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Abstract
In this paper, the multi-objective, multifidelity optimization of a wing fence on an unmanned aerial vehicle (UAV) near stall
is presented. The UAV under consideration is characterized by a blended wing body (BWB), which increases its efficiency,
and a tailless design, which leads to a swept wing to ensure longitudinal static stability. The consequence is a possible
appearance of a nose-up moment, loss of lift initiating at the tips, and reduced controllability during landing, commonly
referred to as tip stall. A possible solution to counter this phenomenon is wing fences: planes placed on top of the wing
aligned with the flow and developed from the idea of stopping the transverse component of the boundary layer flow. These
are optimized to obtain the design that would fence off the appearance of a pitch-up moment at high angles of attack,
without a significant loss of lift and controllability. This brings forth a constrained multi-objective optimization problem.
The evaluations are performed through unsteady Reynolds-Averaged Navier–Stokes (URANS) simulations. However, since
controllability cannot be directly assessed through computational fluid dynamics (CFD), surrogate-derived gradients are
used. An efficient global optimization framework is developed employing surrogate modeling, namely regressive co-
Kriging, updated using a multi-objective formulation of the expected improvement. The result is a wing fence design that
extends the flight envelope of the aircraft, obtained with a feasible computational budget.

Keywords Multi-objective optimization · Surrogate-based optimization · Regressive co-Kringing · Tip stall · Wing fence ·
Unmanned aerial vehicle

1 Introduction

The widespread use of unmanned aerial vehicles (UAV)
has become clear over recent years. Within the range of
UAVs that exists nowadays, this paper focuses on those
that operate at a chord-based Reynolds number (Rec) below
5 × 105, the condition which is referred to as low Reynolds
number flow (Lissaman 1983).

Airfoils operating at low Reynolds number conditions are
characterized by the appearance of a transitional separation
bubble (Wauters and Degroote 2018). It is therefore of
importance to correctly resolve this phenomenon to assure
a correct estimation of the flight behavior of the UAV.
This can be obtained by means of computational fluid
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dynamics (CFD) if appropriate turbulence modeling is
applied. The relatively low computational cost that is
attributed to Reynolds-Averaged Navier–Stokes (RANS)
simulations allows its use in increasingly complex 3D
geometries. In the last couple of decades, a number of
turbulence models have been developed that attempt to
model the transition phenomena that are attributed to low
Reynolds number flow. Here, Menter et al.’s γ −Reθ model
(Menter et al. 2006) is used based on a comparative study
of transitional turbulence models (Wauters et al. 2019). It
results in deviations of CL and CD up to 10% for the
investigated conditions near the stall angle.

The unmanned aerial vehicle which will serve as the base
of this study can be noted by its blended wing body (BWB)
design (Okonkwo and Smith 2016): a tailless aircraft with
its fuselage, the aircraft’s main body, integrated in the
wing. The absence of a horizontal tailplane enforces the
sweeping and twisting of the wing to obtain longitudinal
static stability, the intrinsic desire of the airplane to correct
minor changes in its angle of attack (AoA). However, the
sweeping of the wings introduces a pressure gradient on the
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wing normal to the free stream, decreasing from the root to
the tip. When the air is moving relatively slowly, such as
in the boundary layer, the flow will be influenced by this
distribution and be sucked towards the tip. Moving towards
the tip, this effect will result in a more rapid growth of the
thickness of the boundary layer and in a higher likelihood of
flow separation at high angles of attack, for example, during
landing. This leads to a loss of lift, commonly referred to
as stall, and loss of effectiveness of the control surfaces
(elevons). A special case of stall is tip stall. As its name
indicates, the tips of the wing start stalling first. This is a
common but unwanted characteristic of swept wings. Since
the tips are generally located behind the center of gravity
(CoG), tip stalling will result in a pitch-up moment, thus
pulling the plane further into stall.

