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Abstract
This paper presents new structural sensitivity reanalysis formulations based on the polynomial-type extrapolation methods. In
these formulations, the displacement vector of the modified structure is expressed in the form of the vector sequences based on
the fixed-point iteration method. By using these vector sequences, theminimal polynomial extrapolation (MPE) and the reduced
rank extrapolation (RRE) methods calculate the approximate displacement vector of the modified structure by solving reduced
linear least-square problems. Based on the definitions of the MPE and RRE methods, two sensitivity reanalysis formulations are
derived, in which the first- and second-order sensitivities of the modified structure are obtained by solving a set of the over-
determined least-square problems with much smaller size than the complete set of equations of the exact sensitivity analyses. The
performance of the proposed sensitivity reanalysis formulations is evaluated by using four structural sensitivity reanalysis
problems under multiple modifications in their initial designs. The results obtained from the numerical test problems indicate
that the proposed sensitivity reanalysis formulations approximate the first- and second-order sensitivities of the modified struc-
ture with a high level of accuracy and they are able to converge to the exact solutions.

Keywords Sensitivity . Reanalysis . Polynomial-type extrapolation . Minimal polynomial extrapolation . Reduced rank
extrapolation

1 Introduction

Repeated structural and sensitivity analyses of the modified
structures are the main parts of today’s iterative structural op-
timization procedures, in which the structures are gradually
modified until an optimal design satisfying both of the safety
and economical requirements is reached. For each of the mod-
ified structures, the derivatives of the structural response with
respect to the design variables, which are called sensitivity
coefficients, should be calculated by solving a set of modified
equations. The sensitivity information is crucial to find search
direction during the optimization process, and their calcula-
tion in large-scale structures with a high number of design
variables is often computationally expensive procedure
(Adelman and Haftka 1986). For large-scale structural designs

having certain modifications at some components, due to high
computational cost of direct analysis, it may not be good
choice to perform sensitivity analysis by solving repeatedly
complete set of the modified equations. As a result, develop-
ing efficient sensitivity analysis techniques with fewer amount
of computational effort than the regular sensitivity analysis is
one of the active research topics in the field of the structural
engineering and performing structural sensitivity analysis
more quickly can significantly enhance the performance of
structural optimization methods.

In recent years, structural reanalysis methods such as local,
global, and combined approximation (CA)methods have been
developed to calculate the response of the modified structure
without solving complete set of modified equations. Binomial
series expansion and the first-order Taylor series expansion
about a given initial design are examples of local or single
point reanalysis methods. In the local reanalysis methods,
the response of the modified structure is calculated by using
available information from a single initial design. The local or
single point methods have shown good performance in reanal-
ysis problems with smaller changes in the initial design; how-
ever, they reported poor accuracy for reanalysis problems with
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larger amount of changes in the design space (Barthelemy and
Haftka 1993). Unlike local methods, global or multipoint
methods, such as the polynomial fitting or reduced basis
methods (Fox and Miura 1971; Haftka et al. 1987; Noor
1994), construct the approximate structural response based
on the available analysis information of multiple initial de-
signs. The globalmethods show great advantage over the local
methods in terms of accuracy in the reanalysis problems with
larger changes in the design space. However, there are serious
concerns about the accuracy and computational effort of the
global methods (Zuo et al. 2012; Wu et al. 2003). CA method
has been developed byKirsch (2003) as a unified approach for
solving various structural reanalysis problems. CA tries to
approximate the response of the modified structure by provid-
ing global qualities to the local approximations. In CA, the
approximate response is calculated by combining the reduced
basis method with the first terms of series expansion. The
application results to various reanalysis and sensitivity reanal-
ysis problems show that the obtained solutions are accurate
under relatively larger changes in the design space (Amir et al.
2008; Kirsch and Bogomolni 2004; Leu and Huang 2000;
Kirsch et al. 2006; Kirsch 2010; Kirsch et al. 2007; Zuo
et al. 2017; Sun et al. 2011; Zuo et al. 2011; Xu et al. 2010;
Zuo et al. 2019). To increase the efficiency of CA method,
Zuo et al. (2016) proposed a hybrid static sensitivity reanalysis
method by combining Taylor series expansion and CA meth-
od. In comparison to CA method, the hybrid method may
largely increase efficiency with small loss of accuracy of the
sensitivity analysis (Zuo et al. 2016).

Recently, Hosseinzadeh et al. (2018) applied a new structur-
al reanalysis approach based on the polynomial-type extrapo-
lation methods to approximate the response of the modified
structure under multiple types of modifications in the initial
design. In this approach, the displacement vector of the modi-
fied structure is expressed in the form of the vector sequences
based on the fixed-point iteration method. By using these vec-
tor sequences, the minimal polynomial extrapolation (MPE)
and the reduced rank extrapolation (RRE) methods calculate
the approximate displacement vector of the modified structure.
In the MPE and RRE methods, the complete set of analysis
equations of the modified structure is reduced to the linear
least-square problems with significantly smaller size.
Following successful application of the polynomial-type ex-
trapolation methods for structural reanalysis, this paper pre-
sents new structural sensitivity reanalysis formulation based
on the MPE and RRE methods. To demonstrate the efficiency
of the proposed structural sensitivity reanalysis approach, a
comprehensive numerical investigation has been carried out
by using four sensitivity reanalysis problems with relatively
larger changes in their initial designs.

The rest of the paper is organized as follows. The mathe-
matical formulation of the structural sensitivity reanalysis
problem is briefly described in Sect. 2. In Sect. 3, a brief

review of the CA method for the structural sensitivity reanal-
ysis is presented. In Sect. 4, the structural sensitivity reanalysis
based on the MPE and RRE methods is described, and then,
the derivation of the proposed formulation for structural sen-
sitivity reanalysis is explained in detail. Section 5 presents the
application of the proposed approach on set of four structural
sensitivity reanalysis problems. Finally, some concluding re-
marks are given in Sect. 6.

2 Mathematical formulation of structural
sensitivity reanalysis problem

Themain aim of the structural sensitivity reanalysis problems is
to calculate the sensitivities of a modified structure by using
available exact analysis information from an initial design with-
out solving complete set of modified equations. In the present
section, since the calculation of sensitivities for a given struc-
ture involves structural analysis, at first the problem of struc-
tural reanalysis is formulated and, subsequently, the first- and
second-order structural sensitivity problems are presented.

2.1 Structural reanalysis

The main objective of a structural reanalysis problem is to
calculate the displacement vector of the modified structure
without solving complete set of the modified equations. Let
us consider a given structure with ndof degrees of freedoms
(DOFs), initial stiffness matrix K0∈ℂndof�ndof , and load vector
F0∈ℂndof . In structural reanalysis problems, it is assumed that
the displacement vector r0∈ℂndof for the initial design is given
from the following equation:

K0r0 ¼ F0 ð1Þ
where the decomposed form of the initial stiffness matrixK0 is
given as follows:

K0 ¼ UT
0U0 ð2Þ

in which U0∈ℂndof�ndof is a upper triangular matrix.
If structure is subjected to a set of modifications in its initial

design, the modified stiffness matrix K∈ℂndof�ndof and the
modified load vector F∈ℂndof can be simply written in the
following form:

K ¼ K0 þ ΔK ; ð3Þ
F ¼ F0 þ ΔF; ð4Þ
where ΔK∈ℂndof�ndof and ΔF∈ℂndof represent the changes in
the stiffness matrix and load vector, respectively. Usually, ma-
trix ΔK is related to the changes in the cross-sectional proper-
ties, length, and material properties of structural elements. On
the other hand, vector ΔF is related to the changes in the
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loading conditions as well as geometrical and physical prop-
erties of structure (Kirsch 2000).

Now, the load-displacement relation for the modified struc-
ture can be written as follows:

Kr ¼ F ð5Þ
where r∈ℂndof is the displacement vector of the modified
structure. The main aim of a structural reanalysis problem is
to calculate the displacement vector r without solving com-
plete set of modified equations in (5). After calculating the
displacement vector r, the stress in the members of structure
can be simply obtained accordingly.

2.2 Sensitivity reanalysis

By direct differentiating of (5) with respect to a design vari-
able xi and rearranging, the first-order derivative of the mod-
ified displacement vector r can be obtained as follows:

K
∂r
∂xi

¼ −
∂K
∂xi

r ð6Þ

where it is assumed that the load vector F is independent of
design variables (that is, ∂F

∂xi ¼ 0 ) for simplicity. It should be

noted that the proposed sensitivity reanalysis approach is also
suitable for the cases where the elements of the load vector F
are functions of the design variables.

If (6) is differentiated with respect to a design variable xi,
the modified second-order derivative of themodified displace-
ment vector r can be written as follows:

K
∂2r
∂xi2

¼ −
∂2K
∂xi2

r−2
∂K
∂xi

∂r
∂xi

ð7Þ

Both of the (6) and (7) are systems of equations with the
size of ndof × ndof, where the decomposed form of the modi-
fied stiffness matrixK is not available. For the case of multiple
design variables, (6) and (7) should be solved for each design
variable separately. Therefore, the main aim of the structural
sensitivity reanalysis is to calculate the first- and second-order
derivatives of the modified displacement vector without direct
solving of (6) and (7). After calculating the derivatives of the
modified displacement vector, the stress derivatives can also
be obtained by explicit differentiation of stress-displacement
relations.

3 CA-based sensitivity reanalysis

In this study, the results obtained by the proposed approach
will be compared to those yielded by the well-known CA
method developed by Kirsch (2000). Therefore, this section

provides a brief review of the structural sensitivity reanalysis
formulation based on the CA method.

3.1 Structural reanalysis based on the CA method

In the CA method, a linear combination of s basis vectors is
used to approximate the displacement vector of the modified
structure as follows:

reCAs ¼ y1r1 þ y2r2 þ…þ ysrs ¼ rBy; rB∈ℂndof�s; y∈ℂ s ð8Þ

where reCAs represents the approximate displacement vector of
the modified structure obtained by the CAmethod with s basis
vectors, r1,r2,…,rs are the linearly independent basis vectors,
rB is the matrix containing the basis vectors, and y is the vector
containing constant parameters. Thematrix rB and vector y are
in the following forms:

rB ¼ r1; r2;…; rs½ �; y ¼
y1
y2
⋮
ys

8>><>>:
9>>=>>; ð9Þ

The basis vectors r1, r2, …, rs are calculated as follows
(Kirsch 2000):

ri ¼ r 1ð Þ ¼ K−1
0 F; r2 ¼ −Br1;…; rs ¼ −Brs−1 ð10Þ

where B ¼ K−1
0 ΔK .

By premultiplying the load-displacement relation of the
modified structure in (5) by rTB and expressing the displace-
ment vector by the definition expressed in (8), following sys-
tem of equations can be obtained:

KRy ¼ FR;KR∈ℂ s�s; FR∈ℂ s ð11Þ

where KR ¼ rTBKrB represents the reduced order stiffness ma-

trix and FR ¼ rTBF indicates the reduced order load vector.
For a very smaller values of s, the vector of unknown coeffi-
cients y can be obtained by solving a linear s × s system of
equations in (11), which has much smaller size than the orig-
inal load-displacement relation of the modified structure.
Finally, the displacement vector of the modified structure r
can be simply obtained by substituting the vector y in (8).

3.2 First-order sensitivity reanalysis based on the CA
method

By differentiation of (8), the first-order sensitivity of the ap-
proximate displacement vector provided by the CA method
can be obtained as follows:

∂reCAs
∂xi

¼ ∂rB
∂xi

yþrB
∂y
∂xi

ð12Þ

Structural sensitivity reanalysis formulations based on the polynomial-type extrapolation methods 1029



where the derivatives ∂rB
∂xi and

∂y
∂xi are unknown and should be

obtained.
By taking first-derivative from the (11) and rearranging, the

derivatives ∂y
∂xi can be obtained by solving following linear

system of equations:

KR
∂y
∂xi

¼ ∂FR

∂xi
−
∂KR

∂xi
y

� �
ð13Þ

where:

∂FR

∂xi
¼ ∂rTB

∂xi
F ð14Þ

and

∂KR

∂xi
¼ ∂rTB

∂xi
KrB þ rTB

∂K
∂xi

rBþrTBK
∂rB
∂xi

ð15Þ

In (14), it is assumed that the load vector F is independent of
design variables (that is, ∂F

∂xi ¼ 0 ).

