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Abstract
We propose an iterative separable augmented Lagrangian algorithm (SALA) for optimal structural design, with SALA being
a subset of the alternating directions of multiplier method (ADMM)–type algorithms. Our algorithm solves a sequence of
separable quadratic-like programs, able to capture reciprocal- and exponential-like behavior, which is desirable in structural
optimization. A salient feature of the algorithm is that the primal and dual variable updates are all updated using closed-
form expressions. Since algorithms in the ADMM class are known to be very sensitive to scaling, we propose a scaling
method inspired by the well-known ALGENCAN algorithm. Comparative results for SALA, ALGENCAN, and the Galahad
LSQP solver are presented for selected test problems. Finally, although we do not exploit this feature herein, the primal and
dual updates are both embarrassingly parallel, which makes the algorithm suitable for implementation on massively parallel
computational devices, including general purpose graphical processor units (GPGPUs).

Keywords Structural optimization · Separable augmented Lagrangian algorithm (SALA) ·
Alternating directions of multiplier method (ADMM) · Separable quadratic program (QP) ·
Scaling

1 Introduction

In this paper, we consider an equality constrained nonlinear
optimization problem PNLP of the form

min
x

f (x)

subject to gj (x) = 0, j = 1, 2, . . . , m,

li ≤ xi ≤ ui, i = 1, 2, . . . , n, (1)

where f (x) is a real-valued scalar objective function and the
gj (x), j = 1, 2, · · · , m are m equality constraint functions,
which depend on the n real (design) variables x = {x1, x2,

· · · , xn}T ∈ X ⊂ Rn, with li and ui , respectively, the
lower and upper bounds on variable xi . The functions f (x)

and gj (x) are assumed to be (at least) once continuously
differentiable.
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Although many or possibly even most interesting
problems in structural optimization are normally formulated
using inequality constraints only,1 it is convenient to herein
use only equality constraint functions, for reasons that
will become clear in sections to follow. Accordingly, we
will assume that any inequality constraints present may be
reformulated as equality constraints, with the aid of so-
called slack variables sj . In this approach, an inequality
constraint gj (x) ≤ 0 is rewritten as

gj (x) + sj = 0,

subject to sj ≥ 0. Similarly, a separable inequality
constraint can be rewritten as

gji(xi) + sji = 0,

subject to sji ≥ 0. This simple technique is not only well
known but also often used, even in successful commercial
codes, e.g., see Nocedal and Wright (2006) and Conn et al.
(1992). For the sake of brevity, we will in the following not

1A notable exception being the so-called simulated analysis and design
(SAND) methodology.
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even mention the presence of the slack variables sj and sji

for inequality constraints; their use is implied.
Arguably, the state-of-the-art in structural optimization

is to use a sequential approximate optimization (SAO)
algorithm to solve problem PNLP. SAO relies on the
iterative solution of a sequence of approximate optimization
problems PP[k], k = 0, 1, 2, · · · . In turn, the approximate
optimization problems, or subproblems, are normally based
on approximation functions g̃j (x) which have a relatively
simple structure, albeit that they may all be nonlinear. Then,
at some iterate xk , we obtain continuous primal approximate
subproblem PP[k], written as

min
x

f̃ (x)

subject to g̃j (x) = 0, j = 1, 2, . . . , m,

li ≤ xi ≤ ui, i = 1, 2, . . . , n. (2)

This primal problem contains n unknowns, m equality con-
straints, and 2n side or bound constraints (not counting
any slack or relaxation variables that may have been intro-
duced). The side constraints are normally handled in an effi-
cient way which does not require additional computational
effort.

In SAO, a most notable feature of primal approximate
subproblem PP[k] is that the approximation functions
f̃ (x) and g̃j (x) are separable. Possibly surprising at first,
this is routinely done since the evaluation and storage
of second-order information in structural optimization is
considered prohibitively expensive on the computational
devices available to us today. Instead, so-called intermedi-
ate or intervening variables are relied upon which, when
substituted into a linear Taylor series expansion, reveal
behavior that is representative of the underlying physics of
nonlinear optimization problem PNLP (assuming that the
physics is understood in the first place). The approxima-
tions then become linear in the intervening variables used.

