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Abstract
The use of parametric and nonparametric statistical modeling methods differs depending on data sufficiency. For sufficient data,
the parametric statistical modeling method is preferred owing to its high convergence to the population distribution. Conversely,
for insufficient data, the nonparametric method is preferred owing to its high flexibility and conservative modeling of the given
data. However, it is difficult for users to select either a parametric or nonparametric modeling method because the adequacy of
using one of these methods depends on how well the given data represent the population model, which is unknown to users. For
insufficient data or limited prior information on random variables, the interval approach, which uses interval information of data
or random variables, can be used. However, it is still difficult to be used in uncertainty analysis and design, owing to imprecise
probabilities. In this study, to overcome this problem, an integrated statistical modeling (ISM) method, which combines the
parametric, nonparametric, and interval approaches, is proposed. The ISM method uses the two-sample Kolmogorov–Smirnov
(K–S) test to determine whether to use either the parametric or nonparametric method according to data sufficiency. The
sequential statistical modeling (SSM) and kernel density estimation with estimated bounded data (KDE-ebd) are used as the
parametric and nonparametric methods combined with the interval approach, respectively. To verify the modeling accuracy,
conservativeness, and convergence of the proposed method, it is compared with the original SSM and KDE-ebd according to
various sample sizes and distribution types in simulation tests. Through an engineering and reliability analysis example, it is
shown that the proposed ISM method has the highest accuracy and reliability in the statistical modeling, regardless of data
sufficiency. The ISM method is applicable to real engineering data and is conservative in the reliability analysis for insufficient
data, unlike the SSM, and converges to an exact probability of failure more rapidly than KDE-ebd as data increase.

Keywords Integrated statisticalmodeling (ISM) . Kernel density estimationwith estimated bounded data (KDE-ebd) . Sequential
statistical modeling (SSM) . Symmetric distribution . Kernel density estimation with estimated bounded data and sequential
statistical modelingmethod (KbSSM)

1 Introduction

The analysis and design methods of engineering systems have
extended from deterministic methods to probabilistic and sta-
tistical methods owing to high demand for high product qual-
ity. Even though a nonprobabilistic reliability-based design
optimization using a convex model has been developed, the

probabilistic approaches are still dominantly used (Hao et al.
2017, 2019a, b; Keshtegar and Chakraborty 2018). Statistical
modeling, which estimates a distribution function of input or
output random variables, is necessary in stochastic methods
such as reliability analysis, reliability-based design optimiza-
tion (RBDO), reliability-based topology optimization, and sta-
tistical model validation and calibration (Noh et al. 2010;
Youn et al. 2011; Keshtegar and Chakraborty 2018; Wang
et al. 2018; Hao et al. 2019a, b). Although statistical modeling
is very important to obtain high accuracy in the statistical
analysis or design, the statistical methods have been applied
by assuming the distribution function as a normal distribution,
without the statistical modeling of random variables owing to
insufficient data or limitations of the existing statistical model-
ing techniques (Frangopol et al. 1997). However, studies have
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revealed that the distribution function of variables is not a
normal distribution in engineering systems (Choi et al. 2011;
Hess et al. 2002; Lukić and Cremona 2001; Socie 2014), and
they subsequently showed the limitation in the assumption of
a normal distribution of random variables for more accurate
designs. Accordingly, the necessity for accurate statistical
modeling methods has been reported.

Various statistical approaches have been developed to iden-
tify the probabilistic distribution of uncertain data. Statistical
modeling approaches are classified as parametric, nonpara-
metric, probabilistic, or interval approaches and have contrast-
ing limitations. In particular, the limitations of parametric and
nonparametric methods are different from each other. The
parametric methods are convenient and easy to utilize in sta-
tistical modeling as they use specific types of distributions,
and their parameters include information of statistical mo-
ments; thus, they can be easily applied to statistical analysis
and design methods such as reliability and robustness analy-
ses. For instance, a reliability or variance of output can be
analytically calculated by using parametric models (Ayyub
and McCuen 2012). However, their estimation accuracy is
poor for limited data as errors occur in identifying the distri-
butions and estimating the parameters simultaneously. In con-
trast, the nonparametric methods are more accurate than the
parametric ones for insufficient data as they estimate a model
only using data, without identifying distribution functions,
and their distributions have high flexibility in describing
nonlinearly distributed data. However, the estimated nonpara-
metric distributions converge to the population model slowly
as the sample size increases, and their mathematical formula-
tions are not user friendly in statistical modeling and uncer-
tainty propagation analysis. The interval approach uses inter-
val information of data or random variables for statistical
modeling instead of using specific parametric or nonparamet-
ric models. However, the interval information on the proba-
bility is difficult to use in uncertainty analysis or design owing
to the imprecise probabilities (Tucker and Ferson 2003;
Karanki et al. 2009; Betrie et al. 2014, 2016; Kang et al.
2018). Each approach includes a variety of statistical model-
ing methods, and they will be reviewed in detail in Sect. 2.

To overcome the limitations of the parametric, nonparamet-
ric, and interval approaches, an integrated statistical modeling
(ISM) method, which combines these approaches, is pro-
posed. Here, the kernel density estimation with bounded data
(KDE-bd) with sequential statistical modeling (SSM), the
KbSSM, which integrates the kernel density estimation with
estimated bounded data (KDE-ebd) and SSMmethods, is pro-
posed. The ISM process is separated into two processes: a
combined process of the KDE-ebd with SSM (KbSSM) and
a parametric process that only conducts the SSM. If the quality
of the given data is sufficient to model a parametric distribu-
tion, which is determined by the two-sample Kolmogorov–
Smirnov (K–S) test, the parametric process is performed;

otherwise, the KbSSM process is performed. In the KbSSM
process, the KDE-ebd estimates the density function using the
given and bounded data together, and then, the KDE-ebd
function is converted to a parametric distribution using the
SSM method when the given data are insufficient to directly
model a parametric model. As the amount of given data in-
creases, the parametric process will be repeatedly performed.
Therefore, once the users provide data, the ISM method auto-
matically selects the accurate and conservative distribution
according to the quality and sufficiency of the given data.
Due to this, ISM has the following advantages: (1) The output
model is always a parametric distribution (usability); (2) it has
no loss of accuracy and convergence compared to single para-
metric or nonparametric methods (accuracy and conver-
gence); (3) it provides heavy tailed distributions for insuffi-
cient data (conservativeness).

To verify the performance of the proposed method, samples
of various sizes are randomly generated from various types of
distribution functions assumed by the true models to conduct
the statistical simulation test, and a distribution function is es-
timated for the samples using the SSM, KDE-ebd, and ISM
methods. Subsequently, the results of the statistical simulation
using the ISM are compared to those using the SSM and KDE-
ebd. Further, a simple numerical example for real experimental
data is applied to show how the statistical modeling using the
proposed method is conducted by comparing the modeling
accuracy and conservativeness of the SSM, KDE-ebd, and
ISM. In addition, through a reliability analysis problem, it is
confirmed that the proposed method has more conservative and
reliable analysis results than other methods.

In Sect. 2, the existing statistical modeling methods are
briefly discussed. The proposed ISM method, SSM, and
KDE-ebd will be explained in Sect. 3 in more detail.
Section 4 describes the results of the statistical simulation tests
using the parametric (SSM) and nonparametric (KDE-ebd)
methods, along with the ISM to compare the accuracy and
conservativeness of the statistical modeling with various dis-
tributions and sample sizes. In Sect. 5, the ISM is compared
with the SSM and KDE-ebd and verified for its modeling
accuracy, conservativeness, and reliable analysis result
through statistical modeling and reliability analysis examples.
For this, data from the compressive strength and reliability
analysis of a two-member truss are used respectively.
Finally, the conclusions are summarized in Sect. 6.

2 Overview of statistical modeling methods

Various statistical modeling methods have been developed to
estimate the distribution of random variables. The statistical
modeling methods are classified into the parametric and non-
parametric approaches according to the type of the estimated
distribution. The parametric approach provides a parametric
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distribution function that fits the given data using specific
distribution types and their parameters, whereas the nonpara-
metric approach provides a nonparametric distribution that
describes the distribution of data without assuming any para-
metric distribution. The statistical modeling methods can also
be categorized into the probabilistic or interval approach. The
probabilistic approach can calculate a precise probability,
which has one value for a specific random variable, while
the interval approach estimates an imprecise probability,
which has more than two values, such as the lower and upper
bounds of the interval of a specific variable.

2.1 Interval approach

The interval approach represents the statistical model using
intervals on the input or output variables when the number
of samples is limited. Probability bounds approaches, such
as the probability box (p-box) theory and evidence theory, also
known as the Dempster–Shafer theory, are the most often used
in the parametric and nonparametric methods, respectively
(Verma et al. 2010). The p-box and Dempster–Shafer theories
provide convenient and comprehensive methods to quantify
uncertainties including imprecise specified distributions,
small sample sizes, inconsistency in the quality of input data,
or poorly known or unknown dependencies.

When the distribution is known to have a particular shape,
but its parameters are imprecisely specified as intervals, the
cumulative distribution functions (CDFs) have a parametric p-
box, which shows the lower and upper bounds on the proba-
bilistic distribution for a random variable. The lower and up-
per bounds of the CDFs are estimated using the confidence
intervals of the distribution parameters. Similarly, when the
parameters of the distributions are known precisely, but the
distribution type is unknown, the envelopes of all distributions
matching the given moments are generated, and then, they can
be used to define the upper and lower bounds of the CDFs.

The statistical model using the Dempster–Shafer theory is
similar to the discrete distribution; however, it allocates a basic
probability assignment (BPA), which assigns a degree of be-
lief to the intervals of each data element, called the focal ele-
ment, whereas the discrete distribution has mass probabilities
for specific data. The interval for the empirical CDF is deter-
mined through the combination of the overlapped focal ele-
ments of the data.

However, these methods still estimate an imprecise proba-
bility (Tucker and Ferson 2003; Karanki et al. 2009; Betrie
et al. 2014, 2016). Further, they require a large number of
computations in the uncertainty propagation. Moreover, the
evidence theory requires a surrogate model for the estimated
empirical distributions to be applied to numerical reliability
analysis methods, such as the first-order reliability method
(FORM), because of the discretization form of the estimated
distribution functions (Agarwal et al. 2004; Zhang et al. 2014;

Yao et al. 2013; Shah et al. 2015). Therefore, the interval
approach is limited in the computation of uncertainty propa-
gation in engineering applications.

2.2 Parametric approach

The parametric probabilistic approach quantifies the data dis-
tribution by selecting one of the probabilistic distributions
among the parametric distribution functions. Subsequently, it
estimates the parameters of the selected distribution function.
Goodness of fit (GOF) tests such as the Anderson–Darling
(A–D), chi-squared (χ2), and K–S tests (Anderson and
Darling 1952; Ayyub and McCuen 2012), along with model
selection methods such as the Akaike information criterion
(AIC), Bayesian information criterion (BIC), and Bayesian
method (Akaike 1974; Schwarz 1978; Burnham and
Anderson 2004; Noh et al. 2010), are widely used to estimate
the distribution function of data with uncertainty.

