Structural and Multidisciplinary Optimization (2020) 61:19-38
https://doi.org/10.1007/500158-019-02440-2

RESEARCH PAPER

®

Check for
updates

Large-scale level set topology optimization for elasticity and heat
conduction

Sandilya Kambampati' © . Carolina Jauregui' - Ken Museth? . H. Alicia Kim'

Received: 2 July 2019 / Revised: 18 September 2019 / Accepted: 17 October 2019/ Published online: 11 December 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract

We present a numerical study of a new large-scale level set topology optimization (LSTO) method for engineering design.
Large-scale LSTO suffers from challenges in both slow convergence and high memory consumption. We address these
shortcomings by adopting the spatially adaptive and temporally dynamic Volumetric Dynamic B+ (VDB) tree data structure,
open sourced as OpenVDB, which is tailored to minimize the computational cost and memory footprint by not carrying high
fidelity data outside the narrow band. This enables an efficient level set topology optimization method and it is demonstrated
on common types of heat conduction and structural design problems. A domain decomposition—based finite element method
is used to compute the sensitivities. We implemented a typical state-of-the-art LSTO algorithm based on a dense grid data
structure and used it as the reference for comparison. Our studies demonstrate the level set operations in the VDB algorithm
to be up to an order of magnitude faster.

Keywords Topology optimization - Large scale computing - Sparse data structures - VDB - Level set method

1 Introduction

Level set topology optimization (LSTO) (Allaire et al.
2004; Wang et al. 2003) is a popular method for topology
optimization. It incorporates an implicit representation of
the boundary, commonly as a signed distance function.
The level set function is updated by solving the level
set equation (LSE), Osher and Fedkiw (2006) d¢/dt +
V - V¢ = 0, which is a type of a Hamilton-Jacobi

Responsible Editor: YoonYoung Kim

P4 Sandilya Kambampati
sakambampati @ucsd.edu

Carolina Jauregui
cjauregu@ucsd.edu

Ken Museth
ken.museth @voxeltechinc.com

H. Alicia Kim
alicia@ucsd.edu

Structural Engineering, University of California San Diego,
San Diego, CA 92093, USA

2 Voxel Tech Inc., Sierra Madre, CA 91024, USA

equation (HJE) (Osher and Sethian 1988) where ¢ is the
level set function, ¢ is the pseudo time step, and V is the
velocity of the boundary. The LSE, which is a hyperbolic
partial differential equation that can be solved using upwind
schemes (Osher and Fedkiw 2001), is essential to track
the boundary accurately. Wang et al. (2003) applied the
level set method (LSM) to structural topology optimization
by means of mathematical programming. Allaire et al.
(2004) used classical shape derivatives to demonstrate LSM
for structural topology optimization. Xia et al. (2006)
introduced a semi-Lagrangian method to solve the LSE
for structural topology optimization problems. Wang and
Wang (2006) used a multi-quadratic radial basis function
to approximate the level set function, which is updated by
transforming the LSE into a system of ordinary differential
equations. Sivapuram et al. (2016) used the level set
method to simultaneously optimize microstructure and
macrostructure topologies.

Other topology optimization methods where the level
set is updated using strategies that differ from the LSE
can also be found in the literature. Such methods typically
have the advantage of nucleating holes inside the structure
during the optimization. Norato et al. (2007) proposed a
topological derivative method for topology optimization of
structural compliance minimization problems. Suresh and
Takalloozadeh (2013) introduced a topological derivative

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00158-019-02440-2&domain=pdf
http://orcid.org/0000-0002-2241-7291
mailto: sakambampati@ucsd.edu
mailto: cjauregu@ucsd.edu
mailto: ken.museth@voxeltechinc.com
mailto: alicia@ucsd.edu

20

S. Kambampeati et al.

method using level sets for stress constrained topology
optimization problems. Xia et al. (2019) integrated the
material removal scheme of the bi-directional evolutionary
structural optimization method into a level set method to
nucleate holes. Yamada et al. (2010) developed a level set—
based topology optimization method where the level set
is updated using the reaction-diffusion equation. Pingen
et al. (2010) studied a parametric level set approach for
flow topology optimization, where the level set function is
parameterized using reduced order radial basis functions.
However, in the above methods, the level set function needs
to be defined everywhere in the domain, thus necessitating
a dense grid for representing the level set function.

On the other hand, when the level set function ¢ is a
signed distance function and ¢ is updated using the LSE,
the LSM becomes strictly a boundary-based method where
¢ can be limited to a narrow band around the boundary.
Therefore, sparse data structures can be used to allocate
computational memory only in the narrow band of the
boundary to represent the level set function. An example of
a sparse data structure is a tree data structure such as an
octree (Laine and Karras 2011). The octree data structures
have been successfully applied to level set methods (Min
2004; Min and Gibou 2007; Mirzadeh et al. 2016). However,
a fundamental problem with octrees is that they tend
to introduce deep tree structures with slow access time,
typically O(n), where n is the number of levels in the tree.
Additionally, level set implementations on octrees typically
require the tree to be graded, i.e., the difference in levels
between any two neighboring tree nodes cannot exceed
one. This reduces the sparseness of the tree and incurs
significant memory overheads. An innovative sparse data
structure which offers fast (on average constant) access time
is the Volumetric Dynamic B+ (VDB) tree (Museth 2013).
Additionally, VDB enables highly efficient multi-threaded
algorithms and dynamically updates the tree structure as the
level set interface evolves, leading to faster advection and
reinitialization processes for large-scale simulations.

There is an increased interest in large-scale topology
optimization as it can discover new designs that cannot
be obtained with low mesh density (Aage et al. 2017).
Several efforts have already been made using the level
set method. Deng and Suresh (2017) presented stress
constrained topology optimization of an exhaust system
using over 314,000 elements. Zong et al. (2018) designed
microstructures with desired mechanical properties for 3D
printing using over 160,000 elements. Villanueva and Maute
(2017) used 720,000 elements to optimize the topology
of 3D laminar incompressible flow problems. In Pizzolato
et al. (2017), Pizzolato et al. used 507,000 elements to
optimize the topology of latent heat thermal energy storage

@ Springer

devices. Yaji et al. (2014), used 512,000 elements to
optimize the topology of flow channels to minimize flow
friction. In Martinez-Frutos et al. (2019), Martinez-Frutos
et al. used 2,500,000 elements to optimize the topology of
an L-bracket under stress and porosity constraints. Notably,
in the above level set methods, the finite element analysis
(FEA) mesh and the level set grid coincide, thus making the
level set grid a dense grid. Defining the level set function
on a dense volumetric data structure can be a significant
shortcoming in terms of convergence time for large-scale
LSTO. This is due to the complex operations involved in
updating the level set, e.g. re-building the narrow-band, re-
computing distances, and performing the velocity extension.
Therefore, state-of-the-art sparse data structures, such as
VDB, can be used to significantly improve the convergence
time in such large-scale LSTO problems.

However, using VDB for large-scale LSTO involving
FEA meshes is not straight forward. There are still
a few challenges that need to be addressed for the
efficient use of VDB in LSTO. Specifically, the challenges
involve developing efficient algorithms that help in (a)
communicating boundary information between VDB to the
FEA mesh, (b) extracting the sensitivity information from
the FEA mesh elements to the boundary, and (c) optimizing
and assigning optimum velocities of the boundary on the
VDB level set grid.