In structural optimization for example, the reciprocal
intermediate variables zi = x−1

i are important and often
used, since they capture the inverse relationship between
stress and area well. Invariably, the intermediate variables
used themselves are separable; when substituted into a
linear or first-order Taylor series expansion, this of course
in turn results in separable approximations and hence
separable approximate subproblems PP[k].

Examples of popular algorithms that use separable
approximations include the convex linearization algorithm
(CONLIN) of Fleury and Braibant (1986) and its gener-
alization, the method of moving asymptotes (MMA) of
Svanberg (1987b, 1995). Groenwold and Etman (2011)
have proposed the use of separable diagonal quadratic
approximations, which rely on the so-called “approximated

approximations” approach to capture reciprocal-like behav-
ior (Groenwold et al. 2010). In this approach, the quadratic
approximation to the reciprocal approximation itself is
constructed, or even the quadratic approximation to the
CONLIN and MMA approximations already mentioned.

Given the dominance of separable approximations, it is
convenient to rewrite subproblems (2) as

min
x

n∑

i=1

f̃i (xi)

subject to
n∑

i=1

g̃j i(xi) = 0, j = 1, 2, . . . , m,

li ≤ xi ≤ ui, i = 1, 2, . . . , n. (3)

It is prudent to here mention that the SAO subprob-
lems used in structural optimization are often solved in the
dual space, which is problem-free from a theoretical point
of view, if the approximations are convex and separable
(although solution of the subproblems may still be demand-
ing). The use of pure dual methods is particularly popular
when inequality constraints only are present.

Of course, primal separability does not imply that the
associated dual problem often favored in structural opti-
mization will be separable; in general, this is indeed not the
case. Hence, in pure dual methods, we have the disappoint-
ing situation that even though the primal approximations
are all separable, the maximization over the dual variables
is not separable. (Notwithstanding, the primal-dual rela-
tionships may of course benefit from separability if the
approximations are simple enough.)

From a loss of separability point of view, augmented
Lagrangian (AL) methods or sequential unconstrained
minimization techniques (SUMT) do not help. Consider for
example the popular augmented Lagrangian statement due
to Rockafellar (1973):

L̃ρ(x, μ) = f̃ (x) +
m∑

j=1

μj g̃j (x) + ρ

2

m∑

j=1

(
g̃j (x)

)2
, (4)

where μj represent the Lagrangian multipliers, g̃j (x) the
separable constraint approximation functions, and ρ a
nonzero (positive) penalty parameter (it is often actually
common practice to use m penalty parameters ρj ). For
subproblem k, the optimal duo (xk∗, μk∗) is found by
iteratively minimizing (4) w.r.t. x with ρk and μk fixed,
then updating the multipliers μ and the penalty parameter
ρ—the latter often conditionally—until convergence occurs
on the subproblem level. The multipliers are updated using
the famous Hestenes–Powell formula, e.g., see Hestenes
(1969) and Powell (1969). The minimization of (4) w.r.t. x

may be done using any suitable minimizer that is able to
accommodate the bound constraints l, u. Unfortunately, a
disappointing if obvious feature of (4) is that the separable
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nature of primal approximate subproblem PP[k] is not
preserved, due to the effects of the squared terms. Penalty-
based SUMT suffer from the same drawback.

Enter the so-called separable augmented Lagrangian
algorithm, or SALA, popularized by Hamdi et al. (1997),
Hamdi and Mahey (2000), Hamdi (2005a, b, c), Boyd et al.
(2010), and many others. The SALA framework preserves
the separable nature of the subproblems, and the minimiza-
tions over the primal variables xi result in n uncoupled
searches, with the obvious feature that this is an embarrass-
ingly parallel operation, while the m dual variable updates
are also uncoupled. What is more, the separable nature begs
the question whether it is possible to find the primal min-
imizers in closed-form. For subproblems that are simple
enough, this is indeed the case; this includes the important
class of separable quadratic programs (QPs).