The GOF tests can evaluate the absolute adequacy of a
candidate model to represent the given data through the hy-
pothesis test for the candidate model with a certain signifi-
cance level; however, the relative assessment between the
candidate models is difficult. Conversely, the model selection
methods can select the best-fit distribution among the candi-
date distributions based on likelihood function values evalu-
ated at given data, but they cannot give users any warning
message if the identified distribution is inadequate to represent
the data. It is because the identified distribution is the best
fitted one among all candidates, but it does not necessarily
mean that it is a correct model for the given data. To use these
contrastable advantages of both the GOF tests and the model
selection methods, a sequential statistical modeling (SSM)
combining the GOF tests and the model selection methods
was developed. The SSM eliminates inappropriate distribu-
tions among the candidates by the absolute assessment of
the GOF tests. Subsequently, the model selection methods
choose the best-fit distribution among the candidate models
reduced by the GOF tests. Kang et al. verified that SSM is
more accurate and reliable than using the GOF tests or model
selection methods for various types of distributions and sam-
ple sizes. In that case, the K–S test and BIC were used as the
GOF test and model selection method, respectively, based on
the accuracy test results (Kang et al. 2016).

The SSM was applied to quantify the statistical, spare, and
interval variables (Peng et al. 2017a) and was applied to a
hybrid reliability analysis (Peng et al. 2017b). An improved
SSM method that adds a kernel function to candidate models
in the previous SSMwas developed and applied to real exper-
imental data regarding the friction coefficient of bolt fastening
(Joo et al. 2017) and fatigue life (Doh and Lee 2018).

The parametric method is user friendly and can be easily
applied to various statistical methods because its distribution
type and parameters are easily obtained from the given data;

Integrated statistical modeling method: part I—statistical simulations for symmetric distributions 1721



further, the estimated distribution quickly converges to a true
distribution function as the sample size increases. However,
unfortunately, it has errors in estimating both the type of dis-
tribution function and the statistical parameters. Therefore, in
particular, the accuracy of statistical modeling could be jeop-
ardized when the number of samples is limited because both
errors affect the modeling accuracy.

2.3 Nonparametric approach

The nonparametric probabilistic approach estimates a
distribution function using only the given data without
estimating the type of distribution function and the sta-
tistical parameters. The KDE is the most often used
nonparametric approach to quantify a probabilistic dis-
tribution. The KDE is recommended to model the given
data using kernel functions if the random variables fol-
low nonparametric distributions or the number of given
data is insufficient, even though the true distribution of
the data is a parametric distribution (Kang et al. 2017).
It has higher estimation accuracy than the SSM
(parametric) method for a small number of data because
the KDE estimates a distribution using only the data,
while the SSM has errors in estimating both the type
of distribution and the parameters (Kang et al. 2017).
However, if the number of data is small, e.g., n ≤ 10,
the KDE is very sensitive to the quality of the given
data and estimates a highly nonlinear KDE density
function; therefore, the estimation accuracy is low, al-
though the KDE is generally more accurate than the
SSM. Therefore, to overcome the limitations of the
KDE and use both the data information and intervals,
the KDE-bd and KDE-ebd, which combine a nonpara-
metric approach (KDE) and an interval approach
(bounded data), have been developed.

The KDE-bd/KDE-ebd combine the nonparametric
probabilistic method (KDE) with the interval representa-
tion. Thus, these methods use both the given and
bounded data sampled from given intervals or estimated
intervals from data to estimate the kernel density func-
tion, where the bounded data supplements the lack of
given data and the missing data. In the KDE-ebd, the
estimated bounded data are generated randomly from a
uniform distribution with interval estimators using the
interval estimation. Thus, the KDE-ebd can estimate a
more accurate and conservative density function than
the original KDE in statistical modeling and reliability
analysis (Kang et al. 2018). However, the KDE, KDE-
bd, and KDE-ebd slowly converge to a true distribution
as the number of data increases when the true model
has a parametric distribution, which is typical in engi-
neering fields (Kang et al. 2018). In addition, the KDE,
KDE-bd, and KDE-ebd are not user friendly with their

highly nonlinear function shapes and complex formula-
tions; thus, they are difficult to be applied in statistical
analysis and design under uncertainties.

Although the existing statistical methods have some advan-
tages, they also have limitations in terms of data quality, num-
ber of data, or given information. Therefore, an integrated
statistical modeling method needs to be developed such that
it can be widely applied to handle various types of statistical
models in the engineering fields.

3 Integrated statistical modeling method

Although the SSM method is more accurate than the
GOF tests or the model selection methods, it still has
a low estimation accuracy and is sensitive to the amount
of data; this is because of the limitations of the para-
metric statistical modeling approach, which has errors in
estimating both the distribution type and the parameters
of the distribution function for a small number of data.
In addition, the SSM frequently estimates a narrower
probability density function (PDF) than a true PDF;
thus, it may underestimate the probability of failure in
a reliability analysis (Kang 2018). The KDE-ebd over-
comes the problems of the KDE and SSM by combin-
ing the nonparametric and interval approaches, but it
slowly converges to a true distribution compared to
SSM, and it estimates a nonparametric distribution func-
tion, thereby rendering it difficult for engineers to apply
the probabilistic–statistical methods in the engineering
fields.

To achieve a balance between the merits of the parametric
and nonparametric approaches, a usable, accurate, quickly
convergent, and conservative statistical modeling method for
insufficient data needs to be developed. The KbSSM method
achieves the merits of both the SSM and KDE-ebd by com-
bining them. KDE-ebd is used as the nonparametric approach
combined with the interval approach and SSM is used as the
parametric approach, respectively; therefore, the combined
statistical modeling approach is called here the KbSSM meth-
od. The ISM method uses either the KbSSM or the SSM
according to the data quality and sufficiency, based on the
two-sample K–S test; thus, it yields convergent, conservative,
accurate, and user-friendly modeling results.

3.1 Integrated statistical modeling process

The integrated procedure is separated into two processes: a
parametric modeling process that only performs SSM and a
combined process (KbSSM) that performs KDE-ebd and
SSM sequentially according to the quality of the given data.
If the number of given data is sufficient to converge to any
parametric distribution, i.e., the additional data do not change
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the shape of the distribution obtained from the previous data,
the parametric modeling process is performed to esti-
mate the distribution function for the given data; other-
wise, the KbSSM process is performed. Figure 1 shows
the ISM procedure. In step (1), the quality of the given
data is verified by the two-sample K–S test. The two-
sample K–S test is one of the hypothesis tests to check

whether two data sets are sampled from the same con-
tinuous distribution. This is performed by comparing the
empirical cumulative distribution functions (eCDF) of
two data sets with n and n′ sample sizes using the
two-sample K–S statistic, Dn;n0 . This statistic means

the maximum distance between the eCDFs calculated
from two data sets. If this statistic is smaller than the

Fig. 1 ISM process
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threshold statistic, Dc
n;n0 αð Þ, the hypothesis is accepted at

a significance level (α); otherwise, it is rejected.
The two-sample K–S statistic is expressed as

Dn;n0 ¼ sup
x

F1;n xð Þ−F2;n0 xð Þ�� ��� � ð1Þ

where F1, n(x) and F2;n0 xð Þ are the eCDF of the two different

data sets with n and n′ sample sizes, respectively.
To evaluate the data quality in step (1), two-sample K–S

statistics are calculated for the n, n − 1, and n − 2 data and the
two statistics are defined by

Dn;n−1 ¼ sup
x

F1;n xð Þ−F2;n−1 xð Þ�� ��� � ð2Þ

Dn;n−2 ¼ sup
x

F1;n xð Þ−F2;n−2 xð Þ�� ��� � ð3Þ

where F1, n(x), F2, n − 1(x), and F2, n − 2(x) are the eCDF esti-
mated from n, n − 1, and n − 2 sample sizes. Figure 2 shows
the two-sample K–S statistics for n and n − 1 data.

If the two-sample K–S statistics, Dn, n − 1 and Dn, n − 2, are
less than or equal to a critical value Dc

n;n0 , it means that the

distributions obtained from the n − 1 and n − 2 data are close
to a certain parametric distribution for the n given data, i.e., the
amount of data is sufficient to model the parametric distribu-
tion. Thus, the parametric modeling process (SSM) is per-
formed; otherwise, the KbSSM modeling process, which re-
sults in a conservative distribution function to supplement the
lack of data, needs to be performed. If the critical two-sample
K–S statistic (Dc

n;n0 ) increases, the probability of determining

that the n − 1, n − 2 and n samples are from the same distri-
bution increases, so the probability of performing SSM in-
creases. In the opposite case, the probability of performing
KbSSM increases. Therefore, if users want a parametric mod-
el well fit to their data, they can use a high critical statistic
value. If users want a conservative parametric model, they can
use a low critical statistic value. In this paper, the critical two-
sample K–S statistics were selected as 0.05 for selecting the
KbSSM and SSM processes reasonably.

3.1.1 Parametric process in ISM

If the amount of data is sufficient to represent a parametric
distribution (“Yes” in the decision process of step (1)), then
SSMwill be performed. The SSM first performs the GOF tests
to check the absolute appropriateness of the candidate models
for the given data, and only some of the candidate models
accepted by the GOF tests will be used as the candidate
models for the model selection method. Accordingly, if all
candidate models are rejected by the GOF test, and the number
of initial candidate models (Nm) is less than the number of the
total parametric distributions (Ntot

m ), new candidate models
are assigned, and the GOF test is repeated. In this paper, para-
metric unimodal distributions were only selected as candidate
models, but users also can add parametric multimodal distri-
butions such as Gaussian mixture models as candidate models
if they want to estimate them. If Nm ¼ N tot

m , it means that the
parametric process in ISM cannot fit the given data to any
parametric distribution and this process is terminated by the
printout “FAIL.” In this case, a nonparametric modelingmeth-
od such as the KDE is generally recommended because the
data is likely to follow a nonparametric or multimodal distri-
bution. If some of the candidate models are accepted by the
GOF test, the model selection method is performed based on
the remaining candidate models. From the previous study, the
K–S test was verified as the most accurate GOF test (Kang
et al. 2016); hence, it is used in our study. The K–S test is a
hypothesis test to accept or reject the null hypothesis of the
given data sampled from a candidate distribution using a K–S
statistic. The K–S statistic indicates the maximum distance
between the empirical CDF (eCDF) of the given data and
the CDF of a specified candidate model. If the K–S statistic,
Dn, is smaller than the critical statistic, Dα

n , the candidate is
accepted, whereα is the significance level and n is the number
of samples. The critical statistic values are given in the refer-
ences about statistics (Ayyub and McCuen 2012). The K–S
statistic is defined as

Dn ¼ sup Fn xð Þ−F xð Þj j ð4Þ

Fn xð Þ ¼ 1

n

� �
∑
n

i¼1
IX i ≤ x ð5Þ

where Fn(x) is the eCDF of the data and F(x) is the CDF of a
specified candidate model. Xi is the ith value of a random
variableX, and IX i ≤ x is the indicator function, which is 1 when
Xi ≤ x; otherwise, it is 0.