In this paper, we address the various challenges that
impede an efficient and fast large-scale LSTO method.
Specifically, we demonstrate how efficient algorithms and
data structures can significantly reduce the computational
times of large-scale elasticity and heat conduction LSTO
problems. To the best of our knowledge, the use of fast and
sparse data structures such as VDB in LSTO has not been
investigated. The use of VDB in large-scale LSTO is not
straight forward; and we address this by developing efficient
algorithms. OpenVDB, an open-source implementation of
the VDB data structure, is used in this study. A parallel FEA
solver (Aage et al. 2015) is used to compute the sensitivities.
For the sake of comparison, we implemented a typical
state-of-the-art in-house LSTO algorithm based on a dense
grid data structure popularly used in LSTO. This in-house
algorithm is used as reference. The LSTO methods are used
to minimize structural compliance and thermal compliance
of the domain subject to a volume constraint. The benefits
of using VDB-LSTO, in terms of computational time taken
by the level set operations are presented. Our investigation
reveals that the level set operations in VDB-LSTO are up to
an order of magnitude faster than the reference algorithm.
Using the VDB-LSTO method, we are able to explore large-
scale design spaces using meshes with over 100 million
degrees of freedom.

Large-scale level set topology optimization for elasticity and heat conduction

21

2 Level set topology optimization

In this section, we describe the implementation details
of the reference LSTO and VDB-LSTO. The reference
level set method is developed using current state-of-the-art
algorithms popularly used in LSTO. In typical LSTO, the
boundary of a structure or material is represented by an
implicit function ¢ (x) (referred to as the level set function)
and defined as

¢(x) >0, x ¢ $2
¢(x) =0, xel’
d(x) <0, x e 2 (1)

where 2 is the domain, i.e., material, and I" is the domain
boundary, i.e., material surface. The level set function is
updated by solving the following scalar level set equation:
d¢
E+V"IV¢| =0 2
where V,, is the scalar velocity in the normal direction of the
boundary. In the computational algorithm, the values of ¢
are defined in a narrow band around the boundary surface.
The flowchart of our algorithm developed for both
reference and VDB-LSTO is shown in Fig. 1. Our algorithm
employs two separate grids: one to represent the level set
function with a narrow bandwidth of six voxels and the
other to conduct the FEA. The boundary is extracted from
the level set function as a vector of polygons using mesh
extraction algorithms (Section 2.3). The boundary points
and classifications of each element that indicate whether
it is inside, outside, or on the boundary are passed to the
FEA mesh. The fractions of each element that are cut by
the level set are computed as a vector of volume fractions
(Section 2.4). The FEA and sensitivity analysis (Section 3)
compute the boundary point sensitivities. The optimum
velocities of the boundary points are calculated using the
boundary point sensitivities and mathematical programming
and are passed to the level set grid (Section 2.5). The level
set is updated based on the boundary point velocities by
extending the velocities into the narrow band followed by a
numerical solution of the LSE (Section 2.6).

2.1 Problem definition
In this section, we present the general problem statement of

LSTO. The objective is to solve the following optimization
problem

min f =f F(£2)d$2
Q

st g =/S2Gj(.{2)d52§g9 Jj=1,2, .., Ng, (3)

Input problem
parameters

llevel set function

Boundary mesh
mdll extraction and volume
fraction computation

Reference LSTO: Marching Cubes
VDV-LSTO: Dual Marching Cubes

vector of boundary polygons
vector of volume fractions

FE and sensitivity

same for both Reference and VDB-LSTO
analysis

l boundary point sensitivities

Optimizing boundary

point velocities same for both Reference and VDB-LSTO

l boundary point velocities

Reference LSTO: Fast Marching

Advection (level set
VDV-LSTO: Fast Sweeping

update)

Convergence?

l Yes

Fig. 1 A flowchart of the level set topology optimization method
developed for both reference and VDB

where f is the objective function, g; is the jth constraint
function, g? is the jth constraint value, and N, is the
number of constraints. f is also the integral of the integrand
F($2), and g; is the integral of the integrand G;(£2). In
this study, the compliance (structural or thermal) is used as
the objective function, and the sensitivities are computed
using the finite element method (described in the following
sections).

2.2 Data structure
We first describe a dense data structure, which is typical of

the existing level set topology optimization methods. This
dense grid algorithm is used as the reference LSTO method

@ Springer

22

S. Kambampeati et al.

for comparison with the sparse VDB-LSTO algorithm. For
a given grid which is discretized into ny x n, x n; cells,
computational memory is allocated for a total of (n, + 1) X
(ny + 1) x (n; + 1) nodes in an array, with each node
containing information about its level set function ¢ value.

In contrast, VDB-LSTO uses a sparse data structure
to represent the boundary interface. An illustration of the
VDB data structure (Museth 2013) used for representing
the narrow-band signed distance of a circle shown on the
left-hand side of Fig. 2. The signed distance function of
the circle (radius = r, center at the origin) is defined as
#(x,y) = sign(x®+y2—r?)y/|x2 + y2 — r2|. On the right-
hand side, the hierarchical data structure shows the domain
with two levels of internal nodes (green and orange squares),
leaf nodes (blue), and active voxels (red). The level set
function values are only stored for voxels in a narrow band
around the boundary (the voxels in red), thus demonstrating
the sparsity of the data structure.

2.3 Mesh extraction

In our LSTO algorithm, the sensitivities are computed
on the boundary. For this purpose, the zero level set is
discretized into a polygon surface mesh. For the reference
LSTO method, the Marching Cubes algorithm is used to
compute the surface mesh (Lorensen and Cline 1987). This
algorithm visits each voxel, and identifies the edges of the
element that are intersected by the level set using an edge
table. Based on these edges, the algorithm produces a set of
triangular faces from a static case table, which lies on the
surface using a triangle table. The resulting representation
of the level set surface is a triangular mesh, made up of
a list of faces and corresponding vertices. The Marching

outside

oz, y) >0

[1Y
112
B

inside

ola,y) <0

Fig.2 Description of data structure used in OpenVDB (Museth 2013).
On the left-hand side, the level set function of the circle is shown.
On the right-hand, the hierarchy of the data structure for represent-
ing the circle—with two levels of internal nodes (green and orange

@ Springer

Cubes algorithm is a simple-to-implement algorithm that is
a popular state-of-the-art method in topology optimization
for mesh extraction (Nobel-Jgrgensen et al. 2015; Martinez-
Frutos and Herrero-Pérez 2017; Dai et al. 2017; Nguyen and
Kim 2019).

VDB-LSTO, on the other hand, employs Dual Marching
Cubes (Nielson 2004), which is a faster and more robust
meshing algorithm that produces fewer polygons of higher
quality. The result is a compact quad mesh of much higher
quality than the triangle mesh produced by the Marching
Cubes algorithm. Specifically, for a given level set function
represented on a VDB data structure, we use OpenVDB’s
volumeToMesh function for the mesh extraction. The
resulting boundary mesh is a vector of quadrilaterals and a
vector of the boundary vertices of each quadrilateral.

2.4 Volume fraction calculation

The volume fractions v, which are the fractions of each ele-
ment that are cut by the level set, are computed as the bound-
ary is dynamically evolving. These volume fractions commu-
nicate whether or not a particular element is inside, outside,
or on the boundary to the FEA mesh. The volume fraction
of an element n is computed by the following equation:

v(n) = fg H($)dS$2 “

where 2, is the domain of the element n, and H is
the Heaviside function. The above integral is computed
numerically as follows:

"(”):ZZZM s
i Jj ok

int

squares), leaf nodes (blue), and active voxels (red)— is shown. The
level set function values are only stored for the voxels in red, thus
demonstrating the sparsity of the data structure

Large-scale level set topology optimization for elasticity and heat conduction

23

where niy; is the number of quadrature points used along
each coordinate axis, and (x;, yj, zx) are the quadrature
points given by

i j k
”int+1, "im"rl’ Rine + 1

(Xi,yj,Zk)=<) i, jo k=1, nine (6)

In the reference LSTO algorithm, threading is done over
boundary points, and the volume fractions are modified
for elements in the narrow band. The pseudo code for
the volume fraction computation for the reference LSTO
method is shown in Algorithm 1.

