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Abstract
Time-dependent reliability-based design optimization (RBDO) can provide the optimal design parameter solutions for the time-
dependent structure, and thus plays a significant role in engineering application. Directly solving the time-dependent RBDO
needs a nested double-loop optimization procedure, which undoubtedly leads to large computational costs. A novel decoupling
method called two-step method (TSM) is proposed to efficiently solve the time-dependent RBDO. In the two-step method, the
first step makes the minimum instantaneous reliability index satisfy the reliability target index by solving a transformed time-
independent RBDO, and the second step performs time-dependent reliability analysis and deterministic optimization to obtain the
optimal design parameters which meet the reliability target. Only a few time-dependent reliability analyses and several deter-
ministic optimizations are involved in the proposed procedure; thus, the time-dependent RBDO can be efficiently solved. Several
examples containing one numerical example and two engineering examples are introduced to show the effectiveness of the
proposed TSM.

Keywords Time-dependent RBDO . Decoupling method . Minimum instantaneous reliability . Time-dependent reliability .
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1 Introduction

Due to the fact that lots of uncertainties including geometrical
size, material property, and applied load widely exist in engi-
neering application, traditional deterministic optimization
takes these uncertainties into account by adding the safety
factors to design constraints, but it is somewhat subjective to
assign the values of the safety factors. Compared with the
traditional deterministic optimization, reliability-based design
optimization (RBDO) need not assign the values to the safety

factors and has gained more and more attention at present.
RBDO considers the reliability requirements as constraints
in the optimization process and then it will lead to the optimal
optimization solution satisfying the reliability requirements
(Tu et al. 1999). Up to now, RBDO plays a significant role
in design optimization of engineering application. Directly
solving the RBDO requires a nested optimization, in which
the outer loop searches for the optimal design parameters and
the inner loop estimates the reliability. The nested optimiza-
tion process often needs massive computational costs, espe-
cially for the structure with multiple reliability constraints and
high-dimensional input parameters. Fortunately, several
methods have been proposed to efficiently solve the RBDO
problems. Generally, the existing RBDOmethods can be clas-
sified into three categories (Chen et al. 2013a). The first cate-
gory is the double-loop method, which mainly involves the
reliability index approach (RIA) formulated RBDO method
(Zou and Mahadevan 2006) and performance measure ap-
proach (PMA) formulated RBDO method (Keshtegar and
Lee 2016; Huang et al. 2017a). Furthermore, Meng and Li
(Meng and Li 2016) proposed a method to estimate the prob-
abilistic constraints by combining the RIA and PMA for im-
proving the computational efficiency. The second one is the
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single-loop method, which avoids the reliability analysis in
the inner loop by introducing the Karush-Kuhn-Tucker
(KKT) optimality condition. Kharmanda et al. (Kharmanda
et al. 2002) presented a hybrid formulation in which the ob-
jective function is replaced by the product of the objective
function and structural reliability to solve the RBDO. Jiang
et al. (Liang et al. 2004) proposed a single-loop method
(SLM) which collapses the nested optimization process into
an equivalent single-loop optimization process, and thus con-
verts the probabilistic optimization problem into an equivalent
deterministic optimization problem. Agarwal et al. (Agarwal
et al. 2007) combined the KKT optimality condition with the
most probable point (MPP) identification to avoid the reliabil-
ity analysis in the inner loop. Li at al. (Li et al. 2013) presented
a single-loop deterministic method based on first-order reli-
ability method to convert the probabilistic constraints into
approximate deterministic constraints; thus, the RBDO can
be solved by deterministic optimization problem. The third
category is the decoupling method, which fully uses the infor-
mation from the reliability analysis stage to the optimization
stage in order to improve the computational efficiency. Tu
et al. (Tu et al. 2001) constructed the linear approximation of
the probabilistic constraints to formulate the RBDO as a linear
programming problem, in which the special treatments of ac-
tive and inactive constraints are imposed to improve the effi-
ciency. Cheng et al. (Cheng et al. 2006) proposed a decoupling
method by solving a sequence of sub-programming problems
including an approximate objective function subjected to sev-
eral approximated constraints. Du and Chen (Du and Chen
2004) developed the sequential optimization and reliability
assessment (SORA) approach to transform the RBDO into a
series of deterministic optimization and reliability analysis
problem, and a shifting vector is constructed in each iterative
step according to the reliability solutions from previous itera-
tion to shift the boundaries of the violated constraints to the
feasible direction. Huang et al. (Huang et al. 2012) presented
an enhanced SORA method to further improve the computa-
tional efficiency of SORA in solving RBDO by considering
both cases of constraint and variances of random design pa-
rameter. Huang et al. (Huang et al. 2016) proposed an incre-
mental shifting vector approach to efficiently solve RBDO by
performing the shifting vector estimation and a deterministic
optimization in each cycle. For the structure with multiple
uncertainties, Huang et al. (Huang et al. 2017b) established
an efficient decoupling strategy to solve the RBDO with both
probabilistic and interval uncertainties. Li et al. (Li et al. 2019)
proposed a sequential sampling strategy by extending the
SORA for RBDO with probabilistic and convex set uncer-
tainties, and this method can successively choose samples to
update the surrogate model so to provide accurate solutions
with low computational costs. Other researches about the
RBDO can be found in Refs. (Li et al. 2015; Kang and Luo
2010; Huang et al. 2019; Chen et al. 2013b; Du et al. 2008).

Above RBDO methods are mostly proposed for the time-
independent structures, but the RBDO for the time-dependent
structures is more concerned by the engineers. The time-
dependent RBDO treats the time-dependent reliability re-
quirements as constraints to lead to the optimal design param-
eter solutions for the time-dependent structure. The time-
dependent RBDO is more complicated than the time-
independent one, and methods for time-independent RBDO
cannot be directly employed to solve time-dependent RBDO.
Wang et al. (Wang and Wang 2012a) proposed a nested ex-
treme response surface method to convert the time-dependent
RBDO problem to time-independent one. Huang et al. (Huang
et al. 2017c) developed a single-loop approach to convert
time-dependent RBDO into a sequentially iterative process
involving time-dependent reliability analysis, constraint
discretization, and deterministic optimization. Li et al. (Li
et al. 2018) presented a sequential kriging modeling approach
to solve time-dependent RBDO, in which the time-dependent
performance function is transformed into time-independent
one by dealing the stochastic processes and time parameter
as the random variables. Fang et al. (Fang et al. 2018) pro-
posed the definition of the equivalent MPP, and employed the
equivalent MPP to transform the time-dependent RBDO into
an equivalent time-independent RBDO formulated by PMA.
Hawchar et al. (Hawchar et al. 2018) constructed the surrogate
models of constraints in an augmented sample space, and then
solved the time-dependent RBDO based on the constructed
surrogate models. Hu and Du (Du Z Hu 2015) extended the
SORA to time-dependent RBDO with input random variable
and stationary stochastic process, and the solutions are satis-
fied. But the time-dependent SORA cannot be directly used to
solve the time-dependent RBDO with input random variable,
stationary stochastic process, and time parameter. By con-
structing an equivalent time-independent RBDO problem,
Jiang et al. (Jiang et al. 2017) proposed a time-invariant equiv-
alent method (TIEM) which decouples time-dependent
RBDO into a series of time-independent RBDO and time-
dependent reliability analysis, and the solutions illustrate that
this method is an accurate and efficient one in solving time-
dependent RBDO.More studies about time-dependent RBDO
can be found in Refs. (Wang et al. 2018; Wang and Wang
2012b; Singh et al. 2010). Although several methods have
been be used to save the computational cost of time-
dependent RBDO, it is still a major challenge to solve time-
dependent RBDO with high efficiency. Therefore, it is neces-
sary to develop efficient method for dealing time-dependent
RBDO.

The aim of this work is to propose a novel decoupling
method for time-dependent RBDO. There are two steps in
the proposed method, the first step performs the design pa-
rameter solutions that make the minimum instantaneous reli-
ability index satisfy the reliability index target, and the second
step executes the final optimal design parameter solutions to
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meet reliability target of the time-dependent reliability. In the
first step of the proposed method, the time-dependent RBDO
is converted to the calculation of an incremental shifting vec-
tor and a deterministic design optimization in each cycle, and
converges to the design parameter solutions where the mini-
mum instantaneous reliability indices satisfy the required one.
The second step of the proposed method preserves the infor-
mation from the last step and only a few time-dependent reli-
ability analyses are needed to obtain the optimal design pa-
rameter solutions. Thus, we call the proposed method as the
two-step method (TSM). The proposed TSM exhibits high
computational efficiency and wide application range in the
time-dependent RBDO of structure and product. Up to the
author’s knowledge, this approach has not been previously
presented.