A number of solutions have been developed to tackle the
problem of tip stalling, such as vortex generators (Bevan
et al. 2017; Namura et al. 2016) and wing fences (Williams
et al. 2010). The wing fence, boundary layer fence, or
potential fence can be defined as a plate which is placed
on top of the wing aligned with air flow and, depending on
its design, extending up to the trailing edge or extending
over the leading edge to the lower surface. It was the first
aerodynamic device introduced on swept wings to tackle the
phenomenon of tip stalling. It has a straightforward concept:
stopping the transverse component of the boundary layer
flow and changing the lift distribution (Haines 1980; Nickel
and Wohlfahrt 1994; Schlichting 1959). It is straightforward
to install on the wing without making any modifications to
the shape of the wing itself, making it an attractive device.

Optimization of the geometry of the wing fence to
obtain a stable but as slow as possible descent without
a severe loss of lift and controllability and in the
absence of a nose-up pitching moment translates itself
in a constrained multi-objective optimization problem.
In the 1990s, Multi-Objective Evolutionary Algorithms
(MOEAs), such as NSGA-ii, were often the first choice
to tackle such a problem. However, even with the advent
of high performance computing (HPC), this can be
computational infeasible when the calculation of objectives
and constraints relies on CFD simulations. Thus, an efficient
framework must be used such as the Efficient Global
Optimization (EGO) algorithm by Jones et al. (1998), which
relies on the introduction of an intermediate level in the
form of a surrogate model namely Kriging, which builds
forth on the concepts of Gaussian processes. The EGO
algorithm makes use of the Expected Improvement (EI)
to update the surrogate, but was developed for single-
objective problems. In the previous decade, a series of
multi-objective reformulations of the EI such as Keane’s
Euclidean Expected Improvement have been formulated
(Keane 2006; Couckuyt et al. 2014; Jeong and Obayashi

2005; Knowles 2005; Ponweiser et al. 2008; Zhang et al.
2010).

The description of the initial geometry and the optimiza-
tion problem, the definition of the objective functions and
constraints and the parameterization of the wing fence are
found in §2. The methodology by which the wing fence is to
be optimized is presented in §3: a surrogate-based optimiza-
tion framework is proposed combining low-fidelity data
obtained on a coarse grid and high-fidelity data obtained on
a fine grid by URANS simulations using the γ −Reθ model.
Furthermore, the operation conditions are added as variables
that can change continuously. As such, we overcome the
limitations of multipoint problems where the objective is
optimized in a discrete set of operating conditions (Kenway
and Martins 2015; Namura et al. 2016). In §4 the conver-
gence of the optimization is discussed, as well as the initial
design and the Pareto front from an aerodynamic point of
view.

2 Problem description

2.1 Optimization case

The minimization of the descent speed in a controllable
fashion without the risk of tip stalling through the
addition of a well-positioned and well-designed wing fence
translates into a constrained multi-objective optimization
case. The calculation of these objectives and constraints will
be explained in this section.

In Fig. 1, the force diagram of the UAV during descent
is presented, where L corresponds with the lift, D with
the drag, and W with the drone’s weight. The latter
is a fixed value, while the former two can be written
as CL(α, δ, Re) 12ρV 2S and CD(α, δ, Re) 12ρV 2S. In these
equations, CL and CD correspond with respectively the lift
and drag coefficients, both of which are a function of the

Fig. 1 Force diagram UAV drawn around the CoG
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angle of attack α, the elevon deflection δ and the Reynolds
number Re. ρ corresponds with the density of air, V with
the descent speed, and S with the projected area of the wing.
The Reynolds number is defined as Re = ρ · V · MAC/μ

with μ the dynamic viscosity of air and MAC is the mean
aerodynamic chord defined as 2

S

∫ b/2
0 c(y)2dy where y is the

coordinate along the span and b is the span. Also present in
the diagram are the thrust T , and the flight path angle θ and
the pitching moment Mpitch around the UAV’s CoG.

