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Abstract
This paper presents some practical formulations for heat conduction topology optimization problems. In post-optimization
analysis, temperature metrics are often used to compare the performance of optimized structures, yet are not used generally
as optimization objectives. In this article, SIMP-based topology optimization is used to explore several objective functions
related to electronics applications to demonstrate clearly the impact of improper objective selection. Performance variations
over 100% were observed when comparing key metrics between optimized structures. Findings here are extended to
problems in electronics domains, where temperature optimization may be used in unconventional ways to capture more
realistic design considerations. This includes an investigation in the combinatorial use of objectives and constraints to satisfy
electronics requirements. Four case studies are presented where topology optimization methods are used to maximize system
performance metrics while satisfying temperature constraints.

Keywords Topology optimization · Conductive heat transfer

1 Introduction

Heat conduction is a dominant mode of heat transfer in
many engineering systems. This physics phenomenon can
be used purposefully to heat and cool matter through the
designed use of a heat spreading device. The research pre-
sented here focuses on the design of heat spreading devices
using topology optimization methodologies (Bendsøe and
Kikuchi 1988). Topology optimization has been used suc-
cessfully to design heat spreaders for various applications.
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One similarity between the design of these heat spreaders is
the use of a structural mechanics analog objective, thermal
compliance. This objective is favorable from a numerical
optimization solution performance perspective, but may not
represent the true goal of a heat spreader. The investigations
presented here will focus on reformulating the topology
optimization problem for various different heat spreader
design tasks.

Researchers in topology optimization have investigated
several problem formulations for heat spreader design.
Gersborg-Hansen et al. (2006) presented a well-known
example where a thermal compliance-based heat conduction
problem was solved using the finite volume method. Burger
et al. (2013) solved a 3D thermal compliance problem to
evaluate the performance of optimized structures for a vari-
ety of finite fixed-temperature boundary conditions. Asym-
metric optimal structures were obtained when dividing and
segregating the Dirichlet boundary. In an recent study,
Yan et al. (2018) investigated the optimality of dendritic
structures for compliance and maximum temperature min-
imization problems. It was concluded that lamellar needle-
like topologies outperform the typically reported dendritic
structures. Given the local nature of gradient-based opti-
mization, careful consideration should be given to the initial
design vector value to support convergence towards better-
performing optimized structures. One strategy for selecting
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a good initial design vector is to perform optimization using
a reduced-dimension design representation, such as a gen-
erative algorithm (Lohan 2016). This strategy was shown to
improve design performance consistently when compared
with topology optimization with a homogeneous initial ma-
terial distribution.

More complex formulations that involve elements
beyond a simple compliance objective and volume con-
straints have been investigated. For example, Marck et al.
(2012) investigated the tradeoff between mean tempera-
ture and temperature variance to formulate a more realistic
design problem. The authors used the method of weighted
sums to produce a Pareto front by calculating both combined
objectives and derivatives. The optimized topological struc-
tures have clear differences when comparing mean temper-
ature solutions to variance-optimized solutions. In another
example, Dirker and Meyer (2013) investigated several
objectives in a problem formulation with design-dependent
volumetric heat generation. Their objectives included the
maximum domain temperature, the average domain tem-
perature, and a summation of the temperature across volu-
metric heat generating elements. The authors observed den-
dritic patterns in the optimized structures for all objective
functions. Utilizing more realistic objectives may improve
the practical applicability of topology optimization; how-
ever, the functional role of a heat spreader may depend
on additional practical constraints. For example, Zhuang
and Xiong (2015) solved a minimum compliance design
problem incorporating point and local area temperature
constraints. The fundamental structure of the optimized
topology changed when considering the area temperature
constraints.

As a logical extension to heat conduction problems that
are commonly solved, design-dependent loading has been
investigated in applications with convection. Two strategies
for parameterizing convection in a conduction framework
have been proposed by Bruns (2007) and Iga et al. (2009).
These approaches have been extended recently to 3D
problems. Consider the work of Zhou et al. (2016), where
a static conduction-based convection topology optimization
was performed and compared with a benchmark heat
sink design. The authors observed a 20 ◦C decrease in
temperature when comparing the optimized design with the
reference design using thermo-fluidic simulations. Another
example is in the work of Dede et al. (2015), where
conduction-based convection optimization was performed
to design a heat sink for a circular air jet. The authors
fabricated the optimized topology and experimentally
compared performance with standard heat sink topologies.
The optimized heat sink showed comparable performance
with conventionally designed heat sinks.

Fully coupled thermo-fluidic analysis has also been
solved for in many cooling design applications. For forced

air convection, a 3D to 2D model reduction was used
to design fin topology, Haertel and Nellis (2017), using
COMSOL Multiphysics. The lower-order model results
agreed with 3D simulation, and a decrease in thermal
resistance of 13% was achieved through optimization.
A full 3D thermo-fluid topology optimization including
buoyancy effects was performed by Alexandersen et al.
(2016). It was shown that complex geometries can improve
cooling performance when compared with straight fin
heat sinks. In a recent paper, Dbouk (2017) asserted that
topology optimization methodologies are not yet robust
enough to be used in industrial applications. Though this
is true for some formulations, there are many applications
where industry-relevant problems can be solved well using
topology optimization methods. Take for example this heat
conduction dominant system where topology optimization
has been practically used to achieve a large reduction in
domain temperature (Dede et al. 2018). In the research
presented here, we investigate a similar application: power
electronic systems.

