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Abstract
Civil engineers focus on developing an optimum design that is cost-effective without compromising the performance.
Experiences from optimizing airplane wings in aerospace engineering have been extensively made for the last decades
where the aim is to maximize the lift-to-drag ratios. In civil engineering, shape optimization of tall buildings and bridge
cross-sections is still an open research field where the aim is to enhance the aerodynamic behavior of these structures. The
main challenge, however, is to develop bridge decks that avoid excessive deformations and ensure a sufficient structural
reliability. Within this framework, the paper outlines the single and multi-objective shape optimization for static aerodynamic
forces of a streamlined box section. Computational fluid dynamic simulation based on vortex particle method provides the
quantities of interest which are approximately treated by a Kriging surrogate for the optimization. Later, the performance of
the optimized structure is checked against flutter instability.

Keywords Shape optimization · Static wind coefficients · Streamlined box section ·
Single and multi-objective optimization · Kriging · Bridge design

1 Introduction

For long-span bridges, the deck may be exposed to wind
from both sides. Thus, a box design, symmetrical about the
vertical center plane and featuring rounded edges, is prefer-
able. The main challenge for designers is to save material
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while simultaneously ensuring the efficiency and the relia-
bility of the structure, so that buffeting and vortex shedding
responses are kept within acceptable limits. Main effects
like reducing the vortex shedding excitation, achieving the
functionality of the structure against buffeting, and reducing
the aeroelastic instability are considered during the design
process. As compared to other cross-sections, the stream-
lined box girder is the most common in long-span bridges
since it can minimize the wind forces (Larsen 2008; Wang
et al. 2011). The construction of the Severn Bridge UK in
1966 marked a revolutionary progress in bridge design. In
general, the key structural parameters that affect the aerody-
namic performance of bridges are mass, stiffness properties,
and the structural damping. Structural configurations are
mainly related to the climatic characteristics of the area and
the budget allocated for each project.

Aerodynamic shape optimization of airfoils was exten-
sively studied in the recent years (Huyse and Lewis 2001;
Diwakar et al. 2010; Sadrehaghighi et al. 1995), where
the aim is to minimize the drag when airfoils are sub-
jected to a minimum lift requirement. After the collapse of
the old Tacoma Narrows bridge, more attention has been
given to develop the performance in structural designs.
However, despite the great improvement, wind storms may
still cause damage to buildings resulting in financial losses
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and threats to human lives. Several examples of losses are
documented every year even in developed countries. Meth-
ods are implemented from early stages of construction to
ensure sufficient structural safety and avoid large defor-
mations under wind flow. To determine the aerodynamic
optimum design, experience-based design approaches were
used, matching the environmental threat. Intensive stud-
ies have been performed to detect the effects of various
cross-sections of bridge decks on the wind coefficients
(Wardlaw 2012; Tolstrup 1992; Larsen 2017). However,
it is still challenging to predict the aerodynamic behav-
ior while changing the geometric layout of the structure
since small changes can lead to different results of wind
forces (Wang et al. 2009; Amin and Ahuja 2010; Bruno and
Mancini 2002). Within this framework, computational fluid
dynamics (CFD) simulations have been implemented.

The width to depth ratio of bridge decks is an important
factor in bridge aerodynamics and experience has shown
that increasing this ratio improves the behavior of the bridge
against large aerodynamic forces (Poon 2009; Larose and
Livesey 1997). Shimada and Ishihara (2002) investigated
the behavior of the wake in rectangular cylinders while
varying the width over depth ratio in the range of 0.6 to
8.0. Lin et al. (2005) studied the influence the shape of
the deck has on bridge aerodynamics while considering
flutter and buffeting characteristics. They tested two basic
deck sections: closed box girder and a plate girder in
smooth and turbulent flow fields. The results show that
bridges with closed box girder deck have higher critical
wind speeds than those with a plate girder. Optimization
techniques in structural design of bridges have gained a lot
of attention in the last decades. Reliability based design
optimization of long-span bridges considering flutter was
intensively studied by Kusano et al. (2014, 2015, 2018).
The aim is to minimize the bridge girder weight, and
to find the minimum volumes of the main cables and
bridge girder while satisfying the required safety level under
flutter. Montoya et al. (2018) proposed a novel approach
for the optimization of deck shape and cables size of long-
span cable-stayed bridge, while combining aeroelastic and
structural constraints.

Studies related to the effect of shape modifications of the
building on the aerodynamic behaviors were intensely pre-
sented (Amin and Ahuja 2010; Kulkarni and Muthumani
2016; Lohade and Kulkarni 2016). CFD calculations suf-
fer, however, of higher computational time. Approximation
using surrogate models becomes, therefore, a good alterna-
tive to avoid iterative processes in CFD evaluations. Kareem
et al. (2013, 2014) investigated the shape optimization of tall
buildings by developing a surrogate-based optimization
strategy. Montoya et al. (2016, 2018) used, also, the sur-
rogate model evaluated for the aerodynamic coefficients
and slopes of a bridge deck cross-section, while varying

its depth and width up to a percentage of 10%. Then, an
optimization process is carried out on these surrogate mod-
els in order to obtain the optimal designs that reduce the
total amount of material, while considering structural and
aeroelastic constraints.

Enhancing the aerodynamic behavior of the structure
requires reducing its aerodynamic responses which is
related to the aerodynamic forces. This can be done by min-
imizing the static wind coefficients: drag, lift, and moment.
This paper proposes a new optimization framework regard-
ing the aerodynamic responses in bridge design. In order to
find the optimal layout of streamlined bridge decks, shape
optimization is carried out based on the response surface
method derived from Kriging approximation. The static
wind coefficient models represent the objective functions to
be optimized. A penalty function method is used to transfer
the constrained optimization problems into unconstrained
problems and the optimization process is carried out for sin-
gle objectives in the first stage. Then, a multi-objective func-
tion is formulated by adding the single objective functions
using weighting parameters. The particle swarm optimiza-
tion method is applied to both cases and the optimal shapes
are obtained. The performance of the latter is checked
against flutter instability.