The rest of this work is constructed as follows. The defini-
tion of the time-dependent RBDO is given in Section 2. The
proposed new decoupling TSM for time-dependent RBDO is
showed in Section 3. The estimation procedure of the pro-
posed TSM is summarized in Section 4. Discussions about
the proposed TSM are provided in Section 5. Several exam-
ples are introduced in Section 6. Conclusions are summarized
in Section 7.

2 Definition of time-dependent RBDO

The performance function of the time-dependent structure can
be expressed as g(Z,Y(t), t), where Z means the nZ-dimen-
sional random variable vector, Y(t) represents the nY-dimen-
sional stochastic process vector, and t ∈ [t0, te] is the time pa-
rameter. The failure probability Pf of the time-dependent struc-
ture can be estimated by:

Pf ¼ P g Z;Y tð Þ; tð Þ≤0∃t∈ t0; te½ �f g ð1Þ

in which P{·} represents probability operator.
The equivalent time-dependent reliability index β(t) is

expressed as follows (Jiang et al. 2017):

β tð Þ ¼ −Φ−1 Pf
� � ð2Þ

where Φ−1(·) means the inverse cumulative distribution func-
tion (CDF) of standard normal variable. Generally, at a time
instant tl ∈ [t0, te], the performance function g(Z,Y(tl), tl) is
time-independent and the instantaneous reliability index βl
can be easily obtained by the existing MPP searching tech-
niques. It is well known that the relationship between time-
dependent reliability index β(t) and instantaneous reliability βl
can be expressed by:

β tð Þ≤ min
tl∈ t0;te½ �

βl ð3Þ

The time-dependent RBDO treats the time-dependent reli-
ability requirements as probability constraints in the optimiza-
tion process and it can be expressed in the following form.

min f d;μXð Þ
s:t: P gi d;Z;Y tð Þ; tð Þ≤0∃t∈ t0; te½ �f g≤Φ −βtar

i

� �
i ¼ 1; 2;…; ng
� �

Z ¼ X;P½ �; dL≤d≤dU ;μL
X ≤μX ≤μU

X

ð4Þ
in which f(d,μX) represents the objective function, and gi(d,
Z,Y(t), t)(i = 1, 2,…, ng) is the performance function of the i-
th probability constraint. d means the nd-dimensional deter-
ministic design parameter vector with the lower bound vector
dL and upper one dU respectively. X represents the nX-dimen-
sional random design vector with mean vector μX, where the
lower and upper bounds ofμX areμL

X andμU
X respectively. P is

the nP-dimensional random parameter vector and βtar
i denotes

the reliability index target of the i-th probability constraint.

3 The proposed TSM for time-dependent
RBDO

The proposed method estimates the optimal design parameter
solutions of the time-dependent RBDO by two steps, in which
the first step performs the design parameter solutions that
make the minimum instantaneous reliability index satisfy re-
liability index target and the second step obtains the optimal
design parameter solutions satisfying the time-dependent reli-
ability target. The first step converts the nested time-
dependent RBDO into the calculation of an incremental
shifting vector and deterministic design optimization in each
iteration, and sequential approximation is used to ensure sta-
ble convergence in the iteration process. It should be noted
that the second step of the proposed method can be regarded
as an amendment of the first one, and thus make the design
parameter solutions satisfy the time-dependent reliability in-
dex target. There are only a few time-dependent reliability
analyses in the whole optimization process of the proposed
TSM. Details of the TSM are showed as follows.

3.1 First step of the TSM

As discussed in Section 2, the performance function gi(d,Z,
Y(tl), t l)(i = 1, 2, ..., ng) can be viewed as the time-
independency at a time instant tl ∈ [t0, te], and the correspond-
ing instantaneous reliability index βil can be easily obtained
by the existing MPP searching techniques. When the time
instant tl screens the interval [t0, te], the minimum instanta-
neous reliability index βimin for the i-th performance function
can be expressed as follows:

βimin ¼ min
tl∈ t0;te½ �

βil ð5Þ
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The time instant timin corresponding to the minimum in-
stantaneous reliability index βimin can be obtained by:

timin ¼ arg min
tl∈ t0;te½ �

βil ð6Þ

Therefore, we first convert the original time-dependent
RBDO showed in Eq. (4) into the following time-
independent one.

min f d;μXð Þ
s:t: P gi d;Z;Y timinð Þ; timinð Þ≤0f g≤Φ −βtar

i

� �
i ¼ 1; 2; :::; ng
� �

Z ¼ X;P½ �; dL≤d≤dU ;μL
X ≤μX ≤μU

X

ð7Þ

It is easy to know that the optimal design parameter solu-
tions of Eq. (7) can make βimin≥β

tar
i i ¼ 1; 2; :::; ng
� �

but not

βi tð Þ≥βtar
i i ¼ 1; 2; :::; ng
� �

in the original time-dependent
RBDO problem. Anyhow, the aim of the first step of the
proposed TSM is to solve Eq. (7) to obtain the design param-
eter solutions that make βimin≥β

tar
i i ¼ 1; 2; :::; ng
� �

, and the
second step will employ the information of the first step to
gain the optimal design parameter solutions that make
βi tð Þ≥βtar

i i ¼ 1; 2; :::; ng
� �

. Although Eq. (7) is a time-
independent RBDO problem, it is difficult to directly use the
existing time-independent RBDO approaches to solve this
design optimization because timin varies with different design
parameters and estimating timin in each iteration will lead to
lots of computational costs. This work presents an incremental
shifting vector strategy to efficiently solve Eq. (7). Although
the incremental vector strategy (Huang et al. 2016) has been
employed in the time-independent RBDO, it has not be used
in the time-dependent RBDO procedure.

Based on the well-known SORA strategy (Du and Chen
2004) in time-independent RBDO, Eq. (7) is equivalent to the
following deterministic optimization.

min f d;μXð Þ
s:t: gi d;μS−M

kð Þ
i ; timin

� �
≥0 i ¼ 1; 2; :::; ng
� �

μS ¼ μX ;μP;μY timinð Þ
h i

; dL≤d≤dU ;μL
X ≤μX ≤μU

X

ð8Þ

where μP and μY timinð Þ are the mean vectors of the random

parameter vector P and the stochastic process vector Y(timin)

at time instant timin respectively. M
kð Þ
i is the shifting vector in

the k-th iteration, andM kð Þ
i determines the difference between

the probabilistic constraint boundary and equivalent determin-

istic constraint boundary. The shifting vector M kð Þ
i in the k-th

iteration is generally estimated based on the original boundary

gi(d,μS, timin) = 0, and it makes the deterministic constraint gi

d;μS−M
kð Þ
i ; timin

� �
≥0 equivalent to the original probabilistic

constraint P gi d;Z;Y timinð Þ; timinð Þ≤0f g≤Φ −βtar
i

� �
. By referring

to the work in Ref (Huang et al. 2016) for time-independent

RBDO, an incremental shifting vector ΔM kð Þ
i combining with

the shifting vector M k−1ð Þ
i in the previous step is employed to

construct the current shifting vectorM kð Þ
i in the following form.

M kð Þ
i ¼ M k−1ð Þ

i þΔM kð Þ
i ð9Þ

It can be seen from Eq. (9) that the shifting vector in each
iteration is only an adjustment to the shifting vector in the

previous iteration, and only the shifting vector increment Δ

M kð Þ
i needs to be estimated in the k-th iteration.

For determining the shifting vector incrementΔM kð Þ
i in the

k-th iteration, we first transform the original probabilistic
space into the standard normal space, which can be realized
by the following equivalent probability transformation.