The equilibrium of vertical force, horizontal force,
and longitudinal moment1 are given by (1). Considering
the significant influence of the elevon setting on the
aerodynamic coefficients, CL, CD , and CM,pitch, the three
equations are directly coupled. This set of three non-linear
equations contains five unknowns: α, δ, θ , V , and T .
Thus, for every α, δ, and θ , the first objective V (and a
corresponding T ) can be determined using (1a) and (1b).
However, as three instead of only two out of the five
unknowns have been fixed for three equations, they are not
independent and have to satisfy the moment equilibrium in
(1c) which is the first constraint.

Increasing θ , thus descending steeper, decreases T up
to the point that a reverse trust must be generated. The
influence of θ on the V is minimal, the latter changing only
a few percent when changing the former between 0o and
20o. In this work, CL, CD , and CM,pitch are obtained using
CFD simulations, as will be explained further.

The second objective, controllability, is expressed as the
roll moment that is obtained through an infinitesimal elevon
deflection around the equilibrium position:

M ′(x′) = ∂Mroll(x
′)

∂δ
= 1

2
ρV (x′)2Sc

∂CM,roll(x
′)

∂δ
(2)

The absence of tip stalling corresponds to the absence
of the nose-up pitching moment and thus longitudinal
static stability, expressed as ∂CM,pitch/∂α < 0. The
longitudinal static stability is added as a second constraint.
Thus, a constrained multi-objective optimization problem is
obtained: the fence design is modified to minimize V while

1The longitudinal moment is addressed as the pitching moment
and defined as the total moment around the tranverse/lateral axis,
perpendicular to the symmetry plane with its origin in the center of
gravity. For equilibrium flight, this moment must equal zero. In this
regard, the pitching moment coefficient of the UAV differs from the
conventional pitching moment of an airfoil, which is defined around
its aerodynamic center.

maximizing controllability, subject to moment equilibrium
and longitudinal static stability constraints.

x′ = argmin
x′

{
V (x′), −M ′(x′)

}
s.t.

{
Equations 1a,b,c
∂CM,pitch(x

′)/∂α < 0 (3)

2.2 Parameterization

The parameters of the wing fence design are chosen such
that every combination can easily be meshed in a structured
manner as to avoid altering the grid discretization error (see,
Fig. 2). The fence is defined as the wall between structured
mesh blocks, leading to a zero-thickness fence. It is believed
by the authors that the inclusion of the thickness of the fence
leads to a larger displacement effect. However, the effect of
the aforementioned is of lesser impact than, for example,
position and height, which makes its inclusion undeserving
taking further into account the additional computational cost
attributed to the increased mesh complexity as follows:

1. The spanwise position of the fence (s), ranging from the
fuselage to the tip.

2. The height of the fence perpendicular to the wing (h),
expressed as a percentage of the aerodynamic chord,
ranging from 0 to 10%.

3. The length on the suction side of the wing (lup),
measured from the leading edge to the hinge point of
the elevon, expressed as a percentage of the constrained
local chord, ranging from 0 to 100%. The length does
not extend to the trailing edge, because it was found that
this introduces a strong buffeting on the elevon (Perry
and Port 1970).

4. The length on the pressure side of the wing (ldown),
measured from the leading edge to the hinge point of
the elevon, expressed as a percentage of the constrained
local chord, ranging from 0 to 100%.

3Methodology

3.1 Computational fluid dynamics

To model the transitional flow over the UAV, we use the
correlation-based γ −Reθ model, which builds on the k−ω

SST model, but distinguishes itself through the addition of
a supplementary transport equation for the intermittency γ

and the momentum thickness Reynolds number at transition
Reθt . The former represents the time fraction the flow is
turbulent and allows transition to be spread in space. The
latter assures that the model captures strong variations of
the turbulent intensity, which may occur due to turbulence
decay, the influence of the free-stream and the pressure
gradient (Menter et al. 2006). This model was chosen over
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Fig. 2 Mesh detail and
parametrization of the wing
fence

other transitional models based on a comparative study with
experimental data for high angle of attack behavior (Wauters
et al. 2019).

