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Abstract
Structural-acoustic optimization procedures can be used to find the optimal design for reduced noise or vibration in many
real-world scenarios. However, the time required to compute the structural-acoustic quantity of interest often limits the size
of the model. Additionally, structural-acoustic optimization using state-of-the-art evolutionary algorithms may require tens
of thousands of system solutions, which add to the limitations for large full-scale systems. To reduce the time required
for each function evaluation, parallel processing techniques are used to solve the system in a highly scalable fashion. The
approach reduces the analysis time by solving the system using a frequency-domain formulation and distributing solution
frequencies amongst processors to solve in parallel. To demonstrate, the sound radiated from a curved panel under the
influence of a turbulent boundary layer is minimized in the presence of added point masses, which are varied during the
optimization procedure. The total mass is also minimized and the Pareto front relating the trade-off between added mass and
reduced noise is determined. Solver scaling information is provided that demonstrates the utility of the parallel processing
approach.

Keywords Structural acoustics · Evolutionary strategy · High-performance computing

1 Introduction

Structural-acoustic optimization (SAO) techniques can be
applied to minimize or maximize the acoustic performance
of a structure. Efficient SAO strategies may be derived
by combining modern search algorithms with efficient
structural-acoustic analysis methods. The optimization
algorithm searches a specified design space to locate an
optimum set of design variables. The accuracy of the results
depends on the fidelity of the structural-acoustic analysis
and the robustness of the search algorithm (Belegundu et al.
1994).

Historically, optimization algorithms used some form of
a gradient or Hessian operation to determine the search
direction. While gradient-based algorithms can be very
efficient on linear, convex, and unimodal problems, they
typically do not perform well on discontinuous, multimodal,
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or noisy objective functions. Evolutionary algorithms (EAs)
on the other hand often perform well on highly complex or
discontinuous functions, but usually at the cost of a large
number of function evaluations (Coello Coello et al. 2007).

Many structural-acoustic problems involve solving the
response at an array of frequencies. For SAO and
other frequency-domain problems, the response must be
collapsed into a single scalar value to use as the objective
function (Marburg et al. 2016). This is often done by
integrating the response over the frequency band of interest
(Marburg 2002). The basic variables (material, geometry,
or boundary conditions) that control the structural-acoustic
behavior do not, however, affect the response at all
frequencies the same. This causes the objective function to
have a complicated, nonlinear dependence on the design
variables making the objective function to be equally
nonlinear and complex (Butkewitsch and Steffen 2001).
Therefore, a heuristics-based optimizer is often better suited
to perform SAO due to its ability to navigate the highly
nonlinear search space.

A number of informative articles on SAO can be
found in the literature, which optimize noise and/or
vibration of structures ranging from simple beams/plates
(Marburg et al. 2006; Jeon and Okuma 2008; Aiello and
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Auriemma 2018) to curved shells/cylinders (Johnson and
Cunefare 2002; Shepherd and Hambric 2014), damping
treatments (Wong 2016; Shepherd et al. 2016) and various
automotive/aerospace vehicle components (Joshi et al.
2012; Yuksel et al. 2012). In general, one of the challenges
of SAO is the computational cost associated with the
sound radiation analysis, as noted by Cunefare (1994) and
others. Because of the computationally intensive analysis,
the number of design variables has typically been low, with
notable exceptions being from Walsh et al. (2018)

As previously mentioned, EAs often require many
hundreds or thousands of design evaluations which can
lead to prohibitively long run times. This issue is amplified
for problems when multiple objectives must be considered
simultaneously in order to establish the trade-off between
competing objectives (Coello Coello et al. 2007). In
contrast, modern computing power has enabled researchers
to solve larger structural-acoustic problems which may
involve large finite element (FE) and/or boundary element
(BE) analysis with complicated, partially correlated forcing
functions (Hambric et al. 2010; Bonness et al. 2017). As
models increase in size, the analysis time also increases.
This can lead to compromises in mesh quality or a number
of analysis frequencies in order to achieve feasible run times
when doing SAO (Joshi et al. 2015). Naturally, this can
introduce significant bias into the analysis and may lead to
incorrect optima.