Second, the model selection method is performed to select
the best-fit distribution for the given data among the reduced
candidate models. Based on the previous study, the BIC is
selected as the model selection method (Kang et al. 2016).
The BIC is calculated using the maximum likelihood function
values, sample size, and number of parameters for each can-
didate model, as shown in (6) (Schwarz 1978). The candidateFig. 2 Two-sample K–S statistic

Kang et al.1724



model with the smallest BIC values is selected as the best-
fitted model to represent the given data.

BIC ¼ −2lnLþ kln nð Þ ð6Þ

lnL θ;X 1;…;X nð Þ ¼ ∑
n

i¼1
ln f X ijθð Þ ð7Þ

where L is the maximum value of the likelihood func-
tion, k is the number of parameters of a candidate dis-
tribution, and n is the number of data. f(∙) is the PDF of
a candidate model, and θ is the vector of the
parameters.

Finally, the distribution parameters of the selected model
by the BIC are estimated using the maximum likelihood esti-
mation (MLE). The MLE is also used in the K–S test to cal-
culate the parameters of candidate models, and the vector of
the estimated parameters using the MLE is defined as

θ̂mle

� �
⊆ argmaxℓ θ;X ið Þ

θ∈Θ

� �
ð8Þ

where θ̂mle is the estimated parameter and ℓ is the log-
likelihood function.

Using a reasonable significance level in the K–S test can
improve the accuracy of parametric modeling by filtering out
models that are not absolutely suitable for data through K–S
test and selecting the best fitted model through the model
selection method. However, if users use high significance
levels, a true model may not be chosen as a candidate model
for SSM because the probability of rejecting a null hypothesis
for the true model increases. Conversely, if a low-level signif-
icance is used, most models are used as candidate models and
modeling errors could increase even though it is not absolutely
suitable for data. Therefore, if users want to strictly filter out
wrongmodels, they need to use higher significance levels, and
if users want to reduce modeling errors due to GOF tests, they
need to use lower significance levels (Kang et al. 2016).

3.1.2 KbSSM process in ISM

If data are lacking or missing (“No” in the decision
process of step (1)), KDE-ebd and SSM will be sequen-
tially performed. First, KDE-ebd is performed to model
the given data by estimating a kernel density function
using both the given and estimated bounded data. The
KDE-ebd generates the bounded data, which are ran-
domly generated from the intervals calculated from the
given data; subsequently, it estimates the kernel density
function using both the given and bounded data. The
intervals are calculated from the given data using the
interval estimation of a uniform distribution. For the
interval estimation, the point estimators are calculated
using the MLE and are defined by

�
â ; b̂

�
⊆ argmax

â;b̂∈Θ

1

xu−xl

� �n

∏
n

i¼1
I xl ≤ x≤ xuf g xið Þ

8><
>:

9>=
>; ð9Þ

where â and b^ are the point estimators of a uniform distribution,
and xl and xu are the minimum and maximum values of the
given data, respectively. I xl ≤ x≤ xuf g is the indicator function,
which is 1 when xl ≤ x ≤ xu; otherwise, it is 0. The interval
estimators, ACI and BCI, are expressed as

ACI ¼ âL; âUg ¼ b̂−
b̂−â

αebd
1=n

; â�
"(

ð10Þ

BCI ¼ b̂L; b̂Ug ¼ b̂þ b̂−â
αebd

1=n
�

"(
ð11Þ

where âL and b̂U are used as the lower (l) and upper (u) pa-
rameters of the uniform distribution to generate the bounded
data, respectively; αebd is the significance level for the interval
estimation. The interval range in the uniform distribution is
varied with the significance level (αebd) value. If αebd is low,
the KDE-ebd density function has a long tail, which yields a
more conservative density estimation than the one with a high
αebd. If αebd is high, the KDE-ebd density function has a short
tail, which yields a less conservative density estimation than
the one with a low αebd but fits better to the data distribution.
In this study, αebd was chosen as 0.1, and thus, the accuracy
and conservativeness are ensured for the estimated density
functions (Kang et al. 2018).

The estimated bounded data are randomly sampled from a
uniform distribution with the estimated lower and upper bounds
of the parameters, l and u, respectively. The number of bounded
data is determined by comparing the intersection areas of the
kernel density functions obtained before and after the bounded
data are updated. The intersection area is an area metric evalu-
ating the coincidence rate between two PDFs. If two PDFs are
completely coincident, the intersection area is 1; if two PDFs do
not share an overlapped area, the intersection area is 0.
Whenever the bounded data are added, the KDE-ebd density
functions, fk, fk − 1, and fk − 2 are generated, where k is the total
number of given and bounded data, and fk, fk − 1, and fk − 2 are the
estimated KDE-ebd density functions using the k, k − 1, and k
− 2 data (Kang et al. 2018; Kang 2018). The intersection areas,
IAk, k − 1 and IAk, k − 2, between fk, fk − 1, and fk − 2 are calculated
using the Riemann integral of the overlapped function (Kang
et al. 2016), and the intersection areas are given by the follow-
ing (Jung et al. 2017; Kang et al. 2018; Kang 2018)

IAk;k−1 ¼ ∑
p

l¼1
f k;k−1 xlð Þ � xl−xl−1ð Þ ð12Þ

f k;k−1 xlð Þ ¼ min f k xlð Þ; f k−1 xlð Þf g ð13Þ
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where p is the number of subintervals that encompasses the
domain of the overlapped area.

If both fk − 1 and fk − 2 converge to fk, both IAk, k − 1 and
IAk, k − 2 become greater than the critical intersection area,
IAc, i.e., fk, fk − 1, and fk − 2 are almost coincident, meaning that
the KDE-ebd density function has converged. Thus, the addi-
tional bounded data is unnecessary, and the updated estimated
bounded data are used to obtain the output density function
using KDE-ebd (Kang et al. 2018; Kang 2018).

If the critical intersection area increases, the large number
of bounded data is generated and the estimated density func-
tion using KDE-bd tends to oversmooth the data. Otherwise, a
small number of bounded data are generated and the density
function using KDE-bd tends to overfit the data. Accordingly,
if users want conservative modeling, they can use a high crit-
ical intersection area. If the users want a model that fits their
data well, they can use a low critical intersection area. In this
paper, the critical intersection area was chosen as 0.95, which
is known as the appropriate convergence criterion (Jung et al.
2017), and detailed description is included in the KDE-bd/bd
paper (Kang et al. 2018).

The estimated kernel density function of the KDE-ebd is
calculated using the real given data and the estimated bounded
data, defined as (Kang et al. 2018)

f̂ebd ¼
1

nþ mð Þ � h ∑
nþm

k¼1
K

x− XeBDkð Þ
h

� �
ð14Þ

where XeBDk is the total data for k = 1, …, n + m;
XeBDk = {Xi, eBDk}; Xi is the ith given data for i = 1, …, n;
and eBDk is the jth estimated bounded data for j = 1, …, m.

F̂ebd is an estimated kernel density function of the KDE-ebd,
K(∙) is a kernel function, and h is the bandwidth of the kernel
function. In this study, a Gaussian kernel function is used as it
has a simple mathematical formula and is the most commonly
used in the KDE (Chen 2015; Guidoum 2015; Hansen 2009;
Sheather 2004). As the bandwidth is important to determine
the accuracy of the estimated kernel density function, in this
study, the optimal bandwidth (h*) is calculated using
Silverman’s rule of thumb (Silverman 1986).

The estimated PDF using the KDE-ebd has a nonparamet-
ric formulation, and thus, it needs to be converted to a para-
metric distribution. Hence, new samples are resampled with
the KDE-ebd to conduct the parametric method (SSM). A
CDF obtained from the KDE-ebd is given by

F̂ebd xkð Þ ¼ ∫
x

−∞
f̂ebd xkð Þdx ð15Þ

where xk is the total data and F̂ebd xkð Þ and f̂ ebd xkð Þ are the
CDF and PDF obtained from the KDE-ebd, respectively. The
resampled data (RXl) is randomly generated using a quantile
function (also called an inverse CDF) defined as

Q pð Þ ¼ inf xk∈ℝ : p≤ F̂ebd xkð Þg; p∈ 0; 1½ �
n

ð16Þ

where Q(p) is the quantile function that returns the resampled
data RXl shown in (17).

RX l ¼ Q plð Þ ð17Þ
where the p values are randomly selected between 0 and 1 and
the estimated CDF using the KDE-ebd is used to find RXl

through the quantile function. The total number of the
resampled data is l.

Next, the GOF test is performed to verify the absolute com-
patibility of the candidate models for the resampled data. The K–
S test is also used as the GOF test in the parametric process. As
the estimated bounded data of the KDE-ebd are randomly select-
ed, the quality of the bounded data could still be poor. Therefore,
the randomness of the bounded data in the KDE-ebd needs to be
reduced through the GOF test for the resampled data and candi-
date models. If all of the candidate models are rejected by the
GOF test, the KDE-ebd is performed again to estimate a new
CDF using KDE-ebd; subsequently, new resampled data are
generated from the new CDF using KDE-ebd. However, if the
distribution of the given data does not match with any initial
candidate models, the repetitive KDE-ebd process cannot satisfy
the absolute appropriateness for the given data; thus, the number
of iterations (r) is limited to 100 to avoid the infinite loop in the
KDE-ebd process. If r is larger than 100, other types of paramet-
ric distributions will be added to the candidate models, and then
the GOF test will be performed for the updated candidate
models. If the estimated density function using KDE-ebd does
not satisfy the GOF test, this program is terminated by the print-
out “FAIL.” This means that the ISM cannot fit any parametric
distribution among all the candidate models to the given data. In
this case, a nonparametric modeling is recommended.

Finally, the model selection method is performed for the
resampled data based on the candidate models with absolute
appropriateness. The BIC is also used as the model selection
method in the parametric modeling process. Through this pro-
cess, the nonparametric distribution using KDE-ebd is convert-
ed to the most suitable parametric distribution for the given data.

