Structural and Multidisciplinary Optimization (2020) 61:1027-1050
https://doi.org/10.1007/500158-019-02401-9

RESEARCH PAPER

®

Check for
updates

Structural sensitivity reanalysis formulations based
on the polynomial-type extrapolation methods

Yousef Hosseinzadeh - Shahin Jalili’

Received: 15 March 2019 /Revised: 4 August 2019 /Accepted: 26 August 2019 /Published online: 16 October 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract

This paper presents new structural sensitivity reanalysis formulations based on the polynomial-type extrapolation methods. In
these formulations, the displacement vector of the modified structure is expressed in the form of the vector sequences based on
the fixed-point iteration method. By using these vector sequences, the minimal polynomial extrapolation (MPE) and the reduced
rank extrapolation (RRE) methods calculate the approximate displacement vector of the modified structure by solving reduced
linear least-square problems. Based on the definitions of the MPE and RRE methods, two sensitivity reanalysis formulations are
derived, in which the first- and second-order sensitivities of the modified structure are obtained by solving a set of the over-
determined least-square problems with much smaller size than the complete set of equations of the exact sensitivity analyses. The
performance of the proposed sensitivity reanalysis formulations is evaluated by using four structural sensitivity reanalysis
problems under multiple modifications in their initial designs. The results obtained from the numerical test problems indicate
that the proposed sensitivity reanalysis formulations approximate the first- and second-order sensitivities of the modified struc-
ture with a high level of accuracy and they are able to converge to the exact solutions.

Keywords Sensitivity - Reanalysis - Polynomial-type extrapolation - Minimal polynomial extrapolation - Reduced rank

extrapolation

1 Introduction

Repeated structural and sensitivity analyses of the modified
structures are the main parts of today’s iterative structural op-
timization procedures, in which the structures are gradually
modified until an optimal design satisfying both of the safety
and economical requirements is reached. For each of the mod-
ified structures, the derivatives of the structural response with
respect to the design variables, which are called sensitivity
coefficients, should be calculated by solving a set of modified
equations. The sensitivity information is crucial to find search
direction during the optimization process, and their calcula-
tion in large-scale structures with a high number of design
variables is often computationally expensive procedure
(Adelman and Haftka 1986). For large-scale structural designs
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having certain modifications at some components, due to high
computational cost of direct analysis, it may not be good
choice to perform sensitivity analysis by solving repeatedly
complete set of the modified equations. As a result, develop-
ing efficient sensitivity analysis techniques with fewer amount
of computational effort than the regular sensitivity analysis is
one of the active research topics in the field of the structural
engineering and performing structural sensitivity analysis
more quickly can significantly enhance the performance of
structural optimization methods.

In recent years, structural reanalysis methods such as local,
global, and combined approximation (CA) methods have been
developed to calculate the response of the modified structure
without solving complete set of modified equations. Binomial
series expansion and the first-order Taylor series expansion
about a given initial design are examples of local or single
point reanalysis methods. In the local reanalysis methods,
the response of the modified structure is calculated by using
available information from a single initial design. The local or
single point methods have shown good performance in reanal-
ysis problems with smaller changes in the initial design; how-
ever, they reported poor accuracy for reanalysis problems with
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larger amount of changes in the design space (Barthelemy and
Haftka 1993). Unlike local methods, global or multipoint
methods, such as the polynomial fitting or reduced basis
methods (Fox and Miura 1971; Haftka et al. 1987; Noor
1994), construct the approximate structural response based
on the available analysis information of multiple initial de-
signs. The global methods show great advantage over the local
methods in terms of accuracy in the reanalysis problems with
larger changes in the design space. However, there are serious
concerns about the accuracy and computational effort of the
global methods (Zuo et al. 2012; Wu et al. 2003). CA method
has been developed by Kirsch (2003) as a unified approach for
solving various structural reanalysis problems. CA tries to
approximate the response of the modified structure by provid-
ing global qualities to the local approximations. In CA, the
approximate response is calculated by combining the reduced
basis method with the first terms of series expansion. The
application results to various reanalysis and sensitivity reanal-
ysis problems show that the obtained solutions are accurate
under relatively larger changes in the design space (Amir et al.
2008; Kirsch and Bogomolni 2004; Leu and Huang 2000;
Kirsch et al. 2006; Kirsch 2010; Kirsch et al. 2007; Zuo
et al. 2017; Sun et al. 2011; Zuo et al. 2011; Xu et al. 2010;
Zuo et al. 2019). To increase the efficiency of CA method,
Zuo etal. (2016) proposed a hybrid static sensitivity reanalysis
method by combining Taylor series expansion and CA meth-
od. In comparison to CA method, the hybrid method may
largely increase efficiency with small loss of accuracy of the
sensitivity analysis (Zuo et al. 2016).

Recently, Hosseinzadeh et al. (2018) applied a new structur-
al reanalysis approach based on the polynomial-type extrapo-
lation methods to approximate the response of the modified
structure under multiple types of modifications in the initial
design. In this approach, the displacement vector of the modi-
fied structure is expressed in the form of the vector sequences
based on the fixed-point iteration method. By using these vec-
tor sequences, the minimal polynomial extrapolation (MPE)
and the reduced rank extrapolation (RRE) methods calculate
the approximate displacement vector of the modified structure.
In the MPE and RRE methods, the complete set of analysis
equations of the modified structure is reduced to the linear
least-square problems with significantly smaller size.
Following successful application of the polynomial-type ex-
trapolation methods for structural reanalysis, this paper pre-
sents new structural sensitivity reanalysis formulation based
on the MPE and RRE methods. To demonstrate the efficiency
of the proposed structural sensitivity reanalysis approach, a
comprehensive numerical investigation has been carried out
by using four sensitivity reanalysis problems with relatively
larger changes in their initial designs.

The rest of the paper is organized as follows. The mathe-
matical formulation of the structural sensitivity reanalysis
problem is briefly described in Sect. 2. In Sect. 3, a brief
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review of the CA method for the structural sensitivity reanal-
ysis is presented. In Sect. 4, the structural sensitivity reanalysis
based on the MPE and RRE methods is described, and then,
the derivation of the proposed formulation for structural sen-
sitivity reanalysis is explained in detail. Section 5 presents the
application of the proposed approach on set of four structural
sensitivity reanalysis problems. Finally, some concluding re-
marks are given in Sect. 6.

2 Mathematical formulation of structural
sensitivity reanalysis problem

The main aim of the structural sensitivity reanalysis problems is
to calculate the sensitivities of a modified structure by using
available exact analysis information from an initial design with-
out solving complete set of modified equations. In the present
section, since the calculation of sensitivities for a given struc-
ture involves structural analysis, at first the problem of struc-
tural reanalysis is formulated and, subsequently, the first- and
second-order structural sensitivity problems are presented.

2.1 Structural reanalysis

The main objective of a structural reanalysis problem is to
calculate the displacement vector of the modified structure
without solving complete set of the modified equations. Let
us consider a given structure with ny.s degrees of freedoms
(DOFs), initial stiffness matrix KoeC"*" " and load vector
FoeC"*", In structural reanalysis problems, it is assumed that
the displacement vector roe C"*" for the initial design is given
from the following equation:

Kor():Fo (1)

where the decomposed form of the initial stiffness matrix K, is
given as follows:

K, =UlU, (2)

in which UyeC"**"*" is a upper triangular matrix.

If structure is subjected to a set of modifications in its initial
design, the modified stiffness matrix KeC"*™ " and the
modified load vector FeC"*' can be simply written in the
following form:

K =K, + AK, (3)
F = Fo + AF, (4)
where AKeC"®""* and AFeC"*" represent the changes in
the stiffness matrix and load vector, respectively. Usually, ma-
trix AK is related to the changes in the cross-sectional proper-

ties, length, and material properties of structural elements. On
the other hand, vector AF is related to the changes in the
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loading conditions as well as geometrical and physical prop-
erties of structure (Kirsch 2000).

Now, the load-displacement relation for the modified struc-
ture can be written as follows:

Kr=F (5)

where reC"" is the displacement vector of the modified
structure. The main aim of a structural reanalysis problem is
to calculate the displacement vector r without solving com-
plete set of modified equations in (5). After calculating the
displacement vector r, the stress in the members of structure
can be simply obtained accordingly.

2.2 Sensitivity reanalysis

By direct differentiating of (5) with respect to a design vari-
able x; and rearranging, the first-order derivative of the mod-
ified displacement vector r can be obtained as follows:

or oK
o (6)

where it is assumed that the load vector F is independent of
design variables (that is, (ZTF = 0) for simplicity. It should be
noted that the proposed sensitivity reanalysis approach is also
suitable for the cases where the elements of the load vector F
are functions of the design variables.

If (6) is differentiated with respect to a design variable x;,
the modified second-order derivative of the modified displace-
ment vector » can be written as follows:

2 2
or_ FK L oKer )
6xi2 axl'z axi Gxi
Both of the (6) and (7) are systems of equations with the

size of ngof X ngor, Where the decomposed form of the modi-
fied stiffness matrix K is not available. For the case of multiple
design variables, (6) and (7) should be solved for each design
variable separately. Therefore, the main aim of the structural
sensitivity reanalysis is to calculate the first- and second-order
derivatives of the modified displacement vector without direct
solving of (6) and (7). After calculating the derivatives of the
modified displacement vector, the stress derivatives can also
be obtained by explicit differentiation of stress-displacement
relations.

3 CA-based sensitivity reanalysis

In this study, the results obtained by the proposed approach
will be compared to those yielded by the well-known CA
method developed by Kirsch (2000). Therefore, this section

provides a brief review of the structural sensitivity reanalysis
formulation based on the CA method.

3.1 Structural reanalysis based on the CA method

In the CA method, a linear combination of s basis vectors is
used to approximate the displacement vector of the modified
structure as follows:

FA =y i 4 08 + .. 4 Y = Py, FREC"S yeC* (8)

N

where 7§A represents the approximate displacement vector of
the modified structure obtained by the CA method with s basis
vectors, r,r,, ...,F are the linearly independent basis vectors,
rg is the matrix containing the basis vectors, and y is the vector
containing constant parameters. The matrix rg and vector y are
in the following forms:

N1
rly=1 72 9)

Vs

rg = [i‘],rz,...

The basis vectors ry, r», ...,  are calculated as follows

(Kirsch 2000):

ri:r(l):KBIF,rz:—Brl,...,rS:—Brsfl (10)
where B = KalAK.