Φ U j
� � ¼ FS j S j

� � ð10Þ

where S = [X, P,Y(timin)], Sj is the variable in S and j = 1, 2, ...,
nX + nP + nY. FS j S j

� �
is the CDF of Sj. It is supposed that the i-

th performance function gi and the shifting vector increment

ΔM kð Þ
i are denoted by Gi andΔM kð Þ

Ui respectively in the stan-
dard normal space. Figure 1 shows the geometric representa-

tion of the shifting vector increment ΔM kð Þ
Ui in the standard

normal space. The curves Gi d;U−M k−1ð Þ
Ui ; timin

� �
¼ 0 and Gi

d;U−M kð Þ
Ui ; timin

� �
¼ 0 represent the equivalent constraint

boundaries of the (k − 1)-th iteration and k-th iteration respec-
tively, where U is the input variable vector in the standard
normal space. From the limit state function Gi(d,U, timin) = 0
in Fig. 1, one can see that the actual minimum instantaneous

reliability index β kð Þ
imin is less than the target reliability index

βtar
i , and the difference can be expressed as Δβ kð Þ

i ¼ βtar
i

−β kð Þ
imin. In order to improve the design reliability, the constraint

boundary should be adjusted toward the feasible domain in the
k-th iteration. That is to say, the equivalent constraint bound-

ary should be shifted from the previous iterative step byΔβ kð Þ
i

in the MPP gradient direction. It is just the shifting vector

incrementΔM kð Þ
Ui that should be considered and we can obtain

the equivalent constraint boundary Gi d;U−M kð Þ
Ui ; timin

� �
¼ 0.

Considering the design parameters vector d and timin are mu-
tative in the iterative process, and the k-th constraint boundary

Gi d;U−M kð Þ
Ui ; timin

� �
¼ 0 is influenced by the (k − 1)-th de-

sign parameters vector d(k − 1), the shifting vector incrementΔ

M kð Þ
Ui can be estimated by:

ΔM kð Þ
Ui ¼ βtar

i −β kð Þ
imin

� �
−

∇Gi d k−1ð Þ;U kð Þ
MPPmin; t

kð Þ
min

� �
‖∇Gi d k−1ð Þ;U kð Þ

MPPmin; t
kð Þ
min

� �
‖

0
@

1
A ð11Þ
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where ∇Gi d k−1ð Þ;U kð Þ
MPPmin; t

kð Þ
min

� �
represents the derivative

vector of performance function with respect to the input var-

iables at U kð Þ
MPPmin in the standard normal space, and ‖∇Gi

d k−1ð Þ;U kð Þ
MPPmin; t

kð Þ
min

� �
‖ means the 2-norm of ∇Gi d k−1ð Þ;

�
U kð Þ

MPPmin; t
kð Þ
minÞ. U kð Þ

MPPmin is the MPP corresponding to the min-

imum instantaneous reliability index β kð Þ
imin. Directly estimating

Eq. (11) needs to obtain the information of MPP correspond-

ing to the minimum instantaneous reliability index β kð Þ
imin,

which is a nested double-loop multi-variant optimization
problem. It may cause huge error to solve this optimization
problem when the number of inputs is large, and undoubtedly,
this will lead to huge computational costs in engineering
application.

For saving the computational cost, the gradient at the origin
U0 = 0 can be employed to approximate the gradient at the

MPP U kð Þ
MPPmin. This approximation strategy has been used in

time-independent RBDO (Huang et al. 2016) and it leads to a
satisfied solution. Then, the approximate minimum instanta-

neous reliability index β̂ kð Þ
imin and time instant t̂ kð Þ

imin can be ob-
tained as follows:

find β̂
kð Þ
imin; t̂

kð Þ
imin

min β̂
kð Þ
imin

s:t: Gi −β̂
kð Þ
imin

∇Gi d k−1ð Þ;U0; t̂
kð Þ
imin

� �
‖∇Gi d k−1ð Þ;U0; t̂

kð Þ
imin

� �
‖

0
B@

1
CA ¼ 0

t̂
kð Þ
imin∈ t0; te½ �

ð12Þ

Equation (12) transforms the original nested double-loop
multi-variant optimization problem into the single-loop dou-
ble-variant optimization process, and thus saves the computa-
tional cost. After that, the k-th iterative shifting vector incre-

mentΔM kð Þ
Ui in the standard normal space can be obtained by:

ΔM kð Þ
Ui ¼ βtar

i −β̂
kð Þ
imin

� �
−

∇Gi d k−1ð Þ;U0; t̂
kð Þ
imin

� �
‖∇Gi d k−1ð Þ;U0; t̂

kð Þ
imin

� �
‖

0
B@

1
CA ð13Þ

min
ˆ k
i

tar
i

min

k
i

1
U

k
iUM

min
, , 0i iG td U

1

min
, , 0

k
i i iG tUd U M

min 0
, ,i i iG t Gd U

min

k
MPPU

2
U

0
k
iUM

min
, , 0

k
i i iG tUd U M

Fig. 1 The geometric
representation of the shifting
vector increment

tar
i

1
U

2
U

0

min

first
MPPU

min

first
i

min
, , 0

first
i iG td U

first
i t

second
i t

min

second
i

min
, , 0

second
i iG td U

Fig. 2 The expression of the second step of the proposed method
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Using Eq. (10) to map ΔM kð Þ
Ui to the original probabilistic

space, the shifting vector increment ΔM kð Þ
i can be efficiently

obtained.
Therefore, the time-independent RBDO showed in Eq. (7)

is estimated by alternately shifting vector incrementΔM kð Þ
Ui in

Eq. (13) and deterministic optimization in Eq. (8). Generally,
there may be many probabilistic constraints in Eq. (7) or de-
terministic constraints in Eq. (8), and some of these constraints
may always satisfy the reliability target in the iterative process.
It is no need to shift the vector for the constraints satisfying the
reliability requirements, and the corresponding shifting vector

increment ΔM kð Þ
i can be set to be zero, i.e., ΔM kð Þ

i ¼ 0. The

value of performance function at the MPP in the previous
iteration is used to assess this condition.

Gi d k−1ð Þ;U* k−1ð Þ
MPPmin; t

* k−1ð Þ
imin

� �
¼ Gi −βtar

i

∇Gi d k−1ð Þ;U* k−1ð Þ
MPPmin; t

* k−1ð Þ
imin

� �
‖∇Gi d k−1ð Þ;U* k−1ð Þ

MPPmin; t
* k−1ð Þ
imin

� �
‖

0
@

1
A

ð14Þ

where t* k−1ð Þ
imin corresponds to the inverse MPP U* k−1ð Þ

MPPmin with
the performance function Gi(d

(k − 1),U, t), and the inverse

MPP U* k−1ð Þ
MPPmin is estimated as

minGi d k−1ð Þ;U* k−1ð Þ
MPPmin; t

* k−1ð Þ
imin

� �
s:t:‖U* k−1ð Þ

MPPmin‖ ¼ βtar
i ; t* k−1ð Þ

imin ∈ t0; te½ �

(
.

Combining the above analysis that the gradient at the origin

Fig. 3 The flowchart of the proposed method for time-dependent RBDO
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U0 = 0 can be employed to approximate the gradient at the
MPP, Eq. (14) can be approximated as follows:

Gi d k−1ð Þ;U* k−1ð Þ
MPPmin; t

* k−1ð Þ
imin

� �
≈ min

t∈ t0;te½ �
Gi −βtar

i

∇Gi d k−1ð Þ;U0; t
� �

‖∇Gi d k−1ð Þ;U0; t
� �

‖

0
@

1
A

ð15Þ

Equation (15) is a simple single-variant optimization prob-

lem and can be efficiently estimated. t* k−1ð Þ
imin can be approxi-

mated by:

t* k−1ð Þ
imin ≈arg min

t∈ t0;te½ �
Gi −βtar

i

∇Gi d k−1ð Þ;U0; t
� �

‖∇Gi d k−1ð Þ;U0; t
� �

‖

0
@

1
A ð16Þ

Then, before each iterative process, Gi d k−1ð Þ;U* k−1ð Þ
MPPmin; t

* k−1ð Þ
imin

� �
showed in Eq. (15) will be estimated firstly. If Gi

d k−1ð Þ;U* k−1ð Þ
MPPmin; t

* k−1ð Þ
imin

� �
≥0, then the i-th constraint satisfies

the reliability index target and we setΔM kð Þ
i ¼ 0; else,ΔM kð Þ

i
will be estimated by the proposed procedure.

The first step of the proposed method performs the design
parameter solutions satisfying βimin≥β

tar
i i ¼ 1; 2; :::; ng
� �

. In
the next subsection, the second step of the proposed method
will be established based on the information of the first step in
order to make time-dependent reliability index βi(t) satisfy
reliability target βtar

i , i.e., βi tð Þ≥βtar
i i ¼ 1; 2; :::; ng
� �

.