Two approaches are introduced based on meta-model
strategies. The first approach is direct and considers
the optimization of the bridge deck cross-section using
static wind coefficients at zero angle of attack. The
second approach is advanced and considers the static wind
coefficients at multiple angles of attack.

2 Theory and implementedmethods

2.1 Aerodynamic phenomenon

A bluff body embedded in the fluid flow causes separation
of the flow near the surface. The boundary layer separation
occurs because the fluid particles are decelerated by inertial
forces. The separated layers generate vortices, which are
shed into the wake flow behind the body. Such vortices can
cause extremely high suctions near separation points such
as corners or eaves, and they create alternating forces in
a direction normal to the wind flow. This motion is called
vortex shedding excitation as a result of such forces.

An important factor affecting this phenomenon is the
Reynolds number (Re), which is a measure of the ratio of
inertial to viscous forces. Depending upon the magnitude
of Re, the flow can be laminar or turbulent. The difference
between a laminar and a turbulent boundary layer is that the
transfer of momentum occurs on a molecular rather than a
macroscopic scale. The vortex shedding phenomenon is also
observed in different shapes, such as triangles, rectangles
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and other regular and irregular prisms. This process is
described in terms of a non-dimensional number, which is
the Strouhal number. For more details, the reader can refer
to Simiu and Scanlan (1996) and Holmes (2015).

The immersion of a section in a flow of velocity
U∞, as shown in Fig. 1, is conducive to development of
local pressures over the body. The integration of these
pressures over the surface results in a mean wind load,
which can be split into three parts (measured per unit
of span): The drag force FD in the mean wind direction
causes lateral displacements in the structure, the lift force
FL, is perpendicular to the mean wind direction and the
moment FM with respect to the centroid of the section that
constitutes the torsion.

The static wind coefficients for bridge deck sections,
which represent the functions to be optimized, can be
rendered dimensionless and seen as functions of net wind
force coefficients, the wind velocity U∞, the angle of attack
α, and the deck width B. These mean wind coefficients can
be expressed as follows:

CL(α) = FL(α)

1
2ρU2∞B

, (1)

CD(α) = FD(α)

1
2ρU2∞B

, (2)

CM(α) = FM(α)

1
2ρU2∞B2

, (3)

where ρ is the mass density of air. The mean static wind
coefficients are non-dimensional aerodynamic forces which
are functions of wind angle of attack. These coefficients are
not only used to calculate the static aerodynamic forces but
also their derivatives with respect to the angle of attack, and
commonly used to determine the buffeting forces and the
aerodynamic stability (Xu 2013).

It is important to note that in two-dimensional flow, the
terms FL, FD , and FM represent the corresponding values
per unit of dimension, normal to the plane of observation. In
a three-dimensional case, the dimensionality is preserved by
including an additional factor B in the denominator of each
expression. The wind force coefficients depend on the shape
of the body, the roughness of the surface, and the value of

Re. Simiu and Scanlan (1996) presented examples on the
circulation of the flow with different body shapes and Re.
Optimized shapes are obtained by the minimization of the
previous static wind coefficients presented in the equations
(1), (2), and (3).

Bridge designs must fulfill structural and aerodynamic
requirements for service life and user proficiency. The wind
induced stresses have to be below the allowable stress limit,
and the aeroelastic stability of the bridge deck section has
to be ensured. Analysis of the stability of the bridge cross-
sections can be performed in two ways: dynamic tests in
wind tunnels or by CFD simulations. Usually, checking the
performance of bridge structures is done by evaluating the
dynamic wind induced responses which refer to the vortex
induced oscillations and the self-excited oscillations, i.e.,
flutter. The static behaviors are rarely considered for the
design of bridges.

Flutter instability occurs usually at very high wind
speeds, as a result of self-excited aerodynamic forces. It is
due to the coupling of structural motion and aerodynamic
forces, involving both vertical and torsional movements and
can lead to the collapse of the bridge. Therefore, it is impor-
tant to evaluate the flutter limit of the bridge Ucr below
which section models must be stable. A comprehensive
review on flutter instability is presented by the co-authors
(Abbas et al. 2017). When the wind speed exceeds Ucr, the
structure no longer fulfills the design criteria and the situ-
ation corresponds to the ultimate limit state. For flat plate
sections, the critical flutter limit Ucr,FP can be evaluated
according to Theodorsen’s theory (Theodorsen 1949). Gen-
erally, it is considered that wide streamlined decks have
critical velocities close to the theoretical flat plate flut-
ter limit (Gimsing and Christos 1983). This difference can
easily be presented by the ratio of the computed flutter
limit to flat plate prediction, which is defined as follows:

βf = Ucr/Ucr,FP. (4)

Higher values of this ratio indicate that the sections are
similar to a flat plate. Vortex shedding excitation is a result
of the interaction between the bridge and the vortex flow
leading to the lock-in phenomenon. Formation of vortices

Fig. 1 Schematic of deck
section with aerodynamic forces,
lift FL, drag FD , and moment
FM and the corresponding
vertical displacement h, lateral
displacement p, and rotation α
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alternately on the upper and lower surfaces of the deck
creates alternating forces parallel to the flow direction.
Usually, it occurs at relatively low wind speeds when the
frequency of the vortices shed in the wake of the solid
bluff body, coinciding with one of the natural frequencies of
the structure. Buffeting excitation is caused by fluctuating
forces induced by turbulent flow. It occurs over a wide range
of wind speeds, and it can affect the functionality of the
bridge. Therefore, it is considered in the design stage as well
as the service stage of the bridge.

Tests are often performed using wind tunnel experi-
ments on dynamically mounted section models to study the
aerodynamic instability characteristics. Due to the computa-
tional advances, CFD simulations have become a useful tool
for such analyses. Generally, streamlining the girder cross-
section can reduce the effects of the vortex shedding. In
our case, due to small depth to width ratios resulting in the
optimized structures, the vortex shedding oscillations are
assumed to be insignificant, and confirmation with regards
to this phenomenon is not considered. However, our study
focuses on the static mean wind response and no additional
aerodynamic forces such as in the case of uniform inflow
behavior are considered. Therefore, the buffeting response
is not evaluated. The performance of the optimized structure
is assessed by solely considering the flutter instability.

