
/Published online: 14 August 2019

Structural and Multidisciplinary Optimization (2020) 61:319–341

RESEARCH PAPER

Shape optimization of underwater wings with a new multi-fidelity
bi-level strategy

Siqing Sun1
& Baowei Song1

& Peng Wang1
& Huachao Dong1

& Xiao Chen1

# Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
This paper proposes a new multi-fidelity bi-level optimization (MFBLO) strategy for shape designs of underwater wings. Firstly,
hydrodynamic analyses of the wing planform and sections are decoupled for constructing a bi-level shape optimization frame,
which includes an upper-level task merely concerning the wing planform design and several lower-level tasks only related to the
section designs. By doing this, the shape design optimization gets remarkable benefits from the reduction of dimension and
computational costs. Secondly, the bridge function method combined with three multi-fidelity data fusion approaches CC1, CC2,
and CC3 are proposed to conduct the bi-level optimization, respectively. After comparison analyses, CC2 shows higher com-
putational efficiency and accuracy, which is more appropriate for the bi-level shape optimization frame. Finally, compared with
the single-level optimization with the fixed planform or sections and the conventional high-dimensional optimization, the
proposed MFBLO needs less computation budget and gets higher lift-drag ratio, showing its outstanding advantages in handling
the shape optimization of underwater wings.

Keywords High-dimensional expensive problem . Bi-level optimization . Multi-fidelity surrogate models . Underwater wing
design

Nomenclature of important variables

Subscripts
u, l Upper and lower
i, j Indexes
_ Separator

Superscripts
* Optimal values

Symbols
b Wing span,
cr, ct Root and tip chords

λ Leading edge angle
Sw Planform area
ns Number of sections
n Dimension of problems
V Velocity
α Angle of attack (AOA)
F, f, G, g, H, h, x Objective functions, constraints

and design variables of bi-level
optimizations

ind, eff Induced and effective,
prof,∞ Profile and far field
HF, LF High and low fidelities
^ Predicted values
c, t/c Chord, relative thickness of sections
Sp Spanwise position of sections
wli_j jth Parameter of ith section

shape curve function
indV Induced velocities in VLM
w Area weight coefficients
N Looping index of optimizations
L, D, CL, CD Lift, drag, and their coefficients of UWs
l, d, Cl, Cd Lift, drag, and their

coefficients of sections
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1 Introduction

Different from traditional autonomous underwater vehicles,
underwater gliders usually have a pair of wings to improve
the hydrodynamic performance (Rudnick 2016; Javaid et al.
2014). Hence, it is essential and significant to design and
optimize underwater wings (UWs) (Luo and Lyu 2015).
Generally, the geometry parameters of UWs consist of two
parts: the wing planform and sections, where the planform
involves 4–15 variables and each section includes 10–12 var-
iables. Thus, a complete UW shape may be composed of
hundreds of design variables, which belongs to high-
dimensional design problems (Koo and Zingg 2017). On the
other hand, accurate hydrodynamic analyses by CFD simula-
tions (averagely 30–60 min) are computationally intensive
(Oberkampf and Trucano 2002), also bringing another chal-
lenge for optimization (Lyu et al. 2014). For the
abovementioned high-dimension expensive problem, a large
number of sampling points are required to identify its optimal
solutions, which generate unbearable computational cost, also
known as “curse-of-dimensionality” (Koch et al. 1999).

In the past two decades, many modeling and optimization
methods were presented, but most of them are limited to low-
dimensional problems (Wang et al. 2004; Regis 2015). To solve
high-dimensional expensive optimization problems, some strat-
egies try to turn high dimensionality into low dimensionality
(Viswanath and Asha 2010; Harrington and Gorder 2015;
Hartwig and Bestle 2017), mainly includingmapping, screening,
and decomposition (Shan and Wang 2010). Mapping exploits
implicit relations between the design variables and translates
them into uncorrelated and fewer variables. Meanwhile, most
of the original information are remained (Li and Chen 2006;
Bohn et al. 2016). However, the new and the original optima
may be different owing to the change of the design space.
Screening discriminates and ignores less relevant variables to
reduce the dimension (Harada et al. 2006; Zhang 2014), while
the dimension may still be high for problems with many equally
important design variables. In a word, mapping and screening
concentrate on relation among variables or importance of vari-
ables to the function, whereas decomposition paysmore attention
to intrinsic characteristics of the function. With the help of de-
composition, the original problem can be divided into a series of
smaller scale sub-problems according to their physical features
(Yata and Aoshima 2010; Moritz et al. 2016).