Taking the derivative of (10) with respect to the design
variable xi and rearranging yield:

∂r1
∂xi

¼ 0;
∂r2
∂xi

¼ −
∂B
∂xi

r1;
∂r3
∂xi

¼ −
∂B
∂xi

r2−B
∂r2
∂xi

;…;
∂rs
∂xi

¼ −
∂B
∂xi

rs−1−B
∂rs−1
∂xi

ð16Þ

where ∂B
∂xi ¼ K−1

0
∂ΔK
∂xi .

Now, the first-derivative of the approximate displacement
vector obtained by the CA method can be simply calculated

by substituting ∂rB
∂xi and

∂y
∂xi into (12).

3.3 Second-order sensitivity reanalysis based
on the CA method

By differentiation of (12), the second-order sensitivity of the
approximate displacement vector provided by the CA method
can be obtained as follows:

∂2reCAs
∂xi2

¼ ∂2rB
∂xi2

yþ2
∂rB
∂xi

∂y
∂xi

þrB
∂2y
∂xi2

ð17Þ

where calculating the derivatives ∂2y
∂xi2

and ∂2rB
∂xi2

are necessary for

computing second-order sensitivity of the approximate dis-
placement vector.

By direct differentiating of (13) with respect to a design
variable xi and rearranging, a new linear system of equations
is obtained as follows:

KR
∂2y
∂xi2

¼ ∂2FR

∂xi2
−2

∂KR

∂xi
∂y
∂xi

−
∂2KR

∂xi2
y

� �
ð18Þ

where:

∂2FR

∂xi2
¼ ∂2rTB

∂xi2
F ð19Þ

and

∂2KR

∂xi2
¼ ∂2rTB

∂xi2
KrB þ 2

∂rTB
∂xi

∂K
∂xi

rB þ 2
∂rTB
∂xi

K
∂rB
∂xi

þ 2rTB
∂K
∂xi

∂rB
∂xi

þ rTB
∂2K
∂xi2

rB þ rTBK
∂2rB
∂xi2

ð20Þ

As it can be seen from (18), the derivatives ∂2y
∂xi2 can be

obtained by solving a linear system of equations with the size
of s × s.

By taking the derivative of (16) with respect to the design

variable xi, the second derivatives of basis vaectors
∂2rB
∂xi2 can be

written as follows:

∂2r1
∂xi2

¼ 0;
∂r2
∂xi

¼ −
∂2B
∂xi2

r1;
∂2r3
∂xi2

¼ −
∂2B
∂xi2

r2−2
∂B
∂xi

∂r2
∂xi

−B
∂2r2
∂xi2

;…;
∂2rs
∂xi2

¼ −
∂2B
∂xi2

rs−1−2
∂B
∂xi

∂rs−1
∂xi

−B
∂2rs−1
∂xi2

ð21Þ

where ∂2B
∂xi2 ¼ K−1

0
∂2ΔK
∂xi2 .

Finally, the second-order derivative of the approximate dis-

placement vector obtained by the CA method ∂2reCA

s
∂xi2 can be

simply calculated by substituting ∂2rB
∂xi2 and

∂2y
∂xi2 into (17).

4 Proposed sensitivity reanalysis approach

Nowadays, the solutions of many engineering problems can
be approximated by a series expansion or a sequence converg-
ing to the exact solution. However, approximating the limits
of such sequences is not an easy task. In many problems of
practical interest, either the convergence of these sequences to
their limits is very slow or even divergences are observed,
which makes their direct use to approximate their limits com-
putationally expensive or impossible. In mathematical sci-
ence, one practical way of tackling this problem effectively
is by applying to such sequences some convergence extrapo-
lation methods (or equivalently convergence acceleration
methods), which are especially suitable when the dimension
of the vector sequences is very large. Usually, an extrapolation
method takes a finite or hopefully small number of given
sequence and produces another sequence that converges to
the former’s limit more quickly when this limit exists. In some
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cases, if the limit of original sequence does not exist, the new
sequence produced by the extrapolation methods converges to
some meaningful quantities or diverge more slowly than the
original sequence (Sidi 2003). In this paper, we use this idea to
propose a new structural sensitivity reanalysis approach based
on the polynomial extrapolation methods.

Minimal polynomial extrapolation (MPE) method intro-
duced by Cabay and Jackson (1976) and reduced rank
extrapolation (RRE) method proposed by Kaniel and Stein
(1974), Eddy (1979), and Mešina (1977) belong to the cate-
gory of the polynomial-type vector extrapolation methods.
Until now, MPE and RRE methods have been applied suc-
cessfully as efficient convergence accelerators in various areas
of science and engineering (Bertelle et al. 2011; Duminil et al.
2014; Duminil et al. 2015; Loisel and Takane 2011). The
convergence and stability analysis of MPE and RRE methods
was discussed by Sidi (1986, 1994) and some reviews about
these methods are available in Refs. (Sidi 2012; Sidi et al.
1986; Smith et al. 1987). In this section, we show how MPE
and RRE methods can be modeled to develop an efficient
structural sensitivity reanalysis approach. We only use those
equations which will be used directly in the proposed ap-
proach. For more information about the derivation and related
mathematical proofs, the interested reader may refer to (Sidi
2012).

Back to the load-displacement relation of the modified
structure in (5), this equation can be rewritten in terms of the
change in the stiffness matrix as follows:

K0 þ ΔKð Þr ¼ F ð22Þ
which can be rearranged to obtain following recurrence
formula:

rnþ1 ¼ Trn þ b; b; rn∈ℂndof ;T∈ℂndof�ndof ð23Þ

where

T ¼ −K−1
0 ΔK; b ¼ K−1

0 F ð24Þ

In (23), rn + 1 and rn indicate the displacement vector of the
modified structure at the (n + 1)th and nth iterations, respec-
tively. Since the decomposed form of the initial stiffness ma-
trix K0 is available, calculating vectors rn requires only for-
ward and backward substitutions. If (23) is written in the form
of (I − T)r = b, it turns out that the uniqueness of the solution
is guaranteed for any nonsingular matrix I − T, in which T
does not have 1 as its eigenvalue. Let us to assume the unique
solution of (23) as rexact ¼ limn→∞rn. Now, for any initial

vector r0 sufficiently close to rexact satisfied ρ K−1
0 ΔK

� �
< 1,

(23) converges to the exact displacement vector of the modi-
fied structure rexact, where ρ(A) is the spectral radius of the
square matrix A (Süli and Mayers 2003). If we choose the
initial displacement vector r0∈ℂndof as an initial solution

vector to (23), the vector sequence {rn} can be generated as
follows:

rnþ1 ¼ Trn þ b; n ¼ 0; 1;… ð25Þ
Let us also define

un ¼ rnþ1−rn; n ¼ 0; 1;…; un∈ℂndof ð26Þ
wn ¼ unþ1−un; n ¼ 0; 1;…; wn∈ℂndof ð27Þ

In the following subsections, a new sensitivity reanalysis
formulation is derived based on the MPE and RRE methods,
separately.

4.1 Sensitivity reanalysis based on the minimal
polynomial extrapolation (MPE)

4.1.1 Approximate modified displacement vector

Consider vector sequence {rn} in ℂ
ndof and let us choose k to

be an arbitrary positive integer that is usually much smaller
than the total number of DOFs of the structure (k ≪ ndof).
Then, form the matrix Uk − 1 as follows:

U k−1 ¼ u0 u1j ⋯j uk−1j½ �∈ℂndof�k ð28Þ
where un is defined in (26). Let us now imagine that c′ = [c0,
c1,⋯, ck − 1]

T represents the least-square solution of the fol-
lowing overdetermined linear system:

U k−1c
0 ¼ −uk ; c

0
∈ℂk ð29Þ

where c′ can be defined as a solution of the following optimi-
zation problem:

min
c0;c1;⋯;ck−1

∑
k−1

j¼0
c ju j þ uk

�����
����� ð30Þ

By setting ck = 1, γMPE
0 ; γMPE

1 ;⋯; γMPE
k can be calculated as

follows:

γMPE
j ¼ c j

∑k
l¼0cl

; j ¼ 0; 1;⋯; k ð31Þ

It should be noted that∑k
l¼0cl≠0 (Sidi 2012). Finally, the MPE

approximation to the displacement vector of the modified

structure reMPE
k is calculated as follows:

reMPE

k ¼ ∑
k

j¼0
γMPE
j r j ð32Þ

where rj is the displacement vector of the modified structure at
the jth iteration yielded by (25).
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4.1.2 First-order sensitivity of the modified displacement
vector based on the MPE method

By differentiation of (32), the first-order sensitivity of the
approximate displacement vector provided by the MPE meth-
od can be obtained as follows:

∂reMPE

k

∂xi
¼ ∑

k

j¼0

∂γMPE
j

∂xi
r j þ γMPE

j
∂r j
∂xi

 !
ð33Þ

As it is observed from (33), computation of derivatives ∂r j
∂xi

and
∂γMPE

j

∂xi is necessary for calculating the first-order derivatives

of the approximate displacement vector. In the following sub-
sections, we obtain these derivatives.

First-order derivatives of vector sequences rn If it is assumed
that the load vector F is independent of design variables (that
is, ∂F

∂xi ¼ 0 ), the first-order derivatives of vector sequences

{rn} in ℂndof are obtained as follows:

∂rnþ1

∂xi
¼ ∂T

∂xi
rn þ T

∂rn
∂xi

; n ¼ 0; 1; ð34Þ

where

∂T
∂xi

¼ −K−1
0

∂ΔK
∂xi

¼ −K−1
0

∂K
∂xi

ð35Þ

In (35), it is assumed that the first-order derivatives of ini-
tial displacement vector r0 and stiffness matrice K0 are equal
to zero. So, we can write:

∂r0
∂xi

¼ 0;
∂r1
∂xi

¼ ∂T
∂xi

r0;
∂r2
∂xi

¼ ∂T
∂xi

r1 þ T
∂r1
∂xi

;
∂r3
∂xi

¼ ∂T
∂xi

r2 þ T
∂r2
∂xi

;⋯;
∂rk
∂xi

¼ ∂T
∂xi

rk−1 þ T
∂rk−1
∂xi

ð36Þ

Calculating the derivatives
∂γMPE

j

∂xi By taking first derivative

from the (31), the derivatives
∂γMPE

j

∂xi can be obtained as follows:

∂γMPE
j

∂xi
¼

∂c j
∂xi

∑k
l¼0cl

� �
− ∑k

l¼0

∂cl
∂xi

� �
c j

∑k
l¼0cl

� �2 ; j ¼ 0; 1;⋯; k ð37Þ

where only the derivatives ∂c
∂xi are unknown.

By differentiating the overdetermined linear system in (29)
and rearranging, a new overdetermined linear system is ob-
tained as follows:

U k−1
∂c0

∂xi
¼ −

∂uk
∂xi

þ ∂U k−1

∂xi
c
0

� �
;

∂c0

∂xi
¼ ∂c0

∂xi
;
∂c1
∂xi

;⋯;
∂ck−1
∂xi

� �T
ð38Þ

where ∂uk
∂xi ∈ℂ

ndof and ∂U k−1
∂xi ∈ℂndof�k are given from:

∂uk
∂xi

¼ ∂rkþ1

∂xi
−
∂rk
∂xi

ð39Þ

∂U k−1

∂xi
¼ ∂u0

∂xi
∂u1
∂xi

				 ⋯j ∂uk−1
∂xi

				� �
∈ℂndof�k ð40Þ

From (38), it can be seen that the derivatives ∂c0

∂xi ∈ℂ
k are the

least-square solution of an overdetermined linear system. After

calculating ∂c0

∂xi , the derivatives
∂c
∂xi ∈ℂ

kþ1 can be written as

∂c
∂xi

¼ ∂c0

∂xi
0

� �
ð41Þ

Now, the derivatives
∂γMPE

j

∂xi can be easily calculated by

substituting (41) in (37).