All calculations are performed using the CFD code
ANSYS Fluent 16.2 with a second-order upwind discretiza-
tion for convective terms, second-order central for diffusive
terms, least squares cell-based gradient approximation, a
transient second-order implicit formulation, and the SIM-
PLE pressure-velocity coupling.

The mesh is created in a hybrid manner: a structured
hexahedral mesh is created in the close proximity of the
body and extending in the wake through the generation of
blocks. Defining a wall between these blocks allows the
creation of the wing fences. Outside of the structured region,
an unstructured grid is created composed of tetrahedral
cells. Roache’s grid convergence index (GCI) is used
to quantify the discretization error, corresponding to an
estimate of the relative error that would be obtained in case
of grid doubling with a second-order method, even if the
former was not performed during the study (Roache 1994).

The refinement study has been performed on three levels
for the residual convergence, time step size and mesh size.
In the case of the meshes, two of them make up the low (1.5
million cells) and high (11.5 million cells) fidelity levels
used during the optimization. One finer mesh has been
added (24 million cells) to establish whether the low and
high-fidelity mesh lie within the asymptotic range such that
the mesh is fine enough to resolve the physical phenomena
correctly enough, even on the low-fidelity mesh. The
meshes have been assessed for the clean geometry at α =
15o, which approximately corresponds to the stall angle.
The functional that is evaluated is the lift coefficient, CL.
The low-fidelity calculation with a time step size of 1×10−5

has a GCI of 18.8% and takes approximately 500 core hours
to finish, while the high-fidelity simulation has a GCI of
2.7% using the same settings and takes approximately 5000
core hours to finish.

3.2 Surrogatemodeling

Expensive high-fidelity simulations are needed to correctly
resolve the progression of separation on the surface of
the UAV in the vicinity of the stall angle. However,
confronted with the staggering computational cost of a
single evaluation, an efficient methodology is sought to
find the optimal set of design parameters. An established
methodology to answer the problem at hand is found in
the field of surrogate modeling, which is actively used
for aerospace optimization problems (Wu et al. 2018;
Dhamotharan et al. 2018; Shi et al. 2018). This implies
that, after defining the objective function and the design
space, a design of experiments (DoE) is set up to select
samples in the design space, for which the objective function
is subsequently calculated and of which a surrogate is
defined. This cheap to evaluate surrogate or meta-model can
subsequently be sampled to define the entire characteristics
in function of the geometric design variables.

For the DoE, we use a Latin hypercube sampling (LHS)
approach (McKay et al. 1979) and make use of Morris
and Mitchell’s maximin distance φq to quantify the space-
filling property, optimized by simulated annealing (Morris
and Mitchell 1995).

The surrogate model used is Kriging, which can be
seen as the sum of a trend function and Gaussian process:
Y (x) = f (x)T β + Z(x) with E[Z(x)] = 0 and
f (x) = [fi(x), i = 1, ..., m] the vector of basis
functions, β the vector of coefficients, and Z(x) a Gaussian
process GP(0, cov(y(i), y(j))), with zero mean and fully
described by the covariance function cov(y(i), y(j)) =
σ 2cor(y(i), y(j)), where σ is the process variance and
cor(y(i), y(j)) is the correlation function between two
objectives and is noted for being a function of their
inputs and typically written as ψ(xi , xj ). Here, the Matérn
covariance function is used with ν = 3/2. The trend
is typically the solution of a regression problem and the
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Gaussian process captures the variation on this trend to
exactly interpolate the evaluated data.