In electronic systems, heat sinks are often selected based
on commercially available products. Recent work has de-
monstrated the interesting opportunity of employing heat
sinks tailored using optimization to further improve
performance for specific applications. Consider the work
of Christen et al. (2016) where a thermal resistor network
was used to model heat sinks for natural convection. Using
optimization, the authors reduced the heat sink size 50% and
experimentally verified performance. As another example,
a radial heat sink was designed for an LED by Yu et al.
(2011) solving the Navier-Stokes equation. Different styles
of radial heat sinks were optimized using evolutionary
algorithms to explore the effects of fundamental design
changes. Moving towards a more flexible formulation,
Ramphueiphad and Bureerat (2018) optimized both fin
cross-section and height for a 3D heat sink using a multi-
objective evolutionary algorithm. This study revealed that
non-uniform fin cross-sections and fin heights are superior
to pin fin designs with a constant fin height. In our research,
we utilize topology optimization to provide maximal design
freedom, motivated by the positive correlation between
design flexibility and system performance observed in the
literature across multiple application domains.

The heat conduction topology optimization problems as
previously discussed translate to electronics applications
where heat generating devices also must satisfy strict tem-
perature constraints. In this work, two different sets of
topology optimization problems are investigated. First, an
investigation of optimization objective functions is pre-
sented on a benchmark heat transfer topology optimization
problem. The findings are applied to several practical prob-
lem formulations for power electronics on a domain with
discrete heat sources. The following sections will describe
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the topology optimization methodology and present numer-
ical results for all problem formulations.

2 Topology optimizationmethodology

To address the topological design of heat spreaders, a
density-based topology optimization approach is used. The
design domain is discretized into finite elements to match
the analysis domain. The analysis problem is solved using
a standard Galerkin finite element procedure with linear
shape functions. A design variable, xi , is assigned to each
finite element and is used to scale the material density of
the element. In this study, the solid isotropic micro-structure
with penalization (SIMP) method is used to bias the
elements towards solid (1) or void (0) material properties.
Using this method, the thermal conductivity of element,
i, κi , depends on the associated design variable xi in the
following manner:

κi = κmin + α(xi)κ0, α(xi) = xP
i , (1)

where α(·) is a penalty function and P is a penalty param-
eter, which is increased at intervals to improve optimization
convergence. The elemental thermal conductivity is allowed
to vary between κmin = 1W/mK and κ0 = 400 W/mK.
The method of moving asymptotes (MMA) algorithm is
used to optimize the nonlinear design optimization prob-
lem until a convergence tolerance of 0.01 on design variable
changes, or a maximum of 100 outer loop MMA iterations
is reached.

A custom finite element analysis code was written in
Matlab to analyze thermal properties on the domain using
four node elements with linear shape functions. A regular
mesh of 300 × 300 elements was chosen for both design
and analysis as it produced < 0.1% error in the maximum
temperature when compared with a benchmark COMSOL
analysis. A density filter is used where appropriate to
enforce length-scale control on the domain and the adjoint
method is used to obtain gradient information for the
objective and constraint functions. These definitions are
consistent across all presented case studies unless otherwise
noted.

2.1 Adjoint differentiation

The derivative of the objective function is obtained using the
adjoint method. A discretize-then-optimize approach is used
to obtain the gradient of the objective function. Consider an
objective function, Θ , which can be represented by some
function, Π(·):

Θ(x) = Π(U(x),P(x), x), (2)

that depends on the thermal load, P, temperature, U, and the
design variable vector, x. The residual of the finite element
analysis is multiplied by an adjoint variable λ and is added
to this objective:

Θ(x) = Π(U(x),P(x), x)

+λT [K(x)U(x) − P(x)] . (3)

Note that K(x) is the stiffness matrix for the finite element
analysis. The gradient of this expression can be obtained
using the chain rule:

dΘ(x) = ∂Π

∂U(x)
∂U(x)

∂x
+ ∂Π

∂P(x)
∂P(x)

∂x
+ ∂Π

∂x

+λT

[
K(x)

∂U(x)
∂x

+ ∂K(x)
∂x

U(x) − ∂P(x)
∂x

]
. (4)

These terms can be rearranged to suggest useful choices for
the adjoint vector:

dΘ(x) =
(

∂Π

∂U(x)
+λT K(x)

)
∂U(x)

∂x
(5a)

+
(

∂Π

∂P(x)
− λT

)
∂P(x)

∂x
(5b)

+∂Π

∂x
+ λT ∂K(x)

∂x
U(x). (5c)

Based on the problem formulation, the adjoint vector, λ,
can be chosen such that expensive gradient calculations are
avoided. For example, if the problem does not have design-
dependent loading, Eq. (5b) drops out. Simplifications such
as this become apparent when considering the boundary
conditions in the problem formulation.

2.2 Density filtering

To enforce the minimum length-scale requirements, a linear
density filter is used.

ρ̃ =
∑
j

wijρj , (6)

where the weighting function, w, is defined based on the
centroid distances of neighboring elements:

wi,j =
{

R−d(i,j)∑
(R−d(i,k))

j ∈ Ni

0 j /∈ Ni .
(7)

The filter weight, wi,j , is scaled based on the difference
between a prescribed minimum radius, R, and the distance
between element centers d(i, j), and a summation of
neighboring element distances, d(i, k). This simple filter
is effective at biasing the designs to satisfy the minimum
radius constraint. There are many other filtering strategies
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that can be used to influence design representation; refer to
Svanberg and Svärd (2013) for a helpful study of filters.