To reduce the computation time required to solve large-
scale optimization problems, high-performance computing
has been utilized to parallelize the multiobjective evolu-
tionary algorithms (MOEAs). For example, master-slave
approaches have been implemented where different slave
processors independently evaluate each design in the gen-
eration (Durillo et al. 2008; Hadka and Reed 2015). Other
strategies for parallelization include multi-master approach,
island model, and the hybrid parallelization architecture
(Hadka and Reed 2015; Reed 2016). Graphical process-
ing units (GPUs) have also been used for speedups with
MOEAs (de Souza and Ramirez Pozo 2014).

Alternatively, a parallel solution approach can be taken
which parallelizes the function used to calculate the
objective (Aage et al. 2015; Walsh and Aquino 2017). This
approach is most appropriate when the required analysis
is computational expensive such as in large-scale structural
or structural-acoustic problems. Parallelized computing
strategies have been developed for a structural design
using topology optimization where the matrix operations
are performed in parallel. The most notable case has
been the topology optimization of a full-scale aircraft
wing, which was only possible due to the efficient use
of high-performance computing during the analysis stage
(Aage et al. 2017). While parallel approaches have been
successfully applied to structural optimization problems,

parallelization has not been widely applied to structural-
acoustic optimization problems, primarily due to the
challenge posed by the solution matrices being a function
of frequency. Additionally, the use of stochastic forcing
functions, where the applied forces are partially correlated
over the structure, complicates the parallelization procedure
and must be carefully considered in the solution framework
to reduce the computation time.

This paper describes the parallel computing framework
for structural-acoustic optimization of structures excited by
stochastic forcing functions. The analysis is performed in
modal space where the modes are augmented with residual
vectors and frequency-domain interpolation is utilized to
reduce computation time. The solution matrices are then
distributed to slave nodes according to a pre-set vector
of analysis frequencies. Additionally, information passing
between processors is reduced in order to lessen the
overall evaluation time. The procedure is demonstrated on
a curved panel subjected to a turbulent boundary layer flow
(Shepherd and Hambric 2014). The panel is subjected to
heavy fluid loading ( , in water) and the radiated sound
power is minimized by finding the optimal distribution of
point masses while trading off overall system mass. This
problem has been previously considered as a simple form of
material tailoring (Constans et al. 1998). The overall scaling
of the parallel procedure is also demonstrated.

2 Structural-acoustic analysis

To compute the vibration response of a driven structure
in physical coordinates, the damped, forced equation of
motion must be solved:

M ẍ + Bẋ + Kx = Fejωt , (1)

where M , B, and K are the mass, viscous damping, and
stiffness matrices, F is the force vector, ω = 2πf is the
angular frequency, f is frequency in Hz, and j = √−1.
This equation is often solved using a discretized mesh of
the structure of interest and the finite element (FE) method.
The forcing function is approximated as time harmonic,
allowing the velocity frequency response function (FRF) to
be determined as

H (ω) = jω
[
−ω2M + jωB + K

]−1
. (2)

Fluid loading and complex impedance effects can be
included by adding their respective matrices to the
denominator of the right hand side of (2) and will be
discussed subsequently.

Approximating the system as linear and transformation
from physical to modal space allows significant compu-
tational savings because the number of required modal
degrees of freedom is generally much less than the number
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of physical degrees of freedom. Structural vibration modes
are computed by solving the eigenvalue problem

Kφn = ω2
nMφn, (3)

where the eigenvalues ω2
n are related to the natural

frequencies of the structure (ωn) and φn are the associated
eigenvectors (i.e., unscaled mode shapes). The modal FRF
equation can be obtained once the modes shapes are known:

h(ω) = jω
[
−ω2m + jωb + k

]−1
. (4)

In (4), m = φT Mφ is the generalized or modal mass,
b = φT Bφ is the generalized or modal damping, and
k = φT Kφ is the generalized or modal stiffness. When the
mode shapes are mass-normalized, the modal mass matrix
m is the identity matrix and the modal stiffness matrix k is a
matrix containing the eigenvalues, ω2

n, on the diagonals and
zero elsewhere.

Fluid loading effects can be determined by estimating
frequency dependent acoustic impedance matrices, Z(ω) =
R(ω) + jX(ω), using the lumped parameter boundary
element method by Koopmann and Fahnline (1997), where
R is the resistive component of the impedance and X

is the reactive component. The fluid impedance matrices
describe how oscillations at each boundary element create
acoustic pressures on the boundary surface. The acoustic
impedance, which completely characterizes the additional
mass and damping imparted by the fluid to a structure, can
be transformed to modal space and incorporated directly
into (4) (Fahnline and Koopmann 1996). In contrast with
the sparse matrices found in FE analysis, these matrices are
dense (i.e., fully populated):

h(ω) = jω
[
−ω2m + jωb + k − jωr(ω) + ωx(ω)

]−1
.