3.2 Second step of the TSM

The second step of the proposed method can be regarded as an
amendment of the first step. Denote the obtained design pa-

rameter solutions by the convergent first step as dfirst;μfirst
X

� 	
,

and the corresponding minimum instantaneous reliability in-

dex and MPP as βfirst
imin and Ufirst

MPPmin respectively. Here, we
firstly perform time-dependent reliability analysis of i-th per-
formance function gi(d,Z,Y(t), t) based on the design param-

eter solutions dfirst;μfirst
X

� 	
, and the corresponding time-

dependent reliability index is denoted as βfirst
i tð Þ by Eq. (2).

Combining with Eq. (3), it is easy to know that βfirst
i tð Þ≤βfirst

imin

which is showed in Fig. 2. From Fig. 2, one can see that βfirst
i

tð Þ < βtar
i which illustrates the design parameter solutions

dfirst;μfirst
X

� 	
from the first step are not the optimal solutions

and they should be updated to dsecond;μsecond
X

� 	
in order to

satisfy βsecond
i tð Þ≥βtar

i , where β
second
i tð Þ is the time-dependent

reliability index corresponding to the design parameter solu-

tions dsecond;μsecond
X

� 	
. Fortunately, this can be realized by

shifting the equivalent constraint boundary Gi(d
first,U, ti-

min) = 0 with a shifting vector increment by βtar
i −βfirst

i tð Þ� �
along the MPP gradient direction. Combining the discussion
in the first step of the proposed method, the following shifting

vector increment ΔMsecond
Ui can be constructed.

ΔMsecond
Ui ¼ βtar

i −βfirst
i tð Þ� �

−
∇Gi dfirst;U0; t̂

second

tmin

� �
‖∇Gi dfirst;U0; t̂

second

tmin

� �
‖

0
B@

1
CA
ð17Þ

where t̂
second

imin can be estimated by the following simply opti-
mization process.

find t̂
second

imin

min β̂
second

imin

s:t: Gi −β̂
second

imin

∇Gi d firstð Þ;U0; t̂
second

imin

� �
‖∇Gi d firstð Þ;U0; t̂

second

imin

� �
‖

0
B@

1
CA ¼ 0

t̂
second

imin ∈ t0; te½ �

ð18Þ

The shifting vector increment ΔMsecond
Ui in the standard

normal space is then transformed into the original input space

ΔMsecond
i by Eq. (10), and the new shifting vector can be

expressed as Msecond
i ¼ Mfirst

i þΔMsecond
i , where Mfirst

i is
the shifting vector at the end of the first step. We further
perform the deterministic optimization by Eq. (8) to obtain

the final design parameter solutions dsecond;μsecond
X

� 	
.

It should be noted that dsecond;μsecond
X

� 	
is general little

different from dfirst;μfirst
X

� 	
because that the difference be-

tween βfirst
i tð Þ and βfirst

imin is usually small. Now that the first
step of the proposed method provides the convergent design

Table 1 The design parameter solutions of example 6.1

Methods μX 1
;μX 2

� 	
f(μX) β1(t) β2(t) β3(t) Ncall

TIEM [3.8316, 4.3052] 8.1369 1.2824 1.2814 2.9198 10657

TSM [3.8339, 4.3057] 8.1397 1.2848 1.2816 2.9170 10131

TSM1 [3.8340, 4.3058] 8.1398 1.2855 1.2815 2.9168 8112

DNOM [3.8310, 4.3021] 8.1331 1.2819 1.2816 2.9233 503621

TSM1 represents the proposed TSM with the same stopping condition of TIEM
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parameter solutions dfirst;μfirst
X

� 	
, ideally we just need to per-

form once time-dependent reliability analysis to obtain βfirst
i tð Þ

and once deterministic optimization by Eq. (8) to obtain the

design parameter solutions dsecond;μsecond
X

� 	
satisfying

βsecond
i tð Þ≥βtar

i i ¼ 1; 2; :::; ng
� �

. Furthermore, if βfirst
i tð Þ≥βtar

i ,
which means that the i-th constraint under the design param-

eter solutions dfirst;μfirst
X

� 	
satisfies the reliability target and we

do not need to shift this constraint boundary; thus, we set Δ

Msecond
i ¼ 0 and the estimating ofΔMsecond

Ui in Eq. (17) can be
eliminated. In order to guarantee the final design parameter

solutions dsecond;μsecond
X

� 	
strictly satisfy βsecond

i tð Þ≥βtar
i

i ¼ 1; 2; :::; ng
� �

, we also perform the similar iteration process
as the first step of the proposed TSM to estimate the final
design parameter solutions.

4 Estimation procedure of the proposed TSM

We briefly summarize the estimation procedure of the pro-
posed TSM as follows.

Step 1: Set the initial design parameter solutions

dfirst 0ð Þ;μfirst 0ð Þ
X

h i
and the convergence threshold εfirstf of

objective function for the first step, and let k = 0 and

ΔMfirst 0ð Þ
i ¼ 0.

Step 2: Let k = k + 1 and estimate Gi dfirst k−1ð Þ;
�

U*first k−1ð Þ
MPPmin ;

t*first k−1ð Þ
imin Þ and corresponding t*first k−1ð Þ

imin by Eq. (15) and
Eq. (16) respectively for i = 1, 2, ..., ng.

Step 3: If Gi dfirst k−1ð Þ;U*first k−1ð Þ
MPPmin ; t*first k−1ð Þ

imin

� �
≥0, then let

ΔMfirst kð Þ
i ¼ 0 and t̂

first kð Þ
imin ¼ t*first k−1ð Þ

imin ; else, use Eq. (13)

and Eq. (12) to estimateΔMfirst kð Þ
Ui and t̂

first kð Þ
imin respective-

ly, and transformΔMfirst kð Þ
Ui toΔMfirst kð Þ

i by the equivalent
probability transformation showed in Eq. (10).

Step 4: Estimate the shifting vector Mfirst kð Þ
i ¼ Mfirst k−1ð Þ

i

þΔMfirst kð Þ
i and employ the following deterministic opti-

mization to obtain the updated design parameter solutions

dfirst kð Þ;μfirst kð Þ
X

h i
.

min f d;μXð Þ
s:t: gi d;μS−M

first kð Þ
i ; t̂

first kð Þ
imin

� �
≥0 i ¼ 1; 2;…; ng
� �

μS ¼ μX ;μP;μ
Y t̂

first kð Þ
imin

� �
2
4

3
5; dL≤d≤dU ;μL

X ≤μX ≤μU
X

ð19Þ

Step 5: If the convergence condition is satisfied, i.e.,

j f dfirst kð Þ;μfirst kð Þ
Xð Þ− f dfirst k−1ð Þ;μfirst k−1ð Þ

Xð Þ
f dfirst kð Þ;μfirst kð Þ

Xð Þ j≤εfirstf , then let dfirst;μfirst
X

� 	 ¼
dfirst kð Þ;μfirst kð Þ

X

h i
, Mfirst

i ¼ Mfirst kð Þ
i , t̂

first

imin ¼ t̂
first kð Þ
imin , k = 0 and

go to step 6; else, go to step 2.

Step 6: Let Msecond kð Þ
i ¼ Mfirst

i , dsecond kð Þ;μsecond kð Þ
X

h i
¼

dfirst;μfirst
X

� 	
and t̂second kð Þ

imin ¼ t̂firstimin.
Step 7: Compute the time-dependent reliability index

βsecond kð Þ
i tð Þ of constraint function for i = 1, 2, ..., ng based

on design parameter solutions dsecond kð Þ;μsecond kð Þ
X

h i
.

Step 8: If βsecond kð Þ
i tð Þ≥βtar

i , then set ΔMsecond kþ1ð Þ
i ¼ 0

and t̂
second kþ1ð Þ
imin ¼ t̂

second kð Þ
imin ; else, estimate ΔMsecond kþ1ð Þ

Ui

and t̂
second kþ1ð Þ
imin by Eq. (17) and Eq. (18) respectively, and

transform ΔMsecond kþ1ð Þ
Ui toΔMsecond kþ1ð Þ

i by the equiva-
lent probability transformation showed in Eq. (10).