Algorithm 1 Volume fraction computation in reference LSTO.

» Thread over boundary points P, = (px, Py, Pz)

HalfNarrowBand <— NarrowBandWidth/2 » define half narrow band width
for i = round(p,) - HalfNarrowBand , .. ., round(p,) + HalfNarrowBand do
for j =round(py) - HalfNarrowBand , ..., round(p,) + HalfNarrowBand do
for k = round(p,) - HalfNarrowBand , . . ., round(p;) + HalfNarrowBand do
» Elementlndex is the index of the element with coordinates (i, j, k)

ElementIndex < i + j(ny) + k(nycny)

» get signed distance information of all the nodes of the element

SignedDist <— GetSignedDistance(ElementIndex)

» compute and assign volume fraction, given the signed distance values
VolumFraction(i) < ComputeElementVF(SignedDist)

end for
end for
end for

In VDB-LSTO, in order to efficiently compute the
volume fractions of each element for a given VDB level
set grid, we parallelize the algorithm over the leaf nodes
of the VDB tree structure. Specifically, we use OpenVDB’s
LeafManager to access the array of pointers to the
data structure’s leaf nodes, which by construction are
intersecting the narrow band. The fast access to the VDB’s
leaf nodes can be exploited efficiently and the challenge of

fast volume fraction calculation can be addressed. The array
of pointers of the leaf nodes is broken down into smaller
chunks and a computational thread is assigned to each
chunk. Each computational thread visits the active voxels of
the leaf nodes in its chunk and computes the volume fraction
of the element. The pseudo code shown in Algorithm 2
illustrates the computation of a vector of volume fractions
for a given VDB level set grid.

Algorithm 2 Volume fraction computation in VDB-LSTO.

» get the array of pointers of the leaf nodes of the grid
LeafNodes < GetLeafNodes(grid)

» segment nodes in to parallel chunks and get the range of pointers owned by each chunk

for all the leaf nodes in the current chunk do
for the active voxels of the leaf node do

» get signed distance information of all the nodes of the cell

SignedDist <— GetSignedDistance(voxel)

» compute and assign volume fraction, given the signed distance values
VolumeFraction(voxel) <— ComputeElementVF(SignedDist)

end for
end for

2.5 Optimization

In this section, we show the details of a fast algorithm
that computes the optimal scalar velocity field V,, of
the boundary using the method of Lagrangian multipliers
(Arora 2007). Specifically, for a given polygon mesh of a
level set function (which is computed using mesh extraction

algorithms in Section 2.3) and boundary point sensitivities
this algorithm computes the optimum velocities at the
boundary points, for both reference and VDB-LSTO. The
objective and constraint functions in (3) are linearized with
the help of the sensitivities, and the optimum velocity field
Vp,i for the reference LSTO and VDB-LSTO—which is
required to advect the level set function ¢—is computed by

@ Springer

24

S. Kambampeati et al.

solving the following optimization problem (Dunning and
Kim 2015):

Minimize Af = Z(f/(Pi)AiVn,i)At

subject to Agj = Z(g}(Pi)Ai Vo)At < g @

where f’(P;) and g} (P;) are the sensitivities of the objective
and constraint functions of the point P;, V, ; is the velocity
of the point i in the normal direction, and A; is the average
area of all the polygons that have this current boundary point
as a vertex, At = 1 is the pseudo time step, and g; is the
target constraint for constraint j.

Equation (7) is solved using the method of Lagrangian
multipliers. The steepest descent normal vector is given in
terms of the Lagrangian multipliers as

L f/(P)i+ X5 b 8 (P)i
If'(P)+ X kg, j&' (P

Zi = Vn,i

®)

Find A ¢ and Az ; which

minimize Af = Y (f'(P); A; Va.)) At,

where)_Lg) j are the Lagrange multipliers, and z; is the
steepest descent direction of the boundary point P;. The
above equation is multiplied by a constant yielding the
following descent vector without loss of generality:

Gi=npf(P)i+) hg g (P ©)
J

where A and A ; are the unknown parameters describing

the descent direction. The descent vector given by the above

equation is capped between upper and lower bounds /; and

u; as

zi = min(max(z;, [;), u;) (10)

where z; represents the capped descent. The upper and
lower bounds are determined by the maximum allowable
displacement of a boundary point, usually dictated by
the Courant-Friedrichs-Lewy (CFL) condition (Courant
et al. 1967). The optimization problem is now restated by
substituting (9) and (10) into the constraint functions in (7)
as follows:

St Ag; = X0 g4(P). Ai(min(max(hy f'(P); + X, hg 8} (P)..), un) < g

1)

Equation (11) is solved for Ay and A, ; using the Newton-
Raphson method. Finally, the optimum velocities are given
by

Vi =min | max(hs f'(P);+) kg j&i(P),, 1), ui | (12)
j

2.6 Advection

The level set function is updated by solving the scalar level
set (2). For the reference LSTO algorithm, the boundary
point velocities are extended into the grid points within the
narrow band using the Fast Marching Method (FMM). In the
FMM, the grid point velocities are computed in ascending
order of the level set function, which means that the level set
function needs to be sorted by its value for every iteration.
The FMM is a popular state-of-the-art algorithm used in
topology optimization for velocity extension and advection
(Xia et al. 2012; Xia and Shi 2015; Liu et al. 2016; Dunning
and Kim 2015). The level set function is discretized in time
using the first-order forward Euler method. The gradient
of the level set function is calculated using the optimally
fifth-order Hamilton-Jacobian Weighted Essentially Non-
Oscillatory scheme (HJ-WENO (Osher and Fedkiw 2001)).

For the VDB-LSTO, the boundary velocities computed
at the boundary vertices of the quadrilaterals (which are

@ Springer

computed using mesh extraction algorithms in Section 2.3),
are extended to the narrow-band grid points using the
fast sweeping method (FSM) for sparse grids. The
implementation details of the fast sweeping method can
be found in Museth (2017). The FSM does not maintain
a minimum heap data structure (as FMM) but instead
performs multiple sweeps of all the grid points which
can be performed concurrently resulting in much better
computational performance than the FMM. The first-order
forward Euler method is used to discretize the level set
function in time, and spatial gradients are also computed
using optimally fifth-order HI-WENO.

3 Finite element analysis

This section presents the numerical scheme for the finite
element method and sensitivity computation employed for
the large-scale LSTO investigation for both VDB-LSTO and
the reference LSTO. We employed an open-source FEA
library (Aage et al. 2015), which was developed for large-
scale SIMP based topology optimization methods (https://
github.com/topopt/TopOpt_in_PETSc). This library uses the
Message Passing Interface (MPI) (Gropp et al. 1999) and
PETSc (Balay et al. 2017) for distributing the computational
memory and workload over several processors. The FEA
library decomposes the mesh into any given number of

https://github.com/topopt/TopOpt_in_PETSc
https://github.com/topopt/TopOpt_in_PETSc

Large-scale level set topology optimization for elasticity and heat conduction

25

partitions specified by the user, and assigns each partition to
a specific processor by default, while the topological details
of the structure (e.g. the level set function) are stored in
a separate processor. Eight-node hexahedral elements are
used for the FEA. The details of the way LSTO computes
sensitivities using the FEA is discussed here.

3.1 Finite element method using domain
decomposition

As an illustrative example, a schematic of a simple 2D
topology of a structure and the corresponding FEA mesh,
simulated on a total of 9 processors (MPI ranks) is shown
in Fig. 3. The topology of the structure represented by
the level set is stored on Processor 0 (Fig. 3a). The FEA
mesh used is split into 8 partitions, and each partition is
assigned to Processor 1 to 8 (Fig. 3b). The volume fraction
vy (Section 2.4) of an element, computed by Processor 0, is
passed on to the appropriate processor corresponding to the
FEA mesh of the particular element (shown using the green
arrow in Fig. 3). This is accomplished by the MPI _Scatter
subroutine (Gropp et al. 1999).