4.1.3 Second-order sensitivity of the modified displacement
vector based on the MPE method

By differentiation of (33), the second-order sensitivity of the
approximate displacement vector provided by the MPE meth-
od can be obtained as follows:

∂2reMPE

k

∂xi2
¼ ∑

k

j¼0

∂2γMPE
j

∂xi2
r j þ 2

∂γMPE
j

∂xi
∂r j
∂xi

þ γMPE
j

∂2r j
∂xi2

 !
ð42Þ

As it is observed from (42), computation of derivatives ∂2r j
∂xi2

and
∂2γMPE

j

∂xi2
is necessary for calculating the second-order deriv-

atives of the approximate displacement vector. In the follow-
ing subsections, we obtain these derivatives.

Second-order derivatives of vector sequences rn By differen-
tiation of (34), the second-order derivatives of vector se-
quences {rn} can be obtained as follows:

∂2rnþ1

∂xi2
¼ 2

∂T
∂xi

∂rn
∂xi

þ ∂2T
∂xi2

rn þ T
∂2rn
∂xi2

; n ¼ 0; 1; ð43Þ

where:

∂2T
∂xi2

¼ −K0
∂2ΔK
∂xi2

¼ −K0
∂2K
∂xi2

ð44Þ

So we can write:

∂2r0
∂xi2

¼ 0;
∂2r1
∂xi2

¼ ∂2T
∂xi2

r0;
∂2r2
∂xi2

¼ 2
∂T
∂xi

∂r1
∂xi

þ ∂2T
∂xi2

r1 þ T
∂2r1
∂xi2

;…;
∂2rk
∂xi2

¼ 2
∂T
∂xi

∂rk−1
∂xi

þ ∂2T
∂xi2

rk−1 þ T
∂2rk−1
∂xi2

ð45Þ
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Calculating the derivatives
∂2γMPE

j

∂xi2 By differentiation of (37),

the derivatives
∂2γMPE

j

∂xi2 can be obtained as follows:

∂2γMPE
j

∂xi2
¼

∂2c j
∂xi2

∑k
l¼0cl

� �2− ∑k
l¼0

∂2cl
∂xi2

� �
c j ∑k

l¼0cl
� �

−2 ∑k
l¼0cl

� �
∑k

l¼0

∂cl
∂xi

� �
∂c j
∂xi

þ 2 ∑k
l¼0

∂cl
∂xi

� �2

c j

∑k
i¼0cl

� �3 ð46Þ

where the derivatives ∂2c
∂xi2 are unknown. Differentiating (38)

and rearranging gives:

U k−1
∂2c0

∂xi2
¼ −

∂2uk
∂xi2

þ ∂2U k−1

∂xi2
c
0 þ 2

∂U k−1

∂xi
∂c0

∂xi

� �
;

∂2c0

∂xi2

¼ ∂2c0
∂xi2

;
∂2c1
∂xi2

;⋯;
∂2ck−1
∂xi2

� �T ð47Þ

where ∂c0

∂xi is given from (38). Hence, the ∂2c0

∂xi2 ∈ℂ
ndof�k is the

least-square solution of the linear system in (47). Then, deriv-
atives ∂2c

∂xi2 ∈ℂ
ndof�kþ1 can be obtained as follows:

∂2c
∂xi2

¼ ∂2c0

∂xi2
0

� �
ð48Þ

Now, the derivatives
∂2γMPE

j

∂xi2 can be easily calculated by
substituting (48) in (46).

4.2 Sensitivity reanalysis based on the reduced rank
extrapolation (RRE)

4.2.1 Approximate modified displacement vector

Again, consider vector sequence {rn} generated from (25) and
let us choose k to be an arbitrary positive integer that is usually
much smaller than the total number of DOFs of the structure
(k ≪ ndof). Then, form the matrix Uk as follows:

U k ¼ u0 u1j ⋯j ukj½ �∈ℂndof�kþ1 ð49Þ
where un is defined in (26). Let us now imagine that γRRE

represents the least-square solution of the following overde-
termined linear system:

U kγ
RRE ¼ 0; γRRE ¼ γRRE0 ; γRRE1 ;⋯; γRREk


 �T∈ℂkþ1 ð50Þ

Besides, ∑k
j¼0γ

RRE
j ¼ 1 is considered as a constraint for

(50). γRRE can also be expressed as a solution of the following
constrained optimization problem:

min
γ0; γ1;⋯; γk ∑

k

j¼0
γRREj u j

�����
�����

Subject to : ∑k
j¼0γ

RRE
j ¼ 1 ð51Þ

Finally, the RRE approximation to the displacement vector

of the modified structure reRREk is calculated as follows:

reRREk ¼ ∑
k

j¼0
γRREj r j ð52Þ

where rj is the displacement vector of the modified structure at
the jth iteration yielded by (25).

It should be noted that the definition of the RRE presented
above is not the only way possible. Another definition of the
RRE method is also given in Ref. (Sidi 2012), which is more
suitable for computational purposes. According to the defini-
tion in Ref. (Sidi 2012), the RRE approximation to rexact ¼
limn→∞rn can also be expressed in the following form:

reRREk ¼ r0 þ ∑
k−1

i¼0
ξiui ð53Þ

where there are no any constraint on the ξi. In (53), the param-
eters ξi are obtained from the following least-square solution
of the overdetermined linear system:

Wk−1ξ ¼ −u0; ξ ¼ ξ0; ξ1;⋯; ξk−1½ �T∈ℂk ð54Þ
where

Wk−1 ¼ w0 w1 ⋯j wk−1jj½ �∈ℂndof�k ð55Þ

Here, the vectors wn are defined in (27).

4.2.2 First-order sensitivity of the modified displacement
vector based on the RRE method

By differentiation of (53), the first-order sensitivity of the
approximate displacement vector provided by the RRE meth-
od can be obtained as follows:

∂reRREk

∂xi
¼ ∑

k−1

i¼0

∂ξi
∂xi

ui þ ξi
∂ui
∂xi

� �
ð56Þ

where

∂ui
∂xi

¼ ∂riþ1

∂xi
−
∂ri
∂xi

ð57Þ
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In (57), calculation of the derivatives ∂ri
∂xi is quite similar to

(36). Hence, only the derivatives ∂ξi
∂xi are required to calculate

the first-order sensitivity of ∂reRRE

k
∂xi .

Taking the derivative of (54) with respect to the design
variable xi and rearranging yield:

Wk−1
∂ξ
∂xi

¼ −
∂u0
∂xi

þ ∂Wk−1

∂xi
ξ

� �
ð58Þ

As it can be seen, ∂ξ∂xi is the least-square solution of the linear

system in (58).

4.2.3 Second-order sensitivity of the modified displacement
vector based on the RRE method

Taking derivative of (56) with respect to the design variable xi
yields the second-order sensitivity of the approximate dis-
placement vector provided by the RRE method as follows:

∂2reRREk

∂xi2
¼ ∑

k−1

i¼0

∂2ξi
∂xi2

ui þ 2
∂ξi
∂xi

∂ui
∂xi

þ ξi
∂2ui
∂xi2

� �
ð59Þ

where

∂2ui
∂xi2

¼ ∂2riþ1

∂xi2
−
∂2ri
∂xi2

ð60Þ

Table 1 The number of algebraic operations (NAOs) required by the MPE method for the structural sensitivity reanalysis

Structural reanalysis using MPE
Operation NAOs Comments
b ¼ K−1

0 F 2ndof
2 Forward substitution with ndof

2 operation and backward substitution with ndof
2

operations.
rn + 1 = Trn + b (k + 1)(4ndof

2 + 2ndof) MPE method requires k + 1 vector sequences. By using decomposed form of
K0 ¼ UT

0U0, calculation of each vector sequence requires:
• One matrix-vector multiplication with 2ndof

2 operations.
• Forward and backward substitutions with 2ndof

2 operations.
• Negative multiplications with ndof operations.
• One vector addition with ndof operations.

Uk − 1 = [u0|u1|…|uk − 1] kndof k subtractions of vectors with the size of (ndof × 1)
Solve Uk − 1c

′ = − uk 2ndofk
2 Least square solution of the overdetermined linear systemwith size of (ndof × k)

γMPE
j ¼ c j

∑k
i¼0ci

; j ¼ 0; 1;…; k 2(k + 1) k + 1 scalar additions and k + 1 scalar subtractions

reMPE
k ¼ ∑

k

j¼0
γMPE
j r j

2(k + 1)ndof k + 1 vector multiplications and k + 1 vector additions

First-order structural reanalysis using MPE
Operation NAOs Comments
∂rnþ1

∂xi ¼ ∂T
∂xi rn þ T ∂rn

∂xi
(k + 1)(8ndof

2 + ndof) • Two matrix-vector multiplication with 4ndof
2 operations.

• Two forward and backward substitutions with 4ndof
2 operations.

• One vector addition with ndof operations.
∂γMPE

j

∂xi
5(k + 1) 4(k + 1) scalar additions and k + 1 scalar subtractions

∂u0
∂xi ;

∂u1
∂xi ;…; ∂uk∂xi

(k + 1)ndof k + 1 subtractions of vectors with the size of (ndof × 1)

U k−1
∂c0

∂xi ¼ − ∂uk
∂xi þ

∂Uk−1
∂xi c

0
� 


2ndof(k
2 + k + 1) • One matrix-vector multiplication with 2ndofk operation

• One vector addition with ndof operations.
• Negative multiplications with ndof operations.
• Least square solution of the overdetermined linear system with size of

(ndof × k)
∂reMPE

k
∂xi ¼ ∑

k

j¼0

∂γMPE
j

∂xi r j þ γMPE
j

∂r j
∂xi

� 
 3(k + 1)ndof 2(k + 1)vector multiplications and (k + 1) vector additions

Second-order structural reanalysis using MPE
Operation NAOs Comments
∂2rnþ1

∂xi2 ¼ 2 ∂T
∂xi

∂rn
∂xi þ ∂2T

∂xi2 rn þ T ∂2rn
∂xi2

(k + 1)(12ndof
2 + 3ndof) • Three matrix-vector multiplication with 6ndof

2 operations.
• Three forward and backward substitutions with 6ndof

2 operations.
• Two vector addition with 2ndof operations.
• One multiplication with ndof operations.

∂2γMPE
j

∂xi2
18(k + 1) 18(k + 1) scalar additions, multiplications, and subtractions.

∂2u0
∂xi2 ;

∂2u1
∂xi2 ;…; ∂

2uk
∂xi2

(k + 1)ndof k + 1 subtractions of vectors with the size of (ndof × 1)

U k−1
∂2c0

∂xi2 ¼ − ∂2uk
∂xi2 þ

∂2Uk−1
∂xi2 c

0 þ 2 ∂U k−1
∂xi

∂c0

∂xi

� 

ndof(2k

2 + 4k + 3) • Two matrix-vector multiplications with 4ndofk operation
• Two vector additions with 2ndof operations.
• Negative multiplications with ndof operations.
• Least square solution of the overdetermined linear system with size of

(ndof × k).
∂2reMPE

k
∂xi2 ¼ ∑

k

j¼0

∂2γMPE
j

∂xi2 r j þ 2
∂γMPE

j

∂xi
∂r j
∂xi þ γMPE

j
∂2r j
∂xi2

� 
 5(k + 1)ndof 3(k + 1)vector multiplications and 2(k + 1) vector additions.

Total:(24k + 26)ndof
2+(6k2 + 25k + 21)ndof + 25(k + 1)

Y. Hosseinzadeh and S. Jalili1034



It should be noted that the calculation of the derivatives of
∂2ri
∂xi2 is quite similar to (45). Hence, only the derivatives ∂2ξi

∂xi2 are

required to calculate the second-order sensitivity of ∂2reRRE

k
∂xi2 .