Figure 3 shows the estimated PDFs using various modeling
methods for seven data generated from an assumed true dis-
tribution, NORM (50, 10). As the KDE uses only seven data
and the data are irregularly distributed, the estimated density
function is bimodal with high nonlinearity; thus, the intersec-
tion area between the estimated PDF and true PDF is only
0.6627. The SSM better describes the true PDF by identifying
the Birnbaum–Saunders distribution and the intersection area
is 0.8579. However, the PDF using the SSM tends to under-
estimate the density function values at the left tail, which
might be unreliable in statistical analysis. The KDE-ebd and
ISM using KbSSM estimate the mildly distributed PDFs over
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the wide domain by adding four bounded data to the given
data. The estimated PDFs using KDE-ebd and ISM have
heavier tails than those using SSM, and these heavy tailed
PDFs lead to conservative results in the reliability analysis
(Picheny et al. 2010; Wheeler 2012; Malekpour and
Barmish 2017). In particular, the intersection area using the
ISM (0.8690) is higher than the one using the KDE-ebd
(0.8378), i.e., the PDF using the ISM is closer to the true
PDF than the KDE-ebd. Consequently, the accuracy and con-
servativeness are ensured for the estimated density functions
(Kang et al. 2018). To verify the modeling accuracy, conver-
gence, and conservativeness of the ISMmethod, various sym-
metric distributions with various sample sizes were tested in
Sect. 4. To verify the conservativeness of the ISM method, a
reliability analysis example was tested in Sect. 5.

4 Statistical simulation test

To verify the performance of the integrated approach, statistical
simulation tests using the parametric modeling method (SSM),
nonparametric modeling method (KDE-ebd), and integrated
modeling method (ISM) are conducted for the sample data,
and their results are compared. To conduct the simulation tests,
true models are assumed by separately considering two cases,
i.e., case I: normal distributions with several variations and case
II: nonnormal symmetric distributions, and the characteristics of
the true models are explained in detail in Sects. 4.1 and 4.2,
respectively. Samples are randomly generated from the true
models for various sample sizes, n = 3, 5, 7, 10, 20, 30, and
50 with 1000 repetitions to consider the randomness of the sam-
ples. Subsequently, the statistical modeling using the three
methods is performed for each data set, and the intersection areas
between the true PDFs and the estimated PDFs are calculated to
compare the accuracy and convergence of the three methods in
Sect. 4.3.1. The intersection area has a normalized value from 0

to 1 and symmetric feature regardless of the selection of refer-
ence distribution, so that it is possible to obtain consistent values.
The Kullback–Leibler (K–L) divergence, which is also widely
used as a modeling accuracy measure, can be used, but it has
nonnormalized value and asymmetric feature (Kullback and
Leibler 1951; Kang 2018); thus, it is not used in this study. If
the intersection area is used to assess the modeling accuracy,
quantile function value ratio (QFVR), which is a quantile func-
tion value evaluated at tail ends of distributions, is used to assess
the modeling conservativeness. The performance of modeling
methods is verified using the same true models and sample sizes
as the accuracy in Sect. 4.3.2.

To perform a GOF test in the SSM and KbSSM, the
Birnbaum–Saunders, exponential, logistic, extreme value,
gamma, logistic, log-logistic, log-normal, Nakagami, normal,
Rayleigh, t location scale, and Weibull distributions were se-
lected as the candidate models. The K–S test was chosen as
the GOF test with 5% significance level (αGOF), and the BIC
was selected as the model selectionmethod (Kang et al. 2016).
The KDE-ebd used a significance level αebd = 10% for esti-
mating the bounds and a critical intersection area IAc = 0.95
for generating the bounded data (Kang et al. 2018). In the
KbSSM, a critical two-sample K–S statistic Dc

n;n0 = 0.05 was

chosen to reasonably determine either the KbSSM or SSM
process, and the number of resampled data (RXl) used was
300 to ensure the efficiency and accuracy of conducting the
SSM in the KbSSM process. This is because the SSM esti-
mates a highly accurate distribution for 300 samples with var-
ious distributions (Kang et al. 2016; Kang et al. 2017).

4.1 Case I: normal distributions with various
variations

The normal distribution is the most commonly used distribution
in the engineering fields, e.g., in reliability analysis and reliability-
based design optimization (Frangopol et al. 1997; Li et al. 2012;
Yoo and Lee 2014; Park et al. 2015). In this section, three normal
(NORM) distributions, i.e., NORM(50, 2.5), NORM(50, 5), and
NORM (50, 10), are assumed as the true models with the same
mean, 50, and different standard deviations, i.e., 2.5, 5, and 10.
Figure 4 shows the PDFs of these three true distributions.

Tables 1, 2, and 3 present the average intersection areas
between the estimated PDFs using the SSM, KDE-ebd, and
ISM, respectively, for normal distributions with multiple varia-
tions and sample sizes. The numbers in the combined process
(KbSSM) or parametric process (only the SSM) indicate the
number of times each process is performed for the statistical
modeling when the true models are NORM (50, 2.5), NORM
(50, 5), and NORM (50, 10) distributions. In Tables 1, 2, and 3,
the bold font indicates the highest intersection area.

First, when the NORM (50, 2.5) distribution is a true model,
the intersection areas using the three methods increase and

Fig. 3 Estimated PDFs using various modeling methods
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become close to one as the sample size increases. The number
of performing SSM in the ISM process also increases while the
number of performing KbSSM in the ISM process decrease, as
presented in Table 1, because the SSM process more easily and
accurately estimates the true distribution than the combined
process for sufficient data. The intersection areas of the ISM
are always greater than or equal to those resulting of conducting
the SSM or KDE-ebd alone. When n ≤ 10, the ISM yields the
largest intersection area, followed by the KDE-ebd and SSM;
further, KbSSM is always performed in the ISM process.
During the KbSSMprocess, the estimated distribution is almost
the same as the one using KDE-ebd although the KbSSM esti-
mates a parametric distribution while the KDE-ebd estimates a
nonparametric distribution. However, the accuracy of the ISM
is higher than that of the KDE-ebd because the conservative
effect of the KDE-ebd is reduced by remodeling the density
function using SSM in the KbSSM. The intersection areas
using the KDE-ebd are larger than those using the SSM be-
cause the KDE-ebd has a high estimation accuracy even if the
data quality is poor, contrary to the SSM (Kang et al. 2017,
2018). When n ≥ 20, the ISM still has the highest accuracy,
followed by the SSM and KDE-ebd. The ISM is more accurate
than the SSM for n = 20 because the KbSSM can reduce the
errors caused by wrong identifications and inaccurate estima-
tions of the distribution parameters that often occur in the SSM.

However, the accuracy of the ISM is equal to that of the SSM
for n = 30 and 50 because the identification and estimation
errors are reduced for sufficient data. Finally, the SSM process
will only be performed in the ISM for n = 50. The intersection
areas using SSM are greater than those using KDE-ebd for n ≥
20 because the SSM quickly converges to a true model as n
increases, but the KDE-ebd does not (Kang et al. 2017, 2018).

Next, assume that the NORM (50, 5) distribution is a true
model. As presented in Table 2, as the number of samples
increases, the intersection areas using the three methods in-
crease while the number of performing KbSSM decreases.
The ISM always has the highest accuracy among the three
methods, as in the NORM (50, 2.5) distribution. In the ISM,
the KbSSM is always performed for a small number of data,
n ≤ 10, whereas the SSM is used for n ≥ 20. When sufficient
data are available (e.g., n = 50), the SSM is always performed
in the ISM, as in the NORM (50, 2.5) distribution.

Subsequently, the true model is assumed to be a NORM
(50, 10) distribution with a large variation. Table 3 lists the
average intersection areas and the number of integrated pro-
cesses. The tendency of the intersection areas is similar to that
of NORM (50, 2.5) and NORM (50, 5) distributions. In this
distribution, the ISM still shows the largest intersection area
regardless of the sample size, and the KbSSM process is

Table 1 Average intersection areas in SSM, KDE-ebd, and ISM:
X~NORM (50, 2.5)

Number SSM KDE-
ebd

ISM
IA KbSSM SSM

3 0.3850 0.6288 0.6379 1000 0

5 0.5875 0.7066 0.7182 1000 0

7 0.6889 0.7544 0.7651 1000 0

10 0.7681 0.7964 0.8071 1000 0

20 0.8697 0.8637 0.8744 609 391

30 0.8945 0.8832 0.8945 133 867

50 0.9226 0.9043 0.9226 0 1000

Bold font indicates the highest intersection areas

Table 2 Average intersection areas in SSM, KDE-ebd, and ISM:
X~NORM (50, 5)

Number SSM KDE-
ebd

ISM
IA KbSSM SSM

3 0.3835 0.6305 0.6382 1000 0

5 0.5991 0.7106 0.7197 1000 0

7 0.6883 0.7578 0.7673 1000 0

10 0.7731 0.7961 0.8097 1000 0

20 0.8677 0.8634 0.8731 562 438

30 0.8934 0.8814 0.8933 136 864

50 0.9186 0.9033 0.9186 0 1000

Bold font indicates the highest intersection areas

Table 3 Average intersection areas in SSM, KDE-ebd, and ISM:
X~NORM (50, 10)

Number SSM KDE-
ebd

ISM
IA KbSSM SSM

3 0.3775 0.6429 0.6504 1000 0

5 0.5891 0.7226 0.7303 1000 0

7 0.7005 0.7557 0.7649 1000 0

10 0.7754 0.7996 0.8087 1000 0

20 0.8659 0.8603 0.8684 573 427

30 0.8949 0.8849 0.8949 168 832

50 0.9166 0.9052 0.9166 0 1000

Bold font indicates the highest intersection areas

Fig. 4 PDFs of normal distributions
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dominantly performed in the ISM method when n is very
small, while SSM is primarily used for the sufficient number
of data.

4.2 Case II: nonnormal symmetrical distributions

In this section, the normal (NORM (50, 5)), logistic (LOG (50,
2)), and t location scale (TLOC (50, 10, 5)) distributions are
assumed as the true models. The 1st and 2nd numbers at the
right of the distribution names indicate the location (mean) and
scale parameter of the LOG distribution. The 1st, 2nd, and 3rd
numbers denote the location (mean), scale, and shape parameter
of the TLOC distribution. A LOG distribution has longer tails
and a higher kurtosis than a NORM distribution. The TLOC
distribution is a type of Student’s t distribution, also called the
nonstandardized Student’s t distribution (Jackman 2009) and
has heavier and longer tails than a NORM distribution.
Therefore, the LOG distribution is more leptokurtic and has a
narrower shape than a NORM distribution. The TLOC distri-
bution is more leptokurtic and has a wider shape than the
NORM distribution even though the mean and standard devia-
tion of the three distributions are the same. To distinguish the
difference between the distributions, the variances of three dis-
tributions were chosen differently in this study. The lengths and
thicknesses of the distribution tails are very important charac-
teristics in reliability analysis; thus, three models with different
tail characteristics are selected as the true models to verify the
performance of the proposed method. Figure 5 shows the PDFs
of the three distributions, and the formulas of the PDF of these
distributions are described in detail in Appendix 1.

Tables 4 and 5 list the intersection areas using the three
methods, and the number of times either the KbSSM process
or the SSM process is performed in the ISM process when the
LOG and TLOC distributions are the true models. In Table 4,
the italic font indicates that the intersection areas of the SSM
or KDE-ebd are larger than those of the ISM.