Based on the volume fraction information, the elemental
stiffness matrix K, is constructed for each element by the
appropriate processor using the following equation:

K, = (@min + vf (@max — amin))Kg» (13)

Fig.3 An illustration of mesh
decomposition for distributed
FEA. The level set function is
stored on processor 0. The
elemental volume fractions
computed on processor 0 are
passed on to the appropriate
processor (shown using the
green arrow). The sensitivity
information computed by each
element is passed on to the level
set function cell (shown using
the orange arrow)

Volume fraction
is passed on to
the FE mesh

Region owned
by Processor 2

(a) Topology represented by
the level set (Processor0).

where « is the elasticity modulus (conductivity coefficient).
Omax and o are the values of o for the solid material
(vf = 1) and void material (vy = 0). KS, which is
a constant elemental stiffness matrix independent of the
topology), is computed for &« = 1 for a linear 8-noded brick
element using piecewise linear shape functions. The global
stiffness matrix K is then assembled from the elemental
stiffness matrices.

The generalized minimum residual (GMRES) method is
used with a multigrid preconditioner (Amir et al. 2014) to
solve the linear system of equations

KU=F (14)

where U and F are the displacement (temperature) and
force (heat) vectors. The state variable U at a mesh node
is stored in the processor that owns the node. Therefore,
U is distributed across all processors. This is followed by
computing the centroid sensitivities of each element by its
corresponding processor.

3.2 Boundary sensitivity interpolation

In this section, we describe a fast algorithm that com-
putes the sensitivity at the boundary point from the element
centroid sensitivities. The boundary points are stored on
Processor 0, but the centroid sensitivities are distributed
across all processors. Therefore, to speed up the computa-

Sensitivity
comp

passe

lis

the level set

Region owned
by Processor 8

T |
TN T '*/

Region owned
by Processor 1

N
i Region owned
by Processor 7

(b) FE mesh distributed
to 8 processors.

@ Springer

26

S. Kambampeati et al.

tion of boundary sensitivities, the centroid sensitivities of all
the elements are gathered on to processor 0. This is accom-
plished by the MPI_gather subroutine (Gropp et al. 1999),
where the centroid sensitivities of all the elements from all
the processors are copied on processor 0. For instance, the
sensitivity of the element owned by processor 8 in Fig. 3b is
passed on to the appropriate location of the level set cell on
processor 0.

The sensitivity f’(P) of a boundary point P is
interpolated based on the neighboring element centroid
sensitivities, centroid coordinates, and volume fraction
of the elements inside a support radius (Dunning et al.

2011). The computation is done on processor 0, since it
has access to the gathered centroid sensitivities. Figure 4
shows a schematic of a boundary point of interest and
its surrounding elements. For this boundary point, all the
elements which lie inside a support radius (shown in red) are
collected. Based on the sensitivity and the volume fraction
of the collected elements, a polynomial function is fitted to
compute the boundary sensitivity of the point.

The pseudo code shown in Algorithm 3 illustrates the
algorithm for collecting the neighboring centroid locations
and sensitivities of a boundary point P, = (px, py, p;)
inside a support radius SupRad.

Algorithm 3 Neighboring centroid location and sensitivities.

» assign a computational thread to each boundary point
NumSampleElement <— 0 » initialize to 0

CentroidList <— {} » initialize to an empty list
DistanceList < {} » initialize to an empty list
VolumeFractionList <— {} » initialize to an empty list
SensitivityList <— {} » initialize to an empty list

» visit all the elements in the support radius

for i = round(p,) - SupRad, ..., round(p,) + SupRad do

for j =round(py) - SupRad, ..., round(p,) + SupRad do
for k = round(p;) - SupRad, ..., round(p,) + SupRad do

Centroid <— (i + 0.5, j + 0.5, k 4+ 0.5)
if Distance(P,, Centroid) < SupRad then

Add Centroid, Distance, VolumeFraction, Sensitivity to corresponding lists

increase NumSampleElement by 1
end if
end for
end for
end for

The function ComputeBoundarySensitivities()
shown in Algorithm 4 computes the boundary sensitivities
f'(Py) of a point P, from the neighboring element centroid
sensitivity information. For each boundary point P,, the
following curve is fitted:

f/(Pn) = ap +ax(x — px) +ay(y — py) +a(z— p;) (15)

where f'(P,) is the sensitivity of the boundary point, and
ayx, ay, and a; are the coefficients, and ay is the intercept.
The weighted least squares interpolation is used to fit the
curve by visiting all the sample points for each boundary
point and forming the following matrices:

Aln, 1] = 1; Aln, 2] = (px — xu);
Aln, 3] = (py — yn); Aln, 4] = (p; — zn)

B[n] = f/(Pn); Win,nl =w,;n =1, ..., ng (16)

@ Springer

where n; is the number of sample points in the collection, B
is the sensitivity matrix, A is the coefficient matrix, and W
a diagonal matrix containing the weights, given by

wy = v(n)/d(n)> (17)

B Elementinside
support radius

Nt
N | B
e |

— Boundary

Element outside
support radius

Boundary point of
interest

A A A A

Fig. 4 Interpolation of boundary sensitivities based on elemental
centroid sensitivities

Large-scale level set topology optimization for elasticity and heat conduction

27

where v(n) is the volume fraction of sample element #, and
d(n) is the distance between the boundary point and the
centroid of the sample element n. The interpolation can be
now stated in the following matrix equations:

WAX = WB (18)

where X = [ao, ax, ay, a;]" is the matrix containing the
coefficients and the intercept. The least squares solution to
(18) is given by

X =inv[WAT (WA IWATWB (19)

Algorithm 4 Boundary sensitivity computation using least squares interpolation.

function ComputeBoundarySensitivities()

TOL « 107°

A <« ZeroMatrix(NumSampleElement,4) » initialize A
B <« ZeroVector(NumSampleElement) » initialize B
for i=1,..., NumSampleElement do

weight = VolumeFractionList[i]/(DistanceList[i]2 + TOL)

A(i,1) < weight

A(1,(2,3,4)) < weight x (P, - Centroid)
end for
X =inv(ATA) AT B p least squares solution
BoundarySensitivity(P,) = X(1)
end function

4 Numerical investigations

We investigate the numerical performance of VDB-
LSTO by comparing it with the reference LSTO method
for compliance minimization problems under a vol-
ume constraint. The computations are performed on the
Texas Advanced Supercomputer Center (TACC) cluster
(www . tacc.utexas.edu) where each node is equipped
with 64 GB RAM and a Xeon E5-2690 v3 processor with
24 cores.

4.1 Michell sphere

The first example is a linear elastic topology optimization
problem under torsion, known as the Michell sphere (Aage

Fig.5 Design domain (1.0 x 1.2
x 1.2) and boundary conditions
for the Michell sphere

\

clamped

et al. 2015). Figure 5 shows the design domain, discretized
into (ny, ny, n;) elements in x, y, z directions, respectively.
The structure is fixed on four nodes (0, n,/2+1,n,/2£1)
on the left-hand side, while unit forces corresponding to
a torque are applied on the right-hand side at nodes (n,
,ny/2 £1, n;/2 & 1). The FEA mesh is discretized into
160 x 192 x 192 = 5.9 million elements, using 160
processors (MPI ranks). The volume constraint used is 3%
and the elasticity modulus is set to unity.