Taking the derivative of (58) with respect to the design
variable xi and rearranging yield:

Wk−1
∂2ξ
∂xi2

¼ −
∂2u0
∂xi2

þ 2
∂Wk−1

∂xi
∂ξ
∂xi

þ ∂2Wk−1

∂xi2
ξ

� �
ð61Þ

In fact, the derivatives ∂2ξ
∂xi2 are the least-square solutions of

the overdetermined linear system in (61).

4.3 Main steps of the proposed sensitivity reanalysis
approach

Now, we are ready to summarize the main steps of the pro-
posed reanalysis approach based on the MPE and RRE
methods. For a given structural sensitivity reanalysis problem

Table 2 The number of algebraic operations (NAOs) required by the RRE method for the structural sensitivity reanalysis

Structural reanalysis using RRE
Operation NAOs Comments

b ¼ K−1
0 F 2ndof

2 Forward substitution with ndof
2 operations and backward substitution with ndof

2

operations.
rn + 1 = Trn + b (k + 1)(4ndof

2 + 2ndof) RRE method requires k + 1 vector sequences. By using decomposed form of
K0 ¼ UT

0U0, calculation of each vector sequence requires:
• One matrix-vector multiplication with 2ndof

2 operations.
• Forward and backward substitutions with 2ndof

2 operations.
• Negative multiplications with ndof operations.
• One vector addition with ndof operations.

Uk = [u0|u1|…|uk] (k + 1)ndof k + 1 subtractions of vectors with the size of (ndof × 1)
Wk − 1 = [w0|w1|⋯|wk − 1] kndof k subtractions of vectors with the size of (ndof × 1)
Solve Wk − 1ξ = − u0 2ndofk

2 + ndof • Least square solution of the overdetermined linear system with size of (ndof × k)
• Negative multiplications with ndof operations.

reRREk ¼ r0 þ ∑
k−1

i¼0
ξiui

(2k + 1)ndof • Scalar-vector multiplications with kndof operations.
• Vector addition with (k + 1)ndof operations.

First-order structural reanalysis using RRE
Operation NAOs Comments
∂rnþ1

∂xi ¼ ∂T
∂xi rn þ T ∂rn

∂xi
(k + 1)(8ndof

2 + ndof) • Two matrix-vector multiplication with 4ndof
2 operations.

• Two forward and backward substitutions with 4ndof
2 operations.

• One vector addition with ndof operations.
∂u0
∂xi ;

∂u1
∂xi ;…; ∂uk∂xi

(k + 1)ndof k + 1 subtractions of vectors with the size of (ndof × 1)

∂Wk−1
∂xi ¼ ∂w0

∂xi
∂w1
∂xi ⋯j ∂wk−1

∂xi

						h i
kndof k subtractions of vectors with the size of (ndof × 1)

Wk−1
∂ξ
∂xi ¼ − ∂u0

∂xi þ ∂Wk−1
∂xi ξ

� 

2ndofk

2 + 2ndof(k + 1) • Matrix-vector multiplication with 2ndofk operations.
• One vector addition with ndof operations.
• Negative multiplications with ndof operations.
• Least square solution of the overdetermined linear system with size of (ndof × k)

∂reRRE

k
∂xi ¼ ∑

k−1

i¼0

∂ξi
∂xi ui þ ξi

∂ui
∂xi

� 
 3kndof • Scalar-vector multiplication with 2ndofk operations.
• Vector addition with kndof operations.

Second-order structural reanalysis using RRE
Operation NAOs Comments
∂2rnþ1

∂xi2 ¼ 2 ∂T
∂xi

∂rn
∂xi þ ∂2T

∂xi2 rn þ T ∂2rn
∂xi2

(k + 1)(12ndof
2 + 3ndof) • Three matrix-vector multiplication with 6ndof

2 operations.
• Three forward and backward substitutions with 6ndof

2 operations.
• Two vector addition with 2ndof operations.
• One multiplication with ndof operations.

∂2u0
∂xi2 ;

∂2u1
∂xi2 ;…; ∂

2uk
∂xi2

(k + 1)ndof k + 1 subtractions of vectors with the size of (ndof × 1)

∂2Wk−1
∂xi2 ¼ ∂2w0

∂xi2
∂2w1
∂xi2 ⋯j ∂2wk−1

∂xi2

						h i
kndof k subtractions of vectors with the size of (ndof × 1)

Wk−1
∂2ξ
∂xi2

¼ − ∂2u0
∂xi2

þ 2 ∂Wk−1
∂xi

∂ξ
∂xi þ ∂2Wk−1

∂xi2
ξ

h i
2k2ndof + 4(k + 1)ndof • Two matrix-vector multiplication with 4ndofk operations.

• Two vector addition with 2ndof operations.
• One scalar-vector multiplications with ndof operations.
• Negative multiplications with ndof operations.
• Least square solution of the overdetermined linear system with size of (ndof × k)

∂2reRRE

k
∂xi2

¼ ∑
k−1

i¼0

∂2ξi
∂xi2

ui þ 2 ∂ξi
∂xi

∂ui
∂xi þ ξi

∂2ui
∂xi2

� 
 6kndof 3(k + 1)vector multiplications and 2(k + 1) vector additions.

Total: 24(k + 1)ndof
2 + (6k2 + 29k + 17)ndof
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with the initial displacement vector r0 and initial stiffness ma-
trix K0, we summarize the main steps of the proposed sensi-
tivity reanalysis approach as follows:

& MPE: Structural reanalysis
& Step 1: Choose k as an arbitrary positive integer that is

usually much smaller than the total number of DOFs of the

Table 3 The number of algebraic operations (NAOs) required by the CA method for the structural sensitivity reanalysis

Structural reanalysis using CA
Operation NAOs Comments
rs = −Brs − 1
rB = [r1|r2|…|rs]

s(4ndof
2 + ndof) By using decomposed form of K0 ¼ UT

0U0, calculation of each
basis vector requires:

• Forward and backward substitutions with 2ndof
2 operations.

• One matrix-vector multiplication with 2ndof
2 operations.

• Negative multiplication with ndof operations.
KR ¼ rTBKrB 2sndof

2 + 2s2ndof • One matrix-matrix multiplication between two matrices with
sizes of (s × ndof) and (ndof × ndof).

• One matrix-matrix multiplication between two matrices with the
sizes of (s × ndof) and (ndof × s), respectively.

FR ¼ rTBF 2sndof One matrix-vector multiplication between a matrix and a vector
with sizes of (s × ndof) and (ndof × 1), respectively.

Solve KRy =FR
1
3 s

3 þ 2s2 Solving (s × s) system of equations by Cholesky decomposition
method

r = rBy 2sndof One matrix-vector multiplication between a matrix and a vector
with the sizes of (ndof × s) and (s × 1), respectively.

First-order structural reanalysis using CA
Operation NAOs Comments
∂rs
∂xi ¼ − ∂B

∂xi rs−1 þ B ∂rs−1
∂xi

� 

∂rB
∂xi ¼ ∂r1

∂xi
∂r2
∂xi … ∂rs

∂xi

									h i s(8ndof
2 + 2ndof) • Two matrix-vector multiplications with 4ndof

2 operations.
• Two forward and backward substitutions with 4ndof

2 operations.
• One vector addition with ndof operations.
• One negative multiplication with ndof operations

∂KR
∂xi ¼

∂rTB
∂xi KrBþrTB

∂K
∂xi rBþrTBK

∂rB
∂xi

6sndof
2 + 6s2ndof+

2s2
• Three matrix-matrix multiplications between two matrices with

sizes of (s × ndof) and (ndof × ndof).
• Three matrix-matrix multiplications between two matrices with

the sizes of (s × ndof) and (ndof × s), respectively.
• Two matrix-matrix additions with the size of (s × s).

∂FR
∂xi ¼ ∂rTB

∂xi F
2sndof One matrix-vector multiplication between a matrix and a vector

with sizes of (s × ndof) and (ndof × 1), respectively.
KR

∂y
∂xi ¼ ∂FR

∂xi −
∂KR
∂xi y

1
3 s

3 þ 4s2 þ s • One matrix-vector multiplication with 2s2 operations.
• One vector subtraction with s operations.
• Solving (s × s) system of equations by Cholesky decomposition

method.
∂rCA
∂xi ¼ ∂rB

∂xi yþrB
∂y
∂xi

(4s + 1)ndof • Two matrix-vector multiplications between a matrix and a vector
with the sizes of (ndof × s) and (s × 1), respectively.

• One vector addition with ndof operations.
Second-order structural reanalysis using CA

Operation NAOs Comments
∂2rs
∂xi2 ¼ 2 ∂B

∂xi
∂rs−1
∂xi þ ∂2B

∂xi2 rs−1 þ B ∂2rs−1
∂xi2

∂2rB
∂xi2 ¼ ∂2r1

∂xi2
∂2r2
∂xi2 … ∂2rs

∂xi2

									h i 12sndof
2 + 3sndof • Three matrix-vector multiplications with 6ndof

2 operations.
• Three forward and backward substitutions with 6ndof

2 operations.
• Two vector additions with 2ndof operations.
• One multiplication with ndof operations.

∂2KR
∂xi2 ¼ 2

∂rTB
∂xi K

∂rB
∂xi þ 2

∂rTB
∂xi

∂K
∂xi rBþ2rTB

∂K
∂xi

∂rB
∂xi þ

∂2rTB
∂xi2 KrBþrTBK

∂2rB
∂xi2

10sndof
2 + 10s2ndof+

7s2
• Five matrix-matrix multiplications between two matrices with

sizes of (s × ndof) and (ndof × ndof).
• Five matrix-matrix multiplications between two matrices with the

sizes of (s × ndof) and (ndof × s), respectively.
• Four matrix-matrix additions with the sizes of (s × s).

∂2 FR
∂xi2 ¼ ∂2rTB

∂xi2 F
2sndof One matrix-vector multiplication between a matrix and a vector

with sizes of (s × ndof) and (ndof × 1), respectively.

KR
∂2y
∂xi2 ¼ − ∂2KR

∂xi2 yþ2 ∂KR
∂xi

∂y
∂xi −

∂2 FR
∂xi2

� 

1
3 s

3 þ 4s2 þ 4s • Two matrix-vector multiplications with 4s2 operations.• One
vector-scalar multiplication with s operations.

•One vector additionwith s operations.One vector subtractionwith
s operations.

• One negative multiplication with s operations.
• Solving (s × s) system of equations by Cholesky decomposition

method.
∂2rCA
∂xi2 ¼ rB

∂2y
∂xi2 þ 2 ∂rB

∂xi
∂y
∂xi þ ∂2rB

∂xi2 y
(6s + 3)ndof • Three matrix-vector multiplications between a matrix and a

vector with the sizes of (ndof × s) and (s × 1), respectively.
• One scalar multiplication with ndof operations.
• Two vector addition with 2ndof operations.

Total: 42sndof
2 + (18s2 + 24s + 4)ndof + s

3 + 17s2 + 5s
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structure (k ≪ ndof) and construct the vectors r0, r1,…, rk +
1 by (25).

& Step 2: Obtain the vectors u0, u1, …, uk − 1 by (26) and
calculate the matrix

Uk − 1 = [u0, u1,…, uk − 1] with the size of ndof × k.
& Step 3: Solve the overdetermined linear system of (29)

with the size of ndof × k in the least square sense and cal-
culate c′ = [c0, c1,⋯, ck − 1]

T.
& Step 4: Calculate γMPE

0 ; γMPE
1 ;⋯; γMPE

k by (31) with
ck = 1.

& Step 5: Compute the approximate displacement vector of

the modified structure reMPE
k by (32).

& MPE: First-order sensitivity reanalysis
& Step 1: Calculate the first-order derivatives of vector se-

quences ∂r0
∂xi ;

∂r1
∂xi ;

∂r2
∂xi ;…; ∂rk∂xi by using (36).

& Step 2:Calculate the derivatives ∂c0

∂xi ¼
∂c0
∂xi ;

∂c1
∂xi ;⋯; ∂ck−1∂xi

h iT
by solving the overdetermined linear system in (38) with
the size of ndof × k and construct the derivatives
∂c
∂xi ¼ ∂c0

∂xi 0
h i

.

