to be computed can be
determined using the Strum sequence. Meanwhile, a simple
expression for the relative residual error of the truncated
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Fig. 25 a–d Performance of the AHEM for the 3D cantilever beam design problem

hybrid expansion is provided. This expression indicates that
the relative residual error is monotonically increasing with
respect to the increasing of the excitation frequency. Thus,
efficient computation of the residual norm for every excita-
tion frequency in the given interval is enabled. The key fac-
tors affecting the convergence rate of the hybrid expansion
method are also uncovered; thus, the number of terms that
need to be preserved in the truncated Neumann expansion
can also be determined adaptively. Finally, the performance
of the AHEM is numerically studied in detail, and its effec-
tiveness for solving structural topology optimization prob-
lems under harmonic force excitation is demonstrated by
2D and 3D numerical examples.

In addition, it is found that the optimum dynamic
design of structures under a symmetric situation (i.e., the
design domain, boundary condition, and load condition

are all symmetric) might be asymmetric. Thus, the widely
used strategy to reduce the huge computational cost by
employing only part of the design domain with appropriate
boundary conditions is risky because it may obtain sub-
optimal designs. Thus, it is better to solve the original topology
optimization problems with the whole design domain and
original boundary conditions, even under a symmetric
situation. From this point of view, the proposed AHEM not
only is computationally efficient, but it is also helpful for
reducing the risk of obtaining sub-optimal designs.
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