(5)

The variables r = φT Rφ and x = φT Xφ are the modal
resistance and reactance matrices of the fluid, respectively,
and can be combined into a single complex function z =
r + jx. By including the external fluid loading matrices
directly into the modal transfer function h(ω), the in-
vacuo modes can be used as the basis set for the analysis.
Similarly, discrete and generalized impedances acting on
the structure can be included in (4) once transformed into
modal space. For problems involving structural damping, a
complex stiffness matrix can be used K̃ = K(1+jη), where
η is the material loss factor.

Complex forcing functions may be incorporated into the
analysis by computing the modal forcing function cross-
spectral density (CSD) matrix:

Gff = φT GFF φ, (6)

which describes the coupling between any matrix of
external forces, GFF , and the vibration modes. Any

stochastic forcing function that is stationary and ergodic
may be represented by GFF . The analysis presented herein
uses turbulent boundary layer (TBL) forces created by
in-flow and will be discussed in Section 2.1.

The modal amplitudes caused by the forcing function can
then be computed to form a modal response CSD matrix

Gψψ = h(ω)Gff h(ω)H . (7)

This is the modal equivalent of the multiple input-multiple
output problem arranged in matrix form (Bendat and Piersol
2000). Gψψ represents the modal amplitudes created by the
forcing function in a stochastic sense. Once Gψψ is known,
the radiated sound power spectral density can be computed
using

GPrad
=

M∑
m=1

M∑
n=1

rmnGψmψn, (8)

where rmn = φT
mRφn is the modal resistance matrix and

M is the number of retained modes. More details on this
general analysis procedure can be found in Hambric et al.
(2010)

2.1 Turbulent boundary layer forcing function

The forcing function matrix for turbulence-induced wall
pressures resulting from flow over a structure can be
computed using the product of a pressure auto-spectrum
(Gpp) and a pressure cross-spectral function (Γ ), which will
subsequently be explained:

GFF = Gpp(f )Γ (ξ , 2πf ). (9)

The pressure spectrum model used herein is a modified
version of the Chase-Howe model (Howe 1998) that has
been adjusted to account for the viscous dissipation range
based on Lysak (2006), defined as

Gpp(f ) = 3ρ2u4τ

f ∗

[
(f/f ∗)2

{(f/f ∗)2 + α̂2}3/2
]

e−14f ν/u2τ , (10)

where f ∗ is the freestream velocity divided by the boundary
layer displacement thickness (U/δ∗), ρ is fluid density, uτ

is the friction velocity, ν is the kinematic viscosity, and α̂

is the turbulence constant. All flow variables are defined in
Table 1. Figure 1 shows the frequency dependence of the
spectrum for flow at 5.14 m/s (10 knots). The peak in the
spectrum occurs at 61.5 Hz.

The cross-spectrum Γ defines the partially correlated
regions of pressure over the structure and is often referred
to as a coherence function. A well-known TBL coherence
function model was proposed by Corcos (1963) and
modified by Mellen (1990) to be

Γ (ξ1, ξ2, ω) = e−
√

(β1|ωξ1/Uc|)2+(β2|ωξ2/Uc|)2ejωξ1/Uc ,

(11)
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Table 1 TBL flow parameters

Density (ρ) 1000 kg/m3

Friction velocity (uτ ) 0.1542 m/s

Freestream velocity (U ) 5.14 m/s (10 knots)

Convective velocity (Uc) 3.598 m/s

Boundary layer disp thickness (δ∗) 0.0022 m

Kinematic viscosity (ν) 1.15e-6

Streamwise decay constant (β1) 0.11

Spanwise decay constant (β2) 0.7

Turbulence constant (α̂) 0.019

where ξ is the separation distance (the streamwise direction
denoted with subscript 1 and spanwise with subscript 2)
between all points on the structure, β is the decay constant
(streamwise and spanwise), and Uc is the convective flow
velocity.