2.3 Boundary definiteness

Using a filter effectively biases the design towards
satisfying the minimum radius constraint and makes the
design solution independent of the analysis mesh size.
However, using a filter also results in a design with an ill-
defined solid/void interface. This interface is defined by
elements with partial density. A strategy to measure the
boundary definiteness was proposed by Dirker and Meyer
(2013) and is presented in the following equation:

ε = 1 − mean(x2 − x)

V 2
max − Vmax

, (8)

where the boundary definiteness, ε, is measured as the
difference between 1 and a function of the partially defined
material. This function compares the fraction of elements
which are partially defined to the fraction of elements which
are conductive, Vmax. This measure of boundary definiteness
will be used in the following sections to compare the
boundary quality of the heat spreading structures.

3 Objective function investigations

This first set of studies involves designing a heat sink using
three sets of boundary conditions for a 1 × 1 m homogene-
ously heated domain (Fig. 1). This analysis problem was
chosen to showcase the effect of objective function selection
for a design problem that is commonly solved in the
literature. This design domain can serve as an abstraction
for a system with some distribution of heat on the domain;
solving for discrete sources, as are common in power
electronic systems, is a simple extension of this, as will be
demonstrated in the next section.

The design domain, Ω , is homogeneously heated, the
Neumann boundary (left, right, and top boundaries), �N , is
adiabatic, and the Dirichlet boundary (bottom boundary, or

point), �D , has fixed temperature. These properties can be
expressed as:

∇ · (κ∇T ) + f = 0 on Ω, (9)

T = 0 on �D, (10)

(κ∇T ) · n = 0 on �N . (11)

In this design problem, a constant power of 1,000 W
is applied uniformly to the design domain, independent
of the design parameters. A conductive heat spreader is
optimized to extract heat from this domain through the
fixed temperature boundary. In application, a secondary heat
exchanger may be present to maintain the lower boundary
at a fixed temperature. In all of the following examples, this
boundary temperature is fixed at 0 ◦C.

To achieve the goal of reducing the temperature on the
domain, consider this commonly used topology optimi-
zation design problem formulation presented in (P1):

min
x

Θ(x)

s. t. V (x) ≤ Vmax

R(x) ≥ Rmin

0 ≤ x ≤ 1, (P1)

where some objective, Θ , is minimized subject to a volume
constraint. The volume, V , is constrained by a maximum
value, Vmax, and a minimum radius constraint is imposed
where the radius of design features, R, must be greater than
a prescribed value, Rmin. For 2-dimensional examples, the
volume constraint translates to an upper limit on area, con-
straining the amount of conductive material used. For this
problem formulation, conductive material is restricted to
30% of the domain area. The minimum radius constraint
is implicitly satisfied via the density filter described in
the previous section; the filtering radius is set to 0.04 m.
This formulation (P1) works particularly well for structural
topology optimization, where a volume constraint may rep-
resent a cost requirement and the minimum feature size
of a structure may be restricted by manufacturing tech-
nology (Patterson et al. 2019). Furthermore, the formula-
tion is straightforward to implement and fairly numerically

Fig. 1 Three insulated homogeneously heated domains with fixed temperature boundaries. A fully fixed boundary (left), a partially fixed boundary
(center), and a point-fixed boundary (right) are shown
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stable when using a SIMP topology optimization approach
with the MMA algorithm. It is important to note that the
actual numerical optimization problem, theMMA algorithm
solves, does not include the radius constraint, as this is
implicitly satisfied using the density filter.

3.1 Candidate objective functions

The first objective of interest is thermal compliance. This
objective is defined as the product of the heat flux, q, and
temperature gradient, ∇T :

Θ(x) =
∫

Ω

q∇T dΩ → Θ(x) = UT P. (12)

The compliance metric may be represented simply by
the dot product of the thermal load, P, and the nodal
temperature vector, U. This is a popular objective function
because the adjoint variable can be defined directly using
a known quantity, U, eliminating the need to solve an
additional linear system for the adjoint variable.

A mean temperature objective is an alternative to the
compliance objective that may align better with the goal of
reducing the domain temperature. The thermal compliance
objective biases the performance of the structure in areas
where there is input heat flux. A mean temperature objective
does not explicitly account for the influence of the loading
conditions:

Θ(x) = 1

n

∫
Ω

T dΩ → Θ(x) = LT U
n

. (13)

In discrete form, the mean temperature objective can be
represented—in terms of finite element model quantities—
as the product of a vectors of ones, L, and the nodal
temperature vector, U, divided by the number of finite
element nodes n.

Often, the goal of a heat spreader is to help reduce the
maximum temperature on the domain. If point-wise hot
spots are a primary concern, then minimizing maximum
temperature may be a more appropriate objective than ther-
mal compliance or mean temperature. The max function,
however, is not differentiable. As an approximation to the
max function, a p-norm approximation is used here:

Θ(x) = ||T ||p → Θ(x) =
(
LT Up

)1/p
. (14)

The p-norm approximates the maximum temperature
by applying a root to the power p on the summation
of temperature to the power p. The accuracy of this
approximation increases with the magnitude of p, and as
p → ∞, the norm converges to the max function. The
discrete problem can be described similarly, where the
summation is replaced with the product of a ones vector,
L, and the nodal temperature vector, U, raised to the power

p. To maintain a smooth approximation function with well-
defined derivatives, p = 10 is chosen. This will not result
in an accurate measure of the maximum temperature on the
entire domain, but the gradient of which should direct the
topology towards a “lower” temperature solution.

