
https://doi.org/10.1007/s00158-019-02456-8

RESEARCH PAPER

Optimizing component solution spaces for systems design

Marco Daub1 · Fabian Duddeck1,2 ·Markus Zimmermann1

Received: 9 July 2019 / Revised: 11 November 2019 / Accepted: 17 November 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
Systems design is concerned with breaking down large and complex problems on the system level into smaller and
simpler problems on a component level. This can be accomplished by decomposing quantitative system requirements
into requirements for each component. These new requirements can be expressed by component solution spaces, i.e.,
regions of permissible component design variables. They serve as design goals for component development and support
decisions regarding component design. Component solution spaces should be chosen such that components can be designed
independently of each other. This is the case when satisfying all component requirements implies satisfying the higher level
system requirements. In addition, component solution spaces should be as large as possible to provide maximum flexibility
for component design, and to encompass uncertainty. Motivated by related work, their shapes can be predefined as boxes,
i.e., multi-dimensional intervals, which enables a simple visual and numerical representation. Unfortunately, this will make
solution spaces small and associated requirements unnecessarily restrictive. In a new approach, the shapes of component
solution spaces are also optimized to further enlarge their size. This is accomplished by decomposing the system performance
function as a sum of predefined component performance functions and optimizing their individual contribution. For both
the old and new approach, optimization schemes are presented which focus on linear system performance functions. Their
effectiveness is demonstrated for a crash design problem.

Keywords Solution spaces · Systems engineering · Concurrent engineering · Uncertainty · Crashworthiness

1 Introduction

There are many approaches to the design of technical sys-
tems like vehicles and airplanes. One of them is designing
the system as a whole by using classical optimization where
a system performance function is minimized while fulfill-
ing quantitative system requirements, see, e.g., (Avriel et al.
1973). However, if uncertainties are present, it is possible

Communicated by:Responsible Editor: Somanath Nagendra

� Marco Daub
marco.daub@tum.de

Fabian Duddeck
duddeck@tum.de

Markus Zimmermann
zimmermann@tum.de

1 Technische Universität München, Arcisstr. 21,
80333 München, Germany

2 Queen Mary University of London, Mile End Road,
London E14NS, UK

that the optimal design deteriorates, shows poor perfor-
mance or requirement violation. This is especially the case
if the design is selected in an early phase of develop-
ment where epistemic uncertainties exist. Uncertainties are
associated, for example, with controllable design variables
and uncontrollable parameters, cf. Parkinson et al. (1993).
Reasons for uncertainties in controllable variables are, for
instance, variations from target design values due to man-
ufacturing or more detailed design modifications in later
development stages. Variations in parts of the system where
the system designer has limited control, like changing oper-
ation conditions or modifications in the system not in the
responsibility of the designer, can be considered as uncer-
tainties in uncontrollable parameters. These circumstances
may result in a time-consuming and cost-intensive design
process.

In Beyer and Sendhoff (2007), a survey of various
approaches, related to robust design, is given on how
uncertainties can be treated in order to obtain an optimal
system design. What these approaches have in common is
that they are based on specific mathematical quantifications
of uncertainty which are often non-available in the early
phase of systems design. An approach that is not based on

/ Published online: 28 February 2020

Structural and Multidisciplinary Optimization (2020) 61:2097 2109–

http://crossmark.crossref.org/dialog/?doi=10.1007/s00158-019-02456-8&domain=pdf
http://orcid.org/0000-0003-4037-1415
mailto: marco.daub@tum.de
mailto: duddeck@tum.de
mailto: zimmermann@tum.de

a mathematical quantification of uncertainty is presented in
Hendrix et al. (1996). Here, a feasible design with maximum
distance to the region that violates the system requirements
is sought in order to tolerate maximum uncertainties in
controllable variables. If the Chebyshev distance is used, a
maximum box that is entirely contained in the permissible
region is spanned around the robust design. In Zimmermann
and von Hoessle (2013), a box inside the permissible region
that is maximized with respect to its volume is called
an optimal box-shaped solution space. Along with being
able to encompass uncertainties, box-shaped solution spaces
have the property to fully decouple system requirements
as they consist of permissible intervals for each design
variable. This allows a flexible and independent selection
of design variables. Hence, this approach is capable of
improving the design process regarding costs and time, cf.
Zimmermann et al. (2017).

However, a major drawback of using box-shaped solution
spaces is that many designs which do not violate the
constraints cannot be found within box-shaped solution
spaces. This limits the options for systems design. To
reduce this loss, optimal component solution spaces are
proposed. They are defined as the set of permissible
design variable values associated with components. Each
component specifies a group of design variables that may
interact with each other. Like box-shaped solution spaces,
component solution spaces are based on an optimal system
requirement decomposition. However, the requirements are
not fully decoupled for component solution spaces; they
are only decoupled between components. This increases
the available solution space and therefore the freedom for
design work. Moreover, larger uncertainties can be treated.

The paper is organized as follows: In Section 2, basics
used for systems design are defined and the method
of optimal component solution spaces is introduced. A
differentiation is made between box-shaped and arbitrarily
shaped component solution spaces. Furthermore, numerical
algorithms are proposed to obtain optimal component
solution spaces. A simple crash design problem is described
in Section 3 and optimal component solution spaces are
computed and compared. In Section 4, the same is done for
a realistic crash design problem. In Section 5, a conclusion
is given.

2 Component solution spaces

2.1 Definitions

Assume a system designer’s perspective in the early
development phase. Suppose that a system model exists;
however, design variables have not yet assumed a fixed
value. The system is composed of n components where

each design variable belongs to one of the components.
Thus, the kth component is described by dk-independent
design variables xk

i ∈ R, i = 1, . . . , dk , which assigns dk

degrees of freedom to the component. Its design variables
are collected in a vector xk ∈ R

dk
and named component

design of the kth component. Together, the component
designs constitute the system design (x1, . . . , xn). In Fig. 1,
such a system is visualized.