2.2 Numerical implementation

In general, this structural-acoustic analysis procedure
is independent across all frequencies and is therefore
straightforward to implement as a loop over a pre-
determined frequency range which may span hundreds or
thousands of Hertz. However, storage requirements for
the acoustic resistance and reactance matrices, as well
as the forcing function matrix, can be very large if they
are computed a priori for every frequency in the analysis
set since the matrices are fully populated. Because these
matrices vary with frequency in a relatively smooth manner,
they can be computed and stored at a much-reduced set
of frequencies and interpolated to a frequency of interest.
This idea was originally proposed for acoustic matrices in
Benthien (1989). As an example of the smoothness in the
frequency of these matrices, the modal force for TBL flow
is shown for a single mode in Fig. 2.

Fig. 1 The point pressure spectrum (modified Chase model) using
flow parameters found in Table 1

Fig. 2 The modal forcing function is smooth and can be accurately
interpolated to the analysis frequency of interest using only a small of
frequencies

Typical frequency-domain, structural-acoustic analyses
using the formulations described herein would load several
acoustic and forcing function matrices into memory,
interpolate to the desired solution frequency, and solve the
governing system of equations. This process would repeat
for all desired solution frequencies, removing some and
loading new acoustic and forcing function matrices into
memory for interpolation as the sweep through frequencies
progresses. For optimization problems, as described herein,
many thousand solutions at each of these frequencies may
be required. To avoid repetitive reading and interpolation
of the matrices, the problem can be divided amongst
processors and have each processor load and interpolate the
matrices only once at the start of the simulation. As long
as the basis set does not change during the simulation, the
modal acoustic and forcing function matrices are static.

Using this approach, the number of total processors used
for the analysis is determined by the number of analysis
frequencies. All necessary matrices are loaded by the master
node and interpolated incrementally to each frequency
used in the analysis. Each processor is then assigned a
frequency to solve and sent via standard message passing
interface (MPI) methods its corresponding matrices (mode
shape, boundary element matrices, forcing function and
geometry files), storing them in RAM. Depending upon the
number of modes in the system and the available RAM per
node, the number of processors per node may be under-
subscribed to ensure sufficient RAM is available for the
solutions. Alternatively, and for very large problems, the
solution could be further divided using MPI and parallel
solution techniques to solve the resulting linear system of
equations. This, however, is not within the scope of the
present work but is of interest for future work. The use of
modal space and residual vectors enables relatively large
solutions (thousands of modes) on computer systems which
have modest RAM levels (256 GB).
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Load balancing is automatic, and RAM usage is
essentially identical for all processors when using the
approach described herein because each processor solves
the same system of equations using a direct approach, with
only matrix terms differing between frequencies/processors.
For each generation of the optimization, new design
variables (in the form of added impedances) are proposed
and sent to each individual processor, the analysis is
performed, and scalar results are returned to the master
node. The net data transfer between processors using this
approach is relatively small, consisting of a few scalar
values for all transfers subsequent to the initial matrix
transfer. The master node compiles results of all processors
and returns the objective values to the optimizer. This
process is summarized in Fig. 3 in the form of a flowchart.

A key enabler to these simulations is the use of residual
vectors at locations where an external impedance is applied,
such as an added point mass, to account for truncated modes
in the conversion from physical to modal space (Roy and
Girard 2005). Residual vectors allow for the same basis set
to be used for varying added impedances, which allows for
the acoustic and forcing function matrices to be computed
and stored by each processor. Without residual vectors,
system normal modes (and hence modal acoustic and
function matrices) would need to be recomputed for each
selection of added impedance as defined by the optimizer.

As a final note, this parallel analysis procedure would
be advantageous for other types of analysis involving

Table 2 Dimensions and material properties of the curved panel

Streamwise length 2.086 m

Spanwise length 0.8 m

Thickness 0.0318 m

Radius of curvature 9.96 m

Modal loss factor 0.02

Young’s modulus 195 GPa

Density 7700 kg/m3

Poisson’s ratio 0.28

large numbers of repetitive calculations such as uncertainty
analysis (Wixom et al. 2019).