The initial topology is a hollow sphere of volume 10%
of the domain (Fig. 6a). The optimized topology obtained
using the reference LSTO is shown in Fig. 6b, while the
optimized topology obtained using VDB-LSTO is shown in
Fig. 6¢. Figure 6b and ¢ show that the optimum topologies
represent truss-like structures on the surface of a sphere,
similar to the results presented in Aage et al. (2015)
and Lewinski (2004). The optimized compliance for the

@ Springer

www.tacc.utexas.edu

28

S. Kambampati et al.

Fig. 6 a Initial topology for the
Michell sphere. b Optimized
topology using reference LSTO
and 5.9 million elements for a
volume constraint = 3%. ¢
Optimized topology using VDB-
LSTO and 5.9 million elements
for a volume constraint = 3%. d
Optimized topology using VDB-
LSTO and 19.9 million elements
for a volume constraint =1%

Time per iteration (s)
(=]
T

T T T
Il Reference LSTO
I \/DB-LSTO

Mesh
extraction

Volume
fraction
calculation

FEA

Fig. 7 Average time (in seconds) breakdown of the VDB-LSTO and
reference LSTO methods for the Michell sphere (mesh size of 160 x
192 x 192 = 5.9 million elements, using 160 processors (MPI ranks).)
a Mesh extraction, where the level set is discretized into a surface
mesh. b Volume fraction calculations, where the fraction of the ele-
ment cut by the level set is computed. ¢ FEA to solve the linear system

@ Springer

Advection

Boundary Optimization
sensitivity

interpolation

of equations. d Boundary sensitivity interpolation, where the boundary
point sensitivities are interpolated from element centroid sensitivi-
ties. e Optimization where the optimum velocity of the boundary is
computed. f Advection, where the level set is updated using the LSE

Large-scale level set topology optimization for elasticity and heat conduction

60 T T T T

Reference LSTO
VDB-LSTO

8 & 3
:

FEA solver time (s)
N
o

10

0 A L 1 1
0 20 40 60 80 100

lterations

Fig.8 Time taken by FEA solver for reference LSTO and VDB-LSTO

reference LSTO and VDB-LSTO are 2043.67 and 2041.36,
respectively. From Fig. 6b and c, we can see that the
optimum topologies of the reference LSTO and VDB-LSTO
are similar, with a difference in their optimum compliance
equal to 0.1%.

Figure 7 shows the average time breakdown of the
VDB-LSTO algorithm in comparison with the reference
LSTO algorithm. From Fig. 7 we can see that VDB-
LSTO is consistently faster than the reference LSTO.
The mesh extraction time for VDB-LSTO (which uses
dual marching cubes) is less than the reference algorithm
(which uses marching cubes). This clearly shows the
efficiency of the multi-threaded dual marching cubes
method, which produces quadrilaterals of a higher quality
than the marching cubes method. The volume fraction

Table 1 Average time breakdown as a percentage of average iteration
time for the Michell sphere for VDB-LSTO and reference LSTO, for
a mesh size of 160 x 192 x 192 = 5.9 million elements, using 160
processors

VDB-LSTO Reference LSTO
Mesh extraction 0.4% 1.9%
Volume fractions 3.9% 2.4%
FEA 84.3% 51.2%
Boundary sensitivity 0.5% 0.3%
Optimization 7.0% 4.8%
Advection 3.9% 39.0%

29
20 'L /L
18
1 7] N
14
LA N
p4 N
12 4 b— O Active nodes
10
— Boundary
80 X 4 a
N A
6
. N v
2
0 T T
0 5 10 15 20

Fig. 9 A schematic of a topology of a torus with a background FEA
mesh. The elements that are outside the torus do not contribute to
the stiffness matrix and hence their nodes are passive and can be
ignored while assembling the stiffness matrix. The active stiffness
matrix (ASM) can then be constructed using the active nodes

120 T T

I ASM

100 [_JRegular| -

80

40 r

201

FEA time (s) Number of assembled elements (x 10°)
Fig. 10 The average FEA time taken and number of assembled
elements of the ASM method and the regular stiffness matrix method
for the Michell sphere problem for a mesh size of 160 x 192 x 192 =
5.8 million elements

pinned

pinned

Fig.11 Design domain (4.0 x 1.0 x 1.0) for the pinned-pinned bridge
topology optimization problem with a distributed load on top

@ Springer

30

S. Kambampeati et al.

Fig. 12 Optimized topology of
the obtained using VDB-LSTO
using 8.2 million elements

computation time for VDB-LSTO (0.52 s) is less than the
time taken for the reference LSTO (0.66 s). In other words,
the threading done over the leaf nodes in VDB-LSTO
to compute volume fractions outperforms the threading
done over the boundary points in the reference LSTO.
The FEA solver time (the time history shown in Fig. 8)
is the bottleneck for both of the algorithms—with an
average of 11.42 s for VDB-LSTO and an average of
12.35 s for the reference LSTO. The solver time is high
at the beginning (greater than 30 s) and then it drops
significantly as the solution U for a given iteration is used
as a starting point for computing the solution of the next
iteration. The solution time is also strongly dependent on
the condition number of the stiffness matrix. The time taken
by the boundary sensitivity interpolation is significantly
small for both the algorithms (under 0.1 s), while the time
taken for optimization is 0.95 s for VDB-LSTO and 1.15
s for the reference LSTO. More importantly, we show
the advection time savings achieved by VDB-LSTO. The

advection procedure comprises velocity extension and level
set update. The level set update is an embarrassingly parallel
algorithm; and it only constituted approximately 2—4 % of
the total advection time, while the rest of the time cost is due
to velocity extension. The average time taken for advection
for the reference LSTO is slow (approximately 9.5 seconds)
relative to the time taken by advection using VDB-LSTO,
which is less than 1 second. As such, we conclude that for
this case VDB-LSTO advection is an order of magnitude
faster than the reference advection.

Furthermore, the time taken for volume fraction calcu-
lation, boundary sensitivity interpolation, and optimization
for VDB-LSTO is significantly smaller than the FEA solver
time, thus addressing the challenges and demonstrating the
efficiency of the developed algorithms for applying VDB in
such large-scale LSTO problems.

In Table 1, we show the average time breakdown, as
a percentage of the average iteration time for the VDB-
LSTO and reference LSTO algorithms. From Table 1, we

90 T T T T T
80 - Il Reference LSTO|_|
[/DB-LSTO
@ 70 l
s®r 7
Ssl |
£
.‘u') 40 - -
o
® 30 =
£
=20 |
10 . -
0 — — 1 —
Mesh Volume FEA Boundary Optimization Advection
extraction fraction sensitivity
calculation interpolation

Fig. 13 Average time breakdown of the VDB-LSTO and reference LSTO methods for the bridge example (mesh size of 320 x 160 x 160 = 8.2

million elements, using 160 processors (MPI ranks)

@ Springer

Large-scale level set topology optimization for elasticity and heat conduction

31

250
Reference LSTO
VDB-LSTO
200 r
z
2 150
o
=2
a
< 100
i
T
50 L

[L - L . -l —J
0 50 100 150 200 250 300
Iterations

Fig. 14 Time taken by FEA solver for reference LSTO and VDB-
LSTO for the bridge problem

can see that the advection time for the reference LSTO is
approximately 39% of the total iteration time, while the
VDB-LSTO advection time is approximately 3.9% of the
total iteration time. Additionally, for the reference LSTO,
the FEA takes up 51.2 % of the time, while the level set
operations (mesh extraction and advection) take up 40.9%
of the iteration time. On the other hand, for VDB-LSTO, the
FEA takes up 84.3% of the iteration time, while the level
set operations (mesh extraction and advection) take up only
4.3% of the iteration time.