First, when the LOG distribution is a true model, the inter-
section area using the three methods and the number of
performing KbSSM or SSM processes in the ISM is as listed

in Table 4. The estimation accuracy using the three methods
and the number of performing SSM processes increase as n
increases, and the ISM yields always more accurate results
than the SSM and KDE-ebd do except for n = 20 and 30.
The ISM has the highest accuracy, followed by KDE-ebd
and SSM, and also, the intersection areas using the ISM are
slightly larger than those using KDE-ebd for n ≤ 10. However,
the SSM is slightly more accurate than the ISM, and KDE-ebd
has the lowest accuracy for n ≥ 20.

The LOG distribution has the smallest COV with the highest
kurtosis; thus, the SSM converges more rapidly to the true mod-
el than the other models by identifying distributions with esti-
mated parameters, whereas the KbSSM process tends to model
a heavy tailed distribution using bounded data for conservative
modeling. Therefore, the intersection areas using ISM, which is
a mixture of the KbSSM and SSM processes, are slightly small-
er than those using SSM especially for insufficient data such as
n = 20 and 30. However, it is noteworthy that the maximum
difference between the ISM and SSM is only 0.33%, which
means that the two methods show similar performance.
Therefore, we confirmed that the ISM is the most accurate
among the three methods, regardless of the sample size.

Comparing the obtained results for LOG (50, 2) with those
for NORM (50, 5), the overall intersection areas using the
ISM for the LOG (50, 2) distribution are smaller than those
of the ISM for the NORM (50, 5) distributions for n ≤ 20
because the LOG distribution has longer tails and larger kur-
tosis than the NORM distribution.

Next, when the true model is the TLOC distribution, the
intersection areas and the number of performing KbSSM pro-
cesses or SSM processes are as presented in Table 5. A similar
tendency to that for the NORM and LOG distributions is still
observed for the TLOC distribution. The TLOC distribution
has the lowest estimation accuracies among the three distribu-
tions because the TLOC distribution has heavier and longer
tails than the other distributions. However, the ISM is still the
most accurate among the three methods, regardless of the
number of samples.Fig. 5 PDFs of symmetric distributions

Table 4 Average intersection areas in SSM, KDE-ebd, and ISM: LOG
(50, 2)

Number SSM KDE-
ebd

ISM
IA KbSSM SSM

3 0.3822 0.6277 0.6359 1000 0

5 0.5940 0.6930 0.7030 1000 0

7 0.6899 0.7274 0.7371 1000 0

10 0.7725 0.7796 0.7882 1000 0

20 0.8632 0.8479 0.8599 596 404

30 0.8942 0.8757 0.8925 142 858

50 0.9159 0.8943 0.9159 0 1000

Bold font indicates the highest intersection areas

Integrated statistical modeling method: part I—statistical simulations for symmetric distributions 1729



4.3 Comparison of all the true distributions

Statistical modeling method should provide accurate models, but
if there is not enough data, conservativemodels need to be obtain-
ed to compensate for modeling errors. In this section, the intersec-
tion areas between the estimated models and the true models and
the QFVR were used as the measures of accuracy and conserva-
tiveness, respectively. In the simulation tests, the performances of
ISM, KDE-ebd, and SSM were compared by calculating the in-
tersection areas and QFVR values from estimated models using
each method for different true models and sample sizes.

4.3.1 Modeling accuracy

In this section, the variations in the intersection areas using the
SSM, KDE-ebd, and ISM are compared to verify the model-
ing accuracy of the proposed method for NORM, LOG, and
TLOC distributions with various sample sizes. Figure 6 de-
picts the boxplot of the intersection areas using the three
methods with 1000 repetitions when the number of samples
changes from 3 to 50. The boxplot is useful and widely used to
present the distribution of statistical results. In the boxplot, the
degree of biased distribution is inferred through the position of
the boxes; the top and bottom bounds of the boxes mean the
1st quartile (Q1) and 3rd quartile (Q3) respectively, and the line
across the boxes indicates the 2nd quartile (Q2, median value).
The two end lines of the boxes are the outermost values of the
data inside the two fences that are bounded by [Q1 − 1.5 ×
IQR, Q1 + 1.5 × IQR], with IQR =Q3 −Q1; the point sym-
bols (outside the observations) are the outliers outside both
fences (Tukey 1977; Frigge et al. 1989). In Fig. 6, most of
the data (over 98–99%) are between both fences.

In Fig. 6, for all true models, when n increases, the median
values of the intersection areas using the SSM, KDE-ebd, and
ISM increase and become close to 1; in addition, the height of
the boxes become narrower. For n ≤ 10, the ISM has the highest
median value and the smallest variation of the intersection areas,
whereas the SSM has the lowest median value and the largest

variation owing to the identification and parameter estimation
errors. Thus, the ISM has the highest accuracy and the SSM has
the lowest accuracy especially for n ≤ 10.When n ≥ 20, the ISM
and SSM have similar median values and variations for the
intersection areas, but the ISM still has the most accurate results.
As observed in Tables 1, 2, 3, 4, and 5, the intersection areas for
the long-tailed distributions, such as LOG and TLOC, are slight-
ly smaller than those for NORM distributions in the ISM for all
sample sizes because of the difficulty in modeling tailed parts of
the distributions with insufficient data.

In summary, for all of the true models, the ISM is slightly
more accurate than the KDE-ebd; SSM has the lowest accuracy
for n ≤ 10, and the estimation accuracies of the ISM are greater
than or equal to those of the SSM; KDE-ebd is the most inaccu-
rate for n ≥ 20. As the ISM shows the best accuracy among the
three methods regardless of the number of samples, it is highly
recommended for statistical modeling.

4.3.2 Modeling conservativeness

For the same truemodels and same sample sizes as Sect. 4.3.1,
the means and variations of QFVR values using the SSM,
KDE-ebd, and ISM are compared to verify the conservative-
ness of estimated distribution function. The QFVR is the ratio
between quantile function values (iCDF values) of the esti-
mated functions and true distributions corresponding to a re-
liability index (β). The QFVR is defined by

QFVR ¼ Q̂ P X ≤X* βð Þ	 
� �
Q P X ≤X* βð Þ	 
� � ð18Þ

where Q̂ and Q are the quantile function values of the estimated
CDF and true CDF, respectively. P[X ≤X∗(β)] is a probability
corresponding to the reliability index β with X∗(β) =F−1(Φ(β)).
If the QFVR value is 1, the estimated distribution exactly de-
scribes the tail end of the true distribution. If the QFVR exceeds
1, it means that the estimated distribution is more conservative
than the true distribution because it has heavier tails than the true
distribution; thus, it yields conservative results in the reliability
analysis or RBDO. If the QFVR is less than 1, the estimated
distribution has a shorter tail than the true distribution, which
leads to unreliable reliability analysis or RBDO results.

Figure 7 depicts the boxplots of the QFVR values using the
three methods with 1000 repetitions for NORM (50, 5), NORM
(50, 10), and TLOC (50, 10, 5) models (other results are included
in Fig. 15 of Appendix 4) when the number of data varies from 3
to 50. For n ≤ 10, because the SSM yields shorter tailed distribu-
tions than other methods and large modeling errors, the average
QFVR values are lower than other methods but with extremely
large variations. Thus, the estimatedmodel using the SSM results
in unreliable analysis and design for insufficient data. The KDE-
ebd and ISM have larger QFVR values than the SSM because

Table 5 Average intersection areas in SSM, KDE-ebd, and ISM: TLOC
(50, 10, 5)

Number SSM KDE-
ebd

ISM
IA KbSSM SSM

3 0.3808 0.6153 0.6261 1000 0

5 0.5957 0.6775 0.6868 1000 0

7 0.6913 0.7193 0.7262 1000 0

10 0.7657 0.7707 0.7741 1000 0

20 0.8545 0.8425 0.8514 585 415

30 0.8837 0.8676 0.8811 146 854

50 0.9072 0.8905 0.9072 0 1000

Bold font indicates the highest intersection areas
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they estimate heavier tailed distributions than the SSM. Thus,
two methods can yield conservative design for insufficient data.

For n ≥ 20, the SSMquickly converges to one because the data
can better represent tails of distributions, and thus, the modeling
accuracy rapidly increaseswhile theKDE-ebd is still conservative
due to its boundary effect. The QFVR values using the ISM also
converge to one, but they tend to do in a more conservative way
than SSM. As β increases, i.e., the tail of the distribution being
modeled becomes longer, modeling error of the SSM becomes
large and the QFVR values become much less than 1. On the
other hand, theKDE-ebd and ISMhave higher QFVRvalues, but
the ISM yields modeling results that are relatively more conser-
vative than the KDE-ebd, especially when the data is insufficient.
This is because the ISM can represent long tails of distributions
through the conversion of estimatedmodels to parametricmodels,
while the effect of bounded data in KDE-ebd decreases at the tail

end. In addition, the larger the variance, the longer tail the esti-
matedmodel has, so that TLOCwith the highest variation has the
highest average and variance of the QFVR values.

The ISM shows desirable modeling results in most cases, but
not in the TLOC distribution with β = 3. Since the TLOC has
extremely long and thick tails and small data cannot represent its
tail end corresponding to β = 3, so that all three methods cannot
show good performances in terms of conservativeness.
Nevertheless, the modeling of the tail end does not much affect
the accuracy of the overall model estimation, and the ISM still
shows the higher conservativeness than other methods.

In summary, for all of the assumed true models, the ISM
estimates more conservative distribution function than SSM
for insufficient data while it quickly converges to true value
rather than KDE-ebd as n increases. In addition, the conser-
vativeness of ISM consistently increases as the reliability

(a) NORM (50,2.5) distribution (b) NORM (50,5) distribution

(c) NORM (50,10) distribution (d) LOG (50,2) distribution

 

(e) TLOC (50,10,5) distribution 

Fig. 6 Boxplots of intersection
areas according to the number of
data. a NORM (50, 2.5)
distribution. b NORM (50, 5)
distribution. c NORM (50, 10)
distribution. d LOG (50, 2)
distribution. e TLOC (50, 10, 5)
distribution
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index increases unlike others. For the reliability analysis and
design of systems requiring high reliability and accuracy, the
ISM method is the most recommendable modeling method.

5 Numerical examples

5.1 Statistical modeling example

Numerical examplesStatistical modeling exampleTo demon-
strate the performance of the ISM method, it is demonstrated
how statistical modeling is conducted for real engineering data
by comparing the intersection areas and QFVR values using the
SSM, KDE-ebd, and ISM. In this study, the modeling was per-
formed using 80 experimental data of the compressive strength
of aluminum–lithium (Al–Li) alloy specimens (Montgomery
and Runger 2003). A true distribution was assumed to be an
estimated distribution from 80 data using SSM to compare the
intersection areas and QFVR values between the estimated dis-
tributions and the true PDF using the three methods. This is
because 80 data are considered sufficient to estimate the distri-
bution function using the parametric method, which is

commonly used for statistical modeling of compressive strength.
Figure 8 shows the histogram and the estimated PDF by SSM of
the Al–Li alloy with 80 data. The LOG distribution is estimated
as the best-fit distribution, and the location and scale parameters
of this distribution are 162.73 and 18.38, respectively, where the
mean, standard deviation, skewness, and kurtosis are 162.73,
33.33 (COV= 20.48%), 0, and 4.2, respectively.