Checks for flutter instability are made by evaluating
the vertical and torsional instability. Commonly, torsional
motion develops divergent amplitudes in a short period
of time leading to critical wind speed. A usual method
for checking the flutter instability is identification of the
aerodynamic derivatives (Wang and Dragomirescu 2016;
Abbas and Morgenthal 2012), as it is adopted in this paper.
Scanlan introduced expressions for the motion-induced
aerodynamic forces on a cross-section (Scanlan and Tomo
1971; Scanlan 1978). He assumed that the self-excited lift
FL and moment FM of a bluff body can be expressed as
a function of the linear displacement h, the rotation α, and
their first derivatives in a linearized form as follows:

FL = 1

2
ρU2∞B

[
KH ∗

1
ḣ

U∞
+ KH ∗

2
Bα̇

U∞

+K2H ∗
3 α + K2H ∗

4
h

B

]
, (5)

FM = 1

2
ρU2∞B2

[
KA∗

1
ḣ

U∞
+ KA∗

2
Bα̇

U∞

+K2A∗
3α + K2A∗

4
h

B

]
, (6)

K = Bω

U∞
. (7)

A∗
i and H ∗

i (i = 1, ..., 4) are non-dimensional functions
of K known as aerodynamic flutter derivatives, associated

with self-excited lift and moment, respectively. K is the
reduced frequency and ω is the frequency of bridge
oscillation under aerodynamic forces. The aerodynamic
derivatives are usually measured in special wind tunnel
tests and can also be computed from the CFD simulations.
The motion-induced aerodynamics can be evaluated from
forced vibration simulations. The resulting lift and moment
forces are used to compute the aerodynamic derivatives as
explained in the following formula:

FL =
damping terms︷ ︸︸ ︷

...H ∗
1 ḣ + ...H ∗

2 α̇ +
stiffness terms︷ ︸︸ ︷

...H ∗
3 α + ...H ∗

4 h, (8a)

FM = ...A∗
1ḣ︸ ︷︷ ︸

heave

+ ...A∗
2α̇ + ...A∗

3α︸ ︷︷ ︸
pitch

+ ...A∗
4h︸ ︷︷ ︸

heave

. (8b)

The terms of the self-excited lift FL and moment FM in (8a)
and (8b) can be considered as the summation of damping
terms (associated with the velocity of motion) and stiffness
terms (associated with the displacement of motion). Also,
these terms can be classified into two parts as the result of
the heave and pitch velocities. The aerodynamic derivative
H ∗

1 , which corresponds to the aeroelastic lift force induced
as a result of heave velocity, controls the vertical flutter.
However, the term A∗

2, which is the aeroelastic moment
induced due to the pitch velocity, governs the torsional
flutter instability. These flutter instabilities are related to the
negative aerodynamic damping.

The aerodynamic derivatives describe the aerodynamic
behavior of the oscillating deck section. Usually, they are
evaluated via experimental wind tunnel tests by the imple-
mentation of different methods, and they can be used for
the examination of aerodynamic coupled instability. The
assessment is fulfilled by considering all of the aerodynamic
derivatives of the deck cross-section. Some current aero-
dynamic derivative identification studies and methods have
been reported in Poulsen et al. (1992), Imai et al. (1989), and
Yamada et al. (1992). In this work, in order to evaluate the
aerodynamic derivatives, a flow solver is used to perform
forced vibration simulations on the optimized cross-sections
in the sinusoidal heave and pitch motion over a range of
reduced speed vr defined as follows:

vr = U∞
Bfo

= U∞
B

To, (9)

where fo and To are the frequency and period of the
forcing motion, respectively. The aerodynamic derivatives
are computed from the resulting force and moment time
histories of the sections by applying least squares fit.

The coupled flutter limit of the cross-section is computed
using the aerodynamic derivatives in the frequency domain.
For this purpose, eigenvalue analysis is utilized to describe
the nature of the system stability at different wind speeds.
For further explanation about the method, the reader is
referred to the work accomplished by the author (Abbas
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2016). This method has been amply used. However,
advanced method for the evaluation of the critical flutter
velocity is introduced by Kavrakov and Morgenthal (2018a)
where a coupling between the 2D velocity-based turbulence
generation (VTG) method for free-stream turbulence and
the laminar Pseudo-3D vortex particle method (VPM) is
accomplished and lead to the introduction of a turbulent
Pseudo-3D VPM. In his work, the first method was utilized.

2.2 Numerical simulations for aerodynamic
parameters

To analyze the effect of the wind on bridges, three main
methods are utilized: analytical, numerical, and experimen-
tal methods. The last is considered to be the most common
approach but has uncertainties related to scale effects, while
the other two are still in the development stage.

The numerical analysis has been performed by using a
CFD flow solver, VXflow, based on vortex particle method.
This code is developed by Morgenthal (2002) and shows
reliable results in comparison to wind tunnel test (WTT)
(Morgenthal and Asia 2006; Morgenthal 2005; Morgenthal
and Walther 2007; Morgenthal et al. 2014; Abbas and Mor-
genthal 2016). Recent studies (Kavrakov and Morgenthal
2018b; 2017) validated the results provided by this solver
with regards to flutter and buffeting analysis. This solver is
based on VPM which is a virtual wind tunnel analogue to
the laboratory wind tunnel. In this framework, the aerostatic
simulations are performed on a streamlined bridge section
in uniform flow to determine the static wind coefficients.

2.3 Kriging approximation

Despite the development of the computational field of
computers, calculations with CFD are still expensive. The
procedures employed in optimization require, frequently,
several analyses within an iterative process. Approximations
using surrogate models are, therefore, a good alternative to
avoid these problems.

In literature, several methods are used to build response
surfaces. Polynomial regression and Kriging have shown
adequate approximation for complex problems in engi-
neering, in particular for the optimization of aerodynamic
problems (Montoya et al. 2016; Bernardini et al. 2015; Dı́az
et al. 2016). Therefore, both approaches were implemented,
and the models obtained from Kriging are used to build the
response surface and adopted later for further analysis and
optimization.