Figure 6d shows the optimum topology obtained with
VDB-LSTO, using a finer mesh of 240 x 288 x 288 =
19.9 million elements on 360 processors (MPI ranks), with
a volume constraint of 1%. The topology converged in
200 iterations and in 2 hours, with the FEA solver taking
approximately 89% of the total iteration time and the level
set operations (mesh extraction and advection) taking 3.5%
of the time. For this high resolution of the FEA mesh,

Table 2 Average time breakdown for the VDB-LSTO and reference
LSTO, as a percentage of average iteration time for the bridge problem
discretized using 8.2 million elements

VDB-LSTO Reference LSTO
Mesh extraction 0.1% 0.6%
Volume fractions 0.3% 0.6%
FEA 96.6% 84.6%
Boundary sensitivity 0.1% 0.1%
Optimization 1.4% 1.5%
Advection 1.5% 12.6%

we can obtain topologies with a volume constraint as low
as 1%, which is not possible using the previous mesh of
5.9 million elements. Therefore, we can conclude that we
can explore large design spaces with VDB-LSTO, and it
significantly reduces the time taken by the level set related
operations for high-resolution meshes.

4.1.1 Usage of the active stiffness matrix

For cases where the volume fraction is relatively small,
such as 0.1, the FEA simulation can be performed in a
memory-efficient way by ignoring the void elements, i.e,
the elements which are completely outside the structure
when assembling the stiffness matrix. We achieve this by
treating the nodes which are surrounded by void elements
as homogeneous Dirichlet boundary condition nodes with
their DOFs set to 0. The resulting stiffness matrix, the active
stiffness matrix (ASM) which only takes into account the
active DOFs of all the elements inside the domain, has
a reduced size compared to the regular stiffness matrix,
therefore consuming less memory.

For example, consider the topology of a 2d torus
discretized using a 20 x 20 FEA mesh as shown in Fig. 9.
The red circles represent all the nodes that are active, i.e, the
nodes that have at least one element that lies inside the torus.
These nodes are included while assembling the ASM. All
the other nodes are surrounded by void elements, and they
are not included while assembling the ASM as they have
negligible contribution towards the FEA.

The ASM method is used in VDB-LSTO for computing
sensitivities so as to illustrate the reduction in the memory
consumed by the stiffness matrix. Figure 10 shows the
average FEA time taken and the number of assembled
elements of the ASM method for the Michell sphere
problem for a mesh size of 160 x 192 x 192 = 5.8
million elements. For the sake of comparison, we also
show the average FEA time and number of elements
assembled for the regular stiffness matrix method. For this
mesh size, the regular stiffness matrix has all the elements
in the FEA mesh assembled, while the ASM has only
assembled the active 2.2 million elements (88% reduction
in size and computational memory). However, the multigrid
preconditioner used previously for the regular stiffness
matrix, cannot be used for the ASM, as its size and structure
change for as the design changes. Consequently, the average
FEA solver time for the ASM method is 104.35 seconds,
compared to 11.42 seconds for the multigrid preconditioner
method using the regular stiffness matrix. In conclusion, the
ASM method can be used to compute FEA sensitivities for
topologies with low volume fractions when computational
resources required for the multigrid-GMRES method are
unavailable, albeit at an increased computational time.

@ Springer

32

S. Kambampati et al.

Fig. 15 a Optimized topology of the obtained using VDB-LSTO using
34 million elements. b Visualization of the VDB data structure as a
wireframe for representing the bridge. The green and orange boxes on

Table 3 Memory consumed by the FEA mesh and VDB level set grid
for different mesh sizes, and the ratio of FEA mesh memory to VDB
level set grid memory

FEA 320x 160 x 160 384 x192x 192 512 x 256 x 256

mesh
size
Number 8.2 million 14.1 million 33.5 million
of

elements

FEA 51.3 87.1 208.1
mesh

(GB)

Level 0.30 0.44 0.72
set grid

(GB)

Ratio 171 289.7

197.9

@ Springer

X

ZY/

the left represent the internal nodes, while the blue boxes represent the
leaf nodes. The picture on the right shows the active voxels that store
the level set function values

297

24t

1 1.2 1.4 1.6
log10 Ne

Fig. 16 Memory (in GB) consumed by VDB level set function versus
number of elements N, (in millions)

Large-scale level set topology optimization for elasticity and heat conduction

33

Adiabatic

walls
Heat

0.1D
sink

D

< >
< >

Fig.17 The design domain of a cube (1 x 1 x 1) with adiabatic walls
and unit heat being produced everywhere in the domain

4.2 Bridge

The design domain used for the bridge topology optimiza-
tion is shown in Fig. 11. The structure is pinned at the
bottom sides, and a uniform pressure load is applied on
the top. Due to symmetry, only half of the domain is mod-
eled. The volume constraint used is 12% and the elastic
modulus is set to unity. The FEA mesh is discretized into

320 x 160 x 160 = 8.2 million elements, using 160 pro-
cessors (MPI ranks). The geometry of the initial structure is
a cuboid covering the entire domain. The optimized topol-
ogy obtained using VDB-LSTO of the pinned-pinned bridge
problem is shown in Fig. 12. Fine structures that transfer the
load from the top of the domain to an arch-like structure can
be seen in Fig. 12.

Figure 13 shows the average time breakdown of the
VDB-LSTO and reference LSTO algorithms. From Fig. 13,
we can see that the FEA solver time is high (over
80 s) for both algorithms. As a result, the time taken
for mesh extraction time, volume fraction computation,
and boundary sensitivity interpolation and optimization
is almost negligible compared to FEA for both LSTO
algorithms. The time taken by advection is significant for
the reference method (over 12 seconds), while the advection
time is under 2 seconds for VDB-LSTO.

The FEA solver time is shown in Fig. 14, where we can
see that for the first few iterations, the FEA solver time is
approximately 25 s, and the FEA solver time ranges from
50 to 100 s for most of the iterations.

In Table 2, we show the average time breakdown of
different parts of the algorithm. The average time is shown
as a percentage of average iteration time for both of the
algorithms. We can see that the time taken by the FEA solver
is the bottleneck for both of the algorithms—96.6% for
VDB-LSTO and 84.6% for the reference LSTO. However,
the time taken by the level set operations (mesh extraction
and advection) is 13.2%, while it is only 1.6% of the time for
VDB-LSTO. Therefore, we can conclude that VDB-LSTO

Fig. 18 Final topologies obtained using VDB-LSTO with an FEA mesh size of 200 x 200 x 200 = 8 million elements for kpi, = 0.01 and

kmax = 1.0

@ Springer

34

S. Kambampeati et al.

improves the level set operations by approximately an order
of magnitude.

In Fig. 15a, the optimum topology obtained using a dense
mesh (512 x 256 x 256 = 34 million elements and 100
million degrees of freedom) is shown. Figure 15b visualizes
the VDB tree data structure for the bridge. The green
and orange boxes on the left represent the internal nodes,
while the blue boxes represent the leaf nodes—showing the
hierarchy of the VDB data structure. The active voxels that
store the level set function values are the voxels that are in
close proximity to the boundary. Comparing Figs. 12 and
15, we can see that the optimum structure has finer features
for the higher resolution mesh.

Table 3 shows the computational memory consumption
for the FEA mesh and the VDB level set grid for different
mesh sizes. For a mesh resolution of 512 x 256 x 256
elements, the memory required by the FEA mesh is over 208
GB, while the memory used by the level set grid function
on the VDB grid is only 0.72 GB. Furthermore, we can see
from Table 3 that the ratio between the FEA mesh memory
and VDB level set function memory increases with the
mesh resolution. This investigation shows that the memory
consumed by the VDB level set function is insignificant
compared to the memory consumed by the FEA mesh.