3 Curved panel optimization

To demonstrate this parallel implementation for SAO, a
curved panel in heavy fluid is used (Shepherd and Hambric
2014). The panel is made of steel and meshed with a 32× 84
set of rectangular, linear shell elements. The spanwise edges
of the panel are pinned, while the streamwise edges are
free. The dimensions of the panel are shown in Table 2 and
a basic diagram of the panel is shown in Fig. 4. Twelve
discrete masses, fixed in space, are used as the design
variables, similar to work by Ratle and Berry (1998). Each
mass is modeled as a discrete impedance C(ω) = jωMi

Fig. 3 A master node controls
all aspects of the optimization
job including loading input
matrices, controlling the
information exchange between
nodes, and running the search
algorithm. Slave nodes are
assigned a specific analysis
frequency and solve for the
sound power at that frequency
when passed a set of design
variables
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Fig. 4 The curved panel used in the optimization. The arrows indicate
the direction of the flow while the black dots represent discrete masses
which vary during the optimization. The short edges perpendicular to
the flow are simply supported while the long edges parallel to the flow
are free

and transformed to modal space, c = φT Cφ. Equation (4)
then becomes

h(ω) = jω
[
−ω2m + k̃ − jωz(ω) + c(ω)

]−1
, (12)

where structural damping is used and viscous damping is
neglected. When computing c(ω), the portions of the mode
shape matrix which do not have an attached mass are zero
and can be reduced out. For this analysis, the discrete
masses were bounded between 1 kg and 10 kg.

Fifty modes of the panel, computed using the commercial
software NX/Nastran and shown in Fig. 5, are reformatted
for use in the optimization loop. During the optimization,
the acoustic matrices are assumed to not vary significantly
since the base structure does not change and the total
response changes are small compared with the wavelengths
of interest. This results in significantly reduced computa-
tional times since the acoustic matrices are only computed

once and stored (Fahnline et al. 2006; Shepherd and Ham-
bric 2012). Additionally, the Mellen coherence function was
found to be in the low wavenumber regime (Shepherd and
Hambric 2014; Bonness et al. 2017) for 5 m/s flow and
therefore the effective correlation area is given by

π

2

(
β3
1(

1 + β2
1

)3/2
)(

2Uc

β1ω

) (
2Uc

β2ω

)
. (13)

Table 2 contains the flow parameters used in the simulation.
Two competing objective functions were defined as total

mass and the integrated pressure power spectral density
(He et al. 2017; He and Sun 2018). Recently performed
multiobjective optimization of an elastic beam for noise
reduction and used similar objectives. The noise objective
was determined by integrating the radiated sound power
between 10 Hz and 490 Hz, a procedure similar to other
recent works (Shepherd and Hambric 2014; Klaerner et al.
2017). Since the noise objective will be many orders of
magnitude smaller than the range of the mass objective,
it was normalized by a factor of 1e-10. This helps
the optimizer to make equal progress in reducing both
objectives.

Non-uniform frequency resolution was used in order
to achieve sufficient resolution at the low-frequency
resonance peaks without over resolving the high-frequency
resonance peaks. Since the number of required processors
depends on the number of solution frequencies, using
a larger frequency spacing requires fewer processors.
However, if the resonance peaks are not adequately resolved
with at least five points per half-power bandwidth, the
objective function, which is an integration of power over

Fig. 5 Curved panel mode
shapes and natural frequencies.
The red regions represent high
deflection (positive and
negative), while the blue regions
represent no motion
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frequency, will not accurately represent the response and
the optimization results may be erroneous. Therefore, a
non-uniform frequency vector was determined which would
adequately resolve the response at all frequencies.

3.1 Pareto optimality and searchmethods

Two objectives are considered in this study, and the
optimization problem is formally stated as

min{F(x)}, x ∈ Ω .

xL
i ≤ xi ≤ xU

i

F = (F1, F2) is the objective function vector while the
design variable vector x = (x1, x2, . . . , xN) represents
N real-valued design variables within the design space
Ω . The lower and upper bounds are set by xL

i and xU
i ,

respectively. The objective functions F1 and F2 are radiated
noise and total mass, respectively. For the study shown
here, no constraints are included such that the feasible
region is equivalent to Ω . To address the trade-offs between
the competing objectives, the concept of Pareto dominance
must be introduced. A vector of design variables xa is
said to dominate another design variable vector xb when
F(xa) ≤ F(xb). If xa is superior in one objective but
not all objectives, then xa is considered non-dominated
(Coello Coello et al. 2007). When xa is not superior for
any objective, it is dominated within Ω . The set of all
non-dominated points is known as the Pareto front and
defines the trade-off between all objective functions being
considered. Estimating the Pareto front is particularly useful
when the objective function weighting is not well-defined
and/or preferences have not yet been identified.