By premultiplying the load-displacement relation of the
modified structure in (5) by rg and expressing the displace-
ment vector by the definition expressed in (8), following sys-

tem of equations can be obtained:

Kry = FR,KRECSXS,FRECS (11)
RY

where K = rEK rg represents the reduced order stiffness ma-
trix and Fg = rjF indicates the reduced order load vector.
For a very smaller values of s, the vector of unknown coeffi-
cients y can be obtained by solving a linear s x s system of
equations in (11), which has much smaller size than the orig-
inal load-displacement relation of the modified structure.
Finally, the displacement vector of the modified structure r
can be simply obtained by substituting the vector y in (8).

3.2 First-order sensitivity reanalysis based on the CA
method

By differentiation of (8), the first-order sensitivity of the ap-
proximate displacement vector provided by the CA method
can be obtained as follows:

oFA __ Org oy

S

8x,~ n 8xi

(12)
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where the derivatives % and gTy are unknown and should be
1 1

obtained.
By taking first-derivative from the (11) and rearranging, the

derivatives g—f can be obtained by solving following linear
system of equations:

6_)1 oF R oK R
- 13
ax, ( ox;  Ox; y) (13)
where:
oF R arg
= F 14
ax,- ax,» ( )
and
oK R Grg T oK T 6rB
= K — K 15
ax,- ax,- "B+ "8 8x,~ rB+rB 6x,~ ( )

In (14), it is assumed that the load vector F is independent of
design variables (that is, - =0 ).

Taking the derivative of (10) with respect to the design
variable x; and rearranging yield:

o _y o o8 o
ox; | ox; O 1’8)6,-
__6B 3 ory ory __8B 3 OF¢—1
= a_x,-rz B@xi R = ax,-rs_l B o, (16)

where 28 = [ 2K,
) 0x,

Now, the first-derivative of the approximate displacement
vector obtained by the CA method can be simply calculated

by substituting a’B and % 0” into (12).

3.3 Second-order sensitivity reanalysis based
on the CA method

By differentiation of (12), the second-order sensitivity of the
approximate displacement vector provided by the CA method
can be obtained as follows:

62?SA Ger

B org Oy &y
6)6,'2 B 6)6,'2 Y

o o B ax?

(17)

where calculating the derivatives 72 ¢ y and 3 2 =

are necessary for

computing second-order sensmVlty of the approximate dis-
placement vector.

By direct differentiating of (13) with respect to a design
variable x; and rearranging, a new linear system of equations
is obtained as follows:

Py _ (OFr_,0Kr Oy _O’Kr
6)(,'2 - 6)(,'2 8xi 8x,» 8)(1'2 Y

(18)

R
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where:
2 2T
F
0 R _ 0 rg (19)
axl-z 8)(,‘2
and
O Ky Or} ork oK orl  org
= Krg+2=8 2—BK
Oox;? Ox;? B+ Ox; 6x, B+ ox; Ox;
oK org K &ry
+2rt L ruK 20
Iy  ox, +r B o2 ~—5 7B+ o2 (20)

2
As it can be seen from (18), the derivatives gx—_yz can be

obtained by solving a linear system of equations with the size
of s xs.
By taking the derivative of (16) with respect to the design

variable x;, the second derivatives of basis vaectors 5 z ’B can be

written as follows:

Fr_, on_ 7B O
8x,~2 o 8xi o 8x,-2 178)(7,'2
_ _623 OB ory &r) &ry
e I Y -
o’B OB Oryy . 0%re
= r 22— -B 21
6xi2 fst 6xi 6x,- 8x,-2 ( )

PB _ -1 PAK
where &7 = K, R

Finally, the second-order derivative of the approximate dis-
CA

o~
placement vector obtained by the CA method ors

= can be

simply calculated by substituting 62’3 and gxyz into (17).

4 Proposed sensitivity reanalysis approach

Nowadays, the solutions of many engineering problems can
be approximated by a series expansion or a sequence converg-
ing to the exact solution. However, approximating the limits
of such sequences is not an easy task. In many problems of
practical interest, either the convergence of these sequences to
their limits is very slow or even divergences are observed,
which makes their direct use to approximate their limits com-
putationally expensive or impossible. In mathematical sci-
ence, one practical way of tackling this problem effectively
is by applying to such sequences some convergence extrapo-
lation methods (or equivalently convergence acceleration
methods), which are especially suitable when the dimension
of the vector sequences is very large. Usually, an extrapolation
method takes a finite or hopefully small number of given
sequence and produces another sequence that converges to
the former’s limit more quickly when this limit exists. In some
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cases, if the limit of original sequence does not exist, the new
sequence produced by the extrapolation methods converges to
some meaningful quantities or diverge more slowly than the
original sequence (Sidi 2003). In this paper, we use this idea to
propose a new structural sensitivity reanalysis approach based
on the polynomial extrapolation methods.

Minimal polynomial extrapolation (MPE) method intro-
duced by Cabay and Jackson (1976) and reduced rank
extrapolation (RRE) method proposed by Kaniel and Stein
(1974), Eddy (1979), and Mesina (1977) belong to the cate-
gory of the polynomial-type vector extrapolation methods.
Until now, MPE and RRE methods have been applied suc-
cessfully as efficient convergence accelerators in various areas
of science and engineering (Bertelle et al. 2011; Duminil et al.
2014; Duminil et al. 2015; Loisel and Takane 2011). The
convergence and stability analysis of MPE and RRE methods
was discussed by Sidi (1986, 1994) and some reviews about
these methods are available in Refs. (Sidi 2012; Sidi et al.
1986; Smith et al. 1987). In this section, we show how MPE
and RRE methods can be modeled to develop an efficient
structural sensitivity reanalysis approach. We only use those
equations which will be used directly in the proposed ap-
proach. For more information about the derivation and related
mathematical proofs, the interested reader may refer to (Sidi
2012).

Back to the load-displacement relation of the modified
structure in (5), this equation can be rewritten in terms of the
change in the stiffness matrix as follows:

(Ko + AK)r = F (22)

which can be rearranged to obtain following recurrence
formula:

rpe1 = Tr, + b, b, r,cC'e", TeC"wr*" vl (23)

where
=-K,'AK, b=K,'F (24)

In (23), r,, . 1 and r, indicate the displacement vector of the
modified structure at the (n + 1)th and nth iterations, respec-
tively. Since the decomposed form of the initial stiffness ma-
trix Ky is available, calculating vectors r, requires only for-
ward and backward substitutions. If (23) is written in the form
of (I— T)r=b, it turns out that the uniqueness of the solution
is guaranteed for any nonsingular matrix I— 7, in which T
does not have 1 as its eigenvalue. Let us to assume the unique
solution of (23) as Fexaet = lim,_or,. Now, for any initial
vector rq sufficiently close 0 Fexq satisfied p(Ky'AK) < 1,
(23) converges to the exact displacement vector of the modi-
fied structure reyae, Where p(A) is the spectral radius of the
square matrix A (Siili and Mayers 2003). If we choose the
initial displacement vector roeC"*" as an initial solution

vector to (23), the vector sequence {r,} can be generated as
follows:

tpo=Tr,+b, n=01,... (25)
Let us also define

Uy = Fpi1 Py, n=0,1,..., wu,eC"" (26)
Wy = Uy~ Uy, n=0,1,..., w,eC"" (27)

In the following subsections, a new sensitivity reanalysis
formulation is derived based on the MPE and RRE methods,
separately.

4.1 Sensitivity reanalysis based on the minimal
polynomial extrapolation (MPE)

4.1.1 Approximate modified displacement vector

Consider vector sequence {r,} in C"*" and let us choose & to
be an arbitrary positive integer that is usually much smaller
than the total number of DOFs of the structure (k< n4of).
Then, form the matrix Uy _ as follows:

U, = [u0|u1|"'|uk_1]eC"d°ka (28)

where u,, is defined in (26). Let us now imagine that ¢ =[co,
Cl, e I]T represents the least-square solution of the fol-
lowing overdetermined linear system:

Ui = —uy; ceCt (29)
where ¢ can be defined as a solution of the following optimi-
zation problem:

k-1
min Y ciuj+uy
€05C15"" " 5Ck—1 j=0

(30)

By setting ¢, =1, 'yg/IPE, AMEPE .- vyPE can be calculated as

follows:

PPE— S = 0,1,k (31)
' 21—0Cl

It should be noted that ¥'¥_c,#0 (Sidi 2012). Finally, the MPE
approximation to the displacement vector of the modified
structure 7 ,]:/[PE is calculated as follows:

MPE &
e = Zo “YI}/IPE”J' (32)
=

where r; is the displacement vector of the modified structure at
the jth iteration yielded by (25).
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4.1.2 First-order sensitivity of the modified displacement
vector based on the MPE method

By differentiation of (32), the first-order sensitivity of the

approximate displacement vector provided by the MPE meth-
od can be obtained as follows:

MPE
~ k 0 MPE )
T3 ( 2 ,+v,M"E—a’-') 3

Ox; j=0 Ox;

As it is observed from (33), computation of derivatives %
MPE
and —

is necessary for calculating the first-order derivatives

of the approxnnate displacement vector. In the following sub-
sections, we obtain these derivatives.

First-order derivatives of vector sequences r,, If it is assumed
that the load vector F is independent of design variables (that
18, %{ = 0 ), the first-order derivatives of vector sequences

{r,} in C"* are obtained as follows:

81”,,“ o oT 8rn

=TS =01, 34
6x,- ﬁxir + 6xi " ( )
where
oT OAK oK
—=-K,)— =K' 35
6x,» 0 6x,» 0 6xi ( )

In (35), it is assumed that the first-order derivatives of ini-
tial displacement vector r, and stiffness matrice K, are equal
to zero. So, we can write:

oro % B a_Tr ory a_T L Tarl or3
o, on oy ax o d ox; ' ox;

- oT or . 8rk oT Ory—1

o 6_x,~r2 +T ox;” Tox  ox o T Ox; (36)

M
Calculating the derivatives a( By taking first derivative

oc
a,y;\/IPE (Zl 061) ( 5{ 0 2x 1)
i (leocl)

Oc
ox;

By differentiating the overdetermined linear system in (29)
and rearranging, a new overdetermined linear system is ob-
tained as follows:

where only the derivatives €< are unknown.

Ui

o (ow 0U )\ oc [oc e dc]”
ax; B 6x,~ 8x1 ¢ 6x,- - 6x,~ ’ 6x,~ ’ ’ 6x,~

(38)
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where 5% eC"*" and % eC" ¥ are given from:
1 1

6uk o 6rk+1 _ al‘k

= 39
8x,» 6x,- 6xi ( )
5U/(71 7 6“0 aul . auH ngop Xk

Ox; {ax, Ox; o Ox; } eC (40)
From (38), it can be seen that the derlvatlves eCk are the

least-square solution of an overdetermined hnear system. After

calculating £* ac the derivatives _eCkH can be written as

dc oc
- [6)6, 0] (41)

A~MPE

Now, the derivatives cva can be easily calculated by

substituting (41) in (37).