For given design variables, the system responses, denoted
by z ∈ R

m, are determined uniquely by the system model.
This relationship is expressed by the system performance
function f where design variables serve as inputs and
system responses as outputs, typically z = f (x1, . . . , xn).

In systems design, several constraints must be met. In
general, constraints on design variables and on system
responses are distinguished:

– The set of system designs with x
l,k
ds,i ≤ xk

i ≤ x
u,k
ds,i for

i = 1, . . . , dk , k = 1, . . . , n is called design space �ds

of the system. Similarly, the design space for the kth
component design is named �k

ds.
– The system responses must fulfill performance require-

ments which can be expressed mathematically as
fj (x

1, . . . , xn) ≤ fc,j for j = 1, . . . , m. Here, only
upper bounds are considered as thresholds because any
lower bound can be transformed into an upper bound by
multiplication with −1.

A system design that satisfies both constraints is defined
as permissible; otherwise, it is said to be non-permissible.
The set of all permissible system designs is named complete
system solution space �c, i.e.,

�c = {(x1, . . . , xn) ∈ �ds : f (x1, . . . , xn) ≤ fc}. (1)

In the literature, �c is also called feasible solution set
(Milanese et al. 1996) or permissible design space (Graf
et al. 2018).

2.2 Problem statement

Systems design is concerned with enabling independent
component development to reduce overall design complexity.
This can be realized by decoupling the performance
requirements for the system into requirements for the

Fig. 1 A system composed of n components each specified by a design
variable vector xk , k = 1, . . . , n

2098 M. Daub et al.

components yielding component solution spaces �k , k =
1, . . . , n. This means that instead of having one system
designer who targets designs within the complete system
solution space �c, there are n component designers who
target component designs within component solution spaces
�k , k = 1, . . . , n.

In order to guarantee that the component designers can
work independently, it must be ensured that (x1, . . . , xn) ∈
�c holds for xk ∈ �k , k = 1, . . . , n. Therefore, it is
necessary and sufficient that a system solution space formed
by the Cartesian product of the single �k is a subset of �c,
i.e.,

�1 × · · · × �n ⊆ �c. (2)

The overall idea is visualized in Fig. 2.
Among all possibilities to choose component solution

spaces, optimal component solution spaces that provide
most the flexibility for component designers are preferred.
Here, flexibility is quantified by an objective function,
which measures the infinite amount of permissible system
designs covered in �1 × · · · × �n. This can be represented
by the volume of �1×· · ·×�n. The resulting mathematical
optimization problem reads as follows:

maximize
�1,...,�n

vol(�1 × · · · × �n)

subject to �1 × · · · × �n ⊆ �c.
(3)

In Fig. 3, an example of two optimal component solution
spaces �1 and �2 is shown.

The particular challenge of solving problem (3) is that
the optimization variables are sets instead of values in real
coordinate space. An approach to tackle this problem is to
simplify the problem such that a so-called design centering
problem, see Harwood and Barton (2017), is obtained where
the optimization variables are in real coordinate space.

2.3 Box-shaped component solution spaces

In this approach, component solution spaces are considered
which are box-shaped, i.e., high-dimensional intervals.
Box-shaped �k can be uniquely defined by the vectors
xl,k, xu,k ∈ R

dk
via

�k = [xl,k, xu,k], (4)

Fig. 2 Decomposition of the complete system solution space into
component solution spaces

Fig. 3 Example of optimal component solution spaces �1 and �2 for
a system composed of two components with one degree of freedom
each

where [xl,k, xu,k] is a dk-dimensional interval for k =
1, . . . , n, providing a simple and real-valued description for
the component solution spaces. Thus, corresponding shape
constraints must be included in problem (3), and the new
optimization problem reads as follows:

maximize
xl,k,xu,k

n∏
k=1

dk∏
i=1

(x
u,k
i − x

l,k
i)

subject to [xl,1, xu,1] × · · · × [xl,n, xu,n] ⊂ �c

(5)

where the optimization variables are in real coordinate
space. Problem (5) is identical to the optimization problem
for computing box-shaped solution spaces proposed in
Zimmermann and von Hoessle (2013). Hence, the Cartesian
product of box-shaped component solution spaces can
always be considered as a box-shaped solution space in
terms of Zimmermann and von Hoessle (2013) and the
other way around. In the literature, the calculation of
solutions to problems similar to problem (5) has been
studied extensively and is used for systems design. Further
examples can be found in Bemporad et al. (2004), Daub
(2017), Fender (2013), Götz et al. (2012), Graf et al.
(2018), Graff et al. (2016), Harwood and Barton (2017),
and Milanese et al. (1996). The associated algorithms
mainly differ depending on the type of the system
performance function f , e.g., linear, non-linear, and black-
box. Particularly, if the functions fj , j = 1, . . . , m are
linear, i.e.,

f (x1, . . . , xn) =
n∑

k=1

Akxk (6)

2099Optimizing component solution spaces for systems design

with Ak ∈ R
m×dk

, k = 1, . . . , n, problem (5) can be sim-
plified, see Harwood and Barton (2017). Defining b = fc,
it yields:

maximize
xl,k ,xu,k

n∏
k=1

dk∏
i=1

(x
u,k
i − x

l,k
i)

subject to xl,k ≤ xu,k, − xl,k ≤ −x
l,k
ds , xu,k ≤ x

u,k
ds , k = 1, . . . , n,

n∑
k=1

(a
k,T
j W

l,k
j xl,k + a

k,T
j W

u,k
j xu,k) ≤ bj , j = 1, . . . , m,

(7)

where a
k,T
j is the j th row ofAk andW

l,k
j ,W u,k

j are diagonal

dk ×dk matrices where their ith entries on the diagonals are
given by the following:

w
l,k
j,i =

{
1 for ak

j,i ≤ 0,
0 for ak

j,i > 0
, w

u,k
j,i =

{
0 for ak

j,i ≤ 0,
1 for ak

j,i > 0
(8)

for i = 1, . . . , dk , k = 1, . . . , n, j = 1, . . . , m. Problem (7)
can be solved numerically by using standard gradient-based
optimization algorithms.