In order to determine the parameters of the covariance
function, typically referred to as hyperparameters, we maxi-
mize the likelihood, L, that given the aforementioned surro-
gate can reproduce the evaluated data (Toal 2016). Solving
the maximum likelihood estimation (MLE) problem, we
can define the best linear unbiased prediction (BLUP),
which allows the prediction of unsampled locations x′ with
respectively the predicted mean and predicted variance:

μ(x′) = f (x′)T β + ψ(x′)T �−1(y − Fβ) (4)

s2(x′) = σ 2
(

1 − ψ(x′)T �−1ψ(x′) +
(
FT �−1ψ(x′) − f (x′)

)T

(
FT �−1F

)−1 (
FT �−1ψ(x′) − f (x′)

))

(5)

with F the model matrix: Fi,j = fi(x
j ) and �

the correlation matrix: �i,j = ψ(xi , xj ), ψ(x′) =
[ψ(x1, x′), .., ψ(xn, x′)] and the MLE of the coefficient
vector and the process variance defined by the following:
β = (F�−1F)−1FT �−1y and σ 2 = 1

n
(y − Fβ)T �−1(y −

Fβ). Furthermore, an analytic expression of the partial
derivatives of the surrogate to its input parameters can be
derived, given by the following:

∂μ(x′)
∂xi

= ∂f (x′)
∂xi

T

β + ∂ψ(x′)
∂xi

�−1(y − Fβ) (6)

The idea of the gradient predictor is related to gradient-
enhanced Kriging (Han et al. 2013; Han et al. 2017). But, in
contrast to the aforementioned model, here the correlation
function has to be only differentiable once, since we do
not need the second derivative of the correlation function to
build the covariance matrix.

The accuracy of the surrogate can be significantly
enhanced for the same computational budget if multiple
fidelity models or grid levels are available (Forrester et al.
2007; Kennedy and O’Hagan 2000; Toal 2015). Co-Kriging
can be considered a powerful correction process which
uses the correlation between cheap and expensive data
to enhance the prediction accuracy. We refer to the most
accurate expensive data values ye at points Xe and the
less accurate cheap data yc at points Xc. Conform the
notion of correction processes, the co-Kriging formulation
presents the surrogate of the expensive model Ye as the
sum of the surrogate Yc, of the cheap data (Xc, yc) and the
surrogate Yd, of the residuals (Xe, ye − ρdμc(Xe)), with
ρd the scaling factor. The construction of the model occurs
similar to the manner by which it was defined above: with
a sequential construction of the two surrogates, where the
scaling factor is determined through MLE along with the
second surrogate.

The filtering of noise (e.g., due to discretization errors)
can be achieved through the introduction of a regression
constant λ that is added to the diagonal of the covariance
matrix � (Forrester et al. 2006). Consequently, the data
is not interpolated as for |x(i) − x| → 0, the correlation
becomes cor(x(i), x) = 1 + λ. The regression constant λ

is determined using maximum likelihood estimation in a
similar manner as the other model parameters.

The construction of the Kriging model is performed
using an in-house toolbox ooDACE (object-orientated
Design and Analysis of Computer Experiments) (Couckuyt
and Dhaene 2014). The maximization of the concentrated
log-likelihood function is performed through a multistart
sequential quadratic programming methodology.

The stochastic nature of Kriging allows for the assess-
ment of the uncertainty in the prediction. This can be used
to define the expected improvement, which balances explo-
ration (minimization of the uncertainty in the prediction)
and exploitation (minimization of the objective). This infill
criteria forms the basis of the well-known efficient global
optimization (EGO) algorithm by Jones et al. (1998). Keane
presented a multi-objective formulation of the expected
improvement for two objectives based on the Euclidean
distance and often referred to as such Keane (2006).

When dealing with a constrained optimization problem
EI should decrease to zero when the constraint is violated.
Given the surrogate of the constraint, we can calculate the
probability of the prediction not violating the constraint
limit, i.e., the probability that the constraint is met,
P [F(x)], where F is the measure of feasibility. Under the
assumption of uncorrelated objectives and constraints, it is
straightforward to reformulate the expected improvement
such that it accounts for the probability of feasibility
E[I (x) ∩ F(x)] = E[I (x)]P [F(x)]. This implies that
at a given point in the design space, while the predicted
constraint might be violated, the predicted errors in the
constraint models are different from zero and as such the
expectation of improvement will be low, but not zero,
since there is a finite possibility that a full evaluation of
the constraints may actually reveal a feasible design. This
allows design space exploration in the early stages of the
optimization methodology, but ensures convergence to the
exact constrained optimum (Forrester et al. 2008; Zhang
et al. 2019; Sasena et al. 2002).