Step 9: Estimate the shifting vector Msecond kþ1ð Þ
i ¼

Msecond kð Þ
i þΔMsecond kþ1ð Þ

i . If Msecond kþ1ð Þ
i ¼ Msecond kð Þ

i

Table 3 Computational statistics
of example 6.1 Items Iteration numbers/times Time-dependent

reliability analysis
numbers/times

Computational
cost of time-dependent

reliability/times

Computational
time/second

First step Second step

TIEM 5 15 10359 201

TSM 4 3 12 8478 167

TSM1 4 2 9 6369 138

DNOM – 717 503621 9825

Table 2 Failure probabilities of constraint functions at optimal design
parameters of example 6.1

Methods Pf1 Pf2 Pf3 Φ −βtar
i

� �
TIEM 0.09985 0.10003 0.00175 0.10000
TSM 0.09943 0.09999 0.00177

TSM1 0.09931 0.10001 0.00177

DNOM 0.09994 0.09999 0.00173
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(a) Output at 0first
X (b) Output at 1first

X

(c) Output at 2first
X (d) Output at 3first

X

(e) Output at first
X (f) Output at 1second

X

(g) Output at 2second
X (h) Output at second

X

Fig. 4 The relationship between
the output and design parameters
in the iterative process. a Output

at μfirst 0ð Þ
X . b Output at μfirst 1ð Þ

X . c

Output at μfirst 2ð Þ
X . d Output at

μfirst 3ð Þ
X . e Output at μfirst

X . fOutput

at μsecond 1ð Þ
X . gOutput at μsecond 2ð Þ

X .
h Output at μsecond

X
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for all i = 1, 2, ..., ng, go to step 10; else, employ the
following deterministic optimization to obtain the design

parameter solutions dsecond kþ1ð Þ;μsecond kþ1ð Þ
X

h i
, and let

k = k + 1 and go to step 7.

min f d;μXð Þ
s:t: gi d;μS−M

second kþ1ð Þ
i ; t̂

second kþ1ð Þ
imin

� �
≥0 i ¼ 1; 2;…; ng
� �

μS ¼ μX ;μP;μY t̂̂second kþ1ð Þ
imin

� �
 �
; dL≤d≤dU ;μL

X ≤μX ≤μU
X

ð20Þ

Step 10: Obtain the final optimal design parameter solu-

tions dsecond;μsecond
X

� 	 ¼ dsecond kð Þ;μsecond kð Þ
X

h i
.

The flowchart of the proposed method is showed in Fig. 3.
It is easy to conclude that the proposed TSM transforms the
original nested optimization problem to the sequential deter-
ministic optimization one for the time-dependent structure. In
the first step of the proposed TSM, the deterministic optimi-
zation and calculation of shifting vector increment are alter-
nately proceeded to obtain the updated design parameter so-

lutions dfirst;μfirst
X

� 	
, and the second step of the proposedmeth-

od inherits the information of first step so to lead to the optimal

design parameter solutions dsecond;μsecond
X

� 	
. Furthermore, only

a few time-dependent reliability analyses are needed in the

whole procedure, which illustrates the high efficiency of the
proposed method.

5 Discussions

This work mainly focuses on efficiently solving the
time-dependent RBDO by an established decoupling
method named TSM. In the proposed TSM, the time-
dependent RBDO is solved by two steps. The first step
constructs an equivalent time-independent RBDO satis-
fying βimin≥β

tar
i i ¼ 1; 2; :::; ng
� �

, and the second step
makes an amendment based on the information from first step
and further obtains the optimal design parameter solutions
satisfying βi tð Þ≥βtar

i i ¼ 1; 2; :::; ng
� �

. Simultaneously, the in-
cremental vector strategy (Huang et al. 2016) is embedded in
the established two-step framework to solve the equivalent
time-independent RBDO. It should be noted that the proposed
TSM is different from the time-dependent SORA (Du Z Hu
2015). The first difference is that the time-dependent SORA
(Du Z Hu 2015) is proposed for the time-dependent RBDO
with only input random variable and stationary stochastic pro-
cess, and it cannot be directly used to solve the time-
dependent RBDO with input random variable, stationary sto-
chastic process, and time parameter. While the proposed TSM
has no limit for the form of the time-dependent RBDO, both
forms can be solved by the TSM. The second difference is that
the time-dependent SORA needs to solve a multi-dimensional

(a) Output at first
X (b) Output at second

X

Fig. 5 The local amplified figure
between the output and design
parameters. a Output at μfirst

X . b
Output at μsecond

X

L w

h
2

F t

1
F tFig. 6 A cantilever beam
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optimization to obtain the shifting vector in each iteration,
while the TSM estimates the incremental shifting vector by a
double-variant optimization process and combines with the
shifting vector in previous iteration to construct the shifting
vector in current iteration. The third difference is that the TSM
is a two-step estimation framework and the time-dependent
SORA is a one-step estimation framework.

The advantages of the established TSM can be summarized
as two points. First of all, a double-variant optimization pro-
cess is constructed to estimate the incremental shifting vector
in the TSM instead of a multi-dimensional optimization to
calculate the shifting vector in the traditional methods.
Generally, the double-variant optimization is easier to estimate
than the multi-dimensional optimization. Secondly, there is no
time-dependent reliability analysis in the first step and only a
few time-dependent reliability analyses are needed in the sec-
ond step; thus, the computational efficiency is improved. At
the same time, the TSM employs the gradient in the origin to
approximate that of the MPP in order to save computational
cost. This strategy has been used in the time-independent
RBDO (Huang et al. 2016), and the solutions show that this
approximation generally makes little influence on the accurate
estimation of the design parameters for the general non-linear
problem.

Generally, the time-dependent reliability in the second
step of the TSM can be estimated by any time-dependent
reliability analysis methods, such as the surrogate model
methods (Hu and Mahadevan 2016; Wang and Chen
2016; Shi et al. 2019) and out-crossing methods
(Andrieu-Renaud et al. 2004; Shi et al. 2017). This work
employs the improved time-variant reliability analysis
method based on stochastic process discretization
(iTRPD) (Jiang et al. 2018) to estimate the time-
dependent reliability. The iTRPD scatters the time-
dependent performance function into a certain number of

time-independent performance functions; thus, it converts
the time-dependent reliability analysis into an equivalent
time-independent series system reliability analysis. The
final time-dependent reliability can be estimated by com-
bining the components’ reliabilities and correlation coef-
ficient matrix of all components’ performance functions.
The numerical examples in Ref. (Jiang et al. 2018) illus-
trate that the computational stability, efficiency, and accu-
racy of the iTRPD are satisfied. Based on the analyses in
Ref. (Jiang et al. 2018) and the computing validations by
lots of examples, it can be concluded that iTRPD remains
efficient at least in the 10−3 order of failure probability.
For the problem with low failure probability, such as 10−5

order of failure probability, other accurate methods such
as the surrogate model method (Shi et al. 2019) can be
combined with the proposed TSM.

6 Examples

The double-loop nested optimization method (DNOM) and
the TIEM (Jiang et al. 2017) are employed to be references,
which can be used to illustrate the accuracy and efficiency
of the proposed TSM. The DNOM is generally used to test
the accuracy of the decoupling method. The DNOM em-
ploys a direct double-loop process to solve the time-
dependent RBDO, in which the outer loop performs the
optimization to estimate the design parameters and the in-
ner loop analyzes the time-dependent reliability. These two
loops are nested with each other; thus, huge computational
costs are needed by using DNOM. For the fair comparison
of these methods, the iTRPD (Jiang et al. 2018) is
employed to estimate the time-dependent reliability for
all these methods.