Since the objective function is expected to be highly
nonlinear and discontinuous, where gradient methods
typically do not perform well, an evolutionary algorithm
was used to perform the search. The search algorithm used
for this study is a multiobjective evolutionary algorithm
(MOEA) developed by Hadka and Reed (2013). This
MOEA, referred to by its developers as Borg, is an auto-
adaptive, optimization framework for use on multiobjective,
multimodal problems. The goal of Borg is to capture
or closely approximate the Pareto front on real-valued
test problems by utilizing robust selection, crossover,
and mutation operators to minimize multiple, competing
objectives. It has been successfully applied to difficult
optimization problems in many fields, including water
resource management and vibration reduction (Hadka and
Reed 2015; Giuliani et al. 2018; McCormick and Shepherd
2018).

Borg has been shown to be a robust MOEA which
outperforms many other MOEAs on standard demonstration

functions (Hadka and Reed 2013). While the details of
Borg can be obtained from Hadka and Reed, several
important features will be summarized. First, it utilizes
ε-dominance to obtain both convergence and diversity
in the multiobjective search. ε-dominance divides the
search space into hypercubes with ε, which can vary for
each objective, defining the characteristic lengths of the
hypercube. When a dominant solution is detected, it is
added to the archive of dominant solutions. Solutions in the
archive set the population size and are randomly selected
for recombination to create future generations. Additionally,
the ε “box” is used to define the minimum threshold for
improvement.

Second, Borg utilizes restarts to revitalize the search and
escape local optima when search stagnation is detected,
as defined by the minimum threshold for improvement ε.
During a restart, the population size is adapted in order
to remain proportional to the archive size. The tournament
selection size is also adjusted to keep an elitist selection
(Hadka and Reed 2013). Additionally, the population is
flushed and refilled with solutions from the archive, as well
as randomly selected and mutated archive solutions. Since
stagnation triggers randomized restarts, Borg will never stop
evaluating the design space but will continue to fill in points
along the Pareto front. For this reason, a stop criterion based
on a number of function evaluations is used. If this criterion
is not considered sufficient, a restart capability is used to
continue the search.

Finally, Borg adaptively selects recombination operators
based on their success, an idea originally proposed by
Vrugt and Robinson (2007) but improved upon in the Borg.
Traditionally, an evolutionary algorithm will utilize a single,
pre-set operator involving a set of crossover and/or mutation
rules to determine the design variables for the following
generation. However, it is difficult to know a priori if the
pre-set operator criteria are well suited for the problem
being considered (Hadka and Reed 2013). Additionally,
multiple regions of the search space may be better suited
for different types of operators. To overcome this, a set of
six recombination operators are used in Borg, with each
operator given a certain probability of being used. As the
search progresses, the probability of using each operator
is updated based on the number of dominant solutions
produced by that operator. Thus, the operators which
produce good results are rewarded with a higher probability
of usage in future generations. This allows Borg to adjust
its recombination to best search the design space in future
generations. The recombination operators used in Borg are
simulated binary crossover, differential evolution, parent-
centric crossover, unimodal normal distribution crossover,
simplex crossover, and uniform mutation. The first four
recombination operators listed here also include polynomial
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mutation (Hadka and Reed 2013). A schematic for the
search procedure is shown in Fig. 6.

It should be noted that the Borg architecture is already
well suited for parallel computing in terms of evaluating
the independent design variables (Hadka and Reed 2015).
However, the bulk of computation time for most structural-
acoustic problems, such as the curved panel shown here, is
spent computing the objective function and the time savings
is most significant when performed as has been outlined. If
a cluster is available with a very large number of processors,
the Borg parallelization could be merged with the procedure
from Section 2.2 for additional speed ups.

3.2 Curved panel results

Optimization for the curved panel was run on a Linux
cluster having 864 2.8 GHz AMD processors, 48 processors
per compute node and 256 GB RAM per processor. A
frequency vector of 405 frequencies ranging from 10 to 490
Hz was used divided between 405 processors and run for
100,000 function evaluations. The resulting Pareto front,
which illustrates the trade-off between mass and radiated

Fig. 6 The multiobjective optimizer loop. Only the number of function
evaluations and the desired resolution (ε) along the Pareto front are
required as inputs

Fig. 7 The Pareto front illustrates the trade-off between radiated noise
and total added mass. The four marks indicate optimal designs with
different preferences. The red circle emphasizes reduced noise while
the black x emphasizes reduced mass

noise reduction, is shown in Fig. 7. On the right end of the
curve, the mass is minimized and the highest noise value is
obtained. On the left end of the curve, the noise is minimized
and the mass objective is highest.