While minimizing temperature is an important goal of
heat spreader design, some situations involving electronics
may favor temperature uniformity, where large temperature
gradients adversely affect performance. While the max
or mean temperatures provide some useful information
about the temperature distribution on the domain, these
single parameters do not capture more global information.
One way to quantify temperature homogeneity across the
domain is to use temperature variance as an objective:

Θ(x) = 1

n

∫
Ω

(T − Tav)
2 dΩ

→ Θ(x) = 1

n

(
U − LT U

n

)T (
U − LT U

n

)
, (15)

where the temperature variance is given by the average of
the squared difference of an element temperature, T , and the
average temperature, Tav. This can be represented in discrete
form in terms of the ones vector, L, and the temperature
vector U.

3.2 Optimization results

The optimized designs for the homogeneous heating
design problem considering all optimization objectives and
boundary conditions are presented in Table 1. The optimizer
converged to the best solution for the given objective.
The computational expense using these objective functions
in optimization is comparable since they share the same
problem formulation and an equal number of operations
are required to numerically obtain the derivatives. All four
of the objective functions reached the maximum iteration
limit without reaching any MMA inner-loop iteration limits.
When optimizing for a particular objective, performance
improvements in the range of 1–112% were observed
between solutions. The potential performance improvement
dwarfs any variations in computational expense that are
experienced from the use of the MMA algorithm. As such,
the use of proxy objective functions in an effort to reduce
computational expense is not recommended.

The compliance and mean temperature optimization
routines converged to nearly identical optimized topologies
for all three boundary condition variations. Investigating
the mathematical formulation of these objectives reveals
that they are linearly proportional. The mean temperature
objective is a summation of temperature values divided
by a constant. For the homogeneously heated domain
design problem, compliance is also the summation of
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Table 1 Topology optimization solutions for various objective functions. Solutions share a common color scale for each boundary condition

D

N

Ω

N

Ω

D

D

N

Ω

temperature, but multiplied by a constant (thermal load). For
this specific design problem where the load is uniformly
distributed, the thermal compliance derivatives point in the
same direction as the mean temperature derivatives during
optimization. For general non-uniformly distributed thermal
loading, the mean temperature objective should provide an
alternate topology. Furthermore, it can be concluded that the
compliance objective function for this problem formulation
should be used in place of the average temperature
objective for computational efficiency if minimum average
temperature is the preferred objective.

When using an approximate maximum temperature
objective function, temperature reductions of 13–30% were
observed when compared with topologies optimized by
other objectives. The reduction in domain temperature may
justify the use of this objective, even though the single
global approximation function loses accuracy for large

mesh sizes as observed by Lohan and Allison (2017).
Furthermore, the inaccuracy of the p-norm approximation
will propagate to the derivatives. However, the p-norm
function will overestimate the value maximum temperature
and is monotonic for values greater than zero. These
characteristics of the approximation function will point the
derivatives towards a “lower” temperature solution, which
may not represent the “lowest” temperature design, directly.
An accurate maximum temperature value may be calculated
directly using the maximum function after the optimization
solution is obtained.

The optimized structures when using the variance objec-
tive tended to be more dendritic. Conductive material is
allocated such that the non-conductive white space is more
evenly distributed on the domain. Furthermore, in all three
cases, the contact surface to the fixed temperature boundary
seems to be smaller than those for solutions obtained when
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Fig. 2 Temperature gradient
comparison between compliance
(left) and variance (right)
minimization solutions.
Normalized gradients share a
color scale. Variance-optimized
solution moves largest variance
gradients towards heat sink

0

0.2

0.4

0.6

0.8

1

using the other objective functions. To analyze these effects,
a normalized gradient is superimposed on the compliance
and variance-optimized topologies for the first boundary
condition in Fig. 2.

Notice how the compliance solution (left) has higher
gradient concentrations, denoted by the lighter contours,
near the black structure. These are located at the end points
of the conductive structure. The variance-optimized solution
does not feature the same magnitude of gradients at the
endpoints of the structure, and its highest gradients are
located near the heat sink. This may be due to the reduced
presence of conductive material (i.e., inverse taper) near the
fixed temperature boundary. Though this objective function
can be successfully used to minimize the variance of the
temperature on the domain, it does not minimize the average
temperature about which the variance is calculated. In some
cases, the temperature rose significantly, 30%, in order to
produce a solution with a minimized variance. To use this
objective function more effectively for electronics, it should
be paired with some form of temperature constraint. An
example formulation is presented in the next section.

4 Practical formulations for power electronic
systems

With a practical understanding obtained from analyzing
different objective function results in the previous section,
findings are applied to case studies relevant to power
electronics applications. Consider the 10 x 10 cm design
domain consisting of 8 discrete 5 mm × 2.5 mm heat
sources, illustrated in Fig. 3. The heat sources centers
are spaced evenly such that a = 2.5 cm and b = 2 cm.
One application that would produce such a domain is
an electronics circuit board where heat is generated by
electronic devices (Dede et al. 2018). This type of system
has additional design considerations, including devices with
distinct properties (different temperature limits, etc.). A
variety of problem formulations to address this design
problem class are investigated in the following sections.