Table 4 The distribution
parameters of the input variables
of example 6.2

Inputs Distribution Mean Standard deviation Autocorrelation function

y/psi Lognormal 40000 4000 –

E/psi Lognormal 2.9e7 2.9e6 –

F1(t)/lb Gaussian 1000 100 exp(−τ2)
F2(t)/lb Gaussian 500 50 cos(πτ)

Table 5 The design parameter solutions of example 6.2

Methods [w, h] f(d) β1(t) β2(t) Ncall

TIEM [2.2711, 4.5397] 10.3100 2.9928 3.7761 538

TSM [2.2939, 4.5839] 10.5147 3.2698 4.0603 326

DNOM [2.2762, 4.5427] 10.3401 3.0240 3.8422 2618

Table 6 Failure probabilities of constraint functions at optimal design
parameters of example 6.2

Methods Pf1 Pf2 Φ −βtar
i

� �
TIEM 0.00138 0.00008 0.00135
TSM 0.00054 0.00002

DNOM 0.00125 0.00006
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6.1 Numerical example

Considering the following time-dependent RBDO problem
(Wang and Wang 2012a):

min f μXð Þ ¼ μX 1
þ μX 2

s:t: P gi X; tð Þ≤0 ∃t∈ t0; te½ �f g≤Φ −βtar
i

� �
i ¼ 1; 2; 3ð Þ

g1 X; tð Þ ¼ X 2
1X 2−5X 1t þ X 2 þ 1ð Þt2−20

g2 X; tð Þ ¼ X 1 þ X 2−0:1t−5ð Þ2
30

þ X 1−X 2 þ 0:2t−12ð Þ2
120

−1

g3 X; tð Þ ¼ 90

X 1 þ 0:05tð Þ2 þ 8 X 2 þ 0:1tð Þ−sint þ 5
−1

0≤μX j
≤10 j ¼ 1; 2ð Þ;βtar

i ¼ Φ−1 0:9ð Þ ¼ 1:2816 i ¼ 1; 2; 3ð Þ
ð21Þ

where two random design parameters X1 and X2 are normal
distribution variables, i.e., X 1∼N μX 1

; 0:6
� �

and X 2∼N μX 2
; 0:6

� �
.

The considered time parameter interval is [0, 5] and the target
reliability is 0.9 for these three constraints.

The design parameter solutions estimated by the TIEM, the
DNOM, and the TSM are listed in Table 1, in which the final
time-dependent reliability index and the corresponding com-
putational cost are also provided. It should be noted that the
computational cost in the table involves all the necessary calls
of the constraint functions. Failure probabilities of constraint
functions at the optimal design parameters for all these
methods are showed in Table 2. The computational statistics

of these methods are showed in Table 3. The initial design

parameters are set to be μfirst 0ð Þ
X ¼ 5; 5½ � for all these methods.

From Table 1, one can see that the design parameter solu-
tions estimated by the proposed TSM can match well with that
of the DNOM, which illustrates the accuracy of the proposed
TSM for time-dependent RBDO. Simultaneously, the compu-
tational cost of the proposed TSM is extremely less than the
DNOM and slightly less than TIEM, which demonstrates the
high efficiency of the proposed TSM. The reason for the slight
advantage of the proposed TSM over the TIEM in efficiency
mainly resulted from the strict stopping criterion of the pro-
posed TSM. TSM employs all the time-dependent reliability
indexes of constraints satisfying reliability targets as the stop-
ping criterion instead of the relative error between two adja-
cent objective functions less than given threshold in the
TIEM. Thus, the solutions named as TSM1 estimated by the
proposed TSM with the same stopping criterion in the TIEM
are also provided. From the solutions of TSM1, one can see
that the time-dependent reliability index of the second con-
straint is slightly less than the reliability target, which is sim-
ilar to the solutions of the TIEM. But the computational cost
of TSM1 is less than that of the TIEM,which demonstrates the
high efficiency of the proposed method. For illustrating the
estimation procedure of the proposed TSM, the iterative pro-
cess in the standard normal space is showed in Fig. 4. Four
iterations are needed to obtain the design parameter solutions

2
X

1
X

4
X

3
X

L

F t F t
Fig. 7 Awelded beam

Table 7 Computational statistics
of example 6.2 Items Iteration numbers/times Time-dependent

reliability analysis
numbers/times

Computational cost of
time-dependent

reliability/times

Computational
time/second

First step Second step

TIEM 4 8 145 64

TSM 3 1 4 80 40

DNOM – 136 2618 1188
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μfirst
X ¼ 3:7362; 4:2770½ � in the first step of the proposed

TSM, and three iterations are needed in the second step of
the TSM. Based on the design parameter solutions μfirst

X ¼
3:7362; 4:2770½ �, the corresponding time-dependent reliabili-
ty indexes of these three constraint functions can be obtained

by βfirst
1 tð Þ ¼ 1:1705, βfirst

2 tð Þ ¼ 1:2679, and βfirst
3 tð Þ ¼ 3:042

3 respectively. The results show that the third constraint func-
tion satisfies the reliability target and the others do not satis-
fied the requirement one, which is showed in Fig. 5a. For
obtaining the accurate design parameter solutions that make
all the constraint functions satisfy the reliability target, the
design parameter solutions μfirst

X ¼ 3:7362; 4:2770½ � need to
be amended and updated, that are what the second step of the
proposed method do. After the estimation of the second step
of the proposed method, the final optimal design parameter
solutions μsecond

X ¼ 3:8339; 4:3057½ � can be obtained. Based

on the design parameter solutions μsecond
X ¼ 3:8339; 4:3057½ �,

all the constraint functions will satisfy the reliability require-
ment, which is showed in Fig. 5b. The failure probabilities of
the constraints showed in Table 2 express that the solutions of
all constraints by TSM and DNOM are satisfied, but the solu-
tions of second constraint by TIEM and TSM1 are slightly
unsatisfied. From Table 3, one can see that the TIEM needs 5
iterations with 15 time-dependent reliability analyses, and the
total computational costs of the time-dependent reliability anal-
yses are 10359 for the TIEM. In the TSM, 3 iterations are

involved in the second step with 12 time-dependent reliability
analyses, and the total computational costs of the time-
dependent reliability analyses of the TSM are 8478, which is
less than that of the TIEM. In the TSM1, 2 iterations are
contained in the second step with 9 time-dependent reliability
analyses, and the total computational costs of the time-
dependent reliability analyses of TSM1 are 6369, which shows
that TSM1 is the most efficient one among these methods.
Simultaneously, it is easy to find that the DNOM has the worst
efficiency in these methods, which needs 717 time-dependent
reliability analyses and the computational costs of the time-
dependent reliability analyses are 503621. It can be also seen
from Table 3 that the proposed TSM is more efficient than the
TIEM and the DNOM in considering the computational time.

6.2 A cantilever beam

A cantilever beam (Liang et al. 2004; Jiang et al. 2017; Gu and
Yang 2003) showed in Fig. 6 is used to show the effectiveness of
the proposed TSM for time-dependent RBDO. This cantilever
beam is anchored at the left end and free at the right end. The
length of the cantilever beam is L = 100 in. The free end of the
beam is under a vertical time-dependent load of F1(t) and a
horizontal time-dependent load of F2(t) that are mutually inde-
pendent stationary Gaussian processes. The thickness h and
width w of the cross-section are deterministic design parameters
and the Young’s Modulus E and yield stress y are random pa-
rameters. The optimization objective is tominimize theweight of
this beam. There are two probabilistic constraint functions which
respectively represent that the maximum stress is not allowed to
be greater than yield stress y and the replacement of the free end
should be not less than the allowable displacement D0 = 2.5 in.
The distribution parameters of the input random parameters and
stochastic processes are showed in Table 4. The time-dependent
RBDO of this cantilever beam can be expressed as follows:

min f dð Þ ¼ w� h
s:t: P gi d;P;Y tð Þð Þ≤0∃t∈ t0; te½ �f g≤Φ −βtar

i

� �
i ¼ 1; 2ð Þ

g1 d;P;Y tð Þð Þ ¼ y−
600F1 tð Þ

wh2
þ 600F2 tð Þ

w2h

� �

g2 d;P;Y tð Þð Þ ¼ D0−
4L3

Ewh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F1 tð Þ
h2

� �2

þ F2 tð Þ
w2

� �2
s

d ¼ w; h½ �;P ¼ y;E½ �;Y tð Þ ¼ F1 tð Þ; F2 tð Þ½ �
w > 0 in; 0 in < h≤5 in;βtar

i ¼ 3:0 i ¼ 1; 2ð Þ

ð22Þ

where the considered time interval is [0, 10] year.