4.1.3 Second-order sensitivity of the modified displacement
vector based on the MPE method

By differentiation of (33), the second-order sensitivity of the
approximate displacement vector provided by the MPE meth-
od can be obtained as follows:

_MPE ) MPE MPE
o7y > o, P Yia/ e Y i (42)
j=0 ax,-z / 6x; 6)(5,' / 2

o2 Ox;
o
As it is observed from (42), computation of derivatives %

62 MPE
and po 2

is necessary for calculating the second-order deriv-

atives of the approximate displacement vector. In the follow-
ing subsections, we obtain these derivatives.

Second-order derivatives of vector sequences r,, By differen-
tiation of (34), the second-order derivatives of vector se-
quences {r,} can be obtained as follows:

Pra or ér, &°T or,
o :Za—xiaxi+azn+Taxl n=0,1, (43)
where:
T OPAK 0K (44)
8x,~2 o 0 8x,-2 B 0 8x,-2
So we can write:
62r0 o 82r1 o azTr 821’2
6)6,‘2 o ax,»z o 8x,~2 0 6x,«2
oT or,  &*T & Pry
—_—t— T——....
Ox; Ox; + Ox;2 nt ox2’ 7 ox2
orT 61%1 8 T 5 1
8_xl-8xl-+62kl+T82 (45)
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. L PAMIE . -
Calculating the derivatives % By differentiation of (37),
MPE

L &7 .
the derivatives 6;’2 can be obtained as follows:

&c; ¢
2j (Z?:OC/) (Zl 0 x 2

62 IY_I}APE a

3 (hoe)2(t00)

« Oc 6cj Ocy
1=0 A Gx, 2( ¥ ox;

ox? (Zoer)’

(46)

where the derivatives g ¢ are unknown. Differentiating (38)

and rearranging gives:

¢ & PUpy +  0Ug 0 ot
Uk—l_‘:_ uj llL‘+ k-1 (, c (47)
6x,-2 6xi2 6x,-2 5x,— 6xl ax,-z
- 6260 6261 6261{71 T
o 6x,-2 ’ 6x,-2 ’ ’ 6x,-2
where is given from (38). Hence, the 0 ‘ eC™ok ig the

least- square solution of the linear system in (47). Then, deriv-
atives 7 a < e(C”“‘“kaJr1 can be obtained as follows:

&e &
2= o ) (48)

2 MPE

Now, the derivatives
substituting (48) in (46).

can be easily calculated by

4.2 Sensitivity reanalysis based on the reduced rank
extrapolation (RRE)

4.2.1 Approximate modified displacement vector

Again, consider vector sequence {r,} generated from (25) and
let us choose £ to be an arbitrary positive integer that is usually
much smaller than the total number of DOFs of the structure
(k < ngop). Then, form the matrix Uy as follows:

U, = [u0|u1""|uk]€Cnd°ka+l (49)

where u,, is defined in (26). Let us now imagine that v**®
represents the least-square solution of the following overde-
termined linear system:

UpARRE — 0;  ARRE [,YORRE’,YII{RE7...’,YII§RE]T€Ck+1 (50)
Besides, ’;ZOV;“E =1 is considered as a constraint for

(50). ¥*RE can also be expressed as a solution of the following
constrained optimization problem:

min P
Vo Vs k|| AT

J=0

. . k

Subject to : ijo’}/?RE =1 (51)

Finally, the RRE approximation to the displacement vector

of the modified structure 73 is calculated as follows:

;'RRE — ZO VRRE (52)
J

where 7; is the displacement vector of the modified structure at
the jth iteration yielded by (25).

It should be noted that the definition of the RRE presented
above is not the only way possible. Another definition of the
RRE method is also given in Ref. (Sidi 2012), which is more
suitable for computational purposes. According to the defini-
tion in Ref. (Sidi 2012), the RRE approximation to exyet =
lim,,_,,r,, can also be expressed in the following form:

k—1
P =ro+ 3 Gu; (53)
i=0

where there are no any constraint on the &;. In (53), the param-
eters &; are obtained from the following least-square solution
of the overdetermined linear system:

Wi—1€ = —uo; €= (6.6, &) eCr (54)
where
Wi = [wo\wl|"'|wk71]eC”d°ka (55)

Here, the vectors w,, are defined in (27).

4.2.2 First-order sensitivity of the modified displacement
vector based on the RRE method

By differentiation of (53), the first-order sensitivity of the
approximate displacement vector provided by the RRE meth-
od can be obtained as follows:

a5 (e ag) 0
where
8u,~ N 6r,-+1 _ 8r,»
8x,- B ax,- 8x,- (57)

@ Springer



1034

Y. Hosseinzadeh and S. Jalili

In (57), calculation of the derivatives 5" is quite similar to

(36). Hence, only the derivatives 5—5 are required to calculate
~RRE

Taking the derivative of (54) with respect to the design
variable x; and rearranging yield:

oW—
Wi + - 6)

(58)

o \ox

o€ (dug
6)6,‘

As it can be seen, gf i square solution of the linear

4.2.3 Second-order sensitivity of the modified displacement
vector based on the RRE method

Taking derivative of (56) with respect to the design variable x;
yields the second-order sensitivity of the approximate dis-
placement vector provided by the RRE method as follows:

aszRE k-1 (P, ¢, Ou; &u;

-k — Ly 220 = 59
o2 I-Zo(ﬁx it o B, +§‘ax,-2> (59)
where

62u,» _ azr[+1 _ 62r,- (60)
6x,-2 axiz 6){[2

The number of algebraic operations (NAOs) required by the MPE method for the structural sensitivity reanalysis

system in (58).

Table 1

Structural reanalysis using MPE
Operation NAOs
b=K, 61 F 2n4of’

Fas1=Tr,+b (k+ DYAngof” + 21409

Uy 1= [uoluy|...luy 1] kngor
Solve U, - ¢ = —uy 2o
’y]/\/[PE Z/{i:’ 7] :071""’k 2(k+ 1)
N k 2(k+ Dngos
MPE o
I = 3 o,
=0
First-order structural reanalysis using MPE
Operation NAOs
62;1 = gg ry+ TS ‘7”' (k+ 1)(Bngof” + Ngof)
b S(k+1)
Tox
uy oy Oy (k+ Dngor
u(,7(x,7"'7cx, ) ]g b+
Uit & = (1 2% ) 24K + k+1)

o MPE K /o MPE 3(k+ Dngop
or _ MPE or dof
6’;, - j;o ( Ox; rj + ’V ﬁx,/>
Second-order structural reanalysis using MPE
Operation NAOs
i _ 0T or, ar,, K+ D(120g0f” + 3ngof
Tzl_zg_x,c?x_'—ﬂx n+T ( Y(12n40f dot)
P MPE 18(k+1)
—2
52 & .
f}xm 7%2:21 . 771:; (k+ I)Zdol
Up s ax _ (?Xuzk Lo Uk ) ag:’,, %> Naot( 2K + 4k +3)

~MPE

Z (y(;;“?trj+2m, Or,_|_ MPE 0”/) S+ Digor

ox, ox;2

Total:(24k + 26)ndof 2H(6K + 25k + 21 )ngop+ 25(k + 1)

Comments

Forward substitution with rgof operation and backward substitution with Ndof
operations.

MPE method requires k+ / vector sequences. By using decomposed form of
Ky = U U, calculation of each vector sequence requires:

* One matnx vector multiplication with 4ol operations.

« Forward and backward substitutions with 27140 operations.

* Negative multiplications with n4.¢ Operations.

* One vector addition with 74.¢ operations.

k subtractions of vectors with the size of (4, 1)

Least square solution of the overdetermined linear system with size of (ngor * k)

k+ I scalar additions and £+ I scalar subtractions

k+ 1 vector multiplications and k+ / vector additions

Comments

« Two matrix-vector multiplication with 4n4.¢ operations.

« Two forward and backward substitutions with 414 operations.
* One vector addition with 74.¢ operations.

4(k + 1) scalar additions and £+ [ scalar subtractions

k+ I subtractions of vectors with the size of (ngo¢ % 1)

* One matrix-vector multiplication with 24,4 operation

* One vector addition with n4,¢ operations.

* Negative multiplications with r4.¢ Operations.

* Least square solution of the overdetermined linear system with size of
(ngor > k)

2(k + 1)vector multiplications and (k + 1) vector additions

Comments

* Three matrix-vector multiplication with 6ngof operations.

« Three forward and backward substitutions with 614> operations.
* Two vector addition with 2n4,¢ operations.

* One multiplication with 74, Operations.

18(k + 1) scalar additions, multiplications, and subtractions.

k+ 1 subtractions of vectors with the size of (nger* 1)

» Two matrix-vector multiplications with 4n4.¢ operation

* Two vector additions with 274, operations.

* Negative multiplications with 74.¢ operations.

* Least square solution of the overdetermined linear system with size of
(Mot X k).

3(k+ 1)vector multiplications and 2(k + 1) vector additions.
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Table 2

The number of algebraic operations (NAOs) required by the RRE method for the structural sensitivity reanalysis

Structural reanalysis using RRE
Operation
b=K,'F

NAOs
2ndnf2

Comments
Forward substitution with 7407 operations and backward substitution with Naof

operations.

Fos1=Tr,+b (k+ D(@ngof’ + 21400

RRE method requires k+ / vector sequences. By using decomposed form of

Ky=U OT U, calculation of each vector sequence requires:
* One matrix-vector multiplication with 2gof operations.
« Forward and backward substitutions with 224" operations.
 Negative multiplications with 74,¢ Operations.
* One vector addition with 74, operations.

Upe=[uoluy|... ;]
Wi 1= [wowi| - [wi—1]

Solve W, &= —u, 2o + Haor

k+ 1 subtractions of vectors with the size of (4% 1)
k subtractions of vectors with the size of (rngorx 1)
« Least square solution of the overdetermined linear system with size of (r4o¢ X k)

* Negative multiplications with 74, operations.

. k-1 2k + Dngor
P =0+ 3 G ’
b

First-order structural reanalysis using RRE

« Scalar-vector multiplications with kny.¢ operations.
« Vector addition with (k+ 1)ng.r Operations.

Comments
* Two matrix-vector multiplication with Angof operations.
« Two forward and backward substitutions with 47404 operations.

* One vector addition with 74, operations.

Operation NAOs
OFpst g,” 2 X
o av Ly, + T3 (k+ 1)(8ngof” + ngop)
Qo Gy k+1)n
Ox; ) Ox; 0"t Oxg ( ) dof
Wiy __ | Owg |Owy ... |Owi fngor
ox; | ox |ox 0x;

Wk*l (f—f’ = —(%‘:’? + m:;‘l 1 5) 2ndof’,(2 +2ndof(k+ 1]

k+ I subtractions of vectors with the size of (4% 1)

k subtractions of vectors with the size of (ngor* 1)

» Matrix-vector multiplication with 2n4,¢ operations.
* One vector addition with 74, operations.