3.3 Optimization framework

Combining all the aforementioned, we can create a
surrogate-based optimization methodology (Fig. 3). First,
a LHS of 10d points (with d the dimensionality of the
problem, equal to 6:4 design parameters and 2 operating
parameters, α and δ) is created to be evaluated by the
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Fig. 3 Flowchart of the
optimization framework

low-fidelity model and from this LHS a subset of space-
filling subset of 3d points is selected to be evaluated by
the high-fidelity model. The selection of samples follows
the guidelines from Toal (2015), Loeppky et al. (2009),
and Marrel et al. (2009). Therefore, it is expected that
the influence of another LHS on the outcome of the
optimization would be small. However, this was not verified
due to the high computational cost of the optimization.

Furthermore, the corner points of the design space are also
evaluated by both the low- and high-fidelity models.

The evaluation of the design sets through URANS
simulations using the γ − Reθ model performed at a fixed
velocity2 close to the stall speed gives us CL(x), CD(x),

2We assume at this point that the variations in Re during the
optimization are small enough to be negligible
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CM,pitch(x) and CM,roll(x). The former two can be plugged
in the horizontal and vertical equilibrium equations to
determine the minimum V along with the corresponding T .

From the obtained Vmin(x), CM,pitch(x), and CM,roll(x),
surrogates can be constructed that are cheap to evaluate and
can produce the partial derivatives to the different design
parameters. This allows the evaluation of the objectives
for every parameter set combination. Furthermore, two
constraints can be evaluated: P [CM,pitch(x) = 0] which
corresponds to the momentum equilibrium equation and
P [∂CM,pitch(x)/∂α < 0] which corresponds to longitudinal
static stability, and thus absence of the nose-up pitching
moment attributed to tip stall. Through the introduction of
surrogates, which allow a direct analytic evaluation of their
gradients, we avoid the need to perform adjoint or costly
finite difference approaches to determine both the second
objective and constraint, which leads to a very efficient
optimization framework.

The error in the prediction attributed to the descent speed
is directly obtained from the surrogate. However, for the
controllability coefficient, it is calculated indirectly through
the use of error propagation formulas:

s2M ′(x′)=M ′(x′)2
[(

scM,roll(x
′)

cM,roll(x
′)

)2

+
(
2V (x′)sV (x′)

V (x′)2

)2
]

(7)

with scM,roll and sV respectively the standard deviation of the
prediction of the surrogate of the roll moment coefficient
cM,roll and the velocity sV .

While this introduces a correlation between the objective
functions, we further assume them to be uncorrelated
and use the multi-objective expected improvement formula
multiplied with the two constraints. To determine the next
infill point, we maximize this MOEI with a multistart SQP
algorithm to ensure a global optimum of the multi-model
objective, which is then evaluated using the high-fidelity
model. This optimization procedure is then repeated until
convergence, EInorm3< 1%, or until the calculation budget
runs out, corresponding to an additional 40 calculation,
corresponding with an infill to DoE ratio of roughly 1:2.

Conventional optimization techniques that optimize a
design for a number of operation conditions (multipoint)
take a weighted sum of their objective function (Namura
et al. 2016; Kenway and Martins 2015). However, this
only moves the problem further downstream: what weight

3The constrained expected improvement is divided by the Euclidean
distance of the two points farthest from each other in de objective
space.

is attributed to which condition? Furthermore, operation
conditions such as stall are not known in advance and
should be determined iteratively. By adding the operation
conditions as variables to the optimization problem, the
aforementioned limitations can be overcome. The continuity
of α and δ results in a continuous optimization. Thus,
changing α for every fence design results in a new δ (to
obtain CM,pitch = 0), CL and CD and consequently a
changing V and M ′. Every fence introduces thus by itself
a Pareto front4: decreasing the α leads to a higher V and
higherM ′. The Pareto front of the entire design space is thus
a summation of Pareto fronts of fences.