The memory consumed by the level set function
approximately scales with the surface area. This means that,
on a log-log scale, the slope of a graph plotting the memory
footprint as a function of the number of elements should
be approximately 2/3. Such a relationship between memory
footprint of VDB and the number of elements was shown for
a geometry-based optimization in Kambampati et al. (2018),
where detailed studies on the scaling of VDB memory with
problem size are presented. In Fig. 16, we show the memory
used by VDB and the number of elements on a log-log
scale. The slope of the curve is approximately 0.61, which

Table 4 Average time breakdown as a percentage of average iteration
time for the heat conduction example (8 million elements, kpin = 1.0,
kmax = 0.01)

VDB-LSTO Reference LSTO
Mesh extraction 0.5% 3.1%
Volume fractions 1.6% 1.8%
FEA 90.2% 58.7%
Boundary sensitivity 0.2% 0.4%
Optimization 3.9% 3.6%
Advection 3.6% 32.4%

supports the dependency of VDB on the surface area, thus
validating the sparseness of VDB.

4.3 Heat conduction

A cubic domain of dimension D, with unit heat being
produced everywhere in the domain with adiabatic walls
and a heat sink (0.1D x 0.1D) located on one of the walls
of the cube, is shown in Fig. 17. The geometry of the
initial structure for optimization is a cube covering the entire
domain, and the volume constraint Vj is 30 %.

Figure 18 shows the optimized topology obtained using
VDB-LSTO for the conductivity coefficient kyj, = 0.01
and kpnax = 1.0 for an FEA mesh size of 200 x 200 x
200 = 8 million elements on 48 processors (MPI ranks). The
topology features a number of fine structures that emanate
from the heat sink that spread out through the domain —
conducting heat from different parts of the domain into the
heat sink.

Figure 19 shows the average time breakdown for
different parts of the VDB-LSTO and reference LSTO
algorithms. From Fig. 19, we see that the time taken for

30 T

Time per iteration (s)

Mesh Volume FEA
extraction fraction
calculation

T
Il Reference LSTO
Il \/DB-LSTO .
Boundary Optimization Advection
sensitivity

interpolation

Fig.19 Average time breakdown of the VDB-LSTO and reference LSTO methods for the heat conduction problem (mesh size of 200x200x200 =

8 million elements, using 48 processors)

@ Springer

Large-scale level set topology optimization for elasticity and heat conduction

35

the FEA solver is the computational bottleneck. The mean
FEA solve time for the reference LSTO is 25.1 s, while the
mean solve time for VDB-LSTO is 26.2 s. The time taken
by mesh extraction, volume fraction computation, boundary
sensitivity interpolation, and optimization is substantially
lower than the time taken for FEA solver—for both the

reference LSTO and VDB-LSTO algorithms. In addition,
similar to the Michell sphere and bridge examples, the
times taken by the VDB-LSTO for mesh extraction, volume
fraction computation, and optimization are less than those
taken by the reference LSTO. Furthermore, the time taken
for advection is significant for the reference LSTO (about

(b)

Fig. 20 Final topologies obtained using VDB-LSTO with an FEA mesh size of 200 x 200 x 200 = 8 million voxels. (a) kpin = 0.001 and

kmax = 1.0. (b) kmin = 0.05 and kmax = 1.0

@ Springer

36

S. Kambampeati et al.

Fig. 21 Final topology obtained using VDB-LSTO with an FEA mesh size of 360 x 360 x 360 = 32.768 million elements

10 seconds per iteration), whereas the advection time for the
VDB-LSTO is an order of magnitude smaller (1 second per
iteration).

Table 4, shows the average time taken by different parts
of the VDB-LSTO and reference LSTO algorithms as a
percentage of the total iteration time. From Table 4, we
can see that the percentage of time taken by the FEA
solver is over 90% for VDB-LSTO, while percentage time
taken by the FEA solver is 58.7% for the reference LSTO.
More importantly, the time taken by the level set operations
(mesh extraction and advection) for the reference LSTO is
approximately 35.5%, while the time taken by the level set
operations for VDB-LSTO is reduced to 4%.

Figure 20 shows the optimum topologies obtained for
the same mesh resolution (200 x 200 x 200 = 8
million elements) but for different ratios of conductivity
coefficients. Specifically, the optimum topologies obtained
for conductivity coefficients of (kmin, kmax) = (1, 0.001)
and (kmin, kmax) = (1, 0.05) are shown in Fig. 20a and b,
respectively. Interestingly, from Fig. 20, we can see that the
optimum topology is clearly dependent on the ratio of kpi,
to kmax. Also, for values of the ratio (kpin / kmax = 0.001), we
can see that the optimum solution has smaller and slender
features, while for higher values of this ratio (kmin / kmax =
0.05), the optimum solution produces bulkier features.

The optimum topology obtained by VDB-LSTO using a
higher resolution mesh—320 x 320 x 320 =32.768 million
elements (33.076 million DOFs)—and 160 processors
(ranks), for kpin = 0.01 and kp,x = 1.0 is shown in
Fig. 21. For this resolution, the FEA solver takes 86% of
the time while the time taken by level set operations is
approximately 5%. Comparing Figs. 18 and 21, we can see

@ Springer

that the the higher resolution topology in Fig. 21 offers a
more optimum solution compared to the lower resolution
solution in Fig. 18. Thus, it is demonstrated that VDB-
LSTO increases the possible design space that can be
searched and can find a better solution.

5 Conclusions

A new level set topology optimization algorithm using
a sparse hierarchical data structure (VDB) is introduced
and demonstrated by solving large-scale structural and heat
conduction problems using meshes with over 100 million
degrees of freedom. OpenVDB, which is an open-source
implementation of the VDB data structure, is used in
this study. A reference LSTO method, based on a dense
grid, is also developed using multi-threaded algorithms
for a fair comparison with VDB-LSTO. An open-source
FEA library, which uses domain decomposition methods to
distribute the FEA mesh and workload to a given number of
processors (MPI ranks) is used to compute the sensitivities.
The challenges of efficiently applying VDB for large-scale
LSTO are addressed by constructing new fast algorithms for
communicating between the level set grid and FEA mesh
for optimization.

The efficiency of the VDB-LSTO algorithm is shown
for three large-scale FEA based examples. The level set
operations in the VDB-LSTO algorithm are significantly
faster (an order of magnitude reduction in most cases) than
the reference LSTO. Specifically, the level set advection
time for the reference LSTO 1is substantial—it takes
approximately 9 to 12 seconds for the problems considered

Large-scale level set topology optimization for elasticity and heat conduction

37

while the advection time for VDB-LSTO is under 2 seconds.
Additionally, for the VDB-LSTO algorithm, the overall
computational bottleneck is the FEA solver, which takes
90-95% of the total time while the level set related
operations take less than 5% of the total time. We believe
that the observed performance gain of the VDB-LSTO
algorithm over the reference LSTO algorithm, is due to
better cache reuse (due to VDBs blocking) more efficient
multi-threading, improved choices of the algorithms (e.g.
fast sweeping over fast marching and dual marching cubes
over marching cubes), and the fact that VDB incurs a much
lower memory footprint thus utilizing hardware resources
better.

6 Replication of Results

Throughout this paper, we have included pseudo codes of
all the key algorithms developed as a part of VDB-LSTO.
These pseudo codes are useful in the replication of our
results.

Acknowledgments The authors acknowledge the support from
DARPA (Award number HR0011-16-2-0032).

Compliance with ethical standards

Conflict of interests The authors declare that they have no conflict of
interest.