Decomposition has a lot of advantages in dealing with high-
dimensional expensive optimization problems, including the
reduction of sub-problem dimensionality, the improvement of
efficiency with parallel abilities, the compatibility of different
solution techniques, and the support of multi-criteria analyses
(Yang et al. 2018; Mei et al. 2016). However, its application is
strongly restricted by the problem decomposability. To the best
of our knowledge, there are fewer decomposition methods for
solving the Navier-Stokes equations so far. Thus, in our work,

another hydrodynamic solver named quasi-three-dimensional
(Q3D) is adopted to meet the usage condition of decomposition
(Mariens et al. 2014; Graf et al. 2014). The solver decouples the
wing planform and section analyses according to the unique
fluid phenomenon of UWs. Specifically, section analyses are
totally independent with each other and are weakly coupled
with the planform analysis. This relation indicates the stratified
nature of the problem (Mitsos et al. 2009; Sinha et al. 2018),
where the planform design is an upper-level (UL) optimization
problem and each section design is a lower-level (LL) optimi-
zation problem. Therefore, the specific high-dimensional ex-
pensive UW design problem is now decomposed into many
low-dimensional expensive sub-problems cooperating with
each other in the bi-level form.

Although the dimension is reduced, the nested structure
brings quite a number of LL optimization tasks. Thus, in view
that each task is an expensive problem, the total computational
burden is still heavy. Fortunately, the computational cost can be
dramatically decreased by surrogate models (SMs) (Jones et al.
1998; Simpson et al. 2001), also called “response surfaces,”
“meta-models,” or “approximation models.” As the name sug-
gests, SM is a cheap approximate model constructed by a cer-
tain amount of samples and their true responses. It can be used
to efficiently predict values at any untried points. Hence, the
expensive function evaluation is avoided to reduce the burden.
However, a few samples cannot guarantee the accuracy of SMs,
while massive sample data will bring huge computation cost.
Hence, multi-fidelity models (MFMs) are adopted to further
improve the efficiency, which are constructed by a few expen-
sive high-fidelity (HF) data and more low-fidelity (LF) data
(Nguyen et al. 2013; Huang et al. 2015; Leifsson and Koziel
2015). Despite the wide application of MFMs, there are fewer
literatures about constructing MFM in a bi-level optimization
flow. Besides, this brings some additional conundrums, which
are mainly caused by how to combine LF and HF data of each
optimization level. On one hand, the response value of each
level should be accurate enough and sensitive to all design
variables. On the other hand, the whole optimization process
should be fast and the MFM should be robust enough under
thousands of function evaluations.

To make up this research gap, we propose three different
multi-fidelity data fusion approaches CC1, CC2, and CC3,
and CC2 performs the best on the engineering tests. CC2 uses
LF data in LL optimization completely, while MFM is built in
UL optimization to modify the accuracy. Hence, CC2 is rec-
ommended to be used in the proposed multi-fidelity bi-level
optimization (MFBLO) strategy to maximize the Lift-to-Drag
ratio (L/D) of UWs. Compared with the existing methods, the
new optimization strategy has the following contributions:

& A nested bi-level optimization frame is built for the shape
optimization of UWs to reduce optimization dimension
and computational cost.
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& Three multi-fidelity modeling approaches for nested opti-
mizations are constructed to improve accuracies and com-
putational efficiency, where CC1 combines LF and HF
data in LL optimization, CC2 is constructed in the UL,
while CC3 is built in both levels.

& MFBLO is not only applicable for the design of UWs
but also can be extended for other hierarchical optimal
design problems with multiple fidelity data, such as
structural optimization (Ragon et al. 2015), designs
of transportation (Wang et al. 2018), and electrical
networks (Quashie et al. 2018).