Kriging is one of the response surface methods, that
gives a mathematical approximation of the model, linking
the output to the design variables (input) through stochastic
processes (Forrester et al. 2008; Martin and Simpson 2005;
Gano et al. 2006; Joseph et al. 2008; Kanevski and Maignan

2004). Generally, Kriging is able to produce a model
that represents a nonlinear and vector-valued function
efficiently. Considering the point X∗ = [x∗

1 , ..., x∗
k ]T in the

sample space, the scalar value Ŷ in X∗ can be evaluated
using the Kriging approximation as follows:

Ŷ (X∗) = μ + ε(X∗), (10)

where μ is an unknown constant trend that needs to be
estimated based on the observed response values and ε(X∗)
is a random function with zero mean and variance σ 2. A
special weighted distance is used:

d(Xi, Xj ) =
k∑

h=1

θh

∣∣xih − xjh

∣∣2 . (11)

The Kriging basis has a vector θ = {θ1, θ2, ..., θk}T
which allows the width of the basis function to vary from
sample point to another. The covariance matrix of ε(X∗) is
expressed as follows:

cov[ε(Xi), ε(Xj )] = σ 2cor[φ(Xi), φ(Xj )], (12)

where φ is the correlation function selected by the user,
which is symmetric with unit values on the diagonal.
Various correlation functions can be used; however, in
literature, φ is often chosen to be an exponential correlation
function, and it is defined as follows:

φij = 	(Xi, Xj ) = exp[−d(Xi, Xj )]. (13)

The estimation of the Kriging parameters {μ, σ 2, θ} given a
set of observations Y is generally obtained by the maximum
likelihood approach (Badawy et al. 2017) or by minimizing
the coefficient of prognosis CoP (Most and Will 2008;
2010) which is defined as follows:

CoP = 1 − SSPrediction
E

SST

, (14)

where SST is the total sum of squares and SSPrediction
E is

the sum of squared prediction errors (Most and Will 2011;
Chatterjee and Hadi 2015). In this work, the approximation
of Kriging models is made while minimizing the CoP
coefficient. CoP is calculated based on p-fold cross-
validation (Viana et al. 2009; Wang and Shan 2007; Lin
2004), where the data are divided into 10 subsets.

2.4 Sensitivity analysis

Sensitivity analysis is implemented in this paper in order to
evaluate how much each input is contributing to the output
of the model and to quantify their relative importance. In
this current work, the input parameters are the five geomet-
ric design variables (see Fig. 2), and the outputs are the static
wind coefficients taken separately: lift, drag, and moment.
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There are two main approaches in sensitivity analysis:
local and global approaches. The local sensitivity analysis
is a deterministic approach, where the model may be run
many times by varying one parameter each time to evaluate
its impact on the model output. Variance-based sensitiv-
ity analysis is a form of global sensitivity method and it
has been used to calculate the first and total effects sensi-
tivity indices. Considering a model with a scalar output Y

as a function of a given set of k random input parameters
Xi : Y = f (X1, X2, ..., Xk), the first-order sensitivity index
Si is a direct measure and it evaluates the decoupled influ-
ence of each input variable solely. It is defined as follows
(Sobol 1993):

Si = VXi
(EX∼i

(Y | Xi))

V (Y )

= 1 − EXi
(VX∼i

(Y | Xi))

V (Y )
,

n∑
i=1

Si ≤ 1, (15)

where Xi is the ith factor and X∼i is the matrix of all fac-
tors except Xi .
VXi

(EX∼i
(Y | Xi)) measures the first-order effect of Xi

on the model output, V (Y ) is the unconditional variance of
the model output and EXi

(VX∼i
(Y | Xi)) is the residual.

The total effect sensitivity index STi
is an extension for

higher order coupling terms of the first-order sensitivity.
It measures the total effect including the first- and higher
order effects of factor Xi , and can be defined as follows:

STi
= EX∼i

(VXi
(Y | X∼i ))

V (Y )

= 1 − VX∼i
(EXi

(Y | X∼i ))

V (Y )
,

n∑
i=1

ST i ≥ 1. (16)

For more details about these methods, the reader can refer
to Sobol (1993), Saltelli et al. (2008), Zhang et al. (2015),
and Marzban and Lahmer (2016). The sensitivity analysis is
conducted on the previously built Kriging model.

2.5 Optimization

2.5.1 Single objective optimization

Once the response surface from the Kriging model is
obtained, an optimization algorithm is applied to find the
global optimal point in each function separately, as well as
considering the multi-objective case. The functions to be
optimized are the static wind coefficients introduced in the
equations (1), (2), and (3).

Generally, the optimization problem is formulated by
maximizing the cost function with respect to the design
variables, which are in this case the geometric parameters
that define the edges of the streamlined deck while

considering a fixed lane width and a deck shape that is
symmetrical about the y-axis. The constraints are defined
here while considering all possible variations in the design
variables and ensuring that the final design is not concave.
The general formula is given as follows:

min
x

f (x),

s.t gi(x) ≤ 0, i = 1, ..., p, (17)

where gi defines the p inequality constraint functions.
In literature, many methods are proposed within this

framework such as penalty function method, Lagrange
multiplier, and gradient projection method. In this work, the
penalty function approach is implemented; then, the opti-
mization problem becomes an unconstrained function since
the constraints are added to the main objective function. The
optimization problem becomes (Snyman and Wilke 2018):

min
x

f (x) + P(x),

where: P(x) =
p∑

j=1

βj · g2
j (x). (18)

The penalty parameters βj are defined as follows:

βj =
{

0, if gj (x) ≤ 0,

ρ >> 0, if gj (x) > 0.

2.5.2 Multi-objective optimization

Optimizing the fitted functions of the wind coefficients
simultaneously leads to a multi-objective optimization prob-
lem. The functions can, in most cases, be conflicting, which
means that no single solution can optimize simultaneously
each objective. The results are presented in a Pareto front
graph, which contains scatter points of Pareto optimal solu-
tions (Madetoja et al. 2008). All Pareto optimal solutions
are considered to be equally valid. The check of the final
optimal solution needs to be done by considering additional
criteria or based on an expert’s decision.