* Negative multiplications with 7r4,¢ Operations.
« Least square solution of the overdetermined linear system with size of (rgof % k)

« Scalar-vector multiplication with 2n4,¢ operations.
* Vector addition with Ang.¢ operations.

Comments
(k+ 1)(12ng0f + 3n4op) * Three matrix-vector multiplication with 61g0f operations.
« Three forward and backward substitutions with 671407 operations.

» Two vector addition with 2n4,¢ operations.
* One multiplication with 74.¢ Operations.

3kn
0r A 0, Ou; dof
BT (e )

Second—order structural reanalysis using RRE
Operation NAOs
~2 A 2
Prai _ Aol ory &,

ox2 T “ox ox; + Px 2 r” +T ox;?
Fuy Fuy Quy (k+ Dngor
ox;2 ) ox2 )t oxi?
("7ZW;f L | & &wy é’zwl | & Wk 1 kngor

0x;2 ox;2 | ox;2

20Pngor+ 4k + Dingog

W, lAzgf,{fruo+2lw“ 95+{}:v’§,, E}

o2 T ax;  Ox; ox,

k+ I subtractions of vectors with the size of (ngr* 1)

k subtractions of vectors with the size of (14,4 % 1)

» Two matrix-vector multiplication with 4n4,¢k operations.
* Two vector addition with 2n4,r Operations.

* One scalar-vector multiplications with 74.¢ Operations.
* Negative multiplications with r4,¢ Operations.
« Least square solution of the overdetermined linear system with size of (r4of X k)

~RKF

x; Ox, ox;*

6kng,
,z( zu,+2bf'”“'+§l°"4> Mdof

Total: 24(k+ Dngof + (612 + 29 + 1ngor

3(k+ 1)vector multiplications and 2(k + 1) vector additions.

It should be noted that the calculation of the derivatives of

a 1 is quite similar to (45). Hence, only the derivatives = 5‘ are

~RRE
required to calculate the second-order sensitivity of —

Taking the derivative of (58) with respect to the design
variable x; and rearranging yield:

3 Puy Wi € FWiy
W, —> —— ) o
= 6x,-2 6)6[2 + 6x,~ 6x,~ + Gxiz €

(61)

In fact, the derivatives = 5 are the least-square solutions of

the overdetermined linear system in (61).

4.3 Main steps of the proposed sensitivity reanalysis
approach

Now, we are ready to summarize the main steps of the pro-

posed reanalysis approach based on the MPE and RRE
methods. For a given structural sensitivity reanalysis problem
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Table 3 The number of algebraic operations (NAOs) required by the CA method for the structural sensitivity reanalysis

Structural reanalysis using CA
Operation
s= Brc -1
rg=[ri|ral...Ir]

KR = I'EKFB

_ T
F R = VBF
Solve Kry = Fr
F=rgy
First-order structural reanalysis using CA
Operation
ors _ _(oB Ory-
ox; ((7,\',» Fs-1 +B 0x;
arg _ |Ory |Ory ars
ox; | ox; |ox; * | ox;
oKy _ Org arg
o KrB—H'B &, rB+r K o
oFy _ Org
ox; O

K Jdy _ OFr _ 0Ky

R ox; ox; Ox; y

Orca __ Org
ox;  0x; y+ B ov,

Second-order structural reanalysis using CA

Operation

&, _ 5 0B Orey & rey

oz T 25)(1 Ox; +6v2rv 1 + B ox;2

Fry _ | | &Py

ox2 | ox? |ox? *lox2

PR _ HOrp 6r5 ory oK T 0K org & ’R T & g
oz T 2 0ox; K +23 Ox; ox; rB+2rB ox; Ox; + KrB+rBK

= 2,7

& Fr _ ory

ox;2 0ox;2

oxi2 T ox; Ox;  Ox;

K &Py <6~KR y42 e el @ Fz“)

NAOs
S(4ndof2 + Nof)

ZSndnfz + 2S2nd0f

2SN gof
3 4 2?

28R40t

NAOs
5(8Mgof” + 2ng0p)

65Mgof + 65 Mot
24

25nd,,f

%SS +4s2 +s
(4s + l)ndof

NAOs
125R40f + 35Mgof

108140 + 10500+
75

25N gof

%s3 +4s? +4s

Comments

By using decomposed form of Ky = U, OT U, calculation of each
basis vector requires:

« Forward and backward substitutions with 271407 operations.

« One matrix-vector multiplication with 2ot operations.

* Negative multiplication with ng4,¢ operations.

» One matrix-matrix multiplication between two matrices with
sizes of (s x Ndof) and (Mgof X Ngop)-

* One matrix-matrix multiplication between two matrices with the
sizes of (s X ngep) and (ngof X 5), respectively.

One matrix-vector multiplication between a matrix and a vector
with sizes of (s X ngep) and (ngor % 1), respectively.

Solving (s X 5) system of equations by Cholesky decomposition
method

One matrix-vector multiplication between a matrix and a vector
with the sizes of (ng0r % 5) and (s x 1), respectively.

Comments

« Two matrix-vector multiplications with 474, operations.

* Two forward and backward substitutions with 4nd0f2 operations.

* One vector addition with 74, operations.

* One negative multiplication with 74, operations

* Three matrix-matrix multiplications between two matrices with
sizes of (s X ngop) and (ngop X Ngop)-

« Three matrix-matrix multiplications between two matrices with
the sizes of (s X ngep) and (nger X ), respectively.

* Two matrix-matrix additions with the size of (s X ).

One matrix-vector multiplication between a matrix and a vector
with sizes of (s X ngep) and (ngor % 1), respectively.

« One matrix-vector multiplication with 2s* operations.

* One vector subtraction with s operations.

« Solving (s x 5) system of equations by Cholesky decomposition
method.

 Two matrix-vector multiplications between a matrix and a vector
with the sizes of (n40¢ % 5) and (s x 1), respectively.

* One vector addition with 74, operations.

Comments

« Three matrix-vector multiplications with 6ngof operations.

« Three forward and backward substitutions with 67147 operations.

* Two vector additions with 2n4,¢ operations.

« One multiplication with n4.r Operations.

« Five matrix-matrix multiplications between two matrices with
sizes of (s X ngep) and (ngor X Agop)-

« Five matrix-matrix multiplications between two matrices with the
sizes of (s X ngop) and (ngof X 5), respectively.

« Four matrix-matrix additions with the sizes of (s X s).

One matrix-vector multiplication between a matrix and a vector
with sizes of (s X ngop) and (ngor * 1), respectively.

« Two matrix-vector multiplications with 4s” operations.e One
vector-scalar multiplication with s operations.

* One vector addition with s operations.One vector subtraction with
s operations.

* One negative multiplication with s operations.

« Solving (s x 5) system of equations by Cholesky decomposition
method.

Prea _ @ + fo ory (65 + 3)ngor « Three matrix-vector multiplications between a matrix and a
ov? B ok vector with the sizes of (n4,¢* s) and (s % 1), respectively.
* One scalar multiplication with r4,¢ operations.
* Two vector addition with 2n4. Operations.
Total: 42sn4of + (185 + 24s + D)ngop+ 5~ + 175 + 55
with the initial displacement vector r( and initial stiffness ma-  + MPE: Structural reanalysis
trix Ky, we summarize the main steps of the proposed sensi-  * Step 1: Choose & as an arbitrary positive integer that is

tivity reanalysis approach as follows:
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structure (k < n40¢) and construct the vectors rg, r1, ..., Fi +
1 by (25).
Step 2: Obtain the vectors ug, uy, ..., u;—1 by (26) and
calculate the matrix

U,.—1=[ug, uy, ..., u;_ ] with the size of ngor * k.
Step 3: Solve the overdetermined linear system of (29)
with the size of ng.r X k in the least square sense and cal-

culate ¢ = [co, €1, "5 cp— 1]T-
Step 4: Calculate ~)PE AMPE .- .AMPE 1y (31) with
Cr= 1.

Step 5: Compute the approximate displacement vector of
the modified structure r IIE/IPE by (32).

MPE: First-order sensitivity reanalysis

Step 1: Calculate the first-order derivatives of vector se-

org Ory Or or, :
quences a—x" " Ee a—xf, ,B—Xk by using (36).
/ 9T
Step 2: Calculate the derivatives g — [aﬂ , a1 R ”‘H}
ox; ox; 7 Ox; Ox;

by solving the overdetermined linear system in (38) with
the size of ngorxk and construct the derivatives

2 _ o
ox; |:6x, O:|

MPE
Step 3: Calculate the derivatives 62;[ by using (37).

Step 4: Calculate the MPE approximation of the first-

order sensitivity of the displacement vector of the modi-

~MPE
fied structure 0’5" by using (33).

Xi

MPE: Second-order sensitivity reanalysis

Step 1: Calculate the second-order derivatives of vector
2 2 2 )

sequences % ,% , ...,gx% by using (45).

Step 2: Calculate the derivatives gi—fz = [%,% AN

%]T by solving the overdetermined linear system in

(47) with the size of n4o¢ % k and construct the derivatives
Ze _ {520; o} _

ax;z 6}6[

2 . MPE
’)J

Step 3: Calculate the derivatives ¢ e by using (46).

Step 4: Calculate the MPE approximation of the second-

order sensitivity of displacement vector of the modified
~MPE

structure 75— by using (42).
RRE: Structural reanalysis

Step 1: Choose k as an arbitrary positive integer that is usually
much smaller than the total number of DOFs of the structure
(k < ngop and construct the vectors rg, 7y, ..., iy 1 by (25).
Step 2: Compute the vectors uy, uy, ..., u; and wy, wy, ...,
wy.—1 by (26) and (27), respectively, and form the matrix
Wi._1=[wolw1| " |wi—1] with the size of ngo¢ % k.

Step 3: Solve the overdetermined linear system of (54)
with the size of ngor % k in the least-square sense and cal-
culate £ =[£0, &1, . & 11"

Step 4: Compute the approximate displacement vector of
the modified structure 7 kRRE by (53).

* RRE: First-order sensitivity reanalysis
» Step 1: Calculate the first-order derivatives of vector se-

quences ng‘; ,% , %7 ,% by using (36).

o _ [og o6 ... agmr

o a0 on
by solving the overdetermined linear system in (58) with
size of ngee * k.

*  Step 2: Calculate the derivatives

«  Step 3: Calculate the derivatives 2 o o iy

;0o o 0t o
using (57).
» Step 4: Calculate the RRE approximation of the first-

order sensitivity of displacement vector of the modified

_~RRE
or

structure —5— by using (56).