& Step 3: Calculate the derivatives
∂γMPE

j

∂xi by using (37).

& Step 4: Calculate the MPE approximation of the first-
order sensitivity of the displacement vector of the modi-

fied structure ∂reMPE

k
∂xi by using (33).

& MPE: Second-order sensitivity reanalysis
& Step 1: Calculate the second-order derivatives of vector

sequences ∂2r0
∂xi2 ;

∂2r1
∂xi2 ;…; ∂

2rk
∂xi2 by using (45).

& Step 2: Calculate the derivatives ∂2c0

∂xi2 ¼
∂2c0
∂xi2 ;

∂2c1
∂xi2

h
;⋯;

∂2ck−1
∂xi2 �

T by solving the overdetermined linear system in

(47) with the size of ndof × k and construct the derivatives
∂2c
∂xi2 ¼ ∂2c0

∂xi2 0
h i

.

& Step 3: Calculate the derivatives
∂2γMPE

j

∂xi2 by using (46).

& Step 4: Calculate the MPE approximation of the second-
order sensitivity of displacement vector of the modified

structure ∂2reMPE

k
∂xi2 by using (42).

& RRE: Structural reanalysis
& Step 1:Choose k as an arbitrary positive integer that is usually

much smaller than the total number of DOFs of the structure
(k≪ ndof) and construct the vectors r0, r1,…, rk+1 by (25).

& Step 2: Compute the vectors u0, u1,…, uk and w0, w1,…,
wk − 1 by (26) and (27), respectively, and form the matrix
Wk − 1 = [w0|w1|⋯|wk − 1] with the size of ndof × k.

& Step 3: Solve the overdetermined linear system of (54)
with the size of ndof × k in the least-square sense and cal-
culate ξ = [ξ0, ξ1,⋯, ξk − 1]

T.
& Step 4: Compute the approximate displacement vector of

the modified structure reRREk by (53).

& RRE: First-order sensitivity reanalysis
& Step 1: Calculate the first-order derivatives of vector se-

quences ∂r0
∂xi ;

∂r1
∂xi ;

∂r2
∂xi ;…; ∂rk∂xi by using (36).

& Step 2: Calculate the derivatives ∂ξ
∂xi ¼

∂ξ0
∂xi ;

∂ξ1
∂xi ;⋯; ∂ξk−1∂xi

h iT
by solving the overdetermined linear system in (58) with
size of ndof × k.

& Step 3: Calculate the derivatives ∂u0
∂xi ;

∂u1
∂xi ;

∂u2
∂xi ;…; ∂uk−1∂xi by

using (57).
& Step 4: Calculate the RRE approximation of the first-

order sensitivity of displacement vector of the modified

structure ∂reRRE

k
∂xi by using (56).

& RRE: Second-order sensitivity reanalysis
& Step 1: Calculate the second-order derivatives of vector

sequences ∂2r0
∂xi2

; ∂
2r1
∂xi2

; ∂
2r2
∂xi2

;…; ∂
2rk
∂xi2

by using (45).

& Step 2: Calculate the derivatives ∂2u0
∂xi2

; ∂
2u1
∂xi2

; ∂
2u2
∂xi2

;…; ∂
2uk−1
∂xi2

by using (60).

& Step 3:Calculate the derivatives ∂2ξ
∂xi2

¼ ∂2ξ0
∂xi2

; ∂
2ξ1
∂xi2

;⋯; ∂
2ξk−1
∂xi2

h iT
by solving the overdetermined linear system in (61) with
the size of ndof × k.

& Step 4: Calculate the RRE approximation of the second-
order sensitivity of displacement vector of the modified

structure ∂2reRRE

k
∂xi2 by using (59).

According to the sensitivity reanalysis formulation derived
based on the MPE and RRE methods, it can be concluded that
the proposed sensitivity reanalysis methods calculate the ap-
proximate sensitivities of the modified structure by solving the
linear least-square problems with sizes of the ndof × k and n-
dof × k + 1, respectively, which are much smaller than the

Fig. 1 A simple 10-bar planar truss structure problem: a initial structure,
b modified structure

Structural sensitivity reanalysis formulations based on the polynomial-type extrapolation methods 1037



complete set of equations of the exact sensitivity analysis with
the size of ndof × ndof.

5 Numerical tests

5.1 Accuracy

In this section, a set of four structural sensitivity reanalysis
problems are presented to examine the accuracy and

efficiency of the proposed sensitivity reanalysis methods in
calculating the approximate displacement vector as well as
its first- and second-order sensitivities. These test examples
are a simple 10-bar planar truss structure, a 582-bar tower
structure, a 968-bar double layer grid structure, and an 18-
bar truss structure. The 10-bar planar truss structure is a simple
illustrative test example, which shows how the proposed
methods are able to perform structural sensitivity reanalysis.
All of the test problems are solved by the CA, MPE, and RRE
methods and the results are given in the tables.

Table 4 Initial and modified designs for simple 10-bar planar truss structure problem

Small modifications Large modifications

Initial design (in2) Modified design (in2) Variations Initial design (in2) Modified design (in2) Variations

A1 5.00 4.50 − 10% 5.00 1.50 − 70%
A2 5.00 4.50 − 10% 5.00 1.50 − 70%
A3 5.00 5.50 + 10% 5.00 8.50 + 70%

A4 5.00 5.50 + 10% 5.00 8.50 + 70%

A5 5.00 5.00 0% 5.00 5.00 0%

A6 5.00 5.50 + 10% 5.00 8.50 + 70%

A7 5.00 5.50 + 10% 5.00 8.50 + 70%

A8 5.00 5.00 0% 5.00 5.00 0%

A9 – 5.00 Added – 5.00 Added

A10 – 5.00 Added – 5.00 Added

Table 5 Approximate displacement and sensitivity vectors obtained by the MPE method with different values of parameter k for 10-bar plane truss
structure (small modifications)

k 2 3 4 5 rexact

reMPE
k

0.661747 0.683652 0.682931 0.682932 0.682932
0.286190 0.300074 0.299616 0.299628 0.299628
0.665515 0.686557 0.685793 0.685790 0.685790

− 0.284261 − 0.301129 − 0.300374 − 0.300372 − 0.300372
1.902144 1.946915 1.946802 1.946811 1.946811
0.379015 0.387441 0.387585 0.387596 0.387596
1.867739 1.913913 1.913171 1.913180 1.913180

− 0.361673 − 0.375384 − 0.376044 − 0.376040 − 0.376040
∂reMPE

k
∂A9

− 0.003682 0.001119 0.001074 0.001074 0.001074
− 0.002769 0.000308 0.000279 0.000279 0.000279
− 0.005792 − 0.001030 − 0.001074 − 0.001074 − 0.001074
0.004032 0.000235 0.000279 0.000279 0.000279

− 0.031386 − 0.020069 − 0.020046 − 0.020045 − 0.020045
− 0.006519 − 0.004358 − 0.004344 − 0.004343 − 0.004343
− 0.033980 − 0.022089 − 0.022101 − 0.022100 − 0.022100
− 0.001804 − 0.004310 − 0.004343 − 0.004343 − 0.004343

∂2reMPE

k

∂A9
2

0.010533 − 0.000302 − 0.000298 − 0.000298 − 0.000298
0.006783 − 0.000080 − 0.000077 − 0.000078 − 0.000078
0.010696 0.000295 0.000298 0.000298 0.000298

− 0.008454 − 0.000075 − 0.000078 − 0.000078 − 0.000078
0.027117 0.005573 0.005569 0.005569 0.005569
0.005215 0.001208 0.001207 0.001207 0.001207
0.028499 0.006142 0.006140 0.006140 0.006140

− 0.005345 0.001205 0.001207 0.001207 0.001207
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To study the performance of the proposed sensitivity reanal-
ysis procedures, the accuracy of the obtained approximate vec-
tors is evaluated by measuring the relative errors as follows:

Erelative ¼
rexact−re��� ���
rexactk k ð62Þ

Erelative=xi;1 ¼

∂rexact
∂xi

−
∂re
∂xi

�����
�����

∂rexact
∂xi

���� ���� ð63Þ

Erelative=xi;2 ¼

∂2rexact
∂xi2

−
∂2re
∂xi2

�����
�����

∂2rexact
∂xi2

���� ���� ð64Þ

where Erelative is the relative error in approximating the displace-
ment vector of the modified structure, Erelative=xi;1 indicates the
relative error obtained in calculating the first-order sensitivity of
the displacement vector, Erelative=xi;2 represents the relative error
occurred in predicting the second-order sensitivity of the dis-
placement vector, ‖.‖ indicates the L2 norm, rexact and re represent

the exact and approximate displacement vectors of the modified
structure, respectively, ∂rexact

∂xi and ∂re
∂xi are the exact and approxi-

mate first-order sensitivities of the modified structure with re-
spect to the design variable xi, respectively,

∂2rexact
∂xi2 and ∂2re

∂xi2 indi-
cate the exact and approximate second-order sensitivities of the
modified structure with respect to the design variable xi, respec-
tively. It should be noted that the exact displacement vector and
its first- and second-order derivative are calculated by solving
(5), (6), and (7), respectively, in Matlab software.

As another error measuring criterion, the obtained approx-
imate vectors are also evaluated by the average of errors oc-
curred in each DOF as follows:

EAv: ¼
∑ndof

i¼1

rexacti−rei
rexacti

 !
ndof

� 100 ð65Þ

EAv:=xi;1 ¼

∑ndof
i¼1

∂rexacti
∂xi

−
∂rei
∂xi

∂rexacti
∂xi

0BBB@
1CCCA

ndof
� 100 ð66Þ

Table 6 Approximate displacement and sensitivity vectors obtained by the MPE method with different values of parameter k for 10-bar plane truss
structure (large modifications)

k 2 3 4 5 6 rexact

reMPE
k

0.869582 1.874323 1.573429 1.580613 1.580430 1.580430
0.463037 1.083837 0.885293 0.898131 0.898277 0.898277
0.883720 1.887736 1.583853 1.588099 1.588291 1.588291

− 0.479343 − 1.136202 − 0.901799 − 0.901647 − 0.901723 − 0.901723
2.727902 5.309613 4.526083 4.549223 4.549508 4.549508
0.567962 1.106210 0.949034 0.961839 0.961926 0.961926
2.735470 5.333231 4.507212 4.530467 4.530738 4.530738

− 0.462316 − 1.083062 − 0.944259 − 0.943849 − 0.943956 − 0.943956
∂reMPE

k
∂A9

− 0.082195 0.033039 0.001148 0.001247 0.001224 0.001224
− 0.052577 0.022085 0.000461 0.000518 0.000537 0.000537
− 0.085923 0.030847 − 0.001243 − 0.001248 − 0.001224 − 0.001224
0.058466 − 0.024039 0.000529 0.000546 0.000537 0.000537

− 0.254772 0.066734 − 0.015259 − 0.014944 − 0.014914 − 0.014914
− 0.053134 0.013971 − 0.002929 − 0.002809 − 0.002799 − 0.002799
− 0.263374 0.069527 − 0.016764 − 0.016424 − 0.016397 − 0.016397
0.039112 − 0.017756 − 0.002858 − 0.002784 − 0.002799 − 0.002799

∂2reMPE

k

∂A9
2

0.071585 − 0.003326 − 0.000279 − 0.000301 − 0.000296 − 0.000296
0.045235 − 0.002210 − 0.000112 − 0.000126 − 0.000130 − 0.000130
0.072259 − 0.002774 0.000301 0.000301 0.000296 0.000296

− 0.049767 0.002211 − 0.000128 − 0.000132 − 0.000130 − 0.000130
0.192242 − 0.004275 0.003687 0.003617 0.003610 0.003610
0.039748 − 0.000960 0.000707 0.000680 0.000677 0.000677
0.196919 − 0.004328 0.004051 0.003976 0.003969 0.003969