2.4 Arbitrarily shaped component solution spaces

In contrast to box-shaped component solution spaces, there
are no shape constraints in this approach. Thus, arbitrary
shapes can be assumed. If �k , k = 1, . . . , n, are represented
by

�k = {xk ∈ �k
ds : f k(xk) ≤ f k

c }, (9)

the goal is to find optimal functions f k and corresponding
thresholds f k

c for k = 1, . . . , n to obtain an optimal
solution of problem (3). The functions f k , k = 1, . . . , n
can be interpreted as component performance functions that
contribute to the total system performance. If the optimal
functions f k are known a-priori, only the values of f k

c must
be sought in order to obtain optimal component solution
spaces. This, for example, is the case when the system
performance function can be written in the form as follows:

f (x1, . . . , xn) =
n∑

k=1

f k(xk), (10)

cf. Daub (2017). To express the dependency of �k on f k
c

in here, the notation �k(f k
c) is used. Then, problem (3)

reduces to the optimization problem as follows:

maximize
f 1
c ,...,f n

c

vol(�1(f 1
c) × · · · × �n(f n

c))

subject to
n∑

k=1
f k
c ≤ fc.

(11)

Again, this is an optimization problem where the optimiza-
tion variables are in real coordinate space. The optimization
constraints guarantee that condition (2) is fulfilled. As
the objective function increases if any entry of f k

c , k =
1, . . . , n, is increased, a maximum of problem (11) is always

obtained for
∑n

k=1 f k
c = fc. Note that linear system perfor-

mance functions fj are incorporated in this approach as they
can be written in the form of (10), compare equation (6). For
more general system performance functions, a reduction of
problem (3) is more difficult.

2.5 Numerical implementation

A challenge for solving problem (11) is the computation of
the volume of �1(f 1

c) × · · · × �n(f n
c). If the single dk-

dimensional volumes of �k(f k
c), k = 1, . . . , n are known,

the total volume is obtained by multiplication. The single
volumes can be approximated or calculated analytically:

– Volume approximation: Monte Carlo integration can be
used for an efficient approximation of the volume of
�k(f k

c), see (Evans and Swartz 2000). Therefore, Nt

independent, uniformly distributed sample points are
generated in �k

ds, where f k is evaluated at each sample
point. If f k(xk) ≤ f k

c holds, the sample point xk is
considered as permissible. Now, the volume of �k(f k

c)

can be calculated by dividing the number of permissible
sample points, denoted by Np, by Nt, and multiplying
with the volume of �k

ds, i.e.,

vol(�k(f k
c)) = Np

Nt

dk∏
i=1

(x
u,k
ds,i − x

l,k
ds,i). (12)

– Exact volume computation: For linear performance
functions, �k(bk), i.e.,

�k(bk) = {xk ∈ �k
ds : Akxk ≤ bk} (13)

with bk = f k
c is a polytope. Its volume can be

computed exactly by using the method proposed in
Lasserre (1983). Here, the volume of a polytope which
is described by Ax ≤ b, A ∈ R

m×d , b ∈ R
m, is

computed via a recursion scheme. Let V (d, A, b) be the
volume of this polytope, then:

V (d, A, b) = 1

d

m∑
j=1

bj

|aj,i(j)|Vj (d − 1, Ãi(j), b̃), (14)

where Vj (d − 1, Ãi(j), b̃) is the volume of the j th
face, obtained by eliminating xi(j) in Ax ≤ b. For this
purpose, aTi(j)x = bi(j) is used where aTi(j) is the ith row

of A which yields Ãi(j)x ≤ b̃, Ãi(j) ∈ R
(m−1)×(d−1),

b̃ ∈ R
m−1. Other methods to calculate the volume

of a polytope require the calculating of its corner
points, see Büeler et al. (2000) for an overview. For
arbitrary functions f k , analytical formulae to calculate
the volume of �k(f k

c), k = 1, . . . , n are either not
available or more complex.

2100 M. Daub et al.

In general, the objective function of problem (11) is not
differentiable, see Erschen (2018) for an example. There-
fore, non-gradient-based optimization algorithms such as
direct search methods are preferred.

Suitable initial values (f 1
c,0, . . . , f

n
c,0) for problem (11)

can be obtained by solving the minimax problem as follows:

minimize
x1,...,xn

max{fj (x
1, . . . , xn) − fc,j : j = 1, . . . , m}

subject to x
l,k
ds ≤ xk ≤ x

u,k
ds , k = 1, . . . , n.

(15)

and setting f k
c,0 = f k(xk)+εk , εk ∈ R

m+, k = 1, . . . , n with
n∑

k=1
(f k(xk) + εk) ≤ fc for an optimal solution of problem

(15). Note that problem (15) can be also used for choosing
initial values for problem (5). Moreover, if a solution of
problem (5) is already available, i.e., box-shaped component
solution spaces, initial values for problem (11) can be also
obtained by setting f k

c,j,0 = max{f k
j (xk) : xl,k ≤ xk ≤

xu,k}, j = 1, . . . , m, k = 1, . . . , n.
In the following two sections, optimal box-shaped and

optimal arbitrarily shaped component are computed and
compared for crash design problems. In doing so, the
numerical approaches presented in this paper are used.