* RRE: Second-order sensitivity reanalysis
» Step 1: Calculate the second-order derivatives of vector

&ry 0ry Or & -
sequences F;’ ’W] , axizz , ,ﬁ by using (45).
e Step 2: Calculate the derivatives Py Fuy Fuy Cuy
. Ox2 ) ox2 ) ox 0t ox?

by using (60).
" T
+  Step 3: Calculate the derivatives gj—i = % , ?;52‘ L a;ikg‘]

by solving the overdetermined linear system in (61) with
the size of nyqs x k.
+ Step 4: Calculate the RRE approximation of the second-

order sensitivity of displacement vector of the modified
2~RRE

ary by using (59).

P
Ox;2

structure

According to the sensitivity reanalysis formulation derived
based on the MPE and RRE methods, it can be concluded that
the proposed sensitivity reanalysis methods calculate the ap-
proximate sensitivities of the modified structure by solving the
linear least-square problems with sizes of the nq4.s* £ and n-
dof X k+ 1, respectively, which are much smaller than the

P=100 kips <1200 > p_j00 kips <1200
5 ©® A
9
- . £
% . 93
S Y
’ A
g
= £
D & M ) W=
N 19 -
1' 1 o\l
(a) (b)

Fig. 1 A simple 10-bar planar truss structure problem: a initial structure,
b modified structure
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Table 4 Initial and modified designs for simple 10-bar planar truss structure problem

Small modifications Large modifications

Initial design (inz) Modified design (inz) Variations Initial design (inz) Modified design (inz) Variations
Ay 5.00 4.50 -10% 5.00 1.50 =70%
A, 5.00 4.50 - 10% 5.00 1.50 -70%
Az 5.00 5.50 +10% 5.00 8.50 +70%
Ay 5.00 5.50 +10% 5.00 8.50 +70%
As 5.00 5.00 0% 5.00 5.00 0%
Ag 5.00 5.50 +10% 5.00 8.50 +70%
A, 5.00 5.50 +10% 5.00 8.50 +70%
Ag 5.00 5.00 0% 5.00 5.00 0%
Ao - 5.00 Added - 5.00 Added
A - 5.00 Added - 5.00 Added

complete set of equations of the exact sensitivity analysis with  efficiency of the proposed sensitivity reanalysis methods in
the size of ngof X Hgof. calculating the approximate displacement vector as well as
its first- and second-order sensitivities. These test examples
are a simple 10-bar planar truss structure, a 582-bar tower

5 Numerical tests structure, a 968-bar double layer grid structure, and an 18-
bar truss structure. The 10-bar planar truss structure is a simple
5.1 Accuracy illustrative test example, which shows how the proposed

methods are able to perform structural sensitivity reanalysis.
In this section, a set of four structural sensitivity reanalysis ~ All of the test problems are solved by the CA, MPE, and RRE
problems are presented to examine the accuracy and  methods and the results are given in the tables.

Table 5 Approximate displacement and sensitivity vectors obtained by the MPE method with different values of parameter & for 10-bar plane truss
structure (small modifications)

k 2 3 4 5 Foxact
72’“"‘3 0.661747 0.683652 0.682931 0.682932 0.682932
0.286190 0.300074 0.299616 0.299628 0.299628

0.665515 0.686557 0.685793 0.685790 0.685790

~0.284261 ~0.301129 ~0.300374 ~0.300372 ~0300372

1.902144 1.946915 1.946802 1.946811 1.946811

0.379015 0387441 0.387585 0387596 0.387596

1.867739 1.913913 1913171 1.913180 1913180

~0.361673 ~0.375384 —0.376044 ~0.376040 —0.376040

e —0.003682 0.001119 0.001074 0.001074 0.001074
Ay ~0.002769 0.000308 0.000279 0.000279 0.000279
~0.005792 ~0.001030 ~0.001074 ~0.001074 ~0.001074

0.004032 0.000235 0.000279 0.000279 0.000279

—0.031386 —0.020069 —0.020046 —0.020045 —0.020045

~0.006519 ~0.004358 —0.004344 ~0.004343 ~0.004343

~0.033980 ~0.022089 ~0.022101 ~0.022100 ~0.022100

~0.001804 ~0.004310 —0.004343 ~0.004343 ~0.004343

N 0.010533 ~0.000302 ~0.000298 ~0.000298 ~0.000298
0Ao* 0.006783 —0.000080 —0.000077 —0.000078 —0.000078
0.010696 0.000295 0.000298 0.000298 0.000298

—0.008454 —0.000075 —0.000078 ~0.000078 ~0.000078

0.027117 0.005573 0.005569 0.005569 0.005569

0.005215 0.001208 0.001207 0.001207 0.001207

0.028499 0.006142 0.006140 0.006140 0.006140

~0.005345 0.001205 0.001207 0.001207 0.001207
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To study the performance of the proposed sensitivity reanal-
ysis procedures, the accuracy of the obtained approximate vec-
tors is evaluated by measuring the relative errors as follows:

Fexact™ 1 ‘ ’

(62)

Eretaive =
relative | ‘ Foxact ||
Or exact_i
6x,» 6xi

2 2
0 Fexact _ or
8x,-2 6x1-2

‘ azr exact

Ox;2
where E.p.ive 1S the relative error in approximating the displace-
ment vector of the modified structure, Eejaive/y,, indicates the
relative error obtained in calculating the first-order sensitivity of
the displacement vector, Ejaive/x,, Tepresents the relative error
occurred in predicting the second-order sensitivity of the dis-
placement vector, ||.|| indicates the L, norm, r,, and ¥ represent

Erelative/x,»,l = B
Fexact

Ox, i

—
N
~

N~—

E relative/x;» —

the exact and approximate displacement vectors of the modified
structure, respectively,. % and g—; are Fhe exact and approxi-
mate first-order sensitivities of the modified structure with re-
. . . 2 r e 3

spect to the design variable x;, respectively, =< and £ indi-
cate the exact and approximate second-order sensitivities of the
modified structure with respect to the design variable x;, respec-
tively. It should be noted that the exact displacement vector and
its first- and second-order derivative are calculated by solving
(5), (6), and (7), respectively, in Matlab software.

As another error measuring criterion, the obtained approx-
imate vectors are also evaluated by the average of errors oc-

curred in each DOF as follows:

Z(,d(‘lf Fexacti— ¥ i
i=
Fexacti
Exv. = x 100

65
Ndof ( )
OFexacti . or’;
" Ox; Ox;
dof l 1
zi:l arexacti
6x,~
EAV./x,_l = Mot x 100 (66)

Table 6 Approximate displacement and sensitivity vectors obtained by the MPE method with different values of parameter £ for 10-bar plane truss

structure (large modifications)

k 2 3 4 5 6 Fexact
;TIIEU’E 0.869582 1.874323 1.573429 1.580613 1.580430 1.580430
0.463037 1.083837 0.885293 0.898131 0.898277 0.898277
0.883720 1.887736 1.583853 1.588099 1.588291 1.588291
—0.479343 —1.136202 —0.901799 —0.901647 —0.901723 —0.901723
2.727902 5.309613 4.526083 4.549223 4.549508 4.549508
0.567962 1.106210 0.949034 0.961839 0.961926 0.961926
2.735470 5.333231 4507212 4.530467 4.530738 4.530738
—0.462316 —1.083062 —0.944259 —0.943849 —0.943956 —0.943956
&t —0.082195 0.033039 0.001148 0.001247 0.001224 0.001224
49 —0.052577 0.022085 0.000461 0.000518 0.000537 0.000537
—0.085923 0.030847 —0.001243 —0.001248 —0.001224 —0.001224
0.058466 —0.024039 0.000529 0.000546 0.000537 0.000537
—0.254772 0.066734 —0.015259 —0.014944 —0.014914 —0.014914
—0.053134 0.013971 —0.002929 —0.002809 —0.002799 —0.002799
—0.263374 0.069527 —0.016764 —0.016424 —0.016397 —0.016397
0.039112 —0.017756 —0.002858 —0.002784 —0.002799 —0.002799
& 0.071585 —0.003326 —0.000279 —0.000301 —0.000296 —0.000296
aAy? 0.045235 —0.002210 —0.000112 —0.000126 —0.000130 —0.000130
0.072259 —0.002774 0.000301 0.000301 0.000296 0.000296
—0.049767 0.002211 —0.000128 —0.000132 —0.000130 —0.000130
0.192242 —0.004275 0.003687 0.003617 0.003610 0.003610
0.039748 —0.000960 0.000707 0.000680 0.000677 0.000677
0.196919 —0.004328 0.004051 0.003976 0.003969 0.003969
—0.039244 0.002091 0.000690 0.000675 0.000677 0.000677
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Table 7 Approximate displacement and sensitivity vectors obtained by the RRE method with different values of parameter & for 10-bar plane truss
structure (small modifications)

k 2 3 4 5 Fexact
,7]‘:‘“3 0.662887 0.683611 0.682931 0.682932 0.682932
0.285963 0.300046 0.299616 0.299628 0.299628
0.666666 0.686517 0.685793 0.685790 0.685790
—0.282725 —0.301092 —0.300374 —0.300372 —0.300372
1.899099 1.946820 1.946802 1.946811 1.946811
0.378409 0.387423 0.387585 0.387596 0.387596
1.864283 1.913814 1.913171 1.913180 1.913180
—0.361060 —0.375356 —0.376044 —0.376040 —0.376040
& —0.001738 0.001116 0.001074 0.001074 0.001074
oA —0.001660 0.000306 0.000279 0.000279 0.000279
—0.003887 —0.001032 —0.001074 —0.001074 —0.001074
0.002842 0.000237 0.000279 0.000279 0.000279
—0.027861 —0.020077 —0.020046 —0.020045 —0.020045
—0.005856 —0.004360 —0.004344 —0.004343 —0.004343
—0.030340 —0.022098 —0.022101 —0.022100 —0.022100
—0.002734 —0.004309 —0.004343 —0.004343 —0.004343
& 0.005689 —0.000301 —0.000298 —0.000298 —0.000298
oAy 0.003987 —0.000079 —0.000077 —0.000078 —0.000078
0.006043 0.000296 0.000298 0.000298 0.000298
—0.005399 —0.000075 —0.000078 —0.000078 —0.000078
0.019155 0.005574 0.005569 0.005569 0.005569
0.003752 0.001208 0.001207 0.001207 0.001207
0.020331 0.006143 0.006140 0.006140 0.006140
—0.002753 0.001205 0.001207 0.001207 0.001207