2 Bi-level shape optimization frame

Before decomposing the shape problem, it is necessary to
introduce the details of the proposed bi-level optimization
frame. As (1) shows (Islam et al. 2017), the nested optimiza-
tion tasks are consisted of two levels, namely UL and LL,
which have their own design variables, constrains, and objec-
tive functions. For LL, the objective function is optimized
with respect to the LL variables, whereas the UL variables
act as fixed parameters. For UL, the objective function is
optimized with respect to the UL variables with the corre-
sponding optimal LL solution. Thus, the bi-level optimization
problem aims at determining the optimum of UL and mean-
while satisfying the optimality of LL.

Min Fu xu; xlð Þ
W :r:t xu∈XU ; xl∈XL

S:t Gk xu; xlð Þ≤0; k ¼ 1; :::qu
Hk xu; xlð Þ ¼ 0; k ¼ 1; :::ru

xl∈ argmin
xl∈X L

f l xu; xlð Þf g
gk xu; xlð Þ≤0; k ¼ 1; :::ql hk xu; xlð Þ ¼ 0; k ¼ 1; :::rl

8><
>:

ð1Þ

where the subscripts u and l refer to UL and LL, respectively.
Correspondingly, Fu (xu, xl) is the UL objective function and fl
(xu, xl) is the LL objective function. The UL design vector xu is
in domain XU, and the LL design vector xl has its domain XL.
G andH are the sets of qu inequality and ru equality constrains
for UL. Accordingly, g and h represent inequality and equality
constrains in LL, respectively.

The total parameters of an UW shape come from the plan-
form and sections, as shown in Table 1 and Fig. 1. All the

planform parameters are independent. The shape curve vari-
ables in the section parameters are also independent, while
other section parameters such as the chord and the thickness
are determined by the planform geometry. Hence, the two
groups of parameters can be divided into two categories, in
which the planform variables belong to UL and section vari-
ables belong to LL. Thus, the original high-dimensional vec-
tor is reasonably transformed into the bi-level format, and
each optimization task has fewer design variables. On the
other hand, hydrodynamic analyses are needed to provide
the objective functions. More importantly, hydrodynamic
analyses of the planform and sections must be separated ac-
cording to the decomposition method of the design variables.
Thus, Q3D that is a similar, semi, or approximate 3D method
is applied to achieve the goal. The basic theory of Q3D is
introduced, and a bi-level optimization model for UWs is con-
structed correspondingly.

2.1 Quasi-three-dimensional hydrodynamic solver

The Q3D hydrodynamic solver is specially developed to pre-
dict the lift and drag of UWs under low Reynolds values. As
Fig. 2 shows, V∞ and α are the velocity and the angle of attack
(AOA) of the far-field incoming flow, respectively. According
to the finite wing phenomenon, the effective incoming flow of
each section is different, including the effective velocity Veff_i
and the effective AOA αeff_i. The approach uses the planform
analysis to calculate the effective incoming flow of each sec-
tion, and hydrodynamic data of each section are obtained by
section analyses according to the effective flow. Finally, the
solver integrates the hydrodynamic data of each section ac-
cording to the planform geometry to gain the results.
Obviously, the planform analysis and section analyses are
separated, and the main procedure is briefly explained as
follows:

1) Input phase: The shape and flow field parameters are
given by users, and then the geometry model of an UW
is constructed according to the inside parametric method.

2) The vorticity distribution: The vortex lattice method
(VLM) is employed to calculate the vorticity distribution
among the planform. The wing is modeled as a set of
lifting panels according to the thin hydrofoil theory. The
horseshoe vortices and control points are placed on each
panel under the “1/4–3/4” chord position rules, as shown

Table 1 Wing geometric parameters

Wing planform Sections number ith hydrofoil

Parameter Wing span Wing root Leading edge angle Wing tip Spanwise position Relative thickness Shape curve

Symbol b cr λ ct ns Spi = [(i− 1)b]/[2(n− 1)] (t/c)i wli_j
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in Fig. 3. The Biot-Savart’s law is used to calculate the
induced velocity indVi generated by horseshoe vortices,
and the Neumann boundary condition of no penetration is
enforced at the control points. Hence, (2–3) are listed, and
the Gauss-Seidel method is used to solve them, for
obtaining the vorticity Γj on each board.

indVi ¼ ∑
N

j¼1
Ai j⋅Γ j ð2Þ

V∞⋅sin αð Þ þ indVi ¼ 0 ð3Þ
where the influence coefficient Aij represents the induced flow
on the ith panel control point due to the vortex on jth panel,
and it is determined by the position difference between the ith
point and jth vortex.