To confirm the estimation accuracy and conservativeness
using the ISMmethod, statistical modeling using SSM, KDE-
ebd, and ISM is performed for n = 3, 5, 7, 10, 20, 30, 50, and

(a) NORM (50,5) with β = 1 (b) NORM (50,5) with β = 2 (c) NORM (50,5) with β = 3

(d) NORM (50,10) with β = 1 (e) NORM (50,10) with β = 2 (f) NORM (50,10) with β = 3

(g) TLOC (50,10,5) with β = 1 (h) TLOC (50,10,5) with β = 2 (i) TLOC (50,10,5) with β = 3

Fig. 7 Boxplots of QFVR according to the number of data. aNORM (50,
5) with β = 1. bNORM (50, 5) with β = 2. cNORM (50, 5) with β = 3. d
NORM (50, 10) with β = 1. e NORM (50, 10) with β = 2. f NORM (50,

10) with β = 3. g TLOC (50, 10, 5) with β = 1. h TLOC (50, 10, 5) with
β = 2. i TLOC (50, 10, 5) with β = 3

Fig. 8 Histogram and fitted distribution of the Al–Li alloy
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80 with 1000 repetitions, which are randomly generated from the
given 80 data. The statistical modeling is repeated once only for
n= 80, and the intersection areas and QFVR values using the
threemethods are compared for various sample sizes. Table 6 lists
the average intersection areas using the three methods and the
number of either SSM or KbSSM performed in the ISM process.

As presented in Table 6, the intersection areas using the three
methods increase while the number of KbSSM processes de-
creases when n increases. The intersection areas of the ISM and
SSM finally converge to one for n = 80, i.e., the estimated and
true distributions are coincident. When n ≤ 7, the intersection
areas using the ISM are always the largest and those using
SSM are the smallest among the three methods. When n ≥ 10,
the estimation accuracies of the ISM and SSM are almost the
same and the accuracy of the KDE-ebd is the lowest. However,
for n = 20, it is clearly shown that SSM is more accurate than
ISM. It is because the samples are only randomly selected from
80 data in this example, which makes the SSM converge more
rapidly to the true model obtained from 80 data rather than the
ISM, whereas the ISM tends to perform a conservative model-
ing, rather than the SSM, using bounded data. However, for

sufficient data such as n ≥ 30, ISM often uses SSM rather than
KbSSM; thus, its performance becomes close to SSM.

Figure 9 presents the boxplots of the intersection area using
the three methods for various sample sizes. As shown in Fig. 9,
the median values of the ISM are always the highest among the
three methods except n = 10, 20. Although the median value of
the SSM is higher than that of the ISM for n = 10 and 20, the
SSM range is wider than that of the ISM for n = 10, and the
intersection areas using the SSM and ISM have similar varia-
tions for n = 20. The ranges of the intersection areas using the
ISM and KDE-ebd are narrower than those using SSM for n ≤
10; the ranges of the three methods become similar for n ≥ 20.

Figure 10 depicts the boxplots of the QFVR values using
three methods. For n ≤ 10, the averages of QFVR values using
SSM are quite lower than other methods with extremely high
variation and ISM is slightly more conservative than KDE-
ebd. For n ≥ 20, ISM and SSM tend to rapidly converge to one
and KDE-ebd is still conservative. Finally, for n = 80, ISM
and SSM equals to one since the estimated distribution using
ISM becomes the assumed true distribution.

In this example, the intersection areas using the ISM and
KDE-ebd are smaller than those of the LOG distribution in the
statistical simulations for n ≤ 10 because the experimental data
of Al–Li may include bias or outliers, which could significant-
ly affect the data quality for a small number of data; thus, the
variations of QFVR values using threemethods are larger than
those of the LOG distribution in the simulation tests in Fig. 15
of Appendix 4. Accordingly, the ISM estimates a more con-
servative distribution than the LOG distribution estimated
from 80 data owing to the characteristics of the KDE-ebd with
thick tails. The accuracies of the three methods are higher than
those of the LOG distribution in the statistical tests for n ≥ 20
because the effects of the bias or outliers become reduced and
the population model is assumed as the estimated LOG distri-
bution from 80 data. Because the ISM yields consistently
more accurate, conservative, and robust statistical models than
the SSM and KDE-ebd for both small and large number of

Table 6 Average intersection areas in SSM, KDE-ebd, and ISM:
compressive strength

Number SSM KDE-
ebd

ISM
IA KbSSM SSM

3 0.3916 0.6246 0.6330 1000 0

5 0.5962 0.6806 0.6884 1000 0

7 0.7150 0.7299 0.7361 1000 0

10 0.7877 0.7770 0.7840 1000 0

20 0.8844 0.8585 0.8740 567 433

30 0.9112 0.8897 0.9081 163 837

50 0.9401 0.9207 0.9401 0 1000

80 1 0.951 1 0 1

Bold font indicates the highest intersection areas

Fig. 9 Boxplots of intersection areas for Al–Li alloy according to the
number of data

Fig. 10 Boxplots for QFVR for Al–Li alloy with β = 2 according to the
number of data
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data, we confirmed that the ISM is applicable to both real
experimental and simulated data.

5.2 Reliability analysis example

In this section, a reliability analysis of a simple truss example
was performed to show how statistical modeling results using
the SSM, KDE-ebd, and ISM affect the estimation of proba-
bility of failure of the truss and how conservative their reli-
ability analysis results are. This truss example has two mem-
bers, and both horizontal and vertical loads act together on the
joint between the two members, as shown in Fig. 11.

The two-member truss has both deterministic and random
variables, and Table 7 indicates the properties of input variables
with SI units (Park et al. 2015; Hong et al. 2018). Although the
references have considered a correlation between random vari-
ables, in this study, all random variables are assumed to be inde-
pendent because of the focus onmodelingmarginal distributions.

As this example has two elements, the probabilities of fail-
ure of the two elements are calculated, and then a system
probability of failure is calculated. The two-member truss is
a series system with members 1 and 2, and thus, this system
fails when either member fails. The probability of failure of
the series system is calculated as

PSYS
F ¼ P g1 > 0½ �

þ P g2 > 0½ �−P g1 > 0f g∩ g2 > 0f g½ � ð19Þ

where the 1st and 2nd terms are failure probabilities of ele-
ments 1 and 2, respectively, and the final term is the probabil-
ity of failure when both members, 1 and 2, fail together. Given
that members 1 and 2 are independent, the probability of fail-
ure of the system is represented as

PSYS
F ¼ P g1 > 0½ � þ P g2 > 0½ �−P g1 > 0½ � � P g2 > 0½ � ð20Þ

Therefore, the probability of failure of the two-member
truss system can be obtained by calculating arithmetically
the failure probabilities of both members. The performance
functions of members 1 and 2 are defined as

g1 ¼
1

2

Py

cosα
þ Px

sinα

� �
−A1σu1 ð21Þ

g2 ¼
1

2

Py

cosα
−

Px

sinα

� �
−A2σu2 ð22Þ

As described in Table 7, all input random variables are
independent and normally distributed, and also the perfor-
mance functions, g1 and g2, are the linear combination of
independent normal random variables; thus, g1 and g2
follow normal distributions. Accordingly, an exact proba-
bility of failure can be analytically calculated with the
means and variances of g1 and g2. The means of g1 and
g2 are obtained as

μg1
¼ 1

2

μPy

cosα
þ μPx

sinα

� �
−A1μσu1 ð23Þ

μg2
¼ 1

2

μPy

cosα
−
μPx

sinα

� �
−A2μσu2 ð24Þ

where μg1
and μg2

are the mean values of responses. μPx
and

μPy
are the mean values of Px and Py, and μσu1 and μσu2 are the

mean values of σu1 and σu2.
The variances of g1 and g2 are obtained as

σ2
g1

¼ 1

2cosα

� �2

σ2
Py
þ 1

2sinα

� �2

σ2
Px
þ A2

1σ
2
σu1 ð25Þ

σ2
g2

¼ 1

2cosα

� �2

σ2
Py
þ 1

2sinα

� �2

σ2
Px
þ A2

2σ
2
σu2 ð26Þ

Fig. 11 Two-member truss

Table 7 Properties of input
variables in the two-member truss Variables Symbol Dist. Mean Std.

Deterministic variable Angle (°) α – 45

Area of member 1 (m2) A1 – 0.35

Area of member 2 (m2) A2 – 0.1

Random variable Ultimate strength of member 1 (MPa) σu1 Normal 250 12.5

Ultimate strength of member 2 (MPa) σu2 Normal 250 12.5

Horizontal load (kN) Px Normal 50 15

Vertical load (kN) Py Normal 50 2.5
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where σg1 and σg2 are the variances of responses; σPx and σPy

are the standard deviations of Px and Py; and σσu1 and σσu2 are
the standard deviations of σu1 and σu2.

As g1 and g2 follow normal distributions, a probability of
failure for each member is calculated by a linear transforma-
tion from normal distributions to standard normal distribu-
tions. The exact failure probabilities of the two members are
obtained as

P1
F ¼ 1−Φ

0−μg1

σg1

� �
ð27Þ

P2
F ¼ 1−Φ

0−μg2

σg2

� �
ð28Þ

where Φ is the CDF of the standard normal distribution.
To carry out the reliability analysis using statistical models

(PDFs), first, samples are randomly generated from the true
models for n = 3, 5, 7, 10, 20, 30, and 50 with 200 repetitions,
and then, the PDFs are estimated using ISM, SSM, and KDE-
ebd for the randomly generated samples. Finally, the probabili-
ties of failure are calculated using the reliability analysis
methods. The probability of failure can be analytically calculat-
ed using (27) and (28)when all inputs have normal distributions,
but they cannot be used for the estimated PDFs, such as non-
parametric or nonnormal parametric distributions. Thus, the ex-
act probability of failure is only calculated using (27) and (28),
but the reliability analysis for the estimated PDFs is conducted
using the Monte Carlo simulation (MCS) with 106 samples.

To verify the accuracy of the estimated probabilities of failure
of the system using the three methods, an exact probability of
failure and lower and upper failure probabilities is employed as
reference values. When increasing the number of data, the prob-
abilities of failure calculated using eachmethod tend to converge
to the exact value, PExact

Sys = 0.0838, but a large amount of data is

required to show the convergence of each method to the true
value. If probability bounds using p-box theory are used from
sufficient data (e.g., 1000), it is possible to easily compare the
convergence rate of each method even for reasonably sufficient
data, such as 50. Thus, the estimated lower and upper bounds of
the p-box from 1000 data, 0.0597 and 0.1123, were used as the
lower and upper limits by assuming that input distribution types
were known. Figure 12 shows the variations of the estimated
probabilities of failure using SSM, KDE-ebd, and ISM.