Table 8 The distribution parameters of the input variables of example
6.3

Inputs Distribution Mean Standard
deviation

Autocorrelation
function

X1/mm Gaussian μX 1
0.3 –

X2/mm Gaussian μX 2
3 –

X3/mm Gaussian μX 3
3 –

X4/mm Gaussian μX 4
0.3 –

E/Mpa Gaussian 20685 2068.5 –

L/mm Gaussian 355.6 35.56 –

G/Mpa Gaussian 82740 8274 –

d0/mm Gaussian 6.35 0.635 –

τ/Mpa Gaussian 9.377 0.9377 –

σ/Mpa Gaussian 206.85 20.685 –

F(t)/N Gaussian 26688 2668.8 exp(−τ2)

Table 9 The design parameter solutions of example 6.3.1

Methods μX 1
;μX 2

;μX 3
;μX 4

� 	
f(μX) Ncall

TIEM [14.0306, 253.9995, 193.3010, 15.3034] 8.6650 4153

TSM [14.1458, 253.9995, 192.7345, 15.4186] 8.7448 2261

DNOM Cannot converge

Table 10 The final time-dependent reliability index solutions of
example 6.3.1

Methods β1(t) β2(t) β3 β4(t) β5(t)

TIEM 3.0040 3.5624 3.0001 3.0042 8.1259

TSM 3.0558 3.5502 3.0001 3.0026 8.1259

Novel decoupling method for time-dependent reliability-based design optimization 519



In this example, the deterministic design parameters, the
random parameters, and the stochastic processes are involved
in the constraint functions. The initial design parameters are
set to be [wfirst(0), hfirst(0)] = [2, 4] for all these methods. The
design parameter solutions estimated by the TIEM, the pro-
posed TSM, and the DNOM are listed in Table 5. From
Table 5, one can see that comparing with the TIEM and
DNOM, the proposed TSM is the most efficient method
which needs 326 costs of the constraint functions to obtain
the final design parameters, while the TIEM needs 538 com-
putational costs and the DNOM needs more than ten thousand
costs of the constraint functions. The time-dependent reliabil-
ity indexes in Table 5 and the failure probabilities in Table 6
show that the design parameter solutions estimated by the
proposed TSM are slightly conservative, which is mainly re-
sulted from the introduction of approximating the gradient of
MPP by that of the origin for this highly non-linear problem.
This can be avoided by directly using the real gradient of the
MPP, but the computational cost will increase. Generally, this
approximation makes little influence on the accurately estima-
tion of the design parameters for the general non-linear prob-
lem, which is showed by the examples 6.1 and 6.3. However,
it is difficulty to balance the estimation accuracy and efficien-
cy in one method. This work just establishes a two-step frame-
work to decouple the time-dependent RBDO, and future study
will focus on further improving the computational accuracy
and efficiency in time-dependent RBDO with highly non-
linear problem based on this two-step framework.
Furthermore, the design parameters estimated by the proposed
TSM are acceptable by comparing with other solutions. From
Table 7, one can see that the TIEM needs 4 iterations with 8
time-dependent reliability analyses, and the computational
costs of the time-dependent reliability analyses are 145. The
DNOM needs 136 time-dependent reliability analyses with
total 2618 computational costs of time-dependent reliability
analyses. Comparing with the TIEM and DNOM, the TSM
just needs once iteration in the second step with 4 time-

dependent reliability analyses, and the total computational
costs of the time-dependent reliability analyses are 80, which
are less than those of the TIEM and DNOM. The computa-
tional time showed in Table 7 also illustrates the high compu-
tational efficiency of the proposed TSM.

6.3 A welded beam

Awelded beam (Chen et al. 2013a) showed in Fig. 7 is used to
illustrate the effectiveness of the proposed TSM for time-
dependent RBDO. The welded beam problem was firstly pro-
posed in Ref. (Ragsdell and Phillips 1976), and then it was
employed to be an optimization example under uncertainty in
Refs. (Deb and Gupta 2006; Braydi et al. 2019). The left end
of this beam is welded and there is a time-dependent loading
F(t) in the right end of this beam. The random design variables
are relative to the welding point containing its depth X1, length
X2, height X3, and thickness X4. Four time-dependent proba-
bilistic constraint functions and one time-independent proba-
bilistic constraint function are involved in this optimization, in
which the four time-dependent probabilistic constraint func-
tions related to the shear stress, bucking, bending stress, and
the displacement of free end, and the time-independent prob-
abilistic constraint function is about the restriction of welding
size. The objective is to minimize the cost of welding. The
random parameters are the Young’s Modulus E, the length of
this beam L, the shear ModulusG, the allowable displacement
of free end d0, and maximum shear stress τ and the maximum
normal stress σ. The time-dependent loading F(t) is Gaussian
process. The distribution parameters of all these inputs are
provided in Table 8. In this work, two cases involving optimi-
zation under stationary stochastic process load and time-
independent material properties, and optimization under
non-stationary stochastic process load and time-dependent
material properties are considered to construct the time-
dependent RBDO.

Table 11 Failure probabilities of constraint functions at optimal design parameters of example 6.3.1

Methods Pf1 Pf2 Pf3 Pf4 Pf5 Φ −βtar
i

� �
TIEM 0.00133 0.00018 0.00135 0.00133 0.00000 0.00135
TSM 0.00112 0.00019 0.00135 0.00134 0.00000

Table 12 Computational
statistics of example 6.3.1 Items Iteration numbers/times Reliability

analysis
numbers/times

Computational cost of
time-dependent

reliability/times

Computational
time/second

First step Second step

TIEM 4 20 1008 231

TSM 5 2 15 720 188
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6.3.1 Optimization under stationary stochastic process load
and time-independent material properties

In this case, the time-dependent RBDO of this welding beam
is showed below.

min f μXð Þ ¼ c1μ2
X 1
μX 2

þ c2μX 3
μX 4

Lþ μX 2

� �
s:t: P gi Z; Y tð Þð Þ≤0∃t∈ t0; te½ �f g≤Φ −βtar

i

� �
i ¼ 1; 2; 4; 5ð Þ

P g3 Zð Þ≤0f g≤Φ −βtar
3

� �
g1 Z; Y tð Þð Þ ¼ 1−

τ Z; Y tð Þð Þ
τ

; g2 Z; Y tð Þð Þ ¼ 1−
σ Z; Y tð Þð Þ

σ

g3 Zð Þ ¼ 1−
X 1

X 4
; g4 Z; Y tð Þð Þ ¼ 1−

δ Z; Y tð Þð Þ
d0

; g5 Z; Y tð Þð Þ ¼ Pc Zð Þ
Y tð Þ −1

Z ¼ X;P½ �;X ¼ X 1;X 2;X 3;X 4½ �;P ¼ E; L;G; d0; τ ; σ½ �; Y tð Þ ¼ F tð Þ
3:175mm < μX 1

≤50:8 mm;μX 2
≤254 mm;μX 3

≤254 mm;μX 4
≤50:8mm

βtar
i ¼ 3:0 i ¼ 1; 2; 3; 4; 5ð Þ; t0; te½ � ¼ 0; 10½ �year

ð23Þ
in which

τ Z; Y tð Þð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L Z; Y tð Þð Þ2 þ L Z; Y tð Þð ÞS Z; Y tð Þð ÞX 2

R Zð Þ þ S Z; Y tð Þð Þ2
s

L Z; Y tð Þð Þ ¼ Y tð Þffiffiffi
2

p
X 1X 2

; S Z; Y tð Þð Þ ¼ M Z;Y tð Þð ÞR Zð Þ
J Zð Þ

M Z; Y tð Þð Þ ¼ Y tð Þ Lþ 0:5X 2ð Þ; δ Z; Y tð Þð Þ ¼ 4Y tð ÞL3
EX 3

3X 4

R Zð Þ ¼ 0:5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2

2 þ X 1 þ X 3ð Þ2
q

; J Zð Þ ¼
ffiffiffi
2

p
X 1X 2

X 2
2

12
þ X 1 þ X 3ð Þ2

4

" #

σ Z; Y tð Þð Þ ¼ 6Y tð ÞL
X 2

3X 4
;Pc Zð Þ ¼ 4:013X 3X 3

4

ffiffiffiffiffiffiffi
EG

p

6L2
1−

X 3

4L

ffiffiffiffi
E
G

r !

c1 ¼ 6:74135� 10−5; c2 ¼ 2:93585� 10−6

ð24Þ

In this case, random design variables, random parameter
variables, and stationary stochastic process are involved in the
constraint functions. The initial design parameters are set to be

μfirst 0ð Þ
X 1

;μfirst 0ð Þ
X 2

;μfirst 0ð Þ
X 3

;μfirst 0ð Þ
X 4

h i
¼ 15; 200; 200; 15½ � for all

these methods. The DNOM cannot converge in this example.
The design parameter solutions, reliability index solutions,
failure probabilities, and computational statistics of the

proposed TSM and the TIEM are showed in Tables 9, 10,
11, and 12 respectively.