Although the SALA paradigm has to the author’s knowl-
edge not been applied in structural optimization, they
are quite general and are receiving some attention in
the mathematical programming community. A SALA may
be considered to be an extension of proximal decom-
position methods and derive from the class of splitting
algorithms of Douglas and Rachford (1956) and Lions and
Mercier (1984); they are often known as alternating direc-
tions–type methods. An immediate word of warning though:
although the SALA framework seems very attractive given
the combination of uncoupled updates of both the primal
and dual variables with the dominance of separable approx-
imations in optimal structural design, algorithm SALA suf-
fers from sensitivity to a subproblem scaling parameter. To
address this, we will herein use an update strategy for this
parameter inspired by recent efforts of Lenoir and Mahey
(2007) and Boyd et al. (2010), combined with a function
and constraint scaling strategy inspired by the ALGENCAN
solver (Birgin and Martı́nez 2007).

What is more, to take full benefit from the separable
nature of algorithm SALA, suitable hardware like general
purpose graphical processor units (GPGPUs) should be
exploited, but we will not do so herein. Without this option,
it is not clear if algorithm SALA will be competitive
with the classical dual methods currently so popular
in optimal structural design. Nevertheless, application of
algorithm SALA to problems in optimal structural design
is interesting in its own right and, in addition seems to
have educational value. Our paper makes a few salient
contributions: Algorithm SALA is free from any line
search, and the primal and dual updates are embarrassingly
parallel. Indeed, the primal and dual variable updates are
available in closed-form. The importance of the algorithm
using closed-form primal and dual updates cannot be
overstated in the parallel context, where search methods
can be difficult to implement on a massively parallel
scale. Furthermore, the algorithm can easily exploit the use

of intervening variables, which are popular and proven in
structural optimization.

Our paper is arranged as follows: In Section 2, we
present some diagonal quadratic approximations that are
necessary for the separability of SALA. In Section 3,
we outline the alternating directions–type method that we
rely upon. We again emphasize that we rely on (strictly)
convex approximations in doing so. We then proceed with
numerical experiments in Section 4, where we compare
SALA with the well-known ALGENCAN (Birgin and
Martı́nez 2007) and the Gould et al. (2003) LSQP solvers,
followed by conclusions and recommendations in Section 5.

2 Some diagonal quadratic approximations

The approximate subproblems used are based on an incom-
plete series expansion (ISE) (Groenwold and Etman 2008).
We construct approximations f̃ (x)k to the objective func-
tion f0(x) and all the constraint functions fj (x) at the point
xk , such that

f̃ k
j (x) = f k

j + ∇T f k
j s + 1

2
sT Ck

j s, (5)

with s = (x − xk) and each Ck
j an appropriate approximate

diagonal Hessian matrix, for j = 0, 1, 2, . . . , m. We will
occasionally use the abbreviated notation

f k
j = fj (x

k).

For the sake of clarity, we rewrite (5) using summation
convention as

f̃ k
j (x) = f k

j +
n∑

i=1

(
∂fj

∂xi

)k

(xi −xk
i )+ 1

2

n∑

i=1

ck
2ij

(xi −xk
i )2,

(6)

with ck
2ij

approximate second-order diagonal Hessian terms
or curvatures. We will herein consider two very simple
instances of (6), in which the the curvatures are chosen as
follows:

1. Such that the approximate function value at the previous
iterate f̃ k−1 is equal to the real function value f k−1

at the previous iterate, being a spherical quadratic
approximation (denoted SPH-QDR)

2. Such that the approximation becomes the quadratic
approximation to the reciprocal approximation
(denoted T2:R), being closely related to the very
popular MMA (Svanberg 1987a) approximations

While many other possibilities exist, we only outline the
above approximations in Appendix B. For the sake of
brevity, the reader is referred to Groenwold et al. (2010)
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and the references therein for details about some other
possibilities.

Since the approximations (6) are (diagonal) quadratic,
primal problem PNLP may trivially be transformed into

a sequence of quadratic approximate programs PPQ[k],
written as

• Quadratic approximate program PPQ[k]

min
x

f̄ k
0 (x) = f k

0 + ∇T f k
0 s + 1

2
sT Qks

subject to f̄ k
j (x) = f k

j + ∇T f k
j s = 0, j = 1, 2, . . . , m,

x̌i ≤ xi ≤ x̂i , i = 1, 2, . . . , n, (7)

with s = (x − xk) and Qk the Hessian matrix of the
approximate Lagrangian Lk . For details, the reader is
referred to Etman et al. (2009, 2012). Since the
Lagrangian multipliersμk∗ andλk∗ at the solution of sub-
problem PPQ[k] are unknown, the multipliers μk and λk

are used to construct the quadratic program. Hence,

Qk
ii = ck

2i0
+

∑

j∈E
μk

j c
k
2ij

+
∑

j∈I
λk

j c
k
2ij

, (8)

and Qk
id = 0 ∀ i �= d, i and d = 1, 2, . . . , n. For clarity,

both the equality and inequality terms are given in (8),
since we do not use slack variables for the inequalities
in the Gould et al. (2003) solver LSQP, since this would
put this specific solver at a disadvantage.