As n increases, the boxes of the SSM, KDE-ebd, and ISM
become close toPExact

Sys and are within the lower and upper limits

while KDE-ebd does not. SSM is the closest to PExact
Sys and has

the fastest convergence regardless of the number of data, but it
mostly underestimates the probabilities of failure for n ≤ 20 be-
cause the SSM often estimates a PDF with short tails for input
variables. KDE-ebd is the farthest from PExact

Sys and shows the

slowest convergence rate despite of the sufficient number of
data. This is because KDE-ebd yields conservative probabilities

of failure owing to their heavy tails of distributions (Kang et al.
2018). The ISM estimates a conservative probability of failure
of the system, similar to that of the KDE-ebd, but it is slightly
more accurate than theKDE-ebd for n ≤ 10 and its boxes rapidly
converge to bewithin the limits. This is similar to SSM, but ISM
does not underestimate the probabilities of failure for n ≥ 20.

Table 8 presents the ratios of the number of values within
the bounds of the p-box to the total number of repetitions. For
example, results using SSM for n = 5 indicate that 33% of
estimated system failure probabilities are larger than the upper
limit, 25% of them are between the limits, and 42% of them
are smaller than the lower limit.

As shown in Table 8, KDE-ebd does not underestimate the
system probabilities of failure regardless of the number of
data, but it has the smallest ratios for the cases within the
limits, even for sufficient data. The SSM has larger ratios for
the cases within the limits than KDE-ebd, but it often under-
estimates the system failure probability. The ISM does not
underestimate the system failure probability for n ≤ 10 and
its ratios for the cases within the limits are the highest for
n ≥ 20. Accordingly, it is shown that the ISM can yield con-
servative results for insufficient data and it can quickly con-
verge to the exact probability of failure as n increases.

The ISM method obtains a conservative reliability results
using conservative statistical modeling of distributions of

Fig. 12 Boxplots of failure probabilities using ISM, KDE-ebd, and SSM

Table 8 Ratios of failure probabilities to the lower and upper criteria

Methods Number

3 5 7 10 20 30 50

ISM Over 98 100 92 76 33 0 0

Within 2 0 8 24 63 99 100

Under 0 0 0 0 4 1 0

KDE-ebd Over 100 98 90 72 57 54 52

Within 0 2 10 28 43 46 48

Under 0 0 0 0 0 0 0

SSM Over 91 33 17 4 6 0 0

Within 9 25 31 52 69 94 100

Under 0 42 52 44 25 6 0
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input variables with limited data, but there are other conserva-
tive reliability analysis methods using distributions of perfor-
mance functions. Bayesian approach was recently applied to
estimate a distribution of a performance function using limited
data of input random variables (Gunawan and Papalambros
2006; Youn and Wang 2008; Wang et al. 2009). However, it
estimates a distribution of the performance function only for
reliability analysis; thus, we cannot know a distribution of
input random variables. On the other hand, conservative sta-
tistical modeling method like ISM directly estimates distribu-
tions of input or output random variables, so that the result of
statistical modeling can be used in any probabilistic and sta-
tistical methods or uncertainty propagation methods such as
reliability or robust analysis as well as the statistical model
validation and calibration.

6 Conclusions

Various uncertainties of random variables can be quantified
using either the parametric or nonparametric statistical model-
ing methods. The parametric modeling method is convenient,
user friendly, and easy to be handled in the statistical modeling
and uncertainty propagation. Further, it shows fast conver-
gence to the population model for sufficient data; however,
it is not accurate and conservative for insufficient data owing
to the wrong identification of the distribution types and pa-
rameters. Conversely, the nonparametric modeling method is
more accurate and conservative than the parametric one for
insufficient data; however, it has a slower convergence to the
population model than the parametric modeling method for
sufficient data and is not user friendly. In this study, an ISM
method, which achieves the merits of the parametric (SSM)
and nonparametric modeling methods (KDE-ebd) and over-
comes their demerits, was proposed. In the ISMmethod, SSM
is used to model sufficient data using parametric distributions
or KDE-ebd is used to model insufficient data using kernel
density functions with the estimated bounded data according
to the quality of the given data through a two-sample K–S test.
Further, the estimated KDE-ebd density function is converted
to a parametric distribution through a GOF test and model
selection method in the KbSSM process, which can be easily
used in various statistical analysis and yield conservative anal-
ysis results.

The intersection areas between the estimated PDF and the
true PDF using the SSM, KDE-ebd, and ISM were calculated
and compared to verify the accuracy of the proposed method
by conducting statistical simulation tests for various symmet-
rical distribution types and sample sizes. The simulations ver-
ify that the ISM including the KbSSM is more accurate and
reliable than the SSM and KDE-ebd for insufficient data, and
it quickly converges to the true model for sufficient data when
the true model follows various symmetrical distributions.

Further, QFVR values evaluated at tails of estimated distribu-
tions were used to compare the conservativeness of the ISM
with SSM and KDE-ebd. As a result, the ISM evaluates the
tail of the distribution more conservatively and robustly than
other methods, and as the number of data increases, the con-
vergence to the true model is also superior. For the real exper-
imental data of compressive strength of an Al–Li alloy, the
ISM is still more accurate and reliable than the SSM and
KDE-ebd, regardless of the number of data. Additionally,
the ISM is confirmed to yield more conservative and reliable
failure probabilities than the SSM and KDE-ebd through the
reliability analysis of a two-member truss example.
Consequently, the ISM can consistently estimate the true dis-
tribution more conservatively and accurately than either the
SSM or KDE-ebd, regardless of the number of data.
Moreover, the ISM fits data to a parametric distribution func-
tion using the KDE-ebd method. Therefore, it is convenient,
familiar to engineers, and can be easily applied to the uncer-
tainty propagation by analytically calculating statistical mo-
ments or performance functions.

In this study, only the theoretical explanations of the ISM
and the simulation test results for the symmetrical distribution,
which are commonly used in engineering applications, were
presented. However, it is also necessary to test the ISM for
nonsymmetrical and multimodal distributions and show how
the estimated statistical model using the ISM affects the sta-
tistical analysis. If all these problems were to be handled in
this study, the contents would be very extensive; therefore,
only the ISM and the simulations tests for the symmetrical
distribution were covered here. In part II of the paper, the
simulation results for various shapes of distributions and
how the ISM is applied to statistical analysis in practical en-
gineering applications will be presented.

7 Replication of results

The procedure of the proposed method is described in detail in
the flowchart of Fig. 1, and all the methods are implemented
using MATLAB 2018a. The authors do not supply the
MATLAB codes directly as the supplementary materials to
void its use for commercialization purpose. However, we
briefly describe how to implement the MATLAB codes to
make them easier to reproduce all the results of this study.

If the input data are given by users, only the critical
value for two-sample K–S test can be defined before step
(1). For simulation, the input data need to be randomly
generated using a MATLAB built-in function “random”
according to the number of sample size (n). Since the
samples are differently generated for every data set with
n sample size, 1000 data sets were tested to reduce the
randomness effect of the generated samples in simulation
tests. Using the given or generated data, a two-sample K–
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S test is implemented to check whether two data sets are
sampled from a same distribution using a built-in function
“kstest2,” which are given as (1), (2), and (3). If the SSM
process is selected, i.e., “Yes” in the decision box of step
(1), the GOF test (K–S test) is implemented to input data
for all candidate models using a function “kstest” ((4) and
(5)), then the BIC values are calculated for remained
models by the K–S test. To calculate BIC values, a prob-
ability distribution object (PD) is generated using a built-
in function “fitdist,” and next, the negative log maximum
likelihood value (NLL) is calculated ((7)) using a built-in
function “PD = fitdist(x, “normal”)” and “NLL =
PD.NLogL,” and then, the BIC values are calculated with
(6). Finally, a model with the minimum BIC value is se-
lected as the best-fitted model to input data. The proba-
bility distribution object of the obtained model includes
information of statistical parameters where “PD” file of
the best-fitted model can be opened for more detail infor-
ma t i o n s u ch a s p a r ame t e r n ame and v a l u e s ,
“PD.ParameterNames” and “PD.ParameterValues,” which
return the name of the parameters and their values for the
obtained model ((8)). The flowchart of SSM is included in
Fig. 13 of Appendix 2, and the detailed description is
included in the original SSM paper by Kang et al. 2016.
If the KbSSM process is selected, i.e., “No” in the deci-
sion box of step (1), the KDE-ebd and SSM processes are
sequentially implemented. Firstly, in order to generate
bounded data in KDE-ebd process, bounds are calculated
by the interval estimation on a uniform distribution to
input data using a built-in function “unifit” denoted as
(9), (10), and (11). Next, kernel estimators, fk, fk−1, and
fk−2 (PDFs), are estimated on grid points, “xx” using a
built-in function “ksdensity” with “[fk, xx]=ksdentiy
(xk)”, “[fk_1] = ksdensity (xk_1, xx)”, and “[fk_2]
=ksdensity (xk_2, xx).” Then, the intersection areas,

IAk,k−1 and IAk,k−2, are calculated by using the Riemann
integral on the grid points “xx” ((12) and (13)). If IAk,k−1

and IAk,k−2 do not satisfy the criterion of the decision box
in Fig. 14 of Appendix 3, additional bounded data is
added and iterations are repeated. Otherwise, the KDE-
ebd process is terminated and the probability distribution
object for the last fk is estimated based on the given and
estimated bounded data together using “fitdist” like
“PD_k = fitdist(x_ebdk, “kernel”)” where x_ebdk is the
given and bounded data at the last iteration ((14) and
(15)). Subsequently, in order to convert the estimated non-
parametric model using KDE-ebd to a parametric model,
resampled data are generated using a quantile function
(inverse CDF) of the kernel estimator by KDE-ebd using
a built-in function “random” ((16) and (17)) where the
number of resampled data is 300 in this study. Finally,
the SSM method is implemented to the resampled data
like the above SSM process, then the KbSSM process is
terminated. The flowchart of KDE-ebd is included in
Appendix 3 in this paper, and more detailed description
is given in the original KDE-bd/KDE-ebd paper by Kang
et al. (2018).
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Appendix 1. Probability density functions
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Fig. 13 SSM process

Appendix 2. Flow chart of SSM

Fig. 14 KDE-ebd process

Appendix 3. Flow chart of KDE-ebd

Kang et al.1738



References

Agarwal H, Renaud JE, Preston EL, Padmanabhan D (2004) Uncertainty
quantification using evidence theory in multidisciplinary design op-
timization. Reliab Eng Syst Saf 85(1):281–294