Table 8  Approximate displacement and sensitivity vectors obtained by the RRE method with different values of parameter £ for 10-bar plane truss
structure (large modifications)

k 2 3 4 5 6 Foxact
7I'§RE 0.835224 1.737231 1.573995 1.580604 1.580430 1.580430
0386510 0.991836 0.885661 0.898114 0.898277 0.898277

0.854152 1751372 1.584431 1.588004 1.588291 1.588291

~0.342917 ~1.031541 ~0.902247 ~0.901647 ~0.901723 ~0.901723

2332228 4916797 4527432 4549192 4549508 4.549508

0.480061 1.023600 0.949291 0.961821 0.961926 0.961926

2315501 4.935092 4.508689 4.530435 4530738 4.530738

~0.380553 ~0.990378 ~0.944419 - 0.943850 —0.943956 - 0.943956

& ~0.017887 0.015871 0.001154 0.001246 0.001224 0.001224
Ao ~0.012553 0.010502 0.000466 0.000516 0.000537 0.000537
~0.020881 0.013628 ~0.001238 ~0.001249 ~0.001224 ~0.001224

0.015174 ~0.010888 0.000526 0.000546 0.000537 0.000537

—0.080171 0.017411 —0.015254 —0.014948 —-0.014914 —-0.014914

~0.016866 0.003606 ~0.002927 ~0.002811 ~0.002799 ~0.002799

~0.084212 0.018896 ~0.016759 -0.016429 ~0.016397 ~0.016397

0.006083 ~0.007546 ~0.002862 ~0.002785 ~0.002799 ~0.002799

T 0.016816 ~0.001763 ~0.000280 ~0.000301 ~0.000296 - 0.000296
0Ao? 0.011343 —0.001166 —0.000113 —0.000126 —0.000130 —0.000130
0.017409 -0.001221 0.000300 0.000302 0.000296 0.000296

~0.013180 0.001023 ~0.000127 ~0.000132 ~0.000130 ~0.000130

0.053738 0.000222 0.003686 0.003618 0.003610 0.003610

0011232 ~0.000014 0.000707 0.000680 0.000677 0.000677

0.055565 0.000277 0.004049 0.003977 0.003969 0.003969

~0.009069 0.001146 0.000691 0.000675 0.000677 0.000677
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Table 9  The relative errors obtained by the CA, MPE, and RRE methods with different values of parameters £ and s for 10-bar plane truss structure

under large modifications (derivatives are with respect to Ao)

Displacement
kors 2 3 4 5 6 7
CA 024 0.05 540x107 1.70x 107 152x10°" 355%10°"
EMPE 041 0.18 550x 107 740% 107 1.77x107" 472x10°"
ERRE 0.49 0.09 520x107 797 %107 463x107" 1.55x107"
First-order sensitivity
ECA 18.50 335 0.06 0.03 7.02%107 9.29 x 107
relative/Ag |
EMPE 16.74 5.88 0.02 2.60x 107 2.95x 107" 7.98 107"
relative/Ag |
E e/ o, 4.48 243 0.02 2.80x10° 137x10°" 8.17x10°"
Second-order sensitivity
= 10.52 6.16 0.09 0.04 583x10°® 7.41x10°°
N /Ao 55.10 234 0.02 250x107° Ligx10" 339x107"°
ER n 14.48 1.05 0.02 2.70x 107 6.58 x 1072 126x 10"
6zrexacti aZ;:i . . . e -
ol on? by a reanalysis method in calculating the first-order sensitivity
e alzr ' : of the displacement vector, £ 5, /y,, is the average etror obtain-
Lgc” ed by a reanalysis method in predicting the second-order sen-
Eny i, = Oxi % 100 (67) sitivity of the displacement vector, Fexae; and 7 ; are the exact
Ndof and approximate displacements of the ith DOF of the struc-

where E 4, represents the average error obtained by a reanal-
ysis method in approximating the displacement vector of the
modified structure, £, /x,, indicates the average error yielded

Top node
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L 1
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Fig. 2 A 582-bar tower structure: a 3D view, b side view, ¢ top view
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approximate second-order displacement sensitivities of the ith
DOF of the structure, respectively.

As it is mentioned before, the accuracy of the results ob-
tained by the proposed sensitivity reanalysis procedures de-
pends on the parameter k, which is much smaller than the
degree of freedom (n4.¢) of the structure. In the investigated
test problems, the accuracy of the MPE and RRE methods is
investigated by setting different values for parameter £.

5.2 Computational effort

To investigate the computational effort required by the
proposed methods, the number of algebraic operations
(NAOs) required by the MPE and RRE methods for the
structural sensitivity reanalysis are presented in Tables 1
and 2. In addition, the required NAOs for the CA-based
sensitivity reanalysis method are presented in Table 3.
From these tables, it can be seen that the sensitivity reanal-
ysis procedures using the CA, MPE, and RRE methods
require O(nﬁof) flops, which means that the proposed sen-
sitivity reanalysis methods and CA are computationally
equivalent. For the complete second-order sensitivity re-
analysis, the required NAOs for both of the MPE and
RRE methods are about 24(k + 1)nj ,, while it is 42sn
for the CA method. This means that the proposed methods
require slightly fewer amount of NAOs than the CA meth-
od for any values of the parameters & and s. In the numer-
ical tests, the NAOs required by the proposed methods are
compared to those yielded by the CA method.

5.3 A 10-bar planar truss structure problem

A simple 10-bar planar truss structure shown in Fig. 1a is used
as the first test problem to show the solution finding process of
the proposed sensitivity reanalysis methods. The Young’s
modulus of truss members is equal to 30,000 ksi. In this test
example, two types of modifications in the initial design are
considered, including sizing modifications and member addi-
tions. It is assumed that the cross-sections of all members in
initial structure are equal to 5.0 in”. In the modified structure,
two braced members are added as shown in Fig. 1b and the
cross-sections of members are changed as listed in Table 4. As
it can be seen from Table 4, small and large modifications are
considered to investigate the accuracy of the proposed sensi-
tivity reanalysis methods under different levels of
modifications.

Considering small and large modifications in initial struc-
ture, Tables 5, 6, 7, and 8 list the obtained structural and
sensitivity reanalysis results by the MPE and RRE methods
with respect to cross-sectional variable of member 9. From
these tables, it is clear that both of the MPE and RRE methods
are able to approximate the exact solution with a high

@ Springer

accuracy for small and large modifications in initial structure.
In addition, for different values of & and s, the relative errors
obtained by the MPE and RRE methods are compared to those
obtained by the CA method in Table 9. From this table, it can
be seen that the proposed methods provide significantly fewer
amount of relative errors than CA method. For example, when
k and s are equal to 6, the relative errors of the approximate
second-order sensitivities provided by the MPE and RRE
methods are about 1.18 x 107! and 6.58 x 10712, respectively,
while it is 5.83 x 10”® for the CA method. Similar conclusion
can be made by comparing the reanalysis and first-order sen-
sitivity errors.

5.4 A 582-bar tower structure

The second test example is a 582-bar tower structure
shown in Fig. 2. This structure has 154 nodes which results
462 DOFs. The structural members are categorized into 32
design groups as displayed in Fig. 2. The loading condition
is as follows: 1.12 kips acting in the X and Y directions and
—6.74 kips acting in the Z direction at all nodes of the
tower. In the initial design, it is assumed that all of the
structural members have constant Young’s modulus and
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d b el e
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(a) (b)

Fig. 3 Modified parts of 582-bar tower structure: a side view, b 3D view
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Table 10 Initial and modified

designs for 582-bar tower Cross-sectional areas (in?) Young’s modulus (ksi)

structure problem

Initial design ~ Modified design ~ Variations Initial design ~ Modified design ~ Variations

A 10 10 0% E, 29,000 29,000 0%
A, 10 10 0% E, 29,000 29,000 0%
As 10 13 +30% E;5 29,000 29,000 0%
Ay 10 10 0% E, 29,000 29,000 0%
As 10 13 +30% Es 29,000 29,000 0%
Ag 10 10 0% Eq 29,000 29,000 0%
Az 10 10 0% E; 29,000 29,000 0%
Ag 10 13 +30% Eg 29,000 29,000 0%
Ay 10 10 0% Eq 29,000 29,000 0%
Ay 10 10 0% Eyp 29,000 29,000 0%
Ay 10 13 +30% Ey; 29,000 29,000 0%
A, 10 10 0% E;, 29,000 29,000 0%
As 10 10 0% Es 29,000 20,300 -30%
Ay 10 10 0% Eys 29,000 29,000 0%
Ais 10 10 0% E;s 29,000 29,000 0%
A 10 7 —30% Eis 29,000 29,000 0%
A, 10 10 0% E, 29,000 29,000 0%
A 10 7 —30% Eig 29,000 29,000 0%
A 10 10 0% Ejo 29,000 29,000 0%
Ay 10 10 0% E> 29,000 29,000 0%
Ay 10 7 -30% E» 29,000 29,000 0%
Ay 10 10 0% E>» 29,000 29,000 0%
Ay 10 10 0% Ey; 29,000 29,000 0%
Ay 10 7 —30% E>y 29,000 29,000 0%
Ars 10 10 0% E»s 29,000 29,000 0%
Ay 10 10 0% E>s 29,000 29,000 0%
Ay, 10 7 -30% Ey; 29,000 29,000 0%
Ay 10 10 0% E>g 29,000 29,000 0%
Ay 10 10 0% Eyy 29,000 29,000 0%
Az 10 7 —30% E3 29,000 29,000 0%
Ay 10 10 0% Es 29,000 29,000 0%
Az, 10 10 0% Es, 29,000 29,000 0%

cross-sectional area equal to 29,000 ksi and 10 in?, respec-
tively. Then, we assume a set of multiple modifications in
the initial design as follows: 30% increase in the cross

sections of design groups 3, 5, 8, and 11 (braced members);
30% decrease in the cross sections of design groups 16, 18,
21, 24, 27, and 30; and 30% decrease in the Young’s

Table 11 Approximate displacement obtained by the CA, MPE, and RRE methods with different values of parameters £ and s for the top node of 582-
bar tower structure problem

CA
s=2
e 5.62298125
r, 5.26728087

. —0.73904489

k=2
re  5.65557254
5.28623165
r. —0.73449172

ry  5.65557336
r, 5.28623157
r,  —0.73449181

Error (%)
0.57
0.36
0.63

Error (%)

9.60x 107
7.00x 107
1.28x1072

9.60x 1073
7.00%x107*
1.28x 1072

s=4
5.65509728
5.28626583
—0.73442906

k=4
5.65503623
5.28627844
—0.73439905

5.65503551
5.28627782
—0.73439929

Error (%)

120x107°
6.28x107°
430x107

Error (%)