The governing equations of this system involve heat
generation prescribed in specific regions, Ω1,...,8. In these
regions, the heat generating components are assumed to
be thermally conductive. The design domain, Ω0, does
not generate heat, and thermally conductive material
distribution will be designed via the optimization process to
extract heat. The governing equations of this system follow:

∇ · (κ∇T ) = 0 on Ω0, (16)

∇ · (κ∇T ) + f = 0 on Ω1,...,8, (17)

T = 0 on �D, (18)

(κ∇T ) · n = 0 on �N . (19)

For these studies, an input power, f = 1.25 W, is applied
to each of the eight rectangular devices on the domain, for
a total of 10 W of loss within the domain. The Dirichlet
boundary (bottom boundary) remains fixed at 0 ◦C, and
the Neumann boundary (remaining boundaries) restrict heat
flux out of the domain. Using a fixed temperature boundary,
where the device and heat sink will be connected by a
conductive bridge, small temperature variations between
device and sink are expected, and were observed for all case
studies. Though this accurately represents some electronics
systems, it is not true for all electronics systems. For all

Fig. 3 Simplified 2-D printed circuit board (PCB) domain with 8 heat
generating devices
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subsequent studies, the Dirichlet boundary is retained and
constraints are modified to account for this boundary condi-
tion for demonstration purposes.

4.1 Maximum temperatureminimization

With the recent advances in wide-band gap devices, the
temperature difference between heat source and sink may
vary by 100’s of degrees Celsius during steady state
operation. The accuracy of the p-norm approximation is
dependent on the magnitude of the norm value, and for
large temperature variations on the domain numerical issues
can be experienced. A similar situation is well studied in
structural mechanics, were stress is an important parameter.
In many cases, stress is enforced in a normalized constraint
to avoid these numerical issues (Le et al. 2010). In this
research, we adapt this concept in a novel way to perform
a normalized temperature minimization. One strategy to
normalize the temperature measurements is to optimize
the maximum temperature constraint value on the domain
while enforcing a temperature constraint. The problem
formulation (P2) is:

min
d

d1

s. t. V (x) ≤ Vmax

R(x) ≥ Rmin(
LT
1,...,8

U
d1

p)1/p

− 1 ≤ 0

0 ≤ d ≤ 1, (P2)

with the design vector defined as:

d = [Tmax, x]T = [Tmax, x1, ..., xn]
T . (20)

Here, the maximum temperature constraint value, d1, is mi-
nimized, subject to volume (≤ 30%), radius (≥ 0.4 cm), and
a single normalized p-norm temperature constraint. To pre-
vent numerical oscillations resulting from the temperature
constraint switching between active and inactive, a move

limit of 0.01 is applied to the maximum temperature design
variable. Device locations are fixed and the global temper-
ature constraint is only applied to device nodes, assuming
that other materials in the system are less sensitive to
temperature. If instead all points across the domain were
constrained to be less than Tmax, instead of just the devices,
this problem would be mathematically equivalent to the for-
mulation presented in Section 3 that minimized an approx-
imated maximum temperature. The topology optimization
solution for this problem is presented in Fig. 4.

The MMA algorithm found a “ladder-like” topology to
reduce the maximum device temperatures. The maximum
temperature of the devices are symmetric across the
central axis and are presented in order by device number:
[0.037 0.030 0.022 0.012 0.037 0.030 0.022 0.012] ◦C.
Minimizing maximum device temperatures may make sense
for electronic heat spreader design and similar problems
where device lifetime and temperature are correlated.

In addition to the adaptive normalization benefits,
this formulation presents increased design flexibility. For
example, consider the following objective function:

Θ(d) = Tmax 1(1 − d
p

1 ) + Tmax 2d
P
1 , (21)

where optimization may select an appropriate temperature
constraint based on the heat spreader design task. The value
for Tmax 1 is set to 0.02, which is beyond the capability
of the optimal heat spreading structure, and Tmax 2 is set
to 0.04, which is above the maximum temperature of
the optimal heat spreading structure. This objective may
serve as an abstraction of a component selection task
while considering heat spreading capability. It was observed
that the optimizer first tried to minimize the maximum
temperature on the domain. As the optimizer could not
satisfy the temperature constraint, the constraint limit was
increased. The optimizer successfully pushed d1 to a value
of 1 to select the components with a higher temperature
constraint. This resulted in the same topology as illustrated
in Fig. 4.

Fig. 4 Max temperature
optimization solution results in a
ladder-like structure

0

0.01

0.02

0.03
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4.2 Average temperaturematching optimization

In some electronics applications, the circuit performance
may be improved by matching the temperature of specific
sensitive devices. Furthermore, the optimization of elec-
tronic layouts may result in asymmetric device layout. To
emulate this, this next case study was formulated where the
devices nearest and furthest from the heat sink were required
to have identical temperatures, while satisfying maximum
temperature constraints on all eight devices. Consider the
case where devices 4 and 5 (as labeled in Fig. 3) must
operate at the same temperature for ideal performance. This
formulation is appropriate for photonics systems, where
device behavior is highly sensitive to temperature changes,
and maintaining similar temperatures on multiple devices is
required for desired performance. One approach to achieve
this is to minimize a square of the difference between the
average temperature of nodes corresponding to these two
devices:

min.
x

(
LT
4 U

n
− LT

5 U

n

)2

s. t. V (x) ≤ Vmax

R(x) ≥ Rmin(
LT
1,...,8

(
U

Tmax

)p)1/p

− 1 ≤ 0

0 ≤ x ≤ 1. (P3)

The elements of the selection vectorLi that correspond to
nodes within device i are 1, and all other elements are zero.
In addition to matching the temperature between devices 4
and 5, a general maximum temperature constraint across all
eight devices must be satisfied. The maximum temperature
constraint for each device is once again formulated as a
p-norm applied to device node temperatures. Since the
previous optimization found a minimummax temperature of
0.04 ◦C, this formulation relaxes the requirement to a known

feasible Tmax = 0.06 ◦C to demonstrate the capability
of the procedure. This design problem is again subject to
a volume constraint, where Vmax = 0.3, and a constraint
on the minimum feature size, Rmin = 0.4 cm. The design
variables are once again solely a function of material density
parameters: x = [ρ1, ..., ρn]T. This topology optimization
problem can be solved to result in the structure presented in
Fig. 5.