− 0.039244 0.002091 0.000690 0.000675 0.000677 0.000677
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Table 7 Approximate displacement and sensitivity vectors obtained by the RRE method with different values of parameter k for 10-bar plane truss
structure (small modifications)

k 2 3 4 5 rexact

reRREk
0.662887 0.683611 0.682931 0.682932 0.682932
0.285963 0.300046 0.299616 0.299628 0.299628
0.666666 0.686517 0.685793 0.685790 0.685790

− 0.282725 − 0.301092 − 0.300374 − 0.300372 − 0.300372
1.899099 1.946820 1.946802 1.946811 1.946811
0.378409 0.387423 0.387585 0.387596 0.387596
1.864283 1.913814 1.913171 1.913180 1.913180

− 0.361060 − 0.375356 − 0.376044 − 0.376040 − 0.376040
∂reRRE

k
∂A9

− 0.001738 0.001116 0.001074 0.001074 0.001074
− 0.001660 0.000306 0.000279 0.000279 0.000279
− 0.003887 − 0.001032 − 0.001074 − 0.001074 − 0.001074
0.002842 0.000237 0.000279 0.000279 0.000279

− 0.027861 − 0.020077 − 0.020046 − 0.020045 − 0.020045
− 0.005856 − 0.004360 − 0.004344 − 0.004343 − 0.004343
− 0.030340 − 0.022098 − 0.022101 − 0.022100 − 0.022100
− 0.002734 − 0.004309 − 0.004343 − 0.004343 − 0.004343

∂2reRRE

k

∂A9
2

0.005689 − 0.000301 − 0.000298 − 0.000298 − 0.000298
0.003987 − 0.000079 − 0.000077 − 0.000078 − 0.000078
0.006043 0.000296 0.000298 0.000298 0.000298

− 0.005399 − 0.000075 − 0.000078 − 0.000078 − 0.000078
0.019155 0.005574 0.005569 0.005569 0.005569
0.003752 0.001208 0.001207 0.001207 0.001207
0.020331 0.006143 0.006140 0.006140 0.006140

− 0.002753 0.001205 0.001207 0.001207 0.001207

Table 8 Approximate displacement and sensitivity vectors obtained by the RRE method with different values of parameter k for 10-bar plane truss
structure (large modifications)

k 2 3 4 5 6 rexact

reRREk
0.835224 1.737231 1.573995 1.580604 1.580430 1.580430
0.386510 0.991836 0.885661 0.898114 0.898277 0.898277
0.854152 1.751372 1.584431 1.588094 1.588291 1.588291

− 0.342917 − 1.031541 − 0.902247 − 0.901647 − 0.901723 − 0.901723
2.332228 4.916797 4.527432 4.549192 4.549508 4.549508
0.480061 1.023600 0.949291 0.961821 0.961926 0.961926
2.315501 4.935092 4.508689 4.530435 4.530738 4.530738

− 0.380553 − 0.990378 − 0.944419 − 0.943850 − 0.943956 − 0.943956
∂reRRE

k
∂A9

− 0.017887 0.015871 0.001154 0.001246 0.001224 0.001224
− 0.012553 0.010502 0.000466 0.000516 0.000537 0.000537
− 0.020881 0.013628 − 0.001238 − 0.001249 − 0.001224 − 0.001224
0.015174 − 0.010888 0.000526 0.000546 0.000537 0.000537

− 0.080171 0.017411 − 0.015254 − 0.014948 − 0.014914 − 0.014914
− 0.016866 0.003606 − 0.002927 − 0.002811 − 0.002799 − 0.002799
− 0.084212 0.018896 − 0.016759 − 0.016429 − 0.016397 − 0.016397
0.006083 − 0.007546 − 0.002862 − 0.002785 − 0.002799 − 0.002799

∂2reRRE

k

∂A9
2

0.016816 − 0.001763 − 0.000280 − 0.000301 − 0.000296 − 0.000296
0.011343 − 0.001166 − 0.000113 − 0.000126 − 0.000130 − 0.000130
0.017409 − 0.001221 0.000300 0.000302 0.000296 0.000296

− 0.013180 0.001023 − 0.000127 − 0.000132 − 0.000130 − 0.000130
0.053738 0.000222 0.003686 0.003618 0.003610 0.003610
0.011232 − 0.000014 0.000707 0.000680 0.000677 0.000677
0.055565 0.000277 0.004049 0.003977 0.003969 0.003969

− 0.009069 0.001146 0.000691 0.000675 0.000677 0.000677
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EAv:=xi;2 ¼

∑ndof
i¼1

∂2rexacti
∂xi2

−
∂2rei
∂xi2

∂2rexacti
∂xi2

0BBB@
1CCCA

ndof
� 100 ð67Þ

where EAv. represents the average error obtained by a reanal-
ysis method in approximating the displacement vector of the
modified structure, EAv:=xi;1 indicates the average error yielded

by a reanalysis method in calculating the first-order sensitivity
of the displacement vector, EAv:=xi;2 is the average error obtain-
ed by a reanalysis method in predicting the second-order sen-
sitivity of the displacement vector, rexacti and rei are the exact
and approximate displacements of the ith DOF of the struc-
ture, respectively, ∂rexact i∂xi and ∂rei

∂xi are the exact and approximate
first-order displacement sensitivities of the ith DOF of the
structure, respectively, ∂2rexact i

∂xi2
and ∂2rei

∂xi2
are the exact and

Table 9 The relative errors obtained by the CA, MPE, and RRE methods with different values of parameters k and s for 10-bar plane truss structure
under large modifications (derivatives are with respect to A9)

Displacement

k or s 2 3 4 5 6 7

ECA
relative

0.24 0.05 5.40 × 10−3 1.70 × 10−3 1.52 × 10−12 3.55 × 10−11

EMPE
relative

0.41 0.18 5.50 × 10−3 7.40 × 10−5 1.77 × 10−13 4.72 × 10−13

ERRE
relative

0.49 0.09 5.20 × 10−3 7.97 × 10−5 4.63 × 10−14 1.55 × 10−13

First-order sensitivity

ECA
relative=A9;1

18.50 3.35 0.06 0.03 7.02 × 10−9 9.29 × 10−8

EMPE
relative=A9;1

16.74 5.88 0.02 2.60 × 10−3 2.95 × 10−12 7.98 × 10−11

ERRE
relative=A9;1

4.48 2.43 0.02 2.80 × 10−3 1.37 × 10−11 8.17 × 10−11

Second-order sensitivity

ECA
relative=A9;2

10.52 6.16 0.09 0.04 5.83 × 10−8 7.41 × 10−6

EMPE
relative=A9;2

55.10 2.34 0.02 2.50 × 10−3 1.18 × 10−11 3.39 × 10−10

ERRE
relative=A9;2

14.48 1.05 0.02 2.70 × 10−3 6.58 × 10−12 1.26 × 10−10

Fig. 2 A 582-bar tower structure: a 3D view, b side view, c top view
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approximate second-order displacement sensitivities of the ith
DOF of the structure, respectively.

As it is mentioned before, the accuracy of the results ob-
tained by the proposed sensitivity reanalysis procedures de-
pends on the parameter k, which is much smaller than the
degree of freedom (ndof) of the structure. In the investigated
test problems, the accuracy of the MPE and RRE methods is
investigated by setting different values for parameter k.

5.2 Computational effort

To investigate the computational effort required by the
proposed methods, the number of algebraic operations
(NAOs) required by the MPE and RRE methods for the
structural sensitivity reanalysis are presented in Tables 1
and 2. In addition, the required NAOs for the CA-based
sensitivity reanalysis method are presented in Table 3.
From these tables, it can be seen that the sensitivity reanal-
ysis procedures using the CA, MPE, and RRE methods
require O n2dof

� �
flops, which means that the proposed sen-

sitivity reanalysis methods and CA are computationally
equivalent. For the complete second-order sensitivity re-
analysis, the required NAOs for both of the MPE and
RRE methods are about 24 k þ 1ð Þn2dof , while it is 42sn2dof
for the CA method. This means that the proposed methods
require slightly fewer amount of NAOs than the CA meth-
od for any values of the parameters k and s. In the numer-
ical tests, the NAOs required by the proposed methods are
compared to those yielded by the CA method.

5.3 A 10-bar planar truss structure problem

A simple 10-bar planar truss structure shown in Fig. 1a is used
as the first test problem to show the solution finding process of
the proposed sensitivity reanalysis methods. The Young’s
modulus of truss members is equal to 30,000 ksi. In this test
example, two types of modifications in the initial design are
considered, including sizing modifications and member addi-
tions. It is assumed that the cross-sections of all members in
initial structure are equal to 5.0 in2. In the modified structure,
two braced members are added as shown in Fig. 1b and the
cross-sections of members are changed as listed in Table 4. As
it can be seen from Table 4, small and large modifications are
considered to investigate the accuracy of the proposed sensi-
tivity reanalysis methods under different levels of
modifications.

Considering small and large modifications in initial struc-
ture, Tables 5, 6, 7, and 8 list the obtained structural and
sensitivity reanalysis results by the MPE and RRE methods
with respect to cross-sectional variable of member 9. From
these tables, it is clear that both of the MPE and RREmethods
are able to approximate the exact solution with a high

accuracy for small and large modifications in initial structure.
In addition, for different values of k and s, the relative errors
obtained by theMPE and RREmethods are compared to those
obtained by the CA method in Table 9. From this table, it can
be seen that the proposed methods provide significantly fewer
amount of relative errors than CAmethod. For example, when
k and s are equal to 6, the relative errors of the approximate
second-order sensitivities provided by the MPE and RRE
methods are about 1.18 × 10−11 and 6.58 × 10−12, respectively,
while it is 5.83 × 10−8 for the CA method. Similar conclusion
can be made by comparing the reanalysis and first-order sen-
sitivity errors.

5.4 A 582-bar tower structure

The second test example is a 582-bar tower structure
shown in Fig. 2. This structure has 154 nodes which results
462 DOFs. The structural members are categorized into 32
design groups as displayed in Fig. 2. The loading condition
is as follows: 1.12 kips acting in the X and Y directions and
− 6.74 kips acting in the Z direction at all nodes of the
tower. In the initial design, it is assumed that all of the
structural members have constant Young’s modulus and

Fig. 3 Modified parts of 582-bar tower structure: a side view, b 3D view
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cross-sectional area equal to 29,000 ksi and 10 in2, respec-
tively. Then, we assume a set of multiple modifications in
the initial design as follows: 30% increase in the cross

sections of design groups 3, 5, 8, and 11 (braced members);
30% decrease in the cross sections of design groups 16, 18,
21, 24, 27, and 30; and 30% decrease in the Young’s

Table 10 Initial and modified
designs for 582-bar tower
structure problem

Cross-sectional areas (in2) Young’s modulus (ksi)

Initial design Modified design Variations Initial design Modified design Variations

A1 10 10 0% E1 29,000 29,000 0%
A2 10 10 0% E2 29,000 29,000 0%
A3 10 13 + 30% E3 29,000 29,000 0%
A4 10 10 0% E4 29,000 29,000 0%
A5 10 13 + 30% E5 29,000 29,000 0%
A6 10 10 0% E6 29,000 29,000 0%
A7 10 10 0% E7 29,000 29,000 0%
A8 10 13 + 30% E8 29,000 29,000 0%
A9 10 10 0% E9 29,000 29,000 0%
A10 10 10 0% E10 29,000 29,000 0%
A11 10 13 + 30% E11 29,000 29,000 0%
A12 10 10 0% E12 29,000 29,000 0%
A13 10 10 0% E13 29,000 20,300 − 30%
A14 10 10 0% E14 29,000 29,000 0%
A15 10 10 0% E15 29,000 29,000 0%
A16 10 7 − 30% E16 29,000 29,000 0%
A17 10 10 0% E17 29,000 29,000 0%
A18 10 7 − 30% E18 29,000 29,000 0%
A19 10 10 0% E19 29,000 29,000 0%
A20 10 10 0% E20 29,000 29,000 0%
A21 10 7 − 30% E21 29,000 29,000 0%
A22 10 10 0% E22 29,000 29,000 0%
A23 10 10 0% E23 29,000 29,000 0%
A24 10 7 − 30% E24 29,000 29,000 0%
A25 10 10 0% E25 29,000 29,000 0%
A26 10 10 0% E26 29,000 29,000 0%
A27 10 7 − 30% E27 29,000 29,000 0%
A28 10 10 0% E28 29,000 29,000 0%
A29 10 10 0% E29 29,000 29,000 0%
A30 10 7 − 30% E30 29,000 29,000 0%
A31 10 10 0% E31 29,000 29,000 0%
A32 10 10 0% E32 29,000 29,000 0%