4 Results and discussion

4.1 Optimization convergence

To illustrate the convergence of the optimization method-
ology, the first six iterations after the DoE are displayed
below (Fig. 4). In blue, we see the unconstrained pre-
dicted Pareto front, determined by the objective functions.
The red line represents the constraint predicted Pareto, of
which the design are characterized by CM,pitch = 0 and
∂CM,pitch/∂α < 0. The black line represents the initial
design, noted for its complete absence of a fence. The green
line represents the Pareto front made up out of evaluated
points that meet the constraints. It is the objective to bring
the latter as close as possible to the predicted constrained
Pareto. The light blue dots indicate the Pareto of evaluated
points which are either characterized byCM,pitch �= 0 and/or
∂CM,pitch/∂α > 0. The purple dot presents the next infill
point with maximum constrained MOEI. All the predicted
Pareto fronts are found using NSGA-ii.

A first observation that can be drawn when comparing
the first six iterations and the final Pareto front (Fig. 4g) is
how the unconstrained Pareto shows little movement. This
indicates that the surrogates of velocity and controllability
are already fairly accurate after the DoE. Secondly, the
constrained Pareto shows strong movement, indicating the
early inaccuracy of the pitching moment surrogate. This can
also be derived from the fact that the evaluated Pareto does
not change in the first four iterations, indicating that the new
infill points did not meet the constraints. A third observation
to be drawn is how the evaluated points move around. This
is caused by the fact that the controllability coefficient is

4The Pareto front is the front defined in the objective space by the
Pareto optimal points for which one cannot improve on one without
deteriorating on the others.
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Fig. 4 Convergence of the optimization algorithm
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Table 1 Optimal fence designs

Design α δ s h lup ldown V M ′

[o] [o] [%] [%] [%] [%] [m/s] [m2/s2]

MSID 14.6 3.607 − − − − 13.58 7.4186

MCID 10.0 3.056 − − − − 18.32 10.00

MSD 15.445 3.662 54.30 80.43 5.45 5.19 12.59 8.09

OBD 15.185 5.008 48.85 79.13 7.13 13.50 12.87 13.36

MCD 14.856 6.215 47.82 74.52 11.04 85.54 13.70 20.16

obtained indirectly through the surrogate as opposed to the
velocity.

To illustrate the convergence of the optimization method-
ology, the change of the normalized hypervolumes56 of the
unconstrained, constrained, and clean wing Pareto after the
DoE are illustrated below along with the stopping crite-
rion (Fig. 4h). The predicted Paretos are presented here
instead of the evaluated once because we are using a regres-
sion model under the assumption that with the addition of
infills the surrogate will become correcter than the CFD
simulations, which are subjected to a discretization error.
It can be observed that the unconstrained Paretos and the
initial design stay fairly constant during the optimization.
This is conform earlier observations. Furthermore, the ini-
tial design stabilized at iteration 15 and the unconstrained
Pareto stabilizes at iteration 30, at which point the expected
improvement decreases to nearly zeros. On the other hand,
the constrained Pareto upholds a fluctuating behavior, indi-
cating that the surrogate of the pitching moment is still
moving around and that additional infill points are required.
This indicates that caution is in order when using the
normalized constrained expected improvement as stopping
criterion.

4.2 Optimal fences: Pareto front

A first observation that can be drawn when examining
the Paretos after the final iteration (Fig. 4g) is the limited
decrease in the descent speed that can be obtained, while
on the other hand, a noteworthy increase of controllability
is more attainable. The limited speed gain corresponds to

5The hypervolume is the Lebesgue measure contained by the
attainment surface and a chosen reference points. The attainment
surface was defined by Fonseca and Fleming (1996) as “the boundary
in the objective space separating those points which are dominated by
or equal to at least one of the data points, from those which no data
points dominates or equals” and thus corresponds to the Pareto front.
6The Pareto fronts are rescaled to a 1-on-1 box. This is done such that
the influence of both objectives on the hypervolume is nearly equally
significant.

the findings of Das (Schlichting 1959). Haines attributed
the significant lift increase attainable to the presence of
a leading edge vortex (Haines 1980), which is absent
altogether on the UAV examined here.