3 Application to a simple crash design
problem

3.1 System specifications

The problem of designing a vehicle front structure
consisting of two sections modeled as components is
considered, compare (Zimmermann and von Hoessle 2013).
The problem is visualized in Fig. 4. The vehicle mass m

is lumped at the end of the two front end components.
Together with the deformation length of the components s̄1

and s̄2, they are assumed to be uncontrollable parameters.
They are assumed without deeper knowledge for the early
design stage and define the frame of the first decisions
with m = 1500 kg, s̄1 = s̄2 = 300mm. Further
detailed properties of the components still need to be chosen
such that the overall vehicle meets crash requirements.
These are formulated with respect to quantities measured
in crash tests. For example, in the US-NCAP crash load
case, a vehicle is driven against a rigid barrier with a
velocity of v0 = 15.6 mm

ms . Here, there are requirements
on the system performances concerning the absorbed
energy, the maximum acceleration of the vehicle, and the
progressive order of deformation, see Fender (2013). All of
these responses can be computed from force–deformation
characteristics which are functional properties of the two

Fig. 4 Vehicle front structure for the simple crash design problem
with two components and force-deformation characteristics F 1(s),
s ∈ [0mm, s̄1) and F 2(s), s ∈ [0mm, s̄2)

components and represent the force levels required for
plastic deformation. Design variables are used to define the
force–deformation characteristics F 1(s) for s ∈ [0mm, s̄1)

and F 2(s) for s ∈ [0mm, s̄2). Note that in this simple
example, the mass m.

Due to technical limitations in this crash design problem,
it is not possible to build force–deformation characteristics
Fk(s) that go below 0 kN and above 500 kN for s ∈
[0mm, s̄k), k = 1, 2. The requirements on the responses can
be formulated mathematically as follows:

– Energy absorption: The impact energy 1
2mv20 must be

completely absorbed, meaning

−
s̄1∫

0mm

F 1(s) ds −
s̄2∫

0mm

F 2(s) ds ≤ −1

2
mv20. (16)

– Maximum acceleration: The deceleration must be
smaller than a critical threshold value ac, i.e.,

F 1(s) ≤ mac (17)

for all s ∈ [0mm, s̄1) and

F 2(s) ≤ mac (18)

for all s ∈ [0mm, s̄2). Here, ac = 0.3 mm
ms2

is used.
– Progressive order of deformation: The ordered defor-

mation of the vehicle must start at the front, meaning

F 1(s) ≤ F 2(0mm) (19)

for all s ∈ [0mm, s̄1).

For computing optimal component solution spaces with
the approaches presented in this work, force–deformation
characteristics with a finite number of design variables are
considered. In the following, the crash design problem is
investigated under a various number of design variables.
Both approaches from the previous chapter are used for this
purpose and are compared.

2101Optimizing component solution spaces for systems design

3.2 Components with one degree of freedom

First, constant force–deformation characteristics are consid-
ered for the simple crash design problem. Each of them
has one degree of freedom which means Fk(s) = Fk

1 for
s ∈ [0mm, s̄k). Here, Fk

1 , k = 1, 2, are the design variables.
In Fig. 7, examples of such characteristics are shown.

The design space of the system for constant force–
deformation characteristics is �ds = [0 kN, 500 kN]2, and
the system performance functions become linear of the
form f (x1, x2) = A1x1 + A2x2. Hence, the performance
requirements represent a system of linear inequalities, i.e.,⎛
⎜⎜⎝

−s̄1

1
0
1

⎞
⎟⎟⎠

︸ ︷︷ ︸
=A1

(
F 1
1

) +

⎛
⎜⎜⎝

−s̄2

0
1

−1

⎞
⎟⎟⎠

︸ ︷︷ ︸
=A2

(
F 2
1

) ≤

⎛
⎜⎜⎝

− 1
2mv20
mac
mac
0

⎞
⎟⎟⎠

︸ ︷︷ ︸
=b

(20)

where the first row belongs to inequality (16), the second
row to (17), the third row to (18), and the last row to (19).

Now, optimal component solution spaces �k can be
computed for Fk

1 , k = 1, 2. Box-shaped component
solution spaces �k

bs are accomplished by solving problem
(7) and arbitrarily shaped component solution spaces �k

as
by using the exact method from Section 2.5. In Fig. 5, the
corresponding component solution spaces are visualized.

The component solution spaces for both approaches
coincide, i.e., are identical intervals. This is due to the

Fig. 5 Decomposition of the complete system solution space�c (thick
black) for the simple crash design problem with dk = 1 into �1

bs, �
2
bs

(thin black) and �1
as, �

2
as (gray)

consistence of the optimization problems (5) and (11) for
convex system performance functions and dk = 1, compare
(Daub 2017).

3.3 Components with two degrees of freedom

Second, the simple crash design problem is considered
where each force–deformation characteristic is modeled as
a linear function. In detail, it is as follows:

Fk(s) = Fk
1

s̄k − s

s̄k︸ ︷︷ ︸
=φk

1 (s)

+ Fk
2

s

s̄k︸︷︷︸
=φk

2 (s)

(21)

for s ∈ [0mm, s̄k), k = 1, 2. This means that every force–
deformation characteristic has two degrees of freedom. The
functions φk

1 and φk
2 are similar to linear basis functions in

finite element theory. Examples of such characteristics are
shown in Fig. 7.