Table 11 Approximate displacement obtained by the CA, MPE, and RREmethods with different values of parameters k and s for the top node of 582-
bar tower structure problem

CA

s = 2 Error (%) s = 4 Error (%) s = 6 Error (%) s = 8 Error (%) Exact

rx 5.62298125 0.57 5.65509728 1.20 × 10−3 5.65502905 3.87 × 10−5 5.65503123 8.82 × 10−8 5.65503124

ry 5.26728087 0.36 5.28626583 6.28 × 10−5 5.28626781 2.54 × 10−5 5.28626914 3.09 × 10−7 5.28626915

rz − 0.73904489 0.63 − 0.73442906 4.30 × 10−3 − 0.73439816 5.73 × 10−5 − 0.73439774 4.75 × 10−8 − 0.73439774
MPE

k = 2 Error (%) k = 4 Error (%) k = 6 Error (%) k = 8 Error (%) Exact

rx 5.65557254 9.60 × 10−3 5.65503623 8.83 × 10−5 5.65503093 5.51 × 10−6 5.65503124 1.16 × 10−8 5.65503124

ry 5.28623165 7.00 × 10−4 5.28627844 1.76 × 10−4 5.28626881 6.46 × 10−6 5.28626915 3.30 × 10−9 5.28626915

rz − 0.73449172 1.28 × 10−2 − 0.73439905 1.79 × 10−4 − 0.73439770 5.21 × 10−6 − 0.73439774 1.57 × 10−8 − 0.73439774
RRE

rx 5.65557336 9.60 × 10−3 5.65503551 7.55 × 10−5 5.65503095 5.12 × 10−6 5.65503124 4.51 × 10−9 5.65503124

ry 5.28623157 7.00 × 10−4 5.28627782 1.64 × 10−4 5.28626883 6.09 × 10−6 5.28626915 1.11 × 10−8 5.28626915

rz − 0.73449181 1.28 × 10−2 − 0.73439929 2.11 × 10−4 − 0.73439770 5.05 × 10−6 − 0.73439774 2.25 × 10−8 − 0.73439774
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modulus of design group 13. Figure 3 shows the modified
parts of 582-bar tower structure and Table 10 lists the ini-
tial and modified designs for this test problem.

To investigate the accuracy of the MPE and RRE
methods in performing structural and sensitivity reanaly-
sis, the displacement sensitivity of the top node of the
tower with respect to the cross-sectional area of member
group 13 is investigated. If the displacements of the top
node of the tower in x, y, and z directions are indicated by
rx, ry, and rz, respectively, Tables 11, 12, and 13 compare

the approximate sensitivity results obtained by the CA,
MPE, and RRE methods with the corresponding exact
values for different values of parameters k and s. For the
case of k = s = 2, it can be seen that the maximum dis-
placement errors yielded by the MPE and RRE methods
are about 0.01%, while it is about 0.63% for the CA
method. These results indicate that the proposed methods
are able to approximate the displacement vector of the
modified structure with a very smaller number of param-
eter k. When k = s = 2, it can be observed that the

Table 12 Approximate first-order sensitivities obtained by the CA,MPE, andRREmethods with different values of parameters k and s for the top node
of 582-bar tower structure problem

CA
s = 2 Error (%) s = 4 Error (%) s = 6 Error (%) s = 8 Error (%) Exact

∂rx
∂A13

− 0.15128484 5.08 − 0.15935592 0.01 − 0.15937198 2.80 × 10−3 − 0.15937625 7.86 × 10−5 − 0.15937637
∂ry
∂A13

− 0.12272230 3.47 − 0.12722067 0.07 − 0.12713779 3.50 × 10−3 − 0.12713347 1.40 × 10−4 − 0.12713329
∂rz
∂A13

0.01170164 9.13 0.01069158 0.29 0.01071973 2.43 × 10−2 0.01072223 9.73 × 10−4 0.01072234

MPE
k = 2 Error (%) k = 4 Error (%) k = 6 Error (%) k = 8 Error (%) Exact

∂rx
∂A13

− 0.15860953 0.48 − 0.15933194 0.03 − 0.15937474 1.02 × 10−3 − 0.15937635 1.50 × 10−5 − 0.15937637
∂ry
∂A13

− 0.12677064 0.29 − 0.12711248 0.02 − 0.12713214 9.01 × 10−4 − 0.12713328 1.21 × 10−5 − 0.12713329
∂rz
∂A13

0.01066696 0.52 0.01072441 0.02 0.01072231 2.76 × 10−4 0.01072234 6.77 × 10−7 0.01072234

RRE
k = 2 Error (%) k = 4 Error (%) k = 6 Error (%) k = 8 Error (%) Exact

∂rx
∂A13

− 0.15860980 0.48 − 0.15933009 0.03 − 0.15937459 1.10 × 10−3 − 0.15937635 1.61 × 10−5 − 0.15937637
∂ry
∂A13

− 0.12677086 0.29 − 0.12711126 0.02 − 0.12713206 1.00 × 10−3 − 0.12713327 1.30 × 10−5 − 0.12713329
∂rz
∂A13

0.01066697 0.52 0.01072458 0.02 0.01072231 2.00 × 10−4 0.01072234 8.72 × 10−7 0.01072234

Table 13 Approximate second-order sensitivities obtained by the CA, MPE, and RRE methods with different values of parameters k and s for the top
node of 582-bar tower structure problem

CA

s = 2 Error (%) s = 4 Error (%) s = 6 Error (%) s = 8 Error (%) Exact

∂2rx
∂A13

2
0.02942822 7.66 0.03194360 0.23 0.03191489 0.14 0.03189256 0.07 0.03187047

∂2ry
∂A13

2
0.02359137 7.22 0.02549451 0.27 0.02544798 0.09 0.02544287 0.07 0.02542608

∂2rz
∂A13

2
− 0.00216769 1.23 − 0.00210996 1.47 − 0.00212547 0.74 − 0.00213639 0.23 − 0.00214137

MPE

k = 2 Error (%) k = 4 Error (%) k = 6 Error (%) k = 8 Error (%) Exact

∂2rx
∂A13

2
0.03087225 3.13 0.03169684 0.55 0.03187064 5.28 × 10−4 0.03187075 8.75 × 10−4 0.03187047

∂2ry
∂A13

2
0.02469799 2.86 0.02532176 0.41 0.02542570 1.50 × 10−3 0.02542624 6.64 × 10−4 0.02542608

∂2rz
∂A13

2
− 0.00207479 3.11 − 0.00214202 0.03 − 0.00214119 8.40 × 10−3 − 0.00214136 1.88 × 10−4 − 0.00214137

RRE

k = 2 Error (%) k = 4 Error (%) k = 6 Error (%) k = 8 Error (%) Exact

∂2rx
∂A13

2
0.03087227 3.13 0.03169192 0.56 0.03187038 3.00 × 10−4 0.03187075 8.85 × 10−4 0.03187047

∂2ry
∂A13

2
0.02469800 2.86 0.02531847 0.42 0.02542552 2.20 × 10−3 0.02542625 6.70 × 10−4 0.02542608

∂2rz
∂A13

2
− 0.00207479 3.11 − 0.00214223 0.04 − 0.00214118 8.80 × 10−3 − 0.00214136 2.07 × 10−4 − 0.00214137
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maximum errors yielded by both of the MPE and RRE
methods for the first- and second-order sensitivities are
about 0.5% and 3%, respectively, while these values for
the CA method are about 9% and 3%, respectively (Tables
12 and 13). By increasing the value of parameter k, the
proposed sensitivity reanalysis methods are successfully
converged to the exact sensitivity values. Although the
performances of the MPE, RRE, and CA methods are
relatively same for the structural reanalysis, the proposed
methods provide significantly accurate results than the
CA method for the first- and second-order sensitivities.

For different values of parameters k and s, Table 14 com-
pares the relative errors obtained by the CA, MPE, and RRE
methods in the sensitivity reanalysis of the modified displace-
ment vector with respect to the cross-sectional area of member
group 13. Judging from the reported results, it turns out that
the convergence speeds of the CA,MPE, and RREmethods in
structural reanalysis are faster than sensitivity reanalysis.
From Table 14, it can be seen that the proposed methods
perform remarkably better than the CA method in terms of
the relative errors of the first- and second-order sensitivities.
Although the proposed methods converge to the exact solu-
tion with k = 14, the obtained errors for the case of k = 8 are
also acceptable from engineering viewpoint. In addition,
Table 15 compares the required CPU times and NAOs for
each method.

Figure 4 illustrates the average errors obtained by the MPE
and RRE methods in approximating the modified displacements
vector and its sensitivities for this test problem. From this figure,
it can be clearly seen that the average errors are dramatically
reduced by increasing the parameter k. When k = 6, the average
errors obtained by both of theMPE and RREmethods are small-
er than 0.1%, which indicate the efficiency of the proposed ap-
proaches in sensitivity reanalysis. For the case of k = 6, the aver-
age errors obtained by the MPEmethod for the structural reanal-
ysis, first-order sensitivity, and second-order sensitivity are about

Table 14 The relative errors obtained by the CA, MPE, and RRE methods with different values of parameters k and s for 582-bar tower structure
problem (derivatives are with respect to A13)

Displacement

k or s 2 4 6 8 … 14

ECA
relative

6.00 × 10−3 2.37 × 10−5 4.30 × 10−7 8.15 × 10−9 … 9.42 × 10−11

EMPE
relative

1.11 × 10−4 1.60 × 10−6 5.76 × 10−8 2.82 × 10−10 … 3.51 × 10−13

ERRE
relative

1.11 × 10−4 1.50 × 10−6 5.41 × 10−8 2.74 × 10−10 … 3.50 × 10−13

First-order sensitivity

ECA
relative=A13;1

0.06 1.81 × 10−3 1.25 × 10−4 4.72 × 10−6 … 3.86 × 10−7

EMPE
relative=A13;1

4.10 × 10−3 2.39 × 10−4 8.38 × 10−6 1.22 × 10−7 … 3.33 × 10−12

ERRE
relative=A13;1

4.10 × 10−3 2.47 × 10−4 9.13 × 10−6 1.40 × 10−7 … 3.57 × 10−12

Second-order sensitivity

ECA
relative=A13;2

0.10 5.00 × 10−3 2.11 × 10−3 1.44 × 10−3 … 6.53 × 10−4

EMPE
relative=A13;2

0.03 4.29 × 10−3 4.65 × 10−5 7.13 × 10−6 … 1.58 × 10−10

ERRE
relative=A13;2

0.03 4.42 × 10−3 4.90 × 10−5 7.22 × 10−6 … 1.28 × 10−10

Table 15 The required NAOs and CPU times required by the CA,
MPE, and RRE methods for sensitivity reanalysis of 582-bar tower
structure problem (k = s = 14)

NAOs CPU time (s)

CA 109,881,626 0.0245

MPE 67,286,880 0.0187

RRE 66,940,731 0.0179

Fig. 4 Average errors obtained by the MPE and RRE methods for
different values of parameter k in 582-bar tower structure problem: a
average reanalysis errors (EAv.), b average first-order sensitivity errors
(EAv:=xi;1 ), and c average second-order sensitivity errors (EAv:=xi;2 )
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1.59 × 10−5%, 5.10 × 10−3%, and 0.090%, respectively, while
the corresponding values for the RRE method are 1.56 ×
10−5%, 5.71 × 10−3%, and 0.088%, respectively. These errors
can be further reduced by increasing the parameter k.