We require the approximate Lagrangian Lk to be (semi)
positive definite. Since Qk is diagonal, positive definiteness
simply requires the individual diagonal elements Qk

ii to be
positive. As μk

j , c2i0 and c2ij in principle are unrestricted in
sign, we will enforce

Qk
ii = max(ε > 0, Qk

ii), (9)

with ε prescribed and “small.”

3 Alternating directions–typemethods

We proceed with a brief outline of the salient features
of algorithm SALA; for details, the reader is referred
to the cited literature in the mathematical programming
community.2 Here, we follow closely the presentation of
Lenoir and Mahey (2007). In essence, algorithm SALA
reformulates separable problem (3) with the help of the
allocation subspace

A =
{

yji ∈ Rmn/

n∑

i=1

yji = 0, j = 1, 2, . . . , m

}
. (10)

Then, the allocation of resource vectors yji = gji(xi),
for i = 1, 2, . . . , n and j = 1, 2, . . . , m, results in an

2An interesting recent application of ADMM in structural optimization
may be found in Kanno and Kitayama (2018).

embedded formulation of problem (3) with a distributed
coupling, written as

min
x

n∑
i=1

fi(xi)

subject to yji = gji(xi),

yji ∈ A,

li ≤ xi ≤ ui,

(11)

for i = 1, 2, . . . , n and j = 1, 2, . . . , m.
The approximate augmented Lagrangian Lρ with penalty

parameter ρ > 0 obtained by associating the multipliers μji

with the allocation constraints yji = g̃j i(xi) decomposes
into the sum

L̃ρ(x, y, μ) =
n∑

i=1

L̃ρ,i(xi, yji , μji), (12)

with

L̃ρ,i(xi, yji, μji) = f̃i (xi) +
m∑

j=1

μji(g̃j i(xi) − yji)

+ρ

2

m∑

j=1

(g̃j i(xi) − yji)
2. (13)

The stationary point of L̃ρ,i(xi, yji , μji) is obtained via
successive minimizations over xi and yji in a Gauss–Seidel
fashion as to exploit the separability of (11). The mini-
mizations in the xi yield the n independent subproblems

min
xi

L̃ρ,i(xi, y
k
ji , μ

k
ji),

which can be done in parallel. Since the μji are in A⊥, with
A and A⊥ mutually orthogonal, we obtain the updates for
the yji as

yl+1
ji = g̃j i(x

l+1
i ) − 1

n

(
g̃j (x

l+1
i )

)
, (14)

again see Lenoir and Mahey, and Boyd for details and
proofs.

Subspace A⊥ has the explicit formulation

A⊥ ={
μji ∈ Rmn/μj1 =μj2 = . . .=μjn, j =1, 2,. . ., m

}
.

(15)
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So, at every iteration l, knowledge of the μji reduces to the
knowledge of its common component νj = μj1 = μj2 =
. . . = μjn, j = 1, 2, . . . , m, and the update step for the νj

becomes

νl+1
j = νl

j + ρ

n

(
g̃j (x

l+1
i )

)
, (16)

again see the cited literature for details. The complete
resulting algorithm SALA, without the trivial objective
function and constraint scaling given in (21), is listed in
Algorithm 1. Again note that not only are the n uncoupled
minimizations over the xi embarrassingly parallel, updating
the yji and νj is also embarrassingly parallel.

We impose a subproblem convergence criteria on both
the step sizes made by the primal and dual variables, as well
as the maximum number of subproblem evaluations.