Here, the design space of the system is �ds =
[0 kN, 500 kN]4 and the system performance functions are
linear again. Thus, the performance requirements can be
written as a system of linear inequalities, i.e.,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

− s̄1

2 − s̄1

2
1 0
0 1
0 0
0 0
1 0
0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
=A1

(
F 1
1

F 1
2

)
+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

− s̄2

2 − s̄2

2
0 0
0 0
1 0
0 1

−1 0
−1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
=A2

(
F 2
1

F 2
2

)
≤

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1
2mv20
mac
mac
mac
mac
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
=b

(22)

where the first row belongs to inequality (16), the second
and third row to (17), the following two rows to (18),
and the last two rows to (19). Note that other force–
deformation characteristics with two degrees of freedom
may be also reasonable, for example, piece-wise constant

functions Fk(s) = Fk
1 , s ∈ [0, s̄k

2) and Fk(s) = Fk
2 ,

s ∈ [s̄k

2 , s̄k), k = 1, 2.
Now, optimal component solution spaces�k

as and�k
bs are

computed for (F k
1 , F k

2), k = 1, 2, like in the previous case
and visualized in Fig. 6.

The volume of �1
as × �2

as, denoted by Vas, is approxi-
mately 2.40 times bigger than the volume of �1

bs × �2
bs,

denoted by Vbs. This increase in volume makes system
design more flexible and more uncertainty can be tolerated.

3.4 Components with arbitrary degrees of freedom

This procedure can be extended to force–deformation
characteristics with arbitrary, but finitely many degrees
of freedom. Here, piece-wise linear and continuous

2102 M. Daub et al.

Fig. 6 Decomposition of the
complete system solution space
�c for the simple crash design
problem with dk = 2 into �1

bs,
�2

bs (black) and �1
as, �

2
as (gray)

characteristics are as follows:

Fk(s) =
dk∑
i=1

Fk
i φi(s) (23)

for s ∈ [0mm, s̄k) and dk > 1 are considered. The
functions φk

i , i = 1, . . . , dk are similar to linear basis
functions from finite element theory. They are piece-wise

linear, continuous, and φi((j − 1) s̄k

dk−1
) = 0 for i �= j ,

φi((j − 1) s̄k

dk−1
) = 1 for i = j , i, j = 1, . . . , dk .

In Fig. 7, examples of such characteristics are shown. As
in the previous cases, the system performance functions
are linear and the performance requirements given by the
inequalities (16)–(19) can be formulated as a system of
linear inequalities. The optimal component solution spaces
�k

as and �k
bs, k = 1, 2, can then be computed as done

previously. However, the visualization of these sets as
geometric shapes is difficult for dk > 3.

To overcome this problem, regions of possibly permissi-
ble characteristics can be used which are related to parallel
coordinate plots. A force–deformation characteristic given
by (23) is said to be permissible if Fk ∈ �k holds where
Fk = (F k

1 , . . . , F k
dk). The region of possibly permissi-

ble characteristics is then defined as the region between
the two bounding characteristics defined by F

l,k
out,i =

min{Fk
i : Fk ∈ �k} and F

u,k
out,i = max{Fk

i : Fk ∈ �k}
for i = 1, . . . , dk . The dk-dimensional interval [F l,k

out, F
u,k
out]

forms the minimal outer box of the component solution
space �k . However, any force–deformation inside this
region is not guaranteed to be permissible. In order to get
an idea about the quantity of permissible force–deformation
characteristics within the region of possibly permissible
ones, the average edge lengths of �k and [F l,k

out, F
u,k
out] can be

calculated and compared. For its ratio rk , it holds as follows:

rk = dk

√√√√ vol(�k)∏dk

i=1(F
u,k
out,i − F

l,k
out,i)

(24)

In Fig. 7, �k is visualized for different degrees of
freedom together with the region of possibly permissible
characteristics.

3.5 Box-shaped vs. arbitrarily-shaped component
solution spaces

An advantage of using box-shaped component solution
spaces is that the regions of possibly permissible charac-
teristics do not contain non-permissible force–deformation
characteristics as �k

bs = [F l,k
out, F

u,k
out], and therefore rk =

1 always holds. However, the volume Vbs and therefore
the regions of possibly permissible characteristics, become
rapidly smaller with growing dk compared to the volume of
Vas. This difference can also be assessed in terms of average
edge length of �1

bs × �2
bs, lbs = 2dk√

Vbs, and of �1
as × �2

as,

las = 2dk√
Vas, see Fig. 8.

This means, the greater dk , the more permissible
force–deformation characteristics can be found within the
regions of possibly permissible characteristics for arbitrarily
shaped compared to box-shaped component solution spaces.
However, with increasing dk , calculating arbitrarily shaped
component solution spaces with exact volume computation
requires much more computing time than the calculation of
box-shaped solution spaces, compare Fig. 9.

2103Optimizing component solution spaces for systems design

Fig. 7 Component solution
spaces �k and their
corresponding region of possibly
permissible characteristics both
bounded by solid gray lines for
different dk . Inside, there are
permissible (white dots) or
non-permissible (gray dots)
force–deformation
characteristics. Outside, they are
always non-permissible (black
dots)

4 Application to a realistic crash design
problem

4.1 System specifications

A realistic crash design problem is considered where the
frontal structure of the vehicle is composed of 8 crash-
relevant components, i.e., n = 8, which are distributed to
three different load paths, denoted by nlp = 3. In contrast
to Section 3, these components are not fully deformable
in the event of a crash. They are characterized by a
deformation length in horizontal direction, denoted by s̄k ,
k = 1, . . . , 8, before they behave as if they were rigid. From
knowledge about the crash behavior of similar components,

their deformation lengths are given in Table 1. The sum of
the deformation length and the non-deformable length yield
the real length of the component. Furthermore, the mass of
the vehicle can be distributed to 5 points, denoted by mi ,
i = 1, . . . , 5. The values of these discrete mass points are
also given in Table 2. They add up to the total mass of
the vehicle. The masses mi , i = 1, . . . , 4, are each part
of one load path, the mass m5 acts on all load paths as it
represents the rear end of the vehicle. All in all, a model
in geometry space is obtained which is visualized together
with the underlying vehicle structure in Fig. 10a.