5.5 968-bar double layer grid structure

A 968-bar double layer grid structure shown in Fig. 5 is the third
investigated test problem. The grid structure has 265 nodeswhich

Fig. 5 A 968-bar double layer
grid structure: a top view, b 3D
view, c side view

Table 16 Initial and modified
designs for 968-bar double layer
grid structure problem

Cross-sectional areas (in2) Young’s modulus (ksi)

Initial design Modified design Variations Initial design Modified design Variations

A1 10 14 + 40% E1 29,000 29,000 0%

A2 10 14 + 40% E2 29,000 29,000 0%

A3 10 14 + 40% E3 29,000 29,000 0%

A4 10 14 + 40% E4 29,000 29,000 0%

A5 10 10 0% E5 29,000 29,000 0%

A6 10 10 0% E6 29,000 23,200 − 20%
A7 10 6 − 40% E7 29,000 29,000 0%

A8 10 6 − 40% E8 29,000 29,000 0%

A9 10 6 − 40% E9 29,000 29,000 0%

A10 10 6 − 40% E10 29,000 29,000 0%

A11 10 10 0% E11 29,000 29,000 0%

A12 10 10 0% E12 29,000 29,000 0%
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results 795 DOFs. The members of the structure are categorized
into 12 member groups as illustrated in Fig. 5. The displacement
of corner nodes at the bottom layer is constrained in x, y, and z
directions. All free nodes of the structure are subjected to a ver-
tical load of 5 kips in negative direction of Z-axis. In the initial
structure, it is assumed that all of the structural members have
constant Young’s modulus and cross-sectional area equal to
29,000 ksi and 10 in2, respectively. In this test problem, a set of
multiple changes in the initial design are assumed as follows:
40% increase in the cross-sections of member groups 1 through
4 at the bottom layer, 40% decrease in the cross-sections of
member groups 7 through 10 at the top layer, and 20% decrease
in the Young’s modulus of member group 6 (diagonal members).
Table 16 lists the cross-sectional areas and Young’s modulus of
structural members in the initial and modified designs.

In this test problem, the sensitivities of the modified dis-
placement vector with respect to the cross-sectional areas of
diagonal members (A6) are investigated by considering differ-
ent values for parameters k and s, and the relative errors obtain-
ed by the CA, MPE, and RRE methods are summarized in
Table 17. From this table, it can be seen that the MPE and
RRE methods provide high-quality solutions for the case of
k = 8. The relative errors are further decreased by increasing
parameter k and the proposed methods converge to the exact
solutions when k = 18. When comparing the MPE and RRE

methods against the CA method, it can be concluded that the
proposed methods converge to the exact displacement and sen-
sitivities faster than the CAmethod. For example, theMPE and
RRE methods approximate the second-order sensitivity with
relative errors of 1.10 × 10−10 and 4.97 × 10−10, respectively,
while it is 1.22 × 10−5 for the CA method. In addition,
Table 18 lists the CPU times and NAOs required by the CA,
MPE, and RRE methods for solving this test example.

Table 17 The relative errors obtained by the CA, MPE, and RRE methods with different values of parameters k and s for 968-bar double layer grid
structure problem (derivatives are with respect to A6)

Reanalysis

k or s 2 4 6 8 … 14 16 18

ECA
relative

0.03 8.53 × 10−4 5.51 × 10−5 1.50 × 10−6 … 8.57 × 10−11 3.63 × 10−10 1.95 × 10−9

EMPE
relative

9.74 × 10−3 1.81 × 10−4 7.50 × 10−6 2.61 × 10−7 … 2.13 × 10−11 6.69 × 10−13 4.41 × 10−14

ERRE
relative

9.68 × 10−3 1.80 × 10−4 7.61 × 10−6 2.88 × 10−7 … 2.22 × 10−11 6.81 × 10−13 1.28 × 10−13

First-order sensitivity

ECA
relative=A6;1

0.06 1.75 × 10−3 9.33 × 10−5 4.16 × 10−6 … 9.70 × 10−10 1.64 × 10−9 1.32 × 10−8

EMPE
relative=A6;1

1.92 × 10−2 6.01 × 10−4 2.00 × 10−5 6.00 × 10−7 … 7.41 × 10−11 4.35 × 10−12 3.40 × 10−13

ERRE
relative=A6;1

1.93 × 10−2 6.24 × 10−4 2.19 × 10−5 4.97 × 10−7 … 1.17 × 10−10 4.52 × 10−12 6.03 × 10−13

Second-order sensitivity

ECA
relative=A6;2

7.15 0.18 0.06 2.00 × 10−3 … 1.89 × 10−7 2.03 × 10−6 1.22 × 10−5

EMPE
relative=A6;2

4.01 0.05 2.88 × 10−3 3.13 × 10−4 … 4.87 × 10−8 1.41 × 10−9 1.10 × 10−10

ERRE
relative=A6;2

3.99 0.44 2.57 × 10−3 3.73 × 10−4 … 3.96 × 10−8 1.38 × 10−9 4.97 × 10−10

Table 18 The required NAOs and CPU times required by the CA,
MPE, and RRE methods for sensitivity reanalysis of 968-bar double-
layer grid structure problem (k = s = 18)

NAOs CPU time (s)

CA 207,055,028 0.052

MPE 134,127,342 0.043

RRE 132,922,863 0.041

Fig. 6 Average errors obtained by the CA, MPE, and RRE methods for
different values of parameter k in 968-bar double-layer grid structure
problem: a average reanalysis errors (EAv.), b average first-order
sensitivity errors (EAv:=xi;1 ), and c average second-order sensitivity
errors (EAv:=xi;2 )
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For different values of parameters k and s, the average
structural and sensitivity reanalysis errors yielded by the CA,
MPE, and RRE methods are illustrated in Fig. 6. Once again,
it can be seen that the average errors yielded by the proposed
methods are significantly reduced by increasing the parameter
k. For example, when k = 7, the average errors obtained by the

MPE method for structural reanalysis, first-order sensitivity,
and second-order sensitivity are equal to 1.20 × 10−4%,
9.36 × 10−3%, and 0.11%, respectively. The corresponding
average errors yielded by the RRE method are equal to
1.22 × 10−4%, 9.70 × 10−3%, and 0.10%, respectively. When
s = 7, the average errors yielded by the CA method are about

Fig. 7 Sensitivity reanalysis
problem of 18-bar truss structure:
a initial shape, b modified shape

Table 19 The initial and
modified designs for 18-bar truss
structure

Size variables (in2) Shape variables (in)

Cross-
sections

Initial Modified Variations Coordinates Initial Modified

A1 10 12.025 20.25% x1 1250 1250

A2 10 16.750 67.50% y1 250 250

A3 10 6.175 − 38.25% x2 1000 1000

A4 10 12.025 20.25% y2 250 250

A5 10 4.825 − 51.75% x3 1000 1000

A6 10 16.750 67.50% y3 0 60

A7 10 6.175 − 38.25% x4 750 750

A8 10 12.025 20.25% y4 250 250

A9 10 4.825 − 51.75% x5 750 750

A10 10 16.750 67.50% y5 0 50

A11 10 6.175 − 38.25% x6 500 500

A12 10 12.025 20.25% y6 250 250

A13 10 4.825 − 51.75% x7 500 500

A14 10 16.750 67.50% y7 0 40

A15 10 6.175 − 38.25% x8 250 250

A16 10 12.025 20.25% y8 250 250

A17 10 4.825 − 51.75% x9 250 250

A18 10 16.750 67.50% y9 0 30

x10 0 0

y10 250 250

x11 0 0

y11 0 0
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7.00 × 10−4%, 0.05%, and 0.70%, respectively. The efficiency
of the proposed methods is more observable when the values
of parameters k and s are increased.

5.6 Shape sensitivity of 18-bar truss structure

In the proposed sensitivity reanalysis methods, the derivatives
of the stiffness matrix are required to perform sensitivity re-
analysis procedure. However, in the structural shape optimi-
zation problems, it is not an easy task to calculate the analyt-
ical derivatives of the stiffness matrix with respect to the shape
variables. Alternatively, the differential methods can be
employed to approximate sensitivity of the stiffness matrix
with respect to the shape variables. To illustrate how the ac-
curacy of the proposed methods can be affected by using
differential method, a shape sensitivity reanalysis problem is
investigated. This test problem is 18-bar planar truss structure
shown in Fig. 7a. The structure consists of 11 nodes and 18
members. The upper nodes of the structure are subjected to
concentrated loads as shown in Fig. 7a. The Young’s modulus
of all structural members is equal to 30,000 ksi. In the initial
design, the cross-sectional areas of all members are set to
10 in2. It is assumed that the structure is subjected to the
simultaneous size and shape modifications as listed in
Table 19. As it can be seen from Table 19, the structure is
subjected to the relatively large multi-type modifications in
different directions. Figure 7b shows the modified shape of
the structure.

In this test problem, the derivatives of the stiffness matrix
are obtained by the difference method, i.e., ∂K∂xi ≈

ΔK
Δx . The first-

order sensitivities of the first node of the structure in x and y
directions with respect to the shape variable of y3 are selected
to show the performance of the proposed methods. Table 20
compares the approximate sensitivities yielded by the MPE
and RREmethods with the exact values. From Table 20, it can
be concluded that the proposed methods can provide satisfac-
tory results for the shape sensitivity problems. For the case of
k = 6, the MPE method calculates the sensitivities with the

errors smaller than 1.00%, which are adequate from engineer-
ing viewpoint.

6 Concluding remarks

In this paper, new structural sensitivity reanalysis formulations
are introduced based on the polynomial-type extrapolation
methods. In these formulations, the displacement vector of the
modified structure is expressed in the form of the vector se-
quences based on the fixed-point iterationmethod.By using these
vector sequences, the minimal polynomial extrapolation (MPE)
and the reduced rank extrapolation (RRE) methods calculate the
approximate displacement vector of themodified structure. In the
structural reanalysis based on the MPE and RRE methods, the
complete set of analysis equations of the modified structure is
reduced to the linear least-square problems with significantly
smaller size. Based on the definitions of the MPE and RRE
methods, two sensitivity reanalysis formulations are derived, in
which the first- and second-order sensitivities of the structure are
obtained by solving a set of the over-determined least-squares
problems with much smaller size than the complete set of equa-
tions of the exact sensitivity analyses. In the derived sensitivity
reanalysis formulations, the approximate sensitivities of the mod-
ified structure are calculated by solving the linear least-square
problems with sizes of the ndof × k and ndof × k+ 1, respectively,
in which k is an arbitrary positive integer that is usually much
smaller than the total number of DOFs of the structure (k≪ ndof).
In order to validate the proposed sensitivity reanalysis formula-
tions, four structural sensitivity reanalysis problems under multi-
ple types of modifications are investigated. The obtained struc-
tural and sensitivity reanalysis results indicate that the proposed
methods are able to approximate the displacement vector of the
modified structure and its sensitivities with a very smaller number
of parameter k. In addition, the reanalysis and sensitivity errors
are further decreased by increasing parameter k and the proposed
methods are also capable to converge to the exact sensitivity
vectors of the structure.

Table 20 Approximate first-order sensitivities of the 1th node of 118-bar tower with respect to the shape variable of y3 obtained by the MPE and RRE
methods for different values of parameter k for structure problem

MPE

k = 2 Error (%) k = 4 Error (%) k = 6 Error (%) k = 8 Error (%) Exact

∂r1x
∂y3

0.0032098 6.74 0.0031377 8.84 0.0034267 0.44 0.0034479 0.17 0.0034419

∂r1y
∂y3

− 0.0118635 72.49 − 0.0401623 6.86 − 0.0428037 0.73 − 0.0431594 0.10 − 0.0431182

RRE
∂r1x
∂y3

0.0002211 93.58 0.0031600 8.19 0.0033410 2.93 0.0034470 0.15 0.0034419

∂r1y
∂y3

0.0023952 105.55 − 0.0396156 8.12 − 0.0421331 2.28 − 0.0431629 0.10 − 0.0431182
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7 Replication of results

In the investigated test problems, all of the necessary data are
provided to readers and the obtained results can be verified via
the presented information.
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