The radiated noise spectrum is shown for the two end
point designs in the Pareto front in Fig. 8. As expected,
the optimal design for maximum radiated noise reduction
is the case with the most added mass. While the total
reduction over the 10–490 Hz range is approximately
1.0 dB, reductions at individual peaks are each different, as
listed in Table 3. A frequency which experiences a slight
increase in level is indicated in Table 3 by a negative sign.

Fig. 8 The radiated noise for the two endpoint designs from the Pareto
front. These cases represent the lower mass design (dotted line) and
the lower noise design (solid line)
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Table 3 Reduction in radiated noise between the two endpoint designs
in the Pareto front

Approx. frequency (Hz) Noise reduction (dB)

11 1.1

25 2.1

58 0.5

88 2.0

215 −1.2

10–490 1.0

The values of the masses for all points along the Pareto
front are shown in Fig. 9. On the left side, labeled low
noise, the masses are at or near the upper limit of 10 kg. As
they shift down to their lowest value, they are clustered in
four groups which follow similar behavior. The clustering
occurs due to the sensitivity of each specific mass location
with respect to reducing radiated noise. The mass values
are shown in their respective locations in Fig. 10 for four
optimal designs equally spaced along the Pareto front (see
Fig. 7). The top figure illustrates the far-left point on the
Pareto front, while the bottom figure illustrates the far-right
point. The masses are colored according to their values and
illustrate the regions of the panel that are most and least
sensitive to added mass and radiated noise.

In Fig. 10, the clustering of design variables seen in Fig. 9
will be examined. The three masses closest to the center
of the panel change to the lower limit of mass (1 kg) the
fastest indicating the center positions are the least sensitive
to mass. The masses along the edge locations are slightly
more sensitive. The first three masses along the center of
the panel are shown to have the highest sensitivity to mass

Fig. 9 The optimal mass values for each point along the Pareto front.
The mass cluster together in four groups

Fig. 10 Topview of the curved panel with four design points along the
Pareto front (see Fig. 7). The top design illustrates lower noise, while
the bottom design is for lower mass. The two middle designs show the
trade-off between mass and noise

since they stay at their upper limit the longest and drop to
the lower limit the latest.

3.3 Timing study

A timing study was then performed using different numbers
of processors with the results shown in Table 4. A 480-
length vector of frequencies was used in the timing study.
For a single compute node (48 processors for this cluster),

Table 4 Timing study

Number of nodes Number of processors Evaluation time

1 1 10 h 42 min 16 s

1 48 34 min 10 s

2 96 18 min 20 s

5 240 9 min 28 s
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Fig. 11 Compute time for the SAO process to run with 100,000
function evaluations

the compute time went from over 10 h on a single processor
to 34 min. The computation time decreases to less than
10 min when 5 compute nodes are used.

The scaling is shown graphically in Fig. 11 and illustrates
nearly logarithmic behavior. The speed up is also shown
in Fig. 12 when compared against the ideal condition. As
the time of calculation and communication becomes more
balanced, the scaling should be more linear with a number
of processors and the speedup is expected to move toward
the ideal speedup condition. However, if the problem size
becomes very large, memory issues would become more
important and the initial loading and interpolation of the
input matrices may need to be performed incrementally.
This has been and will continue to be considered in future
work.

Fig. 12 The speed up as more processors are used in the optimization
process. The ideal speedup is shown as the dotted line

4 Conclusions

A parallel SAO procedure has been introduced to reduce
the noise of vibrating structures excited by complex
forcing functions such as turbulent flow. The use of high-
performance computing coupled with residual vectors and
modal techniques reduces the analysis time such that
multiobjective optimization can be performed on large-scale
problems. The search algorithm is run on a master processor
which coordinates the parallel solution between the master
and slave processors. The procedure is demonstrated on a
curved underwater panel with attached masses.

The trade-off between reduced noise and reduced mass
was determined for a curved underwater panel excited by
turbulent boundary layer flow. The middle region of the
panel was found to be most sensitive to reducing noise using
added masses. By utilizing 240 compute processors on a
computer cluster, a 10+-h job on a single processor was
reduced to under 10 min (67× speed up). This savings in
computation time allows for noise and vibration concerns to
be addressed in the design stage.

5 Replication of results

To replicate the results, the Borg search algorithm can be
downloaded at http://borgmoea.org/.
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