From geometry space, the parts of the structure that
deform simultaneously during a vehicle crash can be
deduced. For that reason, the non-deformable lengths of

2104 M. Daub et al.

Fig. 8 Total volume (left) and
average edge length (right) of
box-shaped (bs) and arbitrarily
shaped (as) component solution
spaces

the components are subtracted from the real component
length. Hence, components which are shortened to their
deformation lengths s̄k , k = 1, . . . , 8 are considered. They
are stapled on the right. Now, the parts of the vehicle that
deform simultaneously are aligned vertically. This yields a
model in deformation space (see Fig. 10b).

For more information about this modeling approach see,
e.g., Fender (2013). Note that any interaction between the
different load paths due to structural connection is assumed
to be negligible here. This is, for example, the case for the
connection between the first and forth component and the
connection between the second and sixth component (see

Fig. 9 CPU time for Intel(R) Xeon(R) CPU E5-1660 v4 @ 3.20 GHz
to calculate box-shaped (bs) and arbitrarily shaped (as) component
solution spaces with analytically calculated volume

Fig. 10a). An extension of this approach for non-negligible
interactions is proposed in Lange et al. (2019).

Like for the simple crash design problem from Section 3,
requirements from crash tests are considered. These are
the energy absorption, the maximal acceleration, and the
order of deformation of the components. Again, they are
formulated with respect to the force–deformation character-
istics of the components. Due to technical limitation, the
force–deformation characteristics of the kth component are
bounded by a lower limit F

l,k
ds and an upper limit F

u,k
ds . The

corresponding values are given in Table 1. Compared to
Section 3 where local positions of deformation are used as
input for the force–deformation characteristics of the com-
ponents, positions of deformation are globally defined here.
The deformation of the vehicle starts at s0 = 0mm and
ends at send = 750mm. The deformation of the kth starts at
sk
0 ∈ [s0, send) and ends at sk

end ∈ (s0, send] with sk
0 < sk

end,
compare Fig. 4. Moreover, the mass of the vehicle that is
active at position s ∈ [s0, send) is denoted by m∗(s), which
is the mass in the interval (s, send]. Every component can
be identified by the deformation position s ∈ [s0, send) and
the load path j ∈ {1, . . . , nlp} which is denoted by k(j, s).
Thus, the requirements can be mathematically formulated
as follows:

– Energy absorption:

−
send∫
s0

1

m∗(s)

nlp∑
j=1

Fk(j,s)(s) ds ≤ −1

2
v20 (25)

where v0 is given in Table 2.

2105Optimizing component solution spaces for systems design

Table 1 Values of deformation
lengths and bounds of force-
deformation characteristics for
the realistic crash problem

Component 1 2 3 4 5 6 7 8

Value of s̄k in mm 100 200 100 100 150 300 350 300

Value of F
l,1
ds in kN 0 0 0 0 0 0 0 0

Value of F
u,k
ds in kN 200 200 350 350 350 350 150 150

Table 2 Values of masses,
initial velocity, and critical
acceleration for the realistic
crash problem.

Parameter m1 m2 m3 m4 m5 v0 ac

Value 20 kg 20 kg 200 kg 200 kg 1100 kg 15.6 mm
ms 0.3 mm

ms2

Fig. 10 Vehicle front structure
for the realistic crash design
problem with eight components.
The gray parts indicate
deformable structure and the
black parts non-deformable
structure

2106 M. Daub et al.

Fig. 11 Regions of possibly
permissible characteristics from
optimal component solution
spaces for optimal arbitrarily
shaped component solution
spaces (gray) and lower and
upper bounds of the optimal
box-shaped component solution
spaces (black)

– Maximum acceleration:

1

m∗(s)

nlp∑
j=1

Fk(j,s)(s) ≤ ac (26)

for all s ∈ [s0, send) where ac is given in Table 2.

– Progressive order of deformation:

Fk(s) − mk,∗(s)
m∗(s)

nlp∑
j=1

Fk(j,s)(s) ≤ Fk+1(sk+1
0) (27)

for all s∈ [sk
0 , s

k
end), k = 1, . . . , (n − 1) where the kth

and (k + 1)th component share the same load path and

2107Optimizing component solution spaces for systems design

Table 3 Comparison of
volume V , average edge length
l, and CPU time (Intel(R)
Xeon(R) CPU E5-1660 v4 @
3.20 GHz) for different
approaches to compute
component solution spaces

Approach V /kN40 l/kN CPU time/s

bs 5.06 × 1064 41.48 1.17

as: initial values 4.37 × 1068 52.00 1.17

as: Monte Carlo 103 4.59 × 1069 55.15 3.94 × 102

as: Monte Carlo 104 3.35 × 1070 57.96 5.46 × 103

as: Monte Carlo 105 7.92 × 1070 59.22 6.44 × 104

as: Monte Carlo 106 1.43 × 1071 60.10 8.86 × 105

as: exact 4.79 × 1071 61.95 3.74 × 105

mk,∗(s) is the mass in the interval (s, sk
end] in the load

path of the kth component.

The requirements (16)–(19) from Section 3 are special cases
of the requirements (25)–(27) where there is only one load
path and the active mass m∗ does not change.