8.83x107°
1.76 x 107
1.79x107*

7.55%107°
1.64x 1074
211x107*

s=6
5.65502905
5.28626781
—0.73439816

k=6
5.65503093
5.28626881
—0.73439770

5.65503095
5.28626883
—0.73439770

Error (%)

3.87x107°
2.54%x107°
573%107°

Error (%)

551%10°
6.46x10°¢
521x10°

5.12%10°
6.09x 107
5.05x10°°

s=8
5.65503123
5.28626914
—0.73439774

k=8
5.65503124
5.28626915
—0.73439774

5.65503124
5.28626915
—0.73439774

Error (%)

8.82x1078
3.09%1077
475x10°8

Error (%)

1.16x 1078
330%x107°
157x10°8

451x107°
1.11x10°®
225%10°%

Exact
5.65503124
528626915
—0.73439774

Exact
5.65503124
528626915
—0.73439774

5.65503124
5.28626915
—0.73439774
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Table 12 Approximate first-order sensitivities obtained by the CA, MPE, and RRE methods with different values of parameters k£ and s for the top node
of 582-bar tower structure problem
CA
s=2 Error (%) s=4 Error (%) s=6 Error (%) s=8 Error (%) Exact
52" —0.15128484  5.08 —0.15935592  0.01 —-0.15937198  2.80x10°  —0.15937625  7.86x107°  —0.15937637
13
?A’y —-0.12272230 347 —0.12722067  0.07 —-0.12713779  3.50x10°  —0.12713347  140x10*  —0.12713329
0A13
Ai’r 0.01170164 9.13 0.01069158 0.29 0.01071973 243x107%  0.01072223 9.73x10*  0.01072234
OA13
MPE
k=2 Error (%) k=4 Error (%) k=6 Error (%) k=8 Error (%) Exact
gv —0.15860953 0.48 —0.15933194 0.03 —0.15937474 1.02x107° —0.15937635 1.50x10°° —0.15937637
A3
?A’y —0.12677064  0.29 —0.12711248  0.02 -0.12713214  9.01x10*  —0.12713328  121x107°  —0.12713329
OA13
f/Afr 0.01066696 0.52 0.01072441 0.02 0.01072231 276x10°*  0.01072234 6.77x107  0.01072234
OA13
RRE
k=2 Error (%) k=4 Error (%) k=6 Error (%) k=8 Error (%) Exact
sz«v —0.15860980  0.48 —0.15933009  0.03 —-0.15937459  1.10x107°  —0.15937635  1.61x107°  —0.15937637
A13
?A’v —-0.12677086  0.29 —-0.12711126  0.02 -0.12713206  1.00x107°  —0.12713327  1.30x10°  —0.12713329
A
or; 0.01066697 0.52 0.01072458 0.02 0.01072231 2.00x107*  0.01072234 8.72x107  0.01072234

modulus of design group 13. Figure 3 shows the modified
parts of 582-bar tower structure and Table 10 lists the ini-
tial and modified designs for this test problem.

To investigate the accuracy of the MPE and RRE
methods in performing structural and sensitivity reanaly-
sis, the displacement sensitivity of the top node of the
tower with respect to the cross-sectional area of member
group 13 is investigated. If the displacements of the top
node of the tower in x, y, and z directions are indicated by
v Ty, and 7, respectively, Tables 11, 12, and 13 compare

the approximate sensitivity results obtained by the CA,
MPE, and RRE methods with the corresponding exact
values for different values of parameters £ and s. For the
case of k=s=2, it can be seen that the maximum dis-
placement errors yielded by the MPE and RRE methods
are about 0.01%, while it is about 0.63% for the CA
method. These results indicate that the proposed methods
are able to approximate the displacement vector of the
modified structure with a very smaller number of param-
eter k. When k=s=2, it can be observed that the

Table 13 Approximate second-order sensitivities obtained by the CA, MPE, and RRE methods with different values of parameters k and s for the top
node of 582-bar tower structure problem
CA
s=2 Error (%) s=4 Error (%) s=6 Error (%) s=8 Error (%) Exact
er 0.02942822 7.66 0.03194360 0.23 0.03191489 0.14 0.03189256 0.07 0.03187047
0A3
er 0.02359137 7.22 0.02549451 0.27 0.02544798 0.09 0.02544287 0.07 0.02542608
0A1?
62r:2 —0.00216769 1.23 —0.00210996 147 —0.00212547 0.74 —0.00213639 0.23 —0.00214137
0A13
MPE
k=2 Error (%) k=4 Error (%) k=6 Error (%) k=8 Error (%) Exact
5an 0.03087225 3.13 0.03169684 0.55 0.03187064 528x107*  0.03187075 8.75x10°*  0.03187047
0Ap3
6%2 0.02469799 2.86 0.02532176 0.41 0.02542570 1.50x 107 0.02542624 6.64x10*  0.02542608
0A13
82r;Z —0.00207479  3.11 —0.00214202  0.03 —0.00214119 840x107 —0.00214136 1.88x107* —0.00214137
0A13
RRE
k=2 Error (%) k=4 Error (%) k=6 Error (%) k=8 Error (%) Exact
62&2 0.03087227 3.13 0.03169192 0.56 0.03187038 3.00x 107 0.03187075 8.85x 107"  0.03187047
Ans
5zn=z 0.02469800 2.86 0.02531847 0.42 0.02542552 220x107°  0.02542625 6.70x 10" 0.02542608
0Ap3
ﬁzrzz —0.00207479  3.11 —0.00214223  0.04 —0.00214118 8.80x 107 —0.00214136 2.07x107* —0.00214137
0A3
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Table 14  The relative errors obtained by the CA, MPE, and RRE methods with different values of parameters & and s for 582-bar tower structure

problem (derivatives are with respect to A;3)

Displacement
kors 2 4
Efduive 6.00% 10 237%10°°
Egaive L1107 1.60x 107
Eelaive L1107 1.50% 107
First-order sensitivity

Ecﬁuivc/A]_;_l 0.06 1.81x1073
Etive/an, 4.10%107 239x1074
ERNive /A, 410%107° 247x107
Second-order sensitivity

gﬁtive/AB_z 0.10 5.00x 1073

Nbte/ A1z 0.03 429%107
ERRE 0.03 442x107°

relative/A ;3

6 8 14
430%1077 8.15x107° 9.42x107"
5.76x1078 2.82x1071° 351x10°"
541x1078 274x1071° 3.50x10°"
125x107* 472x10°° 3.86x1077
8.38x107° 122x1077 333x107"2
9.13x10°¢ 1.40x1077 3.57x10712
2.11x107° 1.44x1073 6.53x107*
465%x107° 7.13x10°° 1.58x 1071
490107 722%x10°° 1.28x1071°

maximum errors yielded by both of the MPE and RRE
methods for the first- and second-order sensitivities are
about 0.5% and 3%, respectively, while these values for
the CA method are about 9% and 3%, respectively (Tables
12 and 13). By increasing the value of parameter £, the
proposed sensitivity reanalysis methods are successfully
converged to the exact sensitivity values. Although the
performances of the MPE, RRE, and CA methods are
relatively same for the structural reanalysis, the proposed
methods provide significantly accurate results than the
CA method for the first- and second-order sensitivities.

For different values of parameters & and s, Table 14 com-
pares the relative errors obtained by the CA, MPE, and RRE
methods in the sensitivity reanalysis of the modified displace-
ment vector with respect to the cross-sectional area of member
group 13. Judging from the reported results, it turns out that
the convergence speeds of the CA, MPE, and RRE methods in
structural reanalysis are faster than sensitivity reanalysis.
From Table 14, it can be seen that the proposed methods
perform remarkably better than the CA method in terms of
the relative errors of the first- and second-order sensitivities.
Although the proposed methods converge to the exact solu-
tion with k= 14, the obtained errors for the case of k=8 are
also acceptable from engineering viewpoint. In addition,
Table 15 compares the required CPU times and NAOs for
each method.

Table 15 The required NAOs and CPU times required by the CA,
MPE, and RRE methods for sensitivity reanalysis of 582-bar tower
structure problem (k=s=14)

NAOs CPU time (s)
CA 109,881,626 0.0245
MPE 67,286,880 0.0187
RRE 66,940,731 0.0179

Figure 4 illustrates the average errors obtained by the MPE
and RRE methods in approximating the modified displacements
vector and its sensitivities for this test problem. From this figure,
it can be clearly seen that the average errors are dramatically
reduced by increasing the parameter k&. When k= 6, the average
errors obtained by both of the MPE and RRE methods are small-
er than 0.1%, which indicate the efficiency of the proposed ap-
proaches in sensitivity reanalysis. For the case of k = 6, the aver-
age errors obtained by the MPE method for the structural reanal-
ysis, first-order sensitivity, and second-order sensitivity are about

E-03 4 ~eu--

E-05 -

Error (%)
o

E-07 A

E-09 - =
E-11 r r r r v v r v v — . —_—

E+00
E-02 4
E-04 4
E-06

Error (%)

E-08

E-10

E+02

E+00

E-02

E-04

Error (%)

E-06

£-08 A—mmm— o — ————
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Fig. 4 Average errors obtained by the MPE and RRE methods for
different values of parameter k in 582-bar tower structure problem: a

average reanalysis errors (Ey,.), b average first-order sensitivity errors
(EAv./x,, )> and ¢ average second-order sensitivity errors (Eay./x,, )
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Fig. 5 A 968-bar double layer
grid structure: a top view, b 3D
view, ¢ side view
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1.59 x 10 %, 5.10 x 10_3%, and 0.090%, respectively, while
the corresponding values for the RRE method are 1.56 x
107%, 5.71 x 103%, and 0.088%, respectively. These errors
can be further reduced by increasing the parameter £.