The temperature of the devices are given in order as
[0.525 0.474 0.042 0.059 0.510 0.038 0.262 0.157] ◦C. To
match the temperature of a device near the temperature
boundary and a device away from the temperature bound-
ary, the optimizer allowed device 4 to heat up to match
the temperature of device 5 (still satisfying the tempera-
ture constraint). The result is an asymmetric topology where
device 5 is connected to the boundary with conductive mate-
rial, and device 4 is minimally connected with thermally
conductive material.

4.3 Average temperaturemaximization

In this study, we demonstrate a practical use of an
average temperature optimization for an energy harvesting
application subject to localized temperature constraints.
This may be important for circuits with thermo-electric
devices that can harvest energy (Dede et al. 2016), or for
circuits placed near energy storage devices that require
higher temperatures to operate efficiently. One example of
this type of design problem can be formulated as:

min
x

− 1

n

(
LT
2 U + LT

6 U
)

s. t. V (x) ≤ Vmax

R(x) ≥ Rmin(
LT
1,...,8

(
U

Tmax

)p)1/p

≤ 1

1

n

(
LT
2 U − LT

6 U
)2 ≤ 0.01

0 ≤ x ≤ 1. (P4)

Fig. 5 Temperature matching
optimization solution produces
asymmetric structure to satisfy
maximum temperature
constraint
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Fig. 6 Constrained max
temperature optimization
solution produces a heat
spreading structure that avoids
specific devices

0

0.05

0.1

0.15

The objective now is to minimize the negative sum of
the average temperatures on devices 2 and 6. A p-norm
temperature constraint is enforced on the elements of
the remaining devices to prevent failure. The temperature
constraint is further relaxed here to 0.08◦ to demonstrate
the variation in topology. In addition to these constraints,
an additional temperature constraint is placed on devices
2 and 6 to ensure they operate at the same temperature.
The same constraint values for volume and radius are
prescribed: Vmax = 0.3 and Rmin = 0.4 cm, respectively.
The results of this topology optimization are presented
in Fig. 6.

As expected, the heat spreader design avoids devices
2 and 6 while connecting the heat sink directly to the
remaining devices. The maximum temperature on devices
2 and 6 was 0.15 ◦C, and the maximum temperature on
the remaining devices was 0.8 ◦C. The optimizer was
able to nearly double the maximum temperature on the
domain while maintaining the temperature constraint on the
remaining devices. Due to layout and boundary conditions
symmetry, the fourth constraint is somewhat redundant.

4.4 Temperature variance optimization

In Section 3, it was observed that the temperature variance
objective may increase the maximum temperature on the

domain to minimize the variance of the temperature on the
domain. In this study, we demonstrate a practical use of
temperature variance minimization subject to a localized
temperature constraint. Consider the following problem
formulation:

min
x

⎡
⎣1

n

(
U − LT U

n

)T (
U − LT U

n

)⎤
⎦
1,...,8

s. t. V (x) ≤ Vmax

R(x) ≥ Rmin(
LT
1,...,8

(
U

Tmax

)p)1/p

− 1 ≤ 0

0 ≤ x ≤ 1, (P5)

where the variance in temperature across all devices is
minimized, subject to a volume, minimum radius, and a
single temperature constraint across all device nodes. The
maximum allowable temperature here is relaxed to 0.06 ◦C
to allow room for the optimizer to rearrange material. The
same constraint values for volume and radius are prescribed
as Vmax = 0.3 and Rmin = 0.4 cm. The optimized struc-
ture is presented in Fig. 7.

The optimization algorithm converged to a solution
which connected most of the devices together to minimize

Fig. 7 Variance-optimized
solution subject to a global
temperature constraint.
Optimized structure maintains
0.1 ◦C temperature constraint
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the variance while satisfying the temperature constraint. The
conductive structure formed a partial-density connection to
the components closest to the fixed temperature boundary to
maintain the temperature constraint. This may be achieved
practically by selecting a different material, with lower
thermal conductivity, to interface the devices.

5 Conclusion

Though there are some technical limitations for topology
optimization as described by Dbouk (2017), topology optimi-
zation may be used creatively to achieve many design tasks.
Furthermore, these studies motivate a concept of designing
a temperature distribution for electronics applications. This
can be imposed with several objective and/or constraints,
instead of optimizing a single global parameter that des-
cribes performance.

In this research, several objective functions relevant to
power electronics applications have been investigated. It
was shown that thermal compliance and mean temperature
optimized structures are nearly identical for a homoge-
neously heated design domain. This is due to the mathemat-
ical similarity between objective functions. Using a p-norm
approximation of the maximum function can be used to con-
sistently produce “lower-” temperature solutions, despite
the inaccuracies in the gradient calculation. The variation-
optimized solutions produced more dendritic structures with
relatively small connections to the fixed temperature bound-
ary. These solution were observed to raise the maximum
temperature on the domain to enable minimization of the
variance in temperature on the domain.

These findings were used to design several practical for-
mulations for power electronics systems. The second design
problem considered a discrete heating domain, correspond-
ing to systems such as an electronics-printed circuit board.
For this design problem, several temperature constraints
where introduced to capture realistic requirements for PCB
applications. Formulations including design-dependent con-
straints, asymmetric loading, and temperature maximiza-
tions were considered. In utilizing various combinations
of objectives and constraints, a temperature distribution on
the domain was designed. Framing the optimization prob-
lem as designing a specific temperature map instead of a
minimizing temperature may lead to improved system-level
performance in power-dense applications.