In this paper, the weighted sum method (Stanimirovic
et al. 2011; Kim and De Weck 2004; Eichfelder 2009) is
implemented to compute the Pareto optimal points for the
multi-objective function. Its concept is based on adding the
objective functions with weights (Marler and Arora 2010).
Mathematically, the relation is presented as follows:

min
X

k∑
i=1

wifi(X),

with wi > 0;
k∑

i=1

wi = 1. (19)
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2.5.3 Particle swarm optimization method

The particle swarm optimization (PSO) is used in this work
to solve the optimization problems in equations (18) and
(19). This method was developed by Eberhart and Kennedy
(1995) and is derived from two concepts: the flocking
of birds or the schooling of fish and the evolutionary compu-
tation such as stochastic algorithms. PSO is initialized with
a group of random particles, where each particle i is repre-
sented by its position xi and velocity vi in the search space.
In every iteration, each particle adjusts its trajectory accord-
ing to its own previous best position (local best pbesti) and
the best previous position attained by any particle in the pop-
ulation (global best gbest) (Oliveira et al. 2017; Yang and
Karamanoglu 2013). The particles update their positions
through a process that incorporates a velocity, formulated as
follows (Rini et al. 2011; Parsopoulos and Vrahatis 2002):

xi(t + 1) = xi(t) + vi(t + 1),

vi(t + 1) = ω · vi(t) + c1 · r1
(
pbesti (t) − xi(t)

)
+c2 · r2 (gbest(t) − xi(t)) , (20)

where r1 and r2 are random numbers within [0, 1], ω is the
inertial coefficient, selected as unit in the baseline particle
swarm optimization, but an improvement of the algorithm is
found when ω ≈ [0.5, 0.9] (Martinez and Cao 2018). c1 and
c2 are learning parameters or acceleration constants which
proved suitable with a value of 2 (Yang and Karamanoglu
2013).

3 Framework and results

3.1 Description of the strategy

The present work proposes a novel methodology aiming to
find the optimal shape of streamlined bridge decks based on
a meta-modeling approach. The concept is to find the optimal
shape of streamlined cross-section by minimizing the functions
of wind coefficients obtained after Kriging approximation.

Generally, shape optimization allows the modification of
the boundaries, so that the final design improves the aero-
dynamic performance. The first step is the selection of the
design variables that represent the changeable geometry and
has to be done prior to sampling. Six corner points define
the layout of the streamlined bridge deck cross-section (see
Fig. 2), and each point i has two coordinates (in x- and
y-directions, xi and yi). Considering the symmetry of the
section with respect to y-axis and while taking the lane
width as a fixed parameter, we have five design variables
that define the geometry layout of the deck section. These
five geometric parameters are considered variables within
fixed intervals, so that the resulting cross-section is not
concave. Defining X = (x1, y1, x2, y2, x3, y3)

T as the
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Fig. 2 Variation of the design variables for deck geometry

vector that contains all the design variables, and by fixing the
design variable x1 = −15 as the coordinate of a lane’s width
of 30 m, the optimization problem is presented as follows:

min
x

(CL(X), CD(X), CM(X))T ,

s.t. 1 ≤ y1 ≤ 1.8,

−16.5 ≤ x2 ≤ x1,

0 ≤ y2 ≤ y1 − 0.33,

x1 ≤ x3 ≤ 0,

−3.2 ≤ y3 ≤ −1. (21)

Figure 2 shows the variation of the corner points within
pre-defined geometric intervals. The two designs show the
schematic layout of the section obtained from the upper and
the lower geometric limits of the design variables defined in
this work.

Two approaches are considered in this paper for aerody-
namic optimization: direct approach while considering zero
degree angle of attack and an advanced approach where
the aerodynamic coefficients are evaluated at different wind
angles of attack varying from − 6 to + 6◦ for each geom-
etry sample. The first approach is simple and requires less
simulations, and it is subjected to the assumptions of wind
acting at 0◦. However, the advanced approach requires more
parameters in the simulations, and it is more probable to
occur since it considers wind acting at different angles.

In this work, the Latin hypercube sampling (LHS) is imple-
mented during the sampling process where the positions of the
design variables, defined by the geometric coordinates, are
modified in each sample within a fixed interval. Five hundred
samples of cross-section geometry (see Fig. 2) are generated.
No correlation is assumed on the generation of these samples.

After sampling, simulations are conducted using CFD
solver to obtain the static wind coefficients (drag, lift, and
moment). In the direct approach, the obtained static wind
coefficients, evaluated from each sample of zero angle of
attack and defined by CL,0, CD,0, and CM,0 for the lift, drag,
and moment respectively, are taken directly as the outputs
to build the Kriging models for each case. However, in the
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Table 1 Results of the CoP evaluated from Kriging

Direct approach Advanced approach

CL,0 CD,0 CM,0 C′
L,fit Cmin

D,fit C′
M,fit

CoP 0.73 0.98 0.80 0.71 0.69 0.88

advanced approach, the static wind coefficients of each sam-
ple are obtained at the angles of attack defined in the range
from − 6 to + 6◦ with a stepsize 2◦. Therefore, simple
regression fit of the static wind coefficients with respect to
the angles of attack is made. The curve fitting function of
the lift and moment is a linear function and it is a parabolic
function in the case of drag. The slopes of the lift and
moment are then evaluated in each sample, and denoted by
C′