3.1 Closed-form expressions for QP-like problems

If the functions gji are simple enough, the n one-
dimensional minimizations over the xi may even be done
in closed-form. For a separable QP-like subproblem, this is
indeed the case. Let

f̃ (xi) = a + bi(xi − xk
i ) + 1

2
ci(xi − xk

i )2, (17)

with b and c given n-vectors, and

g̃j (xi) = dji + eji(xi − xk
i ), (18)

again with dj and ej given n-vectors. In order to satisfy (3),
we have chosen to distribute the j constraint values equally
among each of their n separable functions such that

dji = gj (x
k)/n. (19)

We have now resorted to summation convention—a sum
over repeated indices in a term is implied, i.e., we sum over
i in (17) and (18) above. Here, the ci represent curvature
information of the objective and the constraint functions
(see Etman et al. (2009, 2012)), and we assume strictly
convex primal approximate subproblems PP[k]. Then, the
stationary conditions of (13) w.r.t. xi result in

xl+1
i =xk

i −
(
ci +ρe2

ji

)−1(
bi + νj eji −ρyjieji + ρdjieji

)
,

(20)

and we sum over j . Note that the denominator cannot
vanish, since ci > 0 and ρ > 0 (although eji = 0 is possible
in sparse problems). Line 4 in Algorithm 1 may thus be
replaced by the very simple closed-form expression (20).
The relation between (6), (17), and (18) is clear; also see
Etman et al. (2009, 2012).

As mentioned, suitable separable approximations are
briefly presented in Section 2. For the sake of clarity,
we here again mention that we use a spherical quadratic
approximation (denoted SPH-QDR) and a quadratic approx-
imation to the reciprocal approximation (denoted T2:R),
being closely related to the very popular MMA (Svanberg
1987a) approximations. For some examples which are truly
separable, we also use exact Hessian information.

3.2 Objective and constraint function scaling

The SALA algorithm is highly sensitive to the scaling in
the objective function, constraints, and subproblem. We
therefore scale both the objective and constraint functions,
such that

min
x

wf f (x)

subject to wcj
gj (x) = 0, j = 1, 2, . . . , m,

li ≤ xi ≤ ui, i = 1, 2, . . . , n,

(21)

where the scaling factors, wf and wcj
, are given by

wf = 1/ max(‖∇f (xk−1)‖∞, 1),

wcj
= 1/ max(‖∇cj (x

k−1)‖∞, 1), j = 1, 2, . . . , m,

with xk denoting the primal values for subproblem k.

3.3 Subproblem scaling

The projected subgradient step given in (16) depends on
the step length ρ, with this parameter behaving more
like a scaling parameter in the SALA framework than
the penalty parameter in classical augmented Lagrangian
statements. For example, ρ penalizes the primal coupling
constraints, and greater values will accelerate the primal
sequence. However, ρ−1 penalizes the dual sequence so
that a compromise value is expected to be optimal, e.g.,
see Lenoir and Mahey (2007) and Boyd et al. (2010),
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who elaborate on optimal scaling strategies in some detail.
It is possible to use ρi for i = 1, 2, . . . , n scaling
parameters for each of the separable subproblems; but this
only leads to increased computational costs (Lenoir and
Mahey 2007). Furthermore, if the objective and constraint
functions are scaled, the n separable problems have similar
orders of magnitude, which further reduces the need for
individual separable subproblem scaling parameters. The
single parameter update is therefore the preferred choice of
subproblem scaling for our numerical testing.

We obtained reasonable numerical results when using a
combination of the strategies inspired by Lenoir and Mahey
(2007) and Boyd et al. (2010).

From Lenoir and Mahey (2007) , let

β = ‖νl − νl−1‖
‖yl − yl−1‖ . (22)

Then, we update using

ρ ← ρ(1−α) + βα, (23)

or

ρ ← (1 − α)ρ + αβ, (24)

with α small, say 10−2 , to prevent oscillatory behavior. We
accept that Lenoir and Mahey (2007) prove that

∞∑

l=1

αl = S < ∞ (25)

is a requirement for theoretical convergence, but for
numerical purposes l  ∞, resulting in small values of α

still achieving practical problem convergence.
We now introduce the update strategy inspired by Boyd

et al. (2010), coupled with that from (24). The update then
becomes

ρ ←
⎧
⎨

⎩

√
nρ if ‖xl − xl−1‖ > n‖νl − νl−1‖

ρ/
√

n if ‖νl − νl−1‖ > n‖xl − xl−1‖
(23) or (24) otherwise.