One of the key advantages of topology optimization
is the ability to represent various topologies and solve
for their performance on a finite element mesh without
remeshing. The design variables do not have to be restricted

to material density scalars, as was demonstrated in this
study (P2), to make further use of the advantage. Integrating
additional system-level characteristics into this gradient
based optimization routine is left as a topic of future work.

6 Replication of results

To facilitate the replication of the results in this paper,
MATLAB� code for the objective and constraint derivatives
has been provided in Appendices 1 and 2. These have
been modified to interface directly with the 88-line or 99-
line MATLAB� codes (Andreassen et al. 2011; Sigmund
2001). The 99-line matlab code contains instructions to
modify the code for heat transfer. The MMA algorithm in
MATLAB� may be purchased to allow for exact replication
of these results (Svanberg 1987). If the MMA algorithm
is not available, MATLAB� fmincon() may be used to
optimize the design problems as well.
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Appendix 1. Continuous problem
formulation objectives

Table 2 Mean temperature objective derivative

Θ(x) = 1
n

∫
Ω

T dΩ → Θ(x) = LT U
n

f0val = mean(U);

df0 dU = ones(size(U))/((nelx+1)*(nely+1));

lambda f = -K(freeDOFS,freeDOFS)\df0 dU

(freeDOFS);

lambda = zeros(size(U)); lambda(freeDOFS)=

lambda f;

te = sum((lambda(edofMat)*KE.*U(edofMat)),2);

df = penal*xPhys.
∧(penal-1).*te;

df0dx = H*(df./Hs);

485



D. J. Lohan et al.

Table 3 p-norm maximum temperature objective derivative

Θ(x) = ||T ||p → Θ(x) = (
LT Up

)1/p

norm = 10

f0val = sum(U.∧ norm)∧(1/norm)
df0 dU = U.*U.

∧(norm-2)/f0val∧(norm-1);
lambda f = -K(freeDOFS,freeDOFS)\
df0 dU(freeDOFS);

lambda = zeros(size(U)); lambda(freeDOFS)

= lambda f;

te = sum((lambda(edofMat)*KE.*U(edofMat)),2);

df = penal*xPhys.
∧(penal-1).*te;

df0dx = H*(df./Hs);

Table 4 Variance objective derivative

Θ(x) = 1
n

∫
Ω (T − Tav)

2 dΩ → Θ(x) = 1
n

(
U − LT U

n

)T (
U − LT U

n

)

numNode = (nelx+1)*(nely+1);

f0val = 1/numNode*(U-(ones(size(U))/numNODE)’*U)’

*(U-(ones(size(U))/numNODE)’*U);

df0 dU = 2/numNode*(U-(ones(size(U))/numNODE)’*U).

*(1-ones(size(U))/numNODE);

lambda f = -K(freeDOFS,freeDOFS)\df0 dU

(freeDOFS);

lambda = zeros(size(U)); lambda(freeDOFS)=

lambda f;

te = sum((lambda(edofMat)*KE.*U(edofMat)),2);

df = p.penal*xPhys.
∧(penal-1).*te;

df0dx = H*(df./Hs);

Appendix 2. Discrete problem formulation
derivatives

Table 5 Temperature constraint objective derivatives

min
d

d1

s. t. V (d) ≤ Vmax

R(d) ≥ Rmin(
LT
1,...,8

(
U
d1

)p)1/p − 1 ≤ 0

0 ≤ d ≤ 1

f0val = x(1);

df0dd = zeros(nelx*nely+1,1); df0dd(1) = 1;

df1val = mean(xPhys.*Passive(:)) - volfrac;

df1 = ones(nelx*nely,1);

df1dd = [0; H*(df1./Hs)];

norm = 10;

f2val = sum(L.*abs(U/d(1)).
∧norm)∧(1/norm)-1;

Tapprox = sum(L.*abs(U/d(1)).
∧norm)∧(1/norm);

df2 dU = (L.*U).*abs(U).
∧(norm-2)/

Tapprox∧(norm-1);
lambda f = -K(freeDOFS,freeDOFS)\df2 dU

(freeDOFS);

lambda = zeros(size(U)); lambda(freeDOFS)=

lambda f;

te = sum((lambda(edofMat)*KE.*U(edofMat)),2);

df2 = penal*xPhys.
∧(penal-1).*te;

df2dd1 = -1*(((L.*U/d(1))).
∧(norm-1))’/

Tapprox∧(norm-1)*L.*U*d(1)∧(-2);
df2dd = [df2dd1; H*(df2./Hs)];

fval = [f1val; f2val];

dfdd = [df1dd’; df2dd’];
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Table 6 Temperature matching objective derivatives

min.
x

(
LT
4 U
n

− LT
5 U
n

)2

s. t. V (x) ≤ Vmax

R(x) ≥ Rmin(
LT
1,...,8

(
U

Tmax

)p)1/p − 1 ≤ 0

0 ≤ x ≤ 1

% Temperature matching objective

f0val = (((L4-L5)’*U)/sum(L4))
∧2;

df0 dU = 2*(((L4-L5)’*U)/sum(L4))*((L4-L5))/

sum(L4);

lambda f = -K(freeDOFS,freeDOFS)\df0 dU

(freeDOFS);

lambda = zeros(size(U)); lambda(freeDOFS)=

lambda f;

te = sum((lambda(edofMat)*KE.*U(edofMat)),2);

df = penal*xPhys.
∧(penal-1).*te;

df0dx = H*(df./p.Hs);