L,fit and C′
M,fit. In the case of drag, the minimum drag

value of the fitted parabolic function is evaluated instead
and denoted by Cmin

D,fit.
These coefficients, evaluated in both approaches, are then

used as outputs to build the Kriging approximation func-
tions. The approximation of the Kriging models is started
by selecting 100 samples out of the generated 500 samples.
The selected samples do not present any correlation. Cross-
validation process is introduced, where the 100 samples are
partitioned into 10 sets with equal size. The model is fit
using all the samples except the first subset which is used to

test the model. The predicted residual error sum of squares
(PRESS), and the coefficient of prognosis (CoP) were both
evaluated with the first held-out samples. Assuming that
the CoP value obtained from the first iteration in cross-
validation process is not large enough, the same operation
is then repeated for each fold where the model with high-
est value of CoP is selected. This process is then repeated
10 times. However, the model is updated while adding each
time 100 samples. This addition leads to an improvement
of the CoP value regarding the previously retained value
obtained from less samples. Therefore, in the flowchart (see
Fig. 3), the quality of the model is checked in a nested
loop inside the cross-validation process, and a global loop
regarding the addition of new samples. Generally, the num-
ber of samples is important for modeling. As long as the
number of samples is sufficiently large, we can have a good
estimate of the model since it increases its accuracy. The
common method to find an optimal number of samples is
by increasing the number of samples in each stage and
calculating in parallel the error between the data and the
fitted model. The aim is to have a small error and when
the error value is not decreasing further by increasing the
samples; the number of samples is considered sufficient.
However, this aspect is beyond the scope of this paper.
The outline of this work is presented in the flow chart
(Fig. 3).

Fig. 4 First-order and
total-order sensitivity indices of
the Kriging surrogate models of
the static wind coefficients:
direct approach (left), advanced
approach (right)

x2
x3
y1
y2
y3

(a) (b)

(c) (d)
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(a) (b)

(c) (d)

(e) (f)

Fig. 5 Kriging surrogate models of the single wind coefficient functions: direct approach (left), advanced approach (right)
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3.2 Numerical simulations for the choice
of themodel

Kriging approximation is conducted to build a model of the
static wind coefficients. The results of the CoP are presented
in Table 1.

Even though the CoP has some distance to 1, it is
assumed to give reasonable good approximations for the
underlying computational fluid dynamic model.

3.2.1 Sensitivity analysis

The first-order and total sensitivity analysis of the objective
functions of the static wind coefficients are computed for
both approaches and the results are shown in Fig. 4.

It is observed from the first-order and total-order sensitivity
indices that the variables x3 and y3 are most significant in
comparison to the other variables. Visualizing the response
surfaces for problems with dimensions higher than three is
difficult. Therefore, considering the results of the sensitivity
analysis, the Kriging surrogate models are presented with
regards to the two variables x3 and y1. The results of the
response surfaces obtained by Kriging are shown in Fig. 5.

3.2.2 Kriging surrogate models

Outliers are observed in Fig. 5b and d. This is one of the
problems of the CFD simulations. They represent failed or

unfinished simulations, and they were not used to build the
response surface. The high variance observed in Fig. 5a
arises due to highly complex and nonlinear behavior of the
model, also due to the numerical uncertainty of the CFD
simulations.

3.3 Single objective optimization

3.3.1 Optimized shapes

Applying the penalty method, the geometry constraints are
added to each fitted function. The particle swarm optimiza-
tion method has been implemented to find the optimized
shape for the three cases. Defining C

opt
L,0, C

opt
D,0, and C

opt
M,0

as the wind coefficients of lift, drag, and moment of the

optimized shape in direct approach, and C
′,opt
L,fit, C

min,opt
D,fit , and

C
′,opt
M,fit for advanced approach; the final optimized shapes are

plotted in Fig. 6.
The optimal cross-sections obtained after minimizing the

static wind coefficients, such as lift, drag, and moment, can
be presented respectively as semi-bluff deck, quasi streamlined
deck, and bluff deck. The reader can refer to the work presen-
ted by Bruno et al. (2002) regarding the classification of the
bridge deck sections. The two first shapes, obtained respec-
tively after minimizing the lift and drag coefficient, influence
the circulation of the flow in perpendicular and parallel direc-
tions, as they divert the incoming flow and reduce the
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Fig. 6 Optimized single objective shapes of the static wind coefficients. a C
opt
L,0 and C

′,opt
L,fit , b C

opt
D,0 and C

min,opt
D,fit , c C

opt
M,0 and C

′,opt
M,fit
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formation of the vortices on the leading and trailing
edges. Those shapes are extensively implemented for long-
span bridges. The third case, presented as an outcome of

neglecting the lift and drag effects in the optimization and
considering solely the effects of the torsional moment, has a
deep cross-section and involves unsteady flow that reaches
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Fig. 7 Static wind coefficients from CFD in the optimized shape profiles: direct approach (left), advanced approach (right). a, b Based on the optimized
single objective of the lift; c, d based on the optimized single objective of the drag; e, f based on the optimized single objective of the moment
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along the side surface and gets separated at the wind-ward
sharp edges. This leads to the generation of larger sinusoidal
lift forces. Therefore, this kind of cross-section is prone
to vortex shedding excitation. Interpretation regarding the
circulation of the wind flow in such sections is presented in
details by Wardlaw (2012).

3.3.2 Validation of the optimal shapes

After obtaining the optimized geometry for each case of
the single objective, we evaluate the variation of wind
coefficients with respect to the angles of attack for the
two approaches. All the calculations are based on sampling
for the interval of wind angle attack from − 6◦ to + 6◦.
However, for the validation of the optimized shapes, static
simulations are performed for each optimal shape in the
interval from [− 10◦, + 10◦]. The slopes of the coefficients
are also calculated while fitting a linear function for each
case. Figure 7 shows the results of variation of wind
coefficients with respect to the angles of attack for the two
approaches.

Tables 2 and 3 present the results for 0◦ angle and slopes
of the optimized wind coefficients obtained from direct and
advanced approaches, evaluated from Fig. 7.

The slopes of wind coefficients are good indicators of
the aerodynamic instability. The effective slope of the lift
curve is an important parameter in the buffeting phenomena
of a streamlined deck. Experience shows that lower values
of lift slopes tend to have lower buffeting responses. Also,
the slopes of the lift and the moment can be used to evaluate
gust loads and corresponding stresses.

It can be observed from the Tables 2 and 3. that the
lift slope for both approaches in lift and drag functions
is negative, indicating stability in the optimized shapes of
these two cases with respect to buffeting instability. In the
case of the moment function, the lift slope is negative in
the advanced approach and in the direct approach has a
low positive value (0.054), so the stability of the optimized
moment shape is also ensured.