The values given in Tables 1 and 2 are uncontrollable
parameters. The controllable variables, which can be
targeted by component designers, are the degrees of
freedom of the force–deformation characteristics of the
components. Again, piece-wise linear force–deformation
characteristics with dk degrees of freedom are considered
which are given by (23) for k = 1, . . . , 8. According to
the deformation length of the components, the degrees of
freedom of the components, i.e., the number of their design
variables are chosen as d1 = d3 = d4 = 3, d5 = 4, d2 = 5,
d6 = d8 = 7, and d7 = 8.

Therefore, the design space has 40 dimensions and the
requirements on the system performance reduce to a system
of linear inequalities. Now the optimal component solution
spaces �k , k = 1, . . . , 8, for the design variables of
the force–deformation characteristics can be computed like
before. The results are visualized by using the lower and
upper bounds of box-shaped component solution spaces
and the regions of possibly permissible characteristics for
arbitrarily shaped component solution spaces (see Fig. 11).

Here, the findings for the simple crash design problem
of Section 3 are validated. Again, the volume of arbitrarily
shaped component solution spaces is significantly greater
than the volume of box-shaped ones, as is their average edge
length. Details are stated in Table 3. However, the design
variables of any force–deformation characteristic within the
region of possibly permissible characteristics need to be
tested if they are permissible, meaning to be in �k , k =
1, . . . , 8. In the case of box-shaped component solution
spaces, this is not necessary. Furthermore, the computation
time for arbitrarily shaped component solution spaces is
much greater than the computation time for box-shaped
component solution spaces.

To determine the regions of possibly permissible
characteristics in Fig. 11, the exact algorithm for the
computation of the volume of �k , k = 1, . . . , 8, from

Section 3 is used. In Table 3, this is extended by also using
the Monto Carlo approach with 103, 104, 105, and 106 local
sample points per component to compute the volume of each
�k , k = 1, . . . , 8. Their computation time is shown together
with the volume of �1 × · · · × �8 and its average edge
length. The table is complemented by the results for the
initial values for computing arbitrarily shaped component
solution spaces from box-shaped solution spaces.

Table 3 demonstrates that arbitrarily shaped component
solution spaces computed by using the exact algorithm
for volume computation comprise the largest volume V .
Although the same optimization problem is solved by
using the Monte Carlo method for volume computation, the
volume V is smaller. The less sample points to compute the
volume of �k , k = 1, . . . , 8, the less computational effort
is required to solve problem (11). However, the optimal
volume found is also less. If 106 sample points are used,
the volume gets close to the volume which is obtained by
using the exact approach. If 103 sample points are used, the
volume is still close to the volume for the initial values.

As the initial values for the computation of arbitrarily
shaped component solution spaces are deducted directly
from box-shaped component solution spaces, their compu-
tation time is the same. Furthermore, the volume V for the
initial values is approximately 104 times greater than the
volume for box-shaped solution spaces. In contrast to the
other approaches which solve problem (11), the computa-
tional effort to obtain component solution spaces for the
initial values is very small. Overall, it is always a trade-off
between the volume V and the CPU time to decide which
approach to choose when computing arbitrarily shaped
component solution spaces. In case the volume for box-
shaped solution spaces is sufficient, such a decision is not
required.

5 Conclusion

In this paper, a new approach for optimal decomposition
of system requirements into component requirements is
presented, yielding component solution spaces. Hence,
a more appropriate and more flexible decoupling-based

2108 M. Daub et al.

development of components is enabled. This decoupling
is necessary to break down complexity and to allow for
independent design of components. Previous work relied
on strong decoupling of all design variables, which often
leads to an unnecessary loss of solution space associated
with the loss of feasible designs. Hence, this work aims
at a better balance between decoupling and flexibility. For
this, a new hybrid approach is proposed where engineering
knowledge is combined with mathematical procedures such
that the decoupling can follow the engineering definition
of components, which are motivated by the organization of
the different stakeholders contributing to the overall system
development.

In contrast to existing box-shaped solution space
approaches by Zimmermann and von Hoessle (2013) and
Fender et al. (2016), the proposed decomposition scheme
for computing component solution spaces does not decouple
all considered design variables. By not decoupling design
variables of one component, larger solution spaces with
potentially more feasible designs, and thus higher design
flexibility, are achieved. The originally box-shaped solution
spaces for the fine-grain decoupling are now replaced by
the Cartesian product of arbitrarily shaped sets as a subset
of the complete solution space following the engineering
definitions of meaningful components.

The effectiveness of the new approach is demonstrated
by small examples and the full potential is illustrated by
a complex structural design problem for crashworthiness.
The proposed method can be transferred to other problems
in systems engineering where a clear decomposition into
components is meaningful.

Acknowledgments This work was supported by the SPP 1886
“Polymorphic uncertainty modeling for the numerical design of
structures” of the German Research Foundation, DFG.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

Replication of results All results can be reproduced by using the
equations and values presented in this work.