(26)

The update strategy proposed by (23) and (24) takes
advantage of second-order problem information (Lenoir and
Mahey 2007), which in our numerical testing led to higher
levels of accuracy compared with a strategy that purely
focused on keeping the primal and dual residual norms
within a factor of each other. The downside, however, is the
possibility of ρ quickly jumping to unsuitably high values
should the resource allocation vector and dual residual
norms be of different orders of magnitude. Furthermore,
it is difficult to reduce the value of the scaling parameter
because of the low values of α that have to be chosen
in order to ensure convergence. We combine the two
different strategies in the hope of ensuring relatively equal

convergence of both the primal and dual sequences, with the
advantage of greater levels of accuracy.

4 Numerical experiments

We use the QP form given in (6) in Section 2 to
construct an approximate augmented Lagrangian for both
the ALGENCAN and SALA solvers. For SALA, the
augmented Lagrangian is then decomposed further into the
n separable Lagrangian problems given in (13). We reiterate
that the approximations used for the Hessian are either the
spherical diagonal quadratic approximation (SPH-QDR) or
the quadratic approximation to the reciprocal approximation
(T2:R). We also compare our algorithms with the state-of-
the-art Gould et al. (2003) solver LSQP. The latter solver is
Taylor-made for linear or diagonal quadratic subproblems.

All numerical results for SALA use the closed-form
update of the primal variables given in (20). The step length
ρ is updated using (24) and (26) with α = 10−2. The
maximum number of subproblem evaluations allowed is
lmax = 5 × 104 with a subproblem convergence tolerance of
ε = 10−6 . For each subproblem k, we initialize at l = 0
as follows: for values of k > 0, ρ0 = 1, y0

ji = yk−1
ji , and

ν0
j = νk−1

j . Else, at k = 0, y = ν = 0. A maximum
of k = 500 outer iterations was allowed, after which the
algorithm was stopped, and we indicate failure to converge
by “—” in the numerical results to follow. The absolute
values of the Lagrangian multipliers were bounded to not
exceed 106, selected rather arbitrarily, to prevent numerical
instabilities.

Default settings are used for the ALGENCAN solver,
except that we use epsfeas = epsopt = 10−7, where
epsfeas and epsopt are parameters in ALGENCAN. For
Galahad’s LSQP solver, default settings were used. We
now introduce the absolute maximum constraint violation
h, the norm of the KKT conditions K, and the number
of function evaluations Nf required for termination. For
all the solvers, problem execution was terminated when all
of three conditions were met, namely, the Euclidean or 2-
norm ‖xk − xk−1‖2 ≤ 10−4, h ≤ 10−4, and K ≤ 10−3.
We chose convergence tolerances of modest accuracy, as
ADMM is usually slow to converge to high accuracy (Boyd
et al. 2010). The test problems used are tabulated in Table 1,
and we present the results in Table 2.

The results are not overly surprising; sometimes
ALGENCAN performs slightly better than SALA, and
vice versa. This happens notwithstanding the fact that the
two algorithms solve a sequence of identical subproblems,
reminiscent of the no-free-lunch (NFL) theorems of opti-
mization (Wolpert and Macready 1997). Arguably, the main
reason for this is in all probability that both algorithms
are known to be sensitive to scaling, albeit that augmented
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Lagrangian methods are probably less so than ADMM-type
methods. Arguably, Galahad’s LSQP solver sets the tone.
(Note that K is smaller for LSQP than for the other solvers;
notwithstanding that the same stopping criteria were used.)

The results for Svanberg’s snake problem are worthy of
special attention: for this problem, none of the algorithms
converged. We have on purpose included these results to
highlight some limitations of the methods studied. It is
pertinent to point out that this problem is very “difficult.”
The snake problem consists of a very thin feasible slither
in n-dimensional space. It is also of note to mention
that arguably the most popular algorithms in structural
optimization, namely, CONLIN and MMA, also have
difficulties solving some of the test problems. CONLIN for
example fails when applied to the snake problem, whereas
MMA fails for Fleury’s weight minimization problem, all in
the spirit of NFL.

5 Conclusions and recommendations

We have proposed an iterative separable augmented
Lagrangian algorithm (SALA) for optimal structural design.
The algorithm solves a sequence of separable quadratic-like
programs, able to capture reciprocal- and exponential-like
behavior, which is desirable in structural optimization. A
salient feature of the algorithm is that the primal and
dual variable updates are all updated using closed-form
expressions.