10x8.20 ft (2.50 m)= 82.02 ft (25.00 m)

(c)

5.5 968-bar double layer grid structure

A 968-bar double layer grid structure shown in Fig. 5 is the third
investigated test problem. The grid structure has 265 nodes which

Table 16 Initial and modified

designs for 968-bar double layer Cross-sectional areas (in”) Young’s modulus (ksi)
grid structure problem
Initial design ~ Modified design ~ Variations Initial design ~ Modified design ~ Variations

Ay 10 14 +40% E, 29,000 29,000 0%
Ay 10 14 +40% E, 29,000 29,000 0%
As 10 14 +40% E; 29,000 29,000 0%
Ay 10 14 +40% E; 29,000 29,000 0%
As 10 10 0% Es 29,000 29,000 0%
Ag 10 10 0% Es 29,000 23,200 —20%
Ay 10 6 —40% E; 29,000 29,000 0%
Ag 10 6 —40% Eg 29,000 29,000 0%
Ag 10 6 —40% Ey 29,000 29,000 0%
Ap 10 6 —40% Ejp 29,000 29,000 0%
A, 10 10 0% Ey o 29,000 29,000 0%
A 10 10 0% E;, 29,000 29,000 0%
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Table 17  The relative errors obtained by the CA, MPE, and RRE methods with different values of parameters & and s for 968-bar double layer grid
structure problem (derivatives are with respect to Ae)
Reanalysis
kors 2 4 6 8 14 16 18
ESA. . 0.03 853x10* 551x107 1.50x10°° 857x107" 3.63x107"° 1.95x107°
EMPE 9.74x 107 1.81x107* 750%10°° 2.61x1077 2.13x107" 6.69x 107" 441x107
ERRE 9.68x 107 1.80x 107 7.61x107° 2.88x107 222x107" 6.81x107" 128x107"
First-order sensitivity
ES e e, 0.06 1.75x 107 933x10°  416x10° 9.70x 107" 1.64x 107 132x10°
BN e, 1.92x 1072 6.01x107* 2.00x107° 6.00x 1077 7.41x 107" 435x 10712 3.40x 107"
B e/, 193x 1072 6.24x10" 2.19%10°° 497x107 1.17x10°"° 452x10" 6.03x10°"
Second-order sensitivity

O vo/des 7.15 0.18 0.06 2.00x 107 1.89x 1077 2.03x107° 122x107°
B e/ 4.01 0.05 2.88x10° 3.13x10° 487x10° 141 %107 1.10x 107"
FERRE 3.99 0.44 257x107 373 %107 3.96x10°% 1.38x107° 497x1071°

relative/Ag »

results 795 DOFs. The members of the structure are categorized
into 12 member groups as illustrated in Fig. 5. The displacement
of corner nodes at the bottom layer is constrained in x, y, and z
directions. All free nodes of the structure are subjected to a ver-
tical load of 5 kips in negative direction of Z-axis. In the initial
structure, it is assumed that all of the structural members have
constant Young’s modulus and cross-sectional area equal to
29,000 ksi and 10 inz, respectively. In this test problem, a set of
multiple changes in the initial design are assumed as follows:
40% increase in the cross-sections of member groups 1 through
4 at the bottom layer, 40% decrease in the cross-sections of
member groups 7 through 10 at the top layer, and 20% decrease
in the Young’s modulus of member group 6 (diagonal members).
Table 16 lists the cross-sectional areas and Young’s modulus of
structural members in the initial and modified designs.

In this test problem, the sensitivities of the modified dis-
placement vector with respect to the cross-sectional areas of
diagonal members (A¢) are investigated by considering differ-
ent values for parameters k and s, and the relative errors obtain-
ed by the CA, MPE, and RRE methods are summarized in
Table 17. From this table, it can be seen that the MPE and
RRE methods provide high-quality solutions for the case of
k=38. The relative errors are further decreased by increasing
parameter & and the proposed methods converge to the exact
solutions when £ =18. When comparing the MPE and RRE

Table 18  The required NAOs and CPU times required by the CA,
MPE, and RRE methods for sensitivity reanalysis of 968-bar double-
layer grid structure problem (k=s=18)

NAOs CPU time (s)
CA 207,055,028 0.052
MPE 134,127,342 0.043
RRE 132,922,863 0.041

methods against the CA method, it can be concluded that the
proposed methods converge to the exact displacement and sen-
sitivities faster than the CA method. For example, the MPE and
RRE methods approximate the second-order sensitivity with
relative errors of 1.10x 107'° and 4.97 x 1071°, respectively,
while it is 1.22 x 107> for the CA method. In addition,
Table 18 lists the CPU times and NAOs required by the CA,
MPE, and RRE methods for solving this test example.
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16402 (b)
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Fig. 6 Average errors obtained by the CA, MPE, and RRE methods for
different values of parameter £ in 968-bar double-layer grid structure
problem: a average reanalysis errors (Eay), b average first-order
sensitivity errors (Eay. /v, ), and ¢ average second-order sensitivity

errors (E sy, Jxia )
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Fig. 7 Sensitivity reanalysis
problem of 18-bar truss structure:
a initial shape, b modified shape

20 kips 20 kips 20 kips 20 kips 20 kips
e 2501in 2501in 2501in 2501in 2501in
10 18 Y6 ) 2} \ 2 [
16 12 8 4 1
11 7 3 250 in
17 15 D 9 3
»ﬁ 18 o 1@ 5 10 5 G 3
(a)

For different values of parameters £ and s, the average
structural and sensitivity reanalysis errors yielded by the CA,
MPE, and RRE methods are illustrated in Fig. 6. Once again,
it can be seen that the average errors yielded by the proposed
methods are significantly reduced by increasing the parameter
k. For example, when k = 7, the average errors obtained by the

Table 19 The initial and
modified designs for 18-bar truss
structure

@ Springer

MPE method for structural reanalysis, first-order sensitivity,
and second-order sensitivity are equal to 1.20 x 10%%,
9.36 x 10 %, and 0.11%, respectively. The corresponding
average errors yielded by the RRE method are equal to
1.22 % 10%%, 9.70 x 10 %, and 0.10%, respectively. When
s =17, the average errors yielded by the CA method are about

Size variables (in%)

Shape variables (in)

Cross- Initial Modified Variations Coordinates Initial Modified
sections
Ay 10 12.025 20.25% X1 1250 1250
A, 10 16.750 67.50% i 250 250
Az 10 6.175 —38.25% X5 1000 1000
Ay 10 12.025 20.25% Vo 250 250
As 10 4.825 —51.75% X3 1000 1000
Ag 10 16.750 67.50% V3 0 60
A 10 6.175 —38.25% X4 750 750
Ag 10 12.025 20.25% Va 250 250
Ao 10 4.825 —51.75% Xs 750 750
Ao 10 16.750 67.50% Vs 0 50
Aq 10 6.175 —38.25% X6 500 500
Aqp 10 12.025 20.25% Ve 250 250
Az 10 4.825 —51.75% X7 500 500
Ay 10 16.750 67.50% V7 0 40
Ais 10 6.175 —38.25% Xg 250 250
Ais 10 12.025 20.25% Vg 250 250
Ay 10 4.825 =51.75% Xo 250 250
Aqg 10 16.750 67.50% V9 0 30
X10 0 0
Yio 250 250
X11 0 0
yn 0 0
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Table 20  Approximate first-order sensitivities of the 1th node of 118-bar tower with respect to the shape variable of y; obtained by the MPE and RRE

methods for different values of parameter & for structure problem

MPE
k=2 Error (%) k=4 Error (%) k=6 Error (%) k=8 Error (%) Exact

ory 0.0032098 6.74 0.0031377 8.84 0.0034267 0.44 0.0034479 0.17 0.0034419
3

ory —0.0118635 72.49 —0.0401623 6.86 —0.0428037 0.73 —0.0431594 0.10 —0.0431182
0ys

RRE

?7' 0.0002211 93.58 0.0031600 8.19 0.0033410 2.93 0.0034470 0.15 0.0034419
Y3

ory 0.0023952 105.55 —0.0396156 8.12 —0.0421331 2.28 —0.0431629 0.10 —0.0431182

7.00 x 1074%, 0.05%, and 0.70%, respectively. The efficiency
of the proposed methods is more observable when the values
of parameters k and s are increased.

5.6 Shape sensitivity of 18-bar truss structure

In the proposed sensitivity reanalysis methods, the derivatives
of the stiffness matrix are required to perform sensitivity re-
analysis procedure. However, in the structural shape optimi-
zation problems, it is not an easy task to calculate the analyt-
ical derivatives of the stiffness matrix with respect to the shape
variables. Alternatively, the differential methods can be
employed to approximate sensitivity of the stiffness matrix
with respect to the shape variables. To illustrate how the ac-
curacy of the proposed methods can be affected by using
differential method, a shape sensitivity reanalysis problem is
investigated. This test problem is 18-bar planar truss structure
shown in Fig. 7a. The structure consists of 11 nodes and 18
members. The upper nodes of the structure are subjected to
concentrated loads as shown in Fig. 7a. The Young’s modulus
of all structural members is equal to 30,000 ksi. In the initial
design, the cross-sectional areas of all members are set to
10 in”. It is assumed that the structure is subjected to the
simultaneous size and shape modifications as listed in
Table 19. As it can be seen from Table 19, the structure is
subjected to the relatively large multi-type modifications in
different directions. Figure 7b shows the modified shape of
the structure.

In this test problem, the derivatives of the stiffness matrix
are obtained by the difference method, i.e., g—fz% The first-
order sensitivities of the first node of the structure in x and y
directions with respect to the shape variable of y; are selected
to show the performance of the proposed methods. Table 20
compares the approximate sensitivities yielded by the MPE
and RRE methods with the exact values. From Table 20, it can
be concluded that the proposed methods can provide satisfac-
tory results for the shape sensitivity problems. For the case of
k=6, the MPE method calculates the sensitivities with the

errors smaller than 1.00%, which are adequate from engineer-
ing viewpoint.

6 Concluding remarks

In this paper, new structural sensitivity reanalysis formulations
are introduced based on the polynomial-type extrapolation
methods. In these formulations, the displacement vector of the
modified structure is expressed in the form of the vector se-
quences based on the fixed-point iteration method. By using these
vector sequences, the minimal polynomial extrapolation (MPE)
and the reduced rank extrapolation (RRE) methods calculate the
approximate displacement vector of the modified structure. In the
structural reanalysis based on the MPE and RRE methods, the
complete set of analysis equations of the modified structure is
reduced to the linear least-square problems with significantly
smaller size. Based on the definitions of the MPE and RRE
methods, two sensitivity reanalysis formulations are derived, in
which the first- and second-order sensitivities of the structure are
obtained by solving a set of the over-determined least-squares
problems with much smaller size than the complete set of equa-
tions of the exact sensitivity analyses. In the derived sensitivity
reanalysis formulations, the approximate sensitivities of the mod-
ified structure are calculated by solving the linear least-square
problems with sizes of the n4o¢ % k and ngor % k + 1, respectively,
in which £ is an arbitrary positive integer that is usually much
smaller than the total number of DOFs of the structure (k < 72449).
In order to validate the proposed sensitivity reanalysis formula-
tions, four structural sensitivity reanalysis problems under multi-
ple types of modifications are investigated. The obtained struc-
tural and sensitivity reanalysis results indicate that the proposed
methods are able to approximate the displacement vector of the
modified structure and its sensitivities with a very smaller number
of parameter k. In addition, the reanalysis and sensitivity errors
are further decreased by increasing parameter k and the proposed
methods are also capable to converge to the exact sensitivity
vectors of the structure.
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7 Replication of results

In the investigated test problems, all of the necessary data are
provided to readers and the obtained results can be verified via
the presented information.
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