An assessment of three different fence geometries that
have been evaluated and meet the constraints is presented
below: on one end of the Pareto front, the fence with
which the lowest descent speed is obtainable, to which we
will refer as minimal speed design (MSD), on the other
end of the Pareto front, the fence with which the highest
controllability is obtainable, to which we will refer as the
maximal controllability design (MCD), and a fence which
outperforms both objectives in comparison with the initial
design, to which we will refer as the overall better design
(OBD). Since every fence design, and thus also the absence
of a fence, leads to a Pareto front, we refer to the condition
of maximum controllability in the absence of a fence as
the maximal controllability initial design (MCID) and the
condition of minimum descent speed as the minimal speed
initial design (MSID). The parameters of the respective
designs are presented in Table 1 and Fig. 5.

Moving along the constrained Pareto fromminimal speed
to maximal controllability, a decrease of angle of attack is
to be observed, along with an increase of elevon deflection,
inward movement (away from the tip) of the fence, a
decrease of the height and both an increase of length on
suction and pressure side. The decrease of α leads to a lower
CL, and thus higher V and higher M ′. The decrease of s

leads to a bigger region of attached flow at the tip, thus
requires a larger δ to uphold pitching equilibrium, which
in turn reduces CL but increases the effectiveness of the
elevons and thus increases M ′. A decrease of the length
on the suction side requires an increase of the height to
maintain the same effectiveness. A shorter fence length on
the suction side leads to a later separation on the inboard
side and a higher CL, thus lower V and corresponding lower
M ′. An increase of the length of the fence on the pressure
side leads to a redirection of the flow on the pressure
side towards the elevon and increases its effectiveness, thus
increasing M ′.
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Fig. 5 Optimal fence designs (MSD in red, OBD in blue, and MCD in green)

5 Conclusion

In this paper, a multi-objective multi-fidelity surrogate-
based optimization of the stall characteristics of an
unmanned aerial vehicle through the addition of a wing
fence was performed. The UAV under consideration is
characterized by the appearance of tip stall, leading to
a nose-up pitching moment and loss of control. The
introduction of a wing fence, a small plate placed on top
of the wing aligned with the flow, alters the stall behavior
by moving the point of separation away from the tip to the
inboard side of the fence. With the objective of minimizing
the descent speed and maximizing the controllability,
defined as the roll moment initiated through an elevon
deflection around its pitching moment equilibrium, the wing
fence, parameterized by location, height and length on
both pressure and suction side, was adapted. Furthermore,
the angle of attack and elevon deflection were added
as parameters, resulting in a continuous optimization. In
addition to the objectives, a constraint to obtain the pitching
moment equilibrium and a constraint to ensure longitudinal
static stability, which goes hand in hand with the absence of
tip stall, were introduced.

A framework was built around regressive universal co-
Kriging combining two fidelity levels based on grid size
and using regression rather than interpolation to account for
the appearance of discretization and averaging errors. By
building surrogates for both the objectives and constraints,
a trustworthy, but relatively inexpensive optimization was
obtained. The constraint of stability and objective of
controllability correspond to gradients from CFD output and
are calculated analytically using the surrogates, effectively
avoiding the need to determining the gradients using CFD
which can be both hard (using adjoints) or costly (using
finite difference schemes). Assessment of the hypervolumes
and infill criterion convergence has shown the importance
of defining a correct stopping criterion when dealing with
constrained problems using surrogate-derived gradients.

The result is a Pareto front of fence designs and angle
of attack and elevon settings that may outperform the initial
design in either obtaining a slower descent speed or higher
controllability or both.

6 Replication of results

The framework, written in bash, linking together mesh
generation (Gambit), simulation (ANSYS Fluent), and
optimization (Matlab) that performs the grid convergence
study and optimization has been made available as
supplementary material on the SMDO website.
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