References

Aage N, Andreassen E, Lazarov BS (2015) Topology optimization
using petsc: an easy-to-use, fully parallel, open source topology
optimization framework. Struct Multidiscip Optim 51(3):565-572

Aage N, Andreassen E, Lazarov BS, Sigmund O (2017) Giga-
voxel computational morphogenesis for structural design. Nature
550(7674):84-86

Allaire G, Jouve F, Toader AM (2004) Structural optimization using
sensitivity analysis and a level-set method. J Comput Phys
194(1):363-393

Amir O, Aage N, Lazarov BS (2014) On multigrid-cg for efficient
topology optimization. Struct Multidiscip Optim 49(5):815-829

Arora JS (2007) Optimization of structural and mechanical systems.
World Scientific, Singapore

Balay S, Abhyankar S, Adams M, Brown J, Brune P, Buschelman K,
Dalcin L, Eijkhout V, Gropp W, Kaushik D et al (2017) Petsc users
manual revision 3.8. Tech. rep., Argonne National Lab.(ANL),
Argonne, IL (United States)

Courant R, Friedrichs K, Lewy H (1967) On the partial difference
equations of mathematical physics. IBM J Res Dev 11(2):215-234

Dai Y, Feng M, Zhao M (2017) Topology optimization of laminated
composite structures with design-dependent loads. Compos Struct
167:251-261

Deng S, Suresh K (2017) Stress constrained thermo-elastic topology
optimization with varying temperature fields via augmented
topological sensitivity based level-set. Struct Multidiscip Optim
56(6):1413-1427

Dunning PD, Kim HA (2015) Introducing the sequential linear
programming level-set method for topology optimization. Struct
Multidiscip Optim 51(3):631-643

Dunning PD, Kim HA, Mullineux G (2011) Investigation and
improvement of sensitivity computation using the area-fraction
weighted fixed grid fem and structural optimization. Finite Elem
Anal Des 47(8):933-941

Gropp WD, Gropp W, Lusk E, Skjellum A, Lusk ADFEE (1999)
Using MPI: portable parallel programming with the message-
passing interface, vol 1. MIT Press, Cambridge

Kambampati S, Jauregui C, Museth K, Kim HA (2018) Fast level set
topology optimization using a hierarchical data structure. In: 2018
multidisciplinary analysis and optimization conference, p 3881

Laine S, Karras T (2011) Efficient sparse voxel octrees. IEEE Trans
Vis Comput Graph 17(8):1048-1059

Lewinski T (2004) Michell structures formed on surfaces of revolution.
Struct Multidiscip Optim 28(1):20-30

Liu P, Luo Y, Kang Z (2016) Multi-material topology optimization
considering interface behavior via xfem and level set method.
Comput Methods Appl Mech Eng 308:113-133

Lorensen WE, Cline HE (1987) Marching cubes: a high resolution
3d surface construction algorithm. In: ACM siggraph computer
graphics, vol 21. ACM, pp 163-169

Martinez-Frutos J, Allaire G, Dapogny C, Periago F (2019) Structural
optimization under internal porosity constraints using topological
derivatives. Comput Methods Appl Mech Eng 345:1-25

Martinez-Frutos J, Herrero-Pérez D (2017) Gpu acceleration for
evolutionary topology optimization of continuum structures using
isosurfaces. Computers & Structures 182:119-136

Min C (2004) Local level set method in high dimension and
codimension. J Comput Phys 200(1):368-382

Min C, Gibou F (2007) A second order accurate level set method on
non-graded adaptive cartesian grids. J Comput Phys 225(1):300—
321

Mirzadeh M, Guittet A, Burstedde C, Gibou F (2016) Parallel level-set
methods on adaptive tree-based grids. J Comput Phys 322:345—
364

Museth K (2013) Vdb: High-resolution sparse volumes with dynamic
topology. ACM Transactions on Graphics (TOG) 32(3):27

Museth K (2017) Novel algorithm for sparse and parallel fast
sweeping: efficient computation of sparse signed distance fields.
In: ACM SIGGRAPH 2017 talks. ACM, p 74

Nguyen SH, Kim HG (2019) Level set based shape optimization using
trimmed hexahedral meshes. Comput Methods Appl Mech Eng
345:555-583

Nielson GM (2004) Dual marching cubes. In: Proceedings of the
conference on visualization *04, VIS *04. IEEE Computer Society,
Washington, DC, USA. https://doi.org/10.1109/VISUAL.2004.28,
pp 489496

Nobel-Jgrgensen M, Aage N, Christiansen AN, Igarashi T, Barentzen
JA, Sigmund O (2015) 3d interactive topology optimization on
hand-held devices. Struct Multidiscip Optim 51(6):1385-1391

Norato JA, Bendsge MP, Haber RB, Tortorelli DA (2007) A
topological derivative method for topology optimization. Struct
Multidiscip Optim 33(4-5):375-386

Osher S, Fedkiw R (2006) Level set methods and dynamic implicit
surfaces, vol 153. Springer Science & Business Media, Berlin

Osher S, Fedkiw RP (2001) Level set methods: an overview and some
recent results.] Comput Phys 169(2):463-502

Osher S, Sethian JA (1988) Fronts propagating with curvature-
dependent speed: algorithms based on Hamilton-Jacobi formula-
tions. J Comput Phys 79(1):12-49

Pingen G, Waidmann M, Evgrafov A, Maute K (2010) A parametric
level-set approach for topology optimization of flow domains.
Struct Multidiscip Optim 41(1):117-131

@ Springer

https://doi.org/10.1109/VISUAL.2004.28

38

S. Kambampeati et al.

Pizzolato A, Sharma A, Maute K, Sciacovelli A, Verda V (2017)
Topology optimization for heat transfer enhancement in latent
heat thermal energy storage. Int J Heat Mass Transf 113:875—
888

Sivapuram R, Dunning PD, Kim HA (2016) Simultaneous material
and structural optimization by multiscale topology optimization.
Struct Multidiscip Optim 54(5):1267-1281

Suresh K, Takalloozadeh M (2013) Stress-constrained topology
optimization: a topological level-set approach. Struct Multidiscip
Optim 48(2):295-309

Villanueva CH, Maute K (2017) Cutfem topology optimization of 3d
laminar incompressible flow problems. Comput Methods Appl
Mech Eng 320:444-473

Wang MY, Wang X, Guo D (2003) A level set method for structural
topology optimization. Comput Methods Appl Mech Eng 192(1-
2):227-246

Wang S, Wang MY (2006) Radial basis functions and level set
method for structural topology optimization. Int J Numer Meth
Eng 65(12):2060-2090

Xia Q, Shi T (2015) Constraints of distance from boundary to
skeleton: for the control of length scale in level set based structural
topology optimization. Comput Methods Appl Mech Eng 295:
525-542

@ Springer

Xia Q, ShiT, Liu S, Wang MY (2012) A level set solution to the stress-
based structural shape and topology optimization. Computers &
Structures 90:55-64

Xia Q, Shi T, Xia L (2019) Stable hole nucleation in level set based
topology optimization by using the material removal scheme of
beso. Comput Methods Appl Mech Eng 343:438-452

Xia Q, Wang MY, Wang S, Chen S (2006) Semi-lagrange method for
level-set-based structural topology and shape optimization. Struct
Multidiscip Optim 31(6):419-429

Yaji K, Yamada T, Yoshino M, Matsumoto T, Izui K, Nishiwaki S
(2014) Topology optimization using the lattice Boltzmann method
incorporating level set boundary expressions. J Comput Phys
274:158-181

Yamada T, Izui K, Nishiwaki S, Takezawa A (2010) A topology
optimization method based on the level set method incorporating
a fictitious interface energy. Comput Methods Appl Mech Eng
199(45-48):2876-2891

Zong H, Zhang H, Wang Y, Wang MY, Fuh JY (2018) On two-
step design of microstructure with desired poisson’s ratio for am.
Materials & Design 159:90-102

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	Large-scale level set topology optimization for elasticity and heat conduction
	Abstract
	Introduction
	Level set topology optimization
	Problem definition
	Data structure
	Mesh extraction
	Volume fraction calculation
	Optimization
	Advection

	Finite element analysis
	Finite element method using domain decomposition
	Boundary sensitivity interpolation

	Numerical investigations
	Michell sphere
	Usage of the active stiffness matrix

	Bridge
	Heat conduction

	Conclusions
	Replication of Results
	Acknowledgments
	Compliance with ethical standards
	Conflict of interests
	References
	Publisher's note