References

Avriel M, Rijckaert MJ, Wilde DJ (1973) Optimization and design:
International summer school on the impact of optimization theory
on technological design, Katholieke Universiteit te Leuven, 1971.
Prentice-Hall, Englewood Cliffs

Bemporad A, Filippi C, Torrisi FD (2004) Inner and outer approxi-
mations of polytopes using boxes. Comput Geom 27(2):151–178.
https://doi.org/10.1016/S0925-7721(03)00048-8

Beyer H-G, Sendhoff B (2007) Robust optimization – a comprehensive
survey. Comput Methods Appl Mech Eng 196(33-34):3190–3218.
https://doi.org/10.1016/j.cma.2007.03.003

Büeler B, Enge A, Fukuda K (2000) Exact volume computation
for polytopes: a practical study. In: Kalai G, Ziegler GM (eds)
Polytopes, DMV Seminar. Birkhäuser, Basel, pp 131–154.
https://doi.org/10.1007/978-3-0348-8438-9 6

DaubM (2017) Konvexe Optimierung am Beispiel volumenmaximaler
einbeschriebener Rechtecksmengen (Convex optimization at the
example of maximum-volume rectangle sets). Master thesis,
Universität Konstanz, Germany, http://nbn-resolving.de/urn:nbn:
de:bsz:352-0-420923

Erschen S (2018) Optimal decomposition of high-dimensional solution
spaces for chassis design. Ph.D. thesis, Technische Universität
München, Germany

Evans M, Swartz T (2000) Approximating integrals via Monte
Carlo and deterministic methods, Oxford statistical science series,
vol 20. Oxford University Press, Oxford

Fender J (2013) Solution spaces for vehicle crash design. Ph.D. thesis,
Technische Universität München, Germany

Fender J, Duddeck F, Zimmermann M (2016) Direct computation of
solution spaces. Struct Multidiscip Optim 55(5):1787–1796. https:
//doi.org/10.1007/s00158-016-1615-y

Götz M, Liebscher M, Graf W (2012) Efficient detection of permissi-
ble design spaces in an early design stage. Proceedings of the 11th
LS-DYNA Forum, Ulm, Germany. https://doi.org/10.13140/2.1.
2057.9202

Graf W, Götz M, Kaliske M (2018) Computing permissible design
spaces under consideration of functional responses. Adv Eng
Softw 117:95–106. https://doi.org/10.1016/j.advengsoft.2017.05.
015

Graff L, Harbrecht H, Zimmermann M (2016) On the computation
of solution spaces in high dimensions. Struct Multidiscip Optim
54(4):811–829. https://doi.org/10.1007/s00158-016-1454-x

Harwood SM, Barton PI (2017) How to solve a design centering prob-
lem. Math Methods Oper Res 86(1):215–254. https://doi.org/10.
1007/s00186-017-0591-3

Hendrix EM, Mecking CJ, Hendriks TH (1996) Finding robust
solutions for product design problems. Eur J Oper Res 92(1):28–
36. https://doi.org/10.1016/0377-2217(95)00082-8

Lange VA, Fender J, Song L, Duddeck F (2019) Early phase modeling
of frontal impacts for crashworthiness: from lumped mass–spring
models to deformation space models. Proc Inst Mech Eng Part D:
J Autom Eng 233(12):3000–3015. https://doi.org/10.1177/09544
07018814034

Lasserre JB (1983) An analytical expression and an algorithm for
the volume of a convex polyhedron inr n. J Optim Theory Appl
39(3):363–377. https://doi.org/10.1007/BF00934543

Milanese M, Norton J, Piet-Lahanier H, Walter E. (eds) (1996)
Bounding approaches for system identification. Springer Sci-
ence+Business Media, New York. https://doi.org/10.1007/978-1-
4757-9545-5

Parkinson A, Sorensen C, Pourhassan N (1993) A general approach for
robust optimal design. J Mech Des 115(1):74. https://doi.org/10.
1115/1.2919328

Zimmermann M, von Hoessle JE (2013) Computing solution spaces
for robust design. Int J Numer Methods Eng 94(3):290–307.
https://doi.org/10.1002/nme.4450

Zimmermann M, Königs S., Niemeyer C, Fender J, Zeherbauer C,
Vitale R, Wahle M (2017) On the design of large systems subject
to uncertainty. J Eng Des 28(4):233–254. https://doi.org/10.1080/
09544828.2017.1303664

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

2109Optimizing component solution spaces for systems design

https://doi.org/10.1016/S0925-7721(03)00048-8
https://doi.org/10.1016/j.cma.2007.03.003
https://doi.org/10.1007/978-3-0348-8438-9_6
http://nbn-resolving.de/urn:nbn:de:bsz:352-0-420923
http://nbn-resolving.de/urn:nbn:de:bsz:352-0-420923
https://doi.org/10.1007/s00158-016-1615-y
https://doi.org/10.1007/s00158-016-1615-y
https://doi.org/10.13140/2.1.2057.9202
https://doi.org/10.13140/2.1.2057.9202
https://doi.org/10.1016/j.advengsoft.2017.05.015
https://doi.org/10.1016/j.advengsoft.2017.05.015
https://doi.org/10.1007/s00158-016-1454-x
https://doi.org/10.1007/s00186-017-0591-3
https://doi.org/10.1007/s00186-017-0591-3
https://doi.org/10.1016/0377-2217(95)00082-8
https://doi.org/10.1177/0954407018814034
https://doi.org/10.1177/0954407018814034
https://doi.org/10.1007/BF00934543
https://doi.org/10.1007/978-1-4757-9545-5
https://doi.org/10.1007/978-1-4757-9545-5
https://doi.org/10.1115/1.2919328
https://doi.org/10.1115/1.2919328
https://doi.org/10.1002/nme.4450
https://doi.org/10.1080/09544828.2017.1303664
https://doi.org/10.1080/09544828.2017.1303664

	Optimizing component solution spaces for systems design
	Abstract
	Introduction
	Component solution spaces
	Definitions
	Problem statement
	Box-shaped component solution spaces
	Arbitrarily shaped component solution spaces
	Numerical implementation

	Application to a simple crash design problem
	System specifications
	Components with one degree of freedom
	Components with two degrees of freedom
	Components with arbitrary degrees of freedom
	Box-shaped vs. arbitrarily-shaped component solution spaces

	Application to a realistic crash design problem
	System specifications

	Conclusion
	Compliance with ethical standards
	References