For further reading, the reader is referred to the
monograph by Boyd et al. (2010) and some of the references
mentioned therein, for instance Bertsekas.3 The first five
chapters of the monograph by Boyd et al. give an overview
of the main ADMM concepts and methods, and they also
treat the special case of the QP and separable objective
and constraints. Since algorithms like SALA are known
to be very sensitive to scaling, we have proposed a
scaling method inspired by the well-known ALGENCAN
algorithm. Numerical results for SALA and ALGENCAN
suggest that the algorithms perform quite similar. Having
said this: “optimal” scaling of the algorithm (and related
algorithms) remains an open issue.

Indeed, the sensitivity of SALA to scaling and different
parameter settings may well be its biggest drawback.
Having said this, even “classical” AL statements are well
known to be prone to this, and the same even applies for
penalty methods. To take this argument even further, “older”
SQP formulations that depended on a merit acceptance
function revealed the same difficulties.

3This suggestion was proposed by one of the helpful anonymous
reviewers.

The scaling issue posed by SALA is of such complexity
that Lenoir and Mahey (2007) dedicated an entire paper to
this issue. Interested readers may find an in-depth analysis
of the effect of different scaling strategies therein. As
mentioned before, scaling is an open-ended problem that
will require further investigation but is beyond the scope of
this paper.

Although we do not exploit this feature herein, the primal
and dual updates in SALA are both embarrassingly parallel,
which makes the algorithm suitable for implementation
on massively parallel computational devices, including
general purpose graphical processor units (GPGPUs).
For some problems, a relatively slow ADMM iteration
process leads to increased computational effort on the
subproblem level, when compared with more traditional
SQP methods. We noted this in our numerical testing, as
ALGENCAN and LSQP sometimes required less CPU time
than a single threaded SALA implementation. However,
SALA is theoretically divisible in problem time by at
least n, meaning that the advantage over traditional SQP
methods should scale with increased problem size. (Problem
dimensionality will of course also have to be high enough
to offset the overhead computational costs associated with
parallel computing.) We hope to demonstrate the possible
advantages in the near future.

Finally, while we have used only two approximations
herein; many different methods for obtaining the diagonal
approximate higher order curvatures may be used. Possibil-
ities include quasi-Cauchy updates (Duysinx et al. 1995),
and quadratic approximations to suitable intervening vari-
ables (Groenwold et al. 2010; Groenwold and Etman 2010).
The last possibility includes the quadratic approximation
to the reciprocal and exponential approximations and even
the quadratic approximations to the CONLIN and MMA
approximations.

6 Replication of results

Our SALA algorithm is part of an optimization suite that is
propriety for the time being; we can therefore not share code
or code fragments in a meaningful way.
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Appendix A: Tables

Table 1 The test problems

Number Problem name Approximation n m References Notes

1 Svanberg’s cantilever SPH-QDR 5 1 Svanberg (1987b)

2 Toropov’s cantilever T2:R 1024 1 Groenwold and Etman (2011) 1

and Toropov 2008

3 Svanberg’s first nonconvex problem SPH-QDR 200 2 Svanberg (2002)

4 Svanberg’s first nonconvex problem SPH-QDR 200 2 Svanberg (2002)

5 12-Corner-polytope problem SPH-QDR 21 1 Svanberg (1995)

6 Vanderplaat’s cantilever #1 T2:R 200 201 Vanderplaats (2001)

7 Vanderplaat’s cantilever #2 T2:R 200 200 Vanderplaats (2001)

8 Vanderplaat’s cantilever #3 T2:R 200 200 Vanderplaats (2001)

9 Fleury’s weight minimization problem T2:R 1000 2 Fleury (1979)

10 Svanberg’s snake problem SPH-QDR 30 41 Svanberg (2007)

11 Cam-design problem SPH-QDR 15 49 Dolan et al. (2004)

12 Svanberg’s cantilever Exact 5 1 Svanberg (1987b) 2

13 HS-43 Exact 4 3 Hock and Schittkowski (1981) 2, 3

Note 1: This is a generalization of Svanberg’s cantilever. Note 2: The problem is separable. Note 3: The Hock and Schittkowski test set