Table 2 Wind coefficients at α = 0◦ and slopes of the optimized wind
coefficients from the direct approach

Candidates CL,0 dCL,0/dα CM,0 dCM,0/dα CD,0

Target C
opt
L,0 − 0.481 0.101 0.015 0.008 0.375

Target C
opt
D,0 − 0.192 0.089 0.002 0.012 0.066

Target C
opt
M,0 0.054 0.134 0.011 − 0.008 0.975

Table 3 Wind coefficients at α = 0◦ and slopes of the optimized wind
coefficients from the advanced approach

Candidates CL,fit dCL,fit/dα CM,fit dCM,fit/dα Cmin
D,fit

Target C
′,opt
L,fit − 0.036 0.091 0.027 0.001 0.506

Target C
min,opt
D,fit − 0.160 0.083 0.033 0.009 0.267

Target C
′,opt
M,fit − 0.025 0.157 0.023 − 0.007 0.980

3.3.3 Performance check of the optimal shapes

The aerodynamic derivatives are computed from the CFD
simulations, and Fig. 8 shows the aerodynamic derivatives
H ∗

1 , A∗
2, and A∗

3 in function of vr (see equation (9)).
The derivative H ∗

1 represents the aerodynamic damping
due to vertical motion. A negative value of H ∗

1 indicates
positive aerodynamic damping and vice versa.

It is observed from these two approaches that the aerody-
namic derivative H ∗

1 is negative for the whole range of
reduced speed vr . This means that the obtained deck cross-
section has a stable single degree of freedom (SDOF) behav-
ior against vertical instability. The aerodynamic deriva-
tive A∗

2 is related to the SDOF torsional instability. From
the plots, the torsional damping flutter derivative A∗

2 for the
case of the optimal moment cross-section shows a tendency
to reverse sign over a certain range of vr . This behav-
ior shows that the moment optimal shape is unstable with
respect to the torsional flutter. In comparison with the two
other shapes, the obtained moment optimal cross-section
has a shallow shape and is specified by approximately
equal upper and lower surfaces of the deck. Therefore, tor-
sional flutter occurs, and this section has to be avoided. The
other two cases of the optimal shapes for drag and lift are
stable.

For the calculation of flutter limit, structural properties
of the Lillebaelt Bridge deck cross-section are used (Abbas
2016). The section has a mass m = 11, 667 kg/m,
mass moment of inertia I = 1,017,778 kg m2/m, bending
frequency fh = 0.156 Hz, torsional frequency fα = 0.5 Hz,
and damping ratio for heave and pitch ξh = ξα = 0.01. The
Lillebaelt Bridge is considered as reference for structural
properties since it has also a streamlined cross-section.

The evaluation of the ratio βf (see equation (4)) for
the optimal shape reflects that the cases lift and drag
in the direct approach are stable since their values are
larger than one. In Table 4, the moment coefficient has the
lowest value of βf in both approaches, which confirms the
previous results of the aerodynamic derivatives. This section
is aerodynamically unstable.
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Fig. 8 Aerodynamic derivatives H ∗
1 , A∗

2 and A∗
3 for the optimized sections: direct approach (left), advanced approach (right)

3.4 Multi-objective optimizationMOO

3.4.1 Pareto front solutions

When dealing with multi-objective optimization, the aim is
to optimize simultaneously the three objectives. Referring
to the weighted sum approach which is based on varying

the weighted coefficients in each iteration of optimization, it
results in a solution called Pareto optimal where each point
is a solution of a different weighted combination of the objec-
tive functions. In this step, a stochastic algorithm was utilized
based on the particle swarm optimization method. By reducing
the variation size of the weights, the optimization process
becomes more expensive and requires larger runtime. The

Table 4 Predicted flutter limit
Ucr, theoretical flat plate flutter
limit Ucr,FP and βf ratio for the
candidate sections selected
after optimization.

Direct approach Advanced approach

C
opt
L,0 C

opt
D,0 C

opt
M,0 C

′,opt
L,fit C

min,opt
D,fit C

′,opt
M,fit

Ucr (m/s) 104 97 83 91 105 80

Ucr, FP (m/s) 97 94 97 97 94 97

βf (-) 1.07 1.03 0.85 0.93 1.11 0.82
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Fig. 9 Resulting 2D projection of sampled Pareto surface after filtering: direct approach (left), advanced approach (right)

results presented in Fig. 9 are obtained by taking 0.02 as the
variation in weighting factors during the optimization.

The Pareto front consists of all non-dominated points;
thus, the dominated points should be eliminated from the
solution set. To achieve this, Pareto filters are introduced.
The concept of Pareto filter consists on comparing every
solution with the other solutions within the solution set and
filtering out the points that are dominated. In this work, a
filtering method developed by Parizi (2016) is implemented.
When dealing with a multi-objective problem, there is no
solution in the Pareto front that can be better than the others,
since often the improvement of an objective can only be
achieved at the expenses of worsening at least one other

criteria. So, the decision-maker needs to be supported by
additional criterion for making a particular choice. It is the
responsibility of the decision-maker to confront the choice
by adding some preference criteria. Several methods can
be used to select the best solution. The 2D projection of
derived Pareto samples often forms an L-shaped curve when
two criteria are in conflict, called also Pareto front. This
can be visualized from the cases (a), (b), and (f), and partly
(c) in Fig. 9. For cases (d) and (e), strong conflicts are not
visible.

Selecting the final solution from the L-curve is usually
made by the decision-maker, since it requires making a
trade-off between all the obtained Pareto solutions, where
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increasing one function may lead to the reduction of the
others.

3.4.2 Selection of the optimal designs

Contrary to the previous work of checking the performance
of the single objective function, which is considered as
one special case of multi-objective optimization, checking
the performance of the different solutions obtained after a
multi-objective solution leads to the concept of validating
the final optimal design that fulfills the required structural
criteria. As the step lengths of the weights become more
refined, a large number of solutions are obtained. Due to the
trade-offs that exist between the objectives, several equally
optimal solutions exist. Checking the stability of all the
solutions after muti-objective optimization is not practical.
Therefore, in this paper, the work is limited to some special
cases and the efficiency of these models is checked.