% Volume constraint

df1val = mean(xPhys.*Passive(:)) - volfrac;

df1 = ones(nelx*nely,1);

df1dx = H*(df1./Hs);

% Max element temperature constraint

norm = 10;

Tmax = 0.08;

f2val = sum(L.*abs(U/Tmax).
∧norm)∧(1/norm)-1;

Tapprox = sum(L.*abs(U/Tmax).
∧norm)∧(1/norm);

df2 dU = (L.*U).*abs(U).
∧(norm-2)/f2val∧(norm-1);

lambda f = -K(freeDOFS,freeDOFS)\df2 dU(freeDOFS);

lambda = zeros(size(U)); lambda(freeDOFS)=

lambda f;

te = sum((lambda(edofMat)*KE.*U(edofMat)),2);

df2 = penal*xPhys.
∧(penal-1).*te;

df2dx = H*(df2./Hs);

% Compile constraint values and derivatives

fval = [f1val; f2val];

dfdx = [df1dx’; df2dx’];

Table 7 Temperature maximumization objective derivatives

min.
x

1
n

(
LT
2 U + LT

6 U
)

s. t. V (x) ≤ Vmax

R(x) ≥ Rmin(
LT
1,3,4,5,7,8

(
U

Tmax

)p)1/p − 1 ≤ 0
1
n

(
LT
2 U − LT

6 U
)2 − 0.01 ≤ 0

0 ≤ x ≤ 1

% Temperature maximization objective

f0val = -((L2+L6)’*U)/sum(L2);

dg du = -(((L2+L6))/sum(L2));

lambda f = -K(freeDOFS,freeDOFS)\dg du(freeDOFS);

lambda = zeros(size(U)); lambda(freeDOFS)=

lambda f;

te = sum((lambda(edofMat)*KE.*U(edofMat)),2);

df = penal*xPhys.
∧(p.penal-1).*te;

df0dx = H*(df./p.Hs);

% Volume constraint

df1val = mean(xPhys.*Passive(:)) - volfrac;

df1 = ones(nelx*nely,1);

df1dx = H*(df1./Hs);

% Max element temperature constraint

norm = 10;

Tmax = 0.08;

f2val = sum(L.*abs(U/Tmax).
∧norm)∧(1/norm)-1;

Tapprox = sum(L.*abs(U/Tmax).
∧norm)∧(1/norm);

df2 dU = (L.*U/Tmax).*abs(U/Tmax).
∧(norm-2)/

Tapprox∧(norm-1);
lambda f = -K(freeDOFS,freeDOFS)\df2 dU

(freeDOFS);

lambda = zeros(size*(U)); lambda(freeDOFS)=

lambda f;

te = sum((lambda(edofMat)*FE.*U(edofMat)),2);

df2 = penal*xPhys.
∧(penal-1).*te;

df2dx = reshape(H*(df2./Hs);

% Temperature matching constraint

f3val = (((L2-L6)’*U)/sum(L2))
∧2;

df3 dU = 2*(((L2-L6)’*U)/sum(L2))*(((L2-L6))/

sum(L2));

lambda f = -K(freeDOFS,freeDOFS)\df3 dU(freeDOFS);

lambda = zeros(size(U)); lambda(freeDOFS)=

lambda f;

te = sum((lambda(edofMat)*KE.*U(edofMat)),2);

df3 = penal*xPhys.
∧(penal-1).*te;

df3dx = H*(df3./Hs);

% Compile constraint values and derivatives

fval = [f1val; f2val; f3val];

dfdx = [df1dx’; df2dx’; df3dx’];
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Table 8 Temperature variance objective derivatives

min.
x

[
1
n

(
U − LT U

n

)T (
U − LT U

n

)]
1,...,8

s. t. V (x) ≤ Vmax

R(x) ≥ Rmin(
LT
1,...,8

(
U

Tmax

)p)1/p − 1 ≤ 0

0 ≤ x ≤ 1

% Temperature variance objective

numNode = sum(L);

f0val = 1/numNode*(L.*U-(L’*U/numNODE))’

*(L.*U-((L’*U/numNODE));

df0 dU = 2/numNode*(L.*U-(L’*U/numNODE)).

*(L-L/numNODE);

lambda f = -K(freeDOFS,freeDOFS)\df0 dU(freeDOFS);

lambda = zeros(size(xPhys(:))); lambda

(freeDOFS)= lambda f;

te = sum((lambda(edofMat)*KE.*U(edofMat)),2);

df = penal*xPhys.
∧(penal-1).*te;

df0dx = H*(df./Hs);

% Volume constraint

df1val = mean(xPhys.*Passive(:)) - volfrac;

df1 = ones(nelx*nely,1);

df1dx = H*(df1./Hs);

% Max element temperature constraint

norm = 10;

Tmax = 0.06;

f2val = sum(L.*abs(U(:)/Tmax).
∧norm)∧(1/norm)-1;

Tapprox = sum(L.*abs(U(:)/Tmax).
∧norm)∧(1/norm);

df2 dU = (L.*U(:)).*abs(U(:)).
∧(norm-2)/

f2val∧(norm-1);
lambda f = -K(freeDOFS,freeDOFS)\df2 dU(freeDOFS);

lambda = zeros(size(U)); lambda(freeDOFS)=

lambda f;

te = sum((lambda(edofMat)*KE.*U(edofMat)),2);

df2 = penal*xPhys.
∧(penal-1).*te;

df2dx = reshape(H*(df2(:)./Hs);

% Compile constraint values and derivatives

fval = [f1val; f2val];

dfdx = [df1dx’; df2dx’];
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