Table 2 Numerical results for the test problems using the ALGENCAN and SALA solvers

ALGENCAN SALA LSQP

PR f ∗
0 h∗ K∗ Nf f ∗

0 h∗ K∗ Nf f ∗
0 h∗ K∗ Nf

1 1.3399564 1.27×10−08 2.89×10−05 13 1.3399564 0.00×10+00 8.43×10−06 20 1.3399563 6.48×10−08 2.89×10−05 13

2 1.3103299 3.04×10−07 3.63×10−08 8 1.3103281 4.46×10−06 3.32×10−13 8 1.3103301 0.00×10+00 7.75×10−13 8

3 51.046453 0.00×10+00 1.02×10−02 100 51.046524 4.31×10−04 1.17×10−02 97 51.046253 0.00×10+00 8.49×10−03 104

4 −148.95382 2.61×10−06 7.02×10−03 164 −148.95388 2.71×10−04 6.08×10−03 169 −148.95382 2.07×10−06 7.02×10−03 164

5 −279.90266 2.01×10−07 8.15×10−03 136 −279.90246 0.00×10+00 7.28×10−03 126 −279.90215 5.67×10−08 5.82×10−03 146

6 63678.094 1.90×10−07 7.49×10−03 9 63678.897 8.07×10−05 3.98×10−03 9 63678.100 3.33×10−10 7.50×10−03 9

7 54176.212 5.53×10−09 2.83×10−05 8 54176.190 4.06×10−06 8.33×10−04 8 54176.212 1.07×10−13 1.98×10−05 8

8 54155.571 3.31×10−07 1.24×10−03 8 54155.570 1.68×10−06 4.67×10−02 8 54155.571 1.92×10−08 1.24×10−03 8

9 950.00005 7.93×10−07 7.75×10−05 22 950.00136 0.00×10+00 2.79×10−03 20 950.00003 1.52×10−05 7.78×10−03 32

10 — — — — — — — — — — — —

11 −4.3452690 1.14×10−07 8.65×10−05 5 −4.3815720 3.36×10−04 8.12×10−04 32 −4.3452583 3.55×10−15 1.79×10−06 6

12 1.3399566 0.00×10+00 3.37×10−07 13 1.3399564 3.12×10−09 1.66×10−05 15 1.3399563 3.56×10−08 1.47×10−08 13

13 −44.000002 2.05×10−06 1.10×10−05 6 −44.000003 2.47×10−06 3.04×10−05 8 −44.000003 1.17×10−06 1.15×10−05 6

Superscript * indicates the final values at termination, while “—” indicates that the algorithm failed to terminate

Appendix B: The approximations used

B.1 A spherical diagonal quadratic approximation
(SPH-QDR)

To construct a spherical quadratic approximation (Snyman
and Hay 2002), we select ck

2ij
≡ ck

2j
∀ i, which requires the

determination of the single unknown ck
2j

, to be obtained by
(for example) enforcing the condition

f̃j (x
k−1) = fj (x

k−1), (27)

which implies that

ck
2j

= 2[fj (x
k−1)−fj (x

k)−∇T fj (x
k)(xk−1−xk)]

‖xk−1−xk‖2
2

. (28)
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This results in the approximation proposed by Snyman and
Hay (2002). For the first iteration, when no historic infor-
mation is available, curvatures of unity are assumed. An
alternative condition for formulating a spherical quadratic
approximation is presented in Wilke et al. (2010).

B.2 The quadratic approximation to the reciprocal
approximation (T2:R)

For reciprocal intervening variables, the second-order
partial derivatives ck

2ij
are obtained (Groenwold et al. 2010)

as

ck
2ij

= ∂2f̃R

∂x2
i

(
xk

)
= −2

xk
i

(
∂fj

∂xi

)k

, (29)

where f̃R indicates the reciprocal approximation; see
also Groenwold and Etman (2010). Of course, (29) is only
sensible if ∂fj /∂xi

k < 0. If not, we choose to use

ck
2ij

=
∣∣∣∣∣
∂2f̃R

∂x2
i

(
xk

)∣∣∣∣∣ = 2

xk
i

(
∂fj

∂xi

)k

, (30)

which admittedly is very conservative, but this choice
has served us well previously. Nevertheless, many other
possibilities exist.
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