From Tables 9, 10, and 11, one can see that the proposed
TSM can give accurate estimation of the design parameters
comparing with the TIEM. Simultaneously, it also can be seen
from Table 9 that the proposed TSM just needs 2261 compu-
tational costs which illustrates the high efficiency of the TSM.
But, the computational cost of the TIEM is almost double that
of the proposed TSM. From Table 12, one can see that there
are 2 iterations in the second step of the TSMwith 15 reliabil-
ity analyses (12 time-dependent reliability analyses and 3
time-independent reliability analyses), and the total computa-
tional costs of reliability analyses are 720. At the same time,
the TIEM needs 4 iterations with 20 reliability analyses (16
time-dependent reliability analyses and 4 time-independent
reliability analyses), and the total computational costs of reli-
ability analyses are 1008, which are large than those of the
proposed TSM. Thus, the proposed TSM is more efficient
than the TIEM. From Table 12, one can also see that the
proposed TSM is more efficient than the TIEM in considering
the computational time.

6.3.2 Optimization under non-stationary stochastic process
load and time-dependent material properties

In this case, the load is considered to be a non-stationary
stochastic process FT(t), and FT(t) is expressed as FT(t) =
F(t)e0.002t. The maximum shear stress τT and the maximum
normal stress σTwill decline as the time goes by, and they can
be described by τT = τe−0.012t and σT = σe−0.01t respectively.
Then, the time-dependent RBDO of this welding beam can
be expressed as follows.

min f μXð Þ ¼ c1μ2
X 1
μX 2

þ c2μX 3
μX 4

Lþ μX 2

� �
s:t: P gi Z; Y tð Þð Þ≤0∃t∈ t0; te½ �f g≤Φ −βtar

i

� �
i ¼ 1; 2; 4; 5ð Þ

P g3 Zð Þ≤0f g≤Φ −βtar
3

� �
g1 Z; Y tð Þð Þ ¼ 1−

τ Z; Y tð Þð Þ
τT

; g2 Z; Y tð Þð Þ ¼ 1−
σ Z; Y tð Þð Þ

σT

g3 Zð Þ ¼ 1−
X 1

X 4
; g4 Z; Y tð Þð Þ ¼ 1−

δ Z; Y tð Þð Þ
d0

; g5 Z; Y tð Þð Þ ¼ Pc Zð Þ
Y tð Þ −1

Z ¼ X;P½ �;X ¼ X 1;X 2;X 3;X 4½ �;P ¼ E; L;G; d0; τ ; σ½ �; Y tð Þ ¼ FT tð Þ
3:175mm < μX 1

≤50:8mm;μX 2
≤254mm;μX 3

≤254mm;μX 4
≤50:8mm

βtar
i ¼ 3:0 i ¼ 1; 2; 3; 4; 5ð Þ; t0; te½ � ¼ 0; 10½ �year

ð25Þ
in which τ(Z, Y(t)), σ(Z, Y(t)), δ(Z, Y(t)), and Pc(Z) are
showed in Eq. (24).

In this case, random design variables, random parameter
variables, non-stationary stochastic process, and time param-
eter are involved in the constraint functions. The initial design

parameters are set to be μfirst 0ð Þ
X 1

;μfirst 0ð Þ
X 2

;μfirst 0ð Þ
X 3

;μfirst 0ð Þ
X 4

h i
¼

15; 200; 200; 15½ � for all these methods. The DNOM cannot
converge in this example. The design parameter solutions,
reliability index solutions, failure probabilities, and

Table 13 The design parameter solutions of example 6.3.2

Methods μX 1
;μX 2

;μX 3
;μX 4

� 	
f(μX) Ncall

TIEM [15.3908, 253.9981, 188.4580, 16.6637] 9.6764 97033

TSM [15.4316, 254.0000, 188.2959, 16.7044] 9.7068 57323

DNOM Cannot converge

Table 14 The final time-dependent reliability index solutions of
example 6.3.2

Methods β1(t) β2(t) β3 β4(t) β5(t)

TIEM 3.0032 3.3119 3.0004 2.9992 +∞
TSM 3.0264 3.3205 3.0000 3.0020 +∞
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computational statistics of the proposed TSM and the TIEM
are showed in Tables 13, 14, 15, and 16 respectively.

In this case, except the third constraint, the other constraint
functions are non-stationary stochastic processes. When using
the iTRPD (Jiang et al. 2018) to estimate the reliabilities of
these non-stationary stochastic processes, the time-
independent reliabilities at each time instants are needed to
be estimated, instead of only performing time-independent
reliability analyses at one time instant in the first case.
Therefore, the computational costs of time-dependent reliabil-
ity analyses in this case are much larger than those in the first
case. From Tables 13, 14, and 15, one can see that the pro-
posed TSM and the TIEM give the similar design parameter
solutions. But the proposed TSM is more efficient than the
TIEM. It can be found from Table 16 that there are 3 iterations
in the second step of the proposed TSM with 20 reliability
analyses (16 time-dependent reliability analyses and 4 time-
independent reliability analyses), and the total computational
costs of reliability analyses are 43416. The TIEM needs 7
iterations with 35 reliability analyses (28 time-dependent reli-
ability analyses and 7 time-independent reliability analyses),
and the total computational costs of the reliability analyses are
91572, which are much larger than those of the proposed
TSM. The computational time showed in Table 16 demon-
strates the proposed TSM is more efficient than the TIEM.

7 Conclusions

A novel decoupling method called TSM is established to deal
with the time-dependent RBDO. The first step of the TSM
makes the minimum instantaneous reliability index satisfy
reliability index target by solving a transformed time-
independent RBDO, and the second step helps the time-
dependent reliability meet the reliability target by performing
time-dependent reliability analysis and deterministic

optimization. The key point of the first step is to estimate the
shifting vector increment in each iteration. This work employs
the gradient in the origin to approximate that of the MPP for
efficiently estimating the shifting vector increment. The solu-
tions show that this approximation generally makes little in-
fluence on the accurately estimation of the design parameters
for the general non-linear problem. After the first step con-
verges, the final optimal design parameter solutions can be
obtained by performing deterministic design optimization
based on the information from the first step and the time-
dependent reliability analysis. Therefore, the second step can
be considered as the amendment of the first step. Only a few
time-dependent reliability analyses are involved in the whole
process of the proposed method.

Several examples involving a numerical example and two
engineering examples are introduced to show the effective-
ness of the proposed TSM. The solutions show that the
TIEM provide good design parameter solutions for all these
applications. By comparing with the TIEM and the DNOM,
one can see that the proposed TSM can give an acceptable
estimation of the design parameters by using the least compu-
tational costs.

It should be noted that for highly non-linear problem, the
proposed TSM may cause large error. This can be avoided by
directly using the real gradient in the MPP, but the computa-
tional cost will increase. This work just establishes a two-step
framework to decouple the time-dependent RBDO, and future
study will focus on further improving the computational ac-
curacy and efficiency in dealing with time-dependent RBDO
with highly non-linear problem based on this two-step frame-
work by combining several surrogate model techniques (Hu
and Mahadevan 2016). At the same time, the proposed TSM
is a type of gradient-based optimization method, and it is
better to solve the time-dependent RBDO with no more than
five design parameters. When the time-dependent RBDO in-
volves high-dimensional design parameters, gradient-based

Table 15 Failure probabilities of constraint functions at optimal design parameters of example 6.3.2

Methods Pf1 Pf2 Pf3 Pf4 Pf5 Φ −βtar
i

� �
TIEM 0.00134 0.00046 0.00135 0.00135 0.00000 0.00135
TSM 0.00124 0.00045 0.00135 0.00134 0.00000

Table 16 Computational
statistics of example 6.3.2 Items Iteration numbers/times Reliability

analysis
numbers/times

Computational cost of
time-dependent

reliability/times

Computational
time/second

First step Second step

TIEM 7 35 91572 597

TSM 4 3 20 43416 377
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optimization methods may provide locally optimal design pa-
rameter solutions. For dealing with this issue, dimension re-
duction techniques (Sadoughi et al. 2018; Ping et al. 2019) can
be combined with the proposed TSM, and this will be our
future focus.

8 Replication of results

To further understand the proposed method for time-
dependent RBDO and replicate the solutions presented in this
paper, the MATLAB codes of the proposed TSM for the nu-
merical example are provided as the supplementary material.
Overall concepts and algorithms can be validated and extend-
ed through the numerical example.
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