Akaike H (1974) A new look at the statistical model identification. IEEE
Trans Autom Control 19(6):716–723

Anderson TW, Darling DA (1952) Asymptotic theory of certain goodness of
fit criteria based on stochastic processes. AnnMath Stat 23(2):193–212

Ayyub BM, McCuen RH (2012) Probability, statistics, and reliability for
engineers and scientists. CRC Press, Florida

Betrie GD, Sadiq R,Morin KA, Tesfamariam S (2014) Uncertainty quan-
tification and integration of machine learning techniques for
predicting acid rock drainage chemistry: a probability bounds ap-
proach. Sci Total Environ 490:182–190

Betrie GD, Sadiq R, Nichol C, Morin KA, Tesfamariam S (2016)
Environmental risk assessment of acid rock drainage under uncer-
tainty: the probability bounds and PHREEQC approach. J Hazard
Mater 301:187–196

BurnhamKP, Anderson DR (2004) Multimodel inference: understanding
AIC and BIC in model selection. Sociol Methods Res 33(2):261–
304

Chen S (2015)Optimal bandwidth selection for kernel density functionals
estimation. J Probab Stat 2015:21

Choi JS, Hong S, Chi SB, Lee HB, Park CK, Kim HW, Yeu TK, Lee TH
(2011) Probability distribution for the shear strength of seafloor
sediment in the KR5 area for the development of manganese nodule
miner. Ocean Eng 38(17):2033–2041

Doh J, Lee J (2018) Bayesian estimation of the lethargy coefficient for
probabilistic fatigue life model. J Comput Des Eng 5(2):191–197

Frangopol DM, Corotis RB, Rackwitz R (1997) Reliability and optimi-
zation of structural systems: Proceedings of the seventh IFIPWG7.5
working conference on reliability and optimization of structural sys-
tems 1996. Elsevier Science, Pergamon

Frigge M, Hoaglin DC, Lglewicz B (1989) Some implementations of the
boxplot. Am Stat 43(1):50–54

Guidoum AC (2015) Kernel estimator and bandwidth selection for den-
sity and its derivatives. Department of Probabilities & Statistics,

Appendix 4. Quantile function value ratio

(a) NORM (50,2.5) with β = 1 (b) LOG (50,2) with β = 1

(c) NORM (50,2.5) with β = 2 (d) LOG (50,2) with β = 2

(e) NORM (50,2.5) with β = 3 (f) LOG (50,2) with β = 3

Fig. 15 Boxplots of QFVR
according to the number of data. a
NORM (50,2.5) with β=1. b
LOG (50,2) with β=1. ~

Integrated statistical modeling method: part I—statistical simulations for symmetric distributions 1739



Faculty of Mathematics, University of Science and Technology
Houari Boumediene, Algeria https://cran.r-project.org/web/
packages/packages/kedd/vignettes/kedd.pd. Accessed 06 Sept 2019

Gunawan S, Papalambros PY (2006) A Bayesian approach to reliability-
based optimization with incomplete information. J Mech Des
128(4):909–918

Hansen BE (2009) Lecture notes on nonparametrics. University of
Wisconsin, Madison 718/NonParametrics1.pdf. Accessed 06 Sept
2019

Hao WY, Liu C, Wang B, Wu H (2017) A novel non-probabilistic reli-
ability-based design optimization algorithm using enhanced chaos
control method. Comput Methods Appl Mech Eng 318:572–593

Hao P, Ma R,Wang Y, Feng S, Wang B, Li G (2019a) An augmented step
size adjustment method for the performance measure approach: to-
ward general structural reliability-based design optimization. Struct
Saf 80:32–45

Hao P, Wang Y, Ma R, Liu H, Wang B, Li G (2019b) A new reliability-
based design optimization framework using isogeometric analysis.
Comput Methods Appl Mech Eng 345:476–501

Hess PE, Bruchman D, Assakkaf IA, Ayyub BM (2002) Uncertainties in
material and geometric strength and load variables. Nav Eng J
114(2):139–166

Hong J, Kang YJ, Lim OK, Noh Y (2018) Comparison of multivariate
statistical modeling methods for limited correlated data. Trans
Korean Soc Mech Eng A 42(5):445–453

Jackman S (2009) Bayesian analysis for the social sciences, vol 846. John
Wiley & Sons, Chichester

Joo M, Doh J, Lee J (2017) Determination of the best distribution and
effective interval using statistical characterization of uncertain vari-
ables. J Comput Des Eng

Jung JH, Kang YJ, Lim OK, Noh Y (2017) A new method to determine
the number of experimental data using statistical modeling methods.
J Mech Sci Technol 31(6):2901–2910

Kang YJ (2018) Development of integrated statistical modeling method
for reliability analysis, Ph.D. Dissertation, Pusan National
University

Kang YJ, Lim OK, Noh Y (2016) Sequential statistical modeling for
distribution type identification. Struct Multidiscip Optim 54(6):
1587–1607

Kang YJ, Hong J, Lim OK, Noh Y (2017) Reliability analysis using
parametric and nonparametric input modeling methods. J Comput
Struct Eng Inst Korea 30(1):87–94

KangYJ, NohY, LimOK (2018) Kernel density estimation with bounded
data. Struct Multidiscip Optim 57(1):95–113

Karanki DR, Kushwaha HS, Verma AK, Ajit S (2009) Uncertainty anal-
ysis based on probability bounds (P-box) approach in probabilistic
safety assessment. Risk Anal 29(5):662–675

Keshtegar B, Chakraborty S (2018) A hybrid self-adaptive conjugate first
order reliability method for robust structural reliability analysis.
Appl Math Model 53:319–332

Kullback S, Leibler RA (1951) On information and sufficiency. Ann
Math Stat 22(1):79–86

Li J, Wang H, Kim NH (2012) Doubly weighted moving least squares
and its application to structural reliability analysis. Struct
Multidiscip Optim 46(1):69–82

Lukić M, Cremona C (2001) Probabilistic assessment of welded joints
versus fatigue and fracture. J Struct Eng 127(2):211–218

Malekpour S, Barmish BR (2016) When the expected value is not ex-
pected: A conservative approach. IEEE Transactions on Systems,
Man, and Cybernetics: Systems 47(9):2454–2466

Montgomery DC, Runger GC (2003) Applied statistics and probability
for engineers, 3rd edn. Wiley, New York

Noh Y, Choi KK, Lee I (2010) Identification of marginal and joint CDFs
using Bayesian method for RBDO. Struct Multidiscip Optim 40(1):
35–51

Park C, Kim NH, Haftka RT (2015) The effect of ignoring dependence
between failure modes on evaluating system reliability. Struct
Multidiscip Optim 52(2):251–268

Peng X, Li J, Jiang S (2017a) Unified uncertainty representation and
quantification based on insufficient input data. Struct Multidiscip
Optim 56(6):1305–1317

Peng X, Wu T, Li J, Jiang S, Qiu C, Yi B (2017b) Hybrid reliability
analysis with uncertain statistical variables, sparse variables and
interval variables. Eng Optim

Picheny V, Kim NH, Haftka RT (2010) Application of bootstrap method
in conservative estimation of reliability with limited samples. Struct
Multidiscip Optim 41(2):205–217

Schwarz (1978) Estimating the dimension of a model. Ann Stat 6(2):461–
464

Shah H, Hosder S, Winter T (2015) Quantification of margins and mixed
uncertainties using evidence theory and stochastic expansions.
Reliab Eng Syst Saf 138:59–72

Sheather SJ (2004) Density estimation. Stat Sci 19(4):588–597
Silverman BW (1986) Density estimation for statistics and data analysis,

vol 26. CRC press, London
Socie D (2014) Probabilistic statistical simulations technical background,

eFatigue LLC, 2008, https://www.efatigue.com/probabilistic/
background/statsim.html#Cor, April, 2014

Tucker WT, Ferson S (2003) Probability bounds analysis in environmen-
tal risk assessment. Applied Biomathematics, Setauket, New York
http://citeseerx.ist.psu.edu/viewdoc/download?. Accessed 06 Sep
2019

Tukey JW (1977) Exploratory data analysis. Pearson, New York
Verma AK, Srividya A, Karanki DR (2010) Reliability and safety engi-

neering. Springer, London
Wang P, Youn BD, Xi Z, Kloess A (2009) Bayesian reliability analysis

with evolving, insufficient, and subjective data sets. J Mech Des
131(11):111008

Wang L, Cai Y, Liu D (2018) Multiscale reliability-based topology opti-
mization methodology for truss-like microstructures with unknown-
but-bounded uncertainties. Comput Methods Appl Mech Eng 339:
358–388

Wheeler DJ (2012) What they forgot to tell you about the normal distri-
bution: how the normal distribution has maximum uncertainty.
Quality Digest (http://www.qualitydigest.com/print/21738), https://
www.qualitydigest.com/print/21738

Yao W, Chen X, Quyang Q, Van Tooren M (2013) A reliability-based
multidisciplinary design optimization procedure based on combined
probability and evidence theory. Struct Multidiscip Optim 48(2):
339–354

Yoo D, Lee I (2014) Sampling-based approach for design optimization in
the presence of interval variables. Struct Multidiscip Optim 49(2):
253–266

Youn BD, Wang P (2008) Bayesian reliability-based design optimization
using eigenvector dimension reduction (EDR) method. Struct
Multidiscip Optim 36(2):107–123

Youn BD, Jung BC, Xi Z, Kim SB, LeeWR (2011) A hierarchical frame-
work for statistical model calibration in engineering product devel-
opment. Comput Methods Appl Mech Eng 200:1421–1431

Zhang Z, Jiang C, Han X, Hu D, Yu S (2014) A response surface ap-
proach for structural reliability analysis using evidence theory. Adv
Eng Softw 69:37–45

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Kang et al.1740

https://cran.r-project.org/web/packages/packages/kedd/vignettes/kedd.pd
https://cran.r-project.org/web/packages/packages/kedd/vignettes/kedd.pd
https://www.efatigue.com/probabilistic/background/statsim.html#Cor
https://www.efatigue.com/probabilistic/background/statsim.html#Cor
http://www.ramas.com/pbawhite.pdf
http://ww.qualitydigest.com
https://www.qualitydigest.com/print/21738
https://www.qualitydigest.com/print/21738

	Integrated statistical modeling method: part I—statistical simulations for symmetric distributions
	Abstract
	Introduction
	Overview of statistical modeling methods
	Interval approach
	Parametric approach
	Nonparametric approach

	Integrated statistical modeling method
	Integrated statistical modeling process
	Parametric process in ISM
	KbSSM process in ISM


	Statistical simulation test
	Case I: normal distributions with various variations
	Case II: nonnormal symmetrical distributions 
	Comparison of all the true distributions
	Modeling accuracy
	Modeling conservativeness


	Numerical examples 
	Statistical modeling example
	Reliability analysis example

	Conclusions
	Replication of results
	References