The studied cases are taken when the three wind
coefficients are equally contributing to the final multi-
objective function, and the cases where one of the wind
coefficients has no effect while the other two are equally
contributing. This selection provides a good understanding
of the contribution of each coefficient while disregarding its
effect. W1, presenting the case where the three static wind
coefficients (lift, drag, moment) are equally contributing, is

the most probable case that can be selected by the decision-
maker if no additional criterion is considered. Although the
weight ratios are equal in the three wind coefficients, both
approaches yield to different shapes. W2, W3, and W4
present the cases where, alternately, one of the static wind
coefficients is neglected. This choice is preferable to test the
individual effect of each coefficient (Fig. 10).

As observed previously in the case W1, both approaches
give also different optimized shapes. In the advanced
approach, the obtained cross-section presents a narrow
bottom. Aerodynamically, the shapes obtained from this
approach are more efficient as they divert the incoming
flows of the wind around the bridge deck and prohibit the
formation of large vortices on the leading and trailing edges.
Selecting the best design from the four cases is not an
easy task, as the decision-making depends on the detailed
aerodynamic analysis. To cover this aspect, aeroelastic
stability analysis is considered in the Section 3.4.3.

3.4.3 Performance check of the optimal designs (obtained
by MOO)

Since the performance of the single optimized sections was
checked previously, Fig. 11 present the variation of the
aerodynamic derivatives of heave and pitch motions for the
four selected cases.
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Fig. 10 Optimized shapes for the different cases of multi-objective optimization. a case 1: W1 = [1/3, 1/3, 1/3], b case 2: W2 = [1/2, 1/2, 0], c
case 3: W3 = [1/2, 0, 1/2], d case 4: W4 = [0, 1/2, 1/2]
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Fig. 11 Aerodynamic derivatives for heave H ∗
1 and pitch (A∗

2, A∗
3) motions: direct approach (left), advanced approach (right)

In Fig. 11, A∗
2 represents the torsional aerodynamic

damping effect and is considered the most important flutter
derivative. From the previous plots, it is observed that the
aerodynamic derivatives H ∗

1 and A∗
2 remain negative over

the range of the reduced wind speed vr for the four selected
cases. This means that the selected sections are stable with
respect to vertical and torsional flutter.

In the direct approach with 0◦ angle of attack, case 3
has larger absolute values of H ∗

1 and A∗
2 in comparison to

the other cases. In the advanced approach, case 2 has larger
absolute values of H ∗

1 and case 3 has larger absolute values
of A∗

2. All the cases have a positive value of A∗
3 representing

a negative torsional aerodynamic stiffness effect. Case 3
has a slightly higher value of A∗

3 in both approaches. This
means that the case 3 is more likely to present coupled

mode motion in comparison to the other cases. The critical
situation may occur by the coupling of heave and pitch
motions leading to a classic flutter instability. For this
reason, it is important to check the aeroelastic instability
of the coupled vertical and torsional flutter of those
sections.

The coupled stability is validated by solving an
eigenvalue problem using all the eight aerodynamic
derivatives and the equation of motion for the 2 DOF system
by coupling both pitch and heave modes. The four cases are
stable for the coupled vertical and torsional flutter.

Another criterion for validating the performance of the
optimized shapes is to evaluate the critical flutter wind
speed from an eigenvalue analysis. The results of βf for
both approaches are summarized in the Table 5.
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Table 5 βf for the candidates after multi-objective optimization

Case Direct approach Advanced approach

W1 1.02 1.08

W2 1.02 1.05

W3 1.14 0.98

W4 1.04 1.08

From the results shown in Tables 4 and 5, the streamlined
decks show critical velocity close to the theoretical flat plate
flutter limit.

From Table 5, the calculation of the ratio βf gives
values larger than one in most cases, except in the advanced
approach for the case 3. This means that the three cases, W1,
W2, and W4, have larger flutter limits in comparison to the
case W3. It is also observed that the direct approach gives
different shapes for the four cases, despite the variation of
the weights in the different cases. However, the optimal
shapes obtained by the advanced approach are very similar.

By considering the shape of the selected four cases, and
after conducting the performance check, the designer may
select case W4 from the advanced approach as the best
case since it has higher flutter limit comparing to the other
three cases. Besides, the advanced approach is more general
than the direct approach as the wind is considered from
different angles of attack for the calculation of the static
wind coefficients.

4 Conclusion

This paper presents a novel framework on generating opti-
mal aerodynamic shapes of bridge cross-section based on
response surface, where Kriging approximation is used to
build the surrogate models of the static wind coefficients.
Two main aspects are presented: single objective optimiza-
tion while applying the penalty method, so the constrained
optimization problem is transferred into an unconstrained
optimization problem; the multi-objective optimization,
where the objective functions are transferred into a single
objective function after applying the weighted sum method.
The optimal designs are obtained by minimizing the mean
of the aerodynamic coefficients in the direct approach, and
the slopes of lift and moment coefficients and the minimum
of the drag coefficient in the advanced approach. The per-
formance of the optimal designs of bridge cross-sections
was checked against the aerodynamic instabilities, mainly
flutter.

The paper focuses exclusively on the optimization of
streamlined deck sections, commonly used in long-span
bridges. This type of deck is, generally, susceptible to aeroe-
lastic instabilities. The optimization based on single objective

shows strongly different designs. However, multi-objective
optimization leads to very similar cross-section designs in the
advanced approach. Moreover, the latter shows higher per-
formances and are aerodynamically more efficient, as the
edges avoid formation of large vortices. It was also observed
that the aspect ratio, which is the width to depth ratio, has
a significant influence on the aerodynamic behavior, where
deeper cross-sections show lower resistance against flutter.
Therefore, avoiding this type of section is primordial.

The framework presented in this paper is equally
applicable to trapezoidal cross-sections which are more
common in short- to medium-span bridges. Further work
can be viewed as to combine the full buffeting analysis with
the presented opimization strategy.
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