3) The downwash angle of each section: The downwash
angle of each section αind_i is influenced by wing-tips’
vortices, and it is obtained with (4) after determining the
vorticity distribution.

αind i ¼ 1

4πV∞
∫b=2−b=2

dΓζ=dζ
z−ζ

dζ ð4Þ

where b is the span-wise length of an UW, and z is span-wise
position of the current hydrofoil, while ζ is span-wise position
of the vortex filament Γζ.

4) The effective incoming flow span-wise distribution:
According to Fig. 2, (5–6) are set up to gain the ef-
fective incoming flow of each section. The induced
drag Dind is calculated based on the Trefftz plan anal-
ysis, as shown in (7).

αeff i ¼ α−αind i ð5Þ

V eff i ¼ V∞=cos αind ið Þ ð6Þ
Dind ¼ ρV∞∫

b=2
−b=2Γζ ⋅αind i⋅dζ ð7Þ

From steps 2 to 4, there is no equation requiring the section
shape information. Only the planform and the far-field flow
parameters are needed. Hence, these steps are regarded as
wing planform analysis phase one.

5) Flow analyses of 2D sections: Reynolds average Navier-
Stokes (RANS) methods are adopted to solve the flow
field of sections. As a result, the effective lift leff_i normal
to Veff_i and the effective drag deff_i parallel to Veff_i are
obtained, as Fig. 2 shows.

6) Force relation analyses: In Fig. 2, F is the total hydrody-
namic force. Using the force relationship, the far-field lift
l∞_i normal to V∞ and the far-field drag d∞_i parallel to V∞

are calculated according to (8–9).

l∞ i ¼ leff icos αind ið Þ−deff isin αind ið Þ ð8Þ

Fig. 1 Illustration of wing
geometric parameters

Fig. 2 Forces and angles of a hydrofoil Fig. 3 Schematic of a single horseshoe vortex and control point
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d∞ i ¼ deff icos αind ið Þ þ leff isin αind ið Þ ð9Þ

From steps 5 to 6, there is no equation requiring shape
information of the wing planform. Hence, these steps are
regarded as wing section analyses, and each section analysis
is an independent process.

7) The lift calculation: The lift coefficient CL of the 3D UW
is obtained by integrating the far-field lift coefficientCl∞_i

of each section.

CL ¼ 2

Sw
∫b=20 Cl∞ i cidy ð10Þ

where ci is the chord of the current section. Sw and dy represent
the wing planform area and a tiny length on span-wise,
respectively.

8) Drag calculation: In (9), the first item is the profile drag
dprof_i, and the second refers to the induced drag dind_i.
However, the induced drag is not considered here, be-
cause it is predicted more accurately by (7), which uses
the far-field analysis method. Thus, only the total profile
drag coefficient CDprof is gained by integrating the profile
drag coefficient Cdprof_i using (11). Finally, the total drag
coefficient of the UW is the sum of the profile drag and
the induced drag, as shown in (12).

CDprof ¼
2

Sw
∫b=20 Cdprof icidy ð11Þ

CD ¼ CDprof þ CDind ð12Þ

Similarly, steps 7 to 8 are regarded as wing planform anal-
ysis phase two.

The lift and drag of an UW can be obtained by wing plan-
form analysis phase one, wing section analyses, and wing
planform analysis phase two. Specifically, the proposed
Q3D working flow is shown in Fig. 4.

2.2 Mathematical model of the bi-level shape
optimization

2.2.1 The UL optimization frame

The UL optimization is the leader level, responsible for the
overall hydrodynamic performance. Generally, the maximum
L/D is considered as the goal of the shape optimization, and it
is also regarded as the objective function of the UL optimiza-
tion, expressed by (13). The lift and drag of an UW can be
gained by (10–12) and (14–15) provide the corresponding
discrete formats.

Fu xu; xlð Þ ¼ CL=CD ð13Þ
CL ¼ ∑

ns

i¼1
wiCl∞ i ð14Þ

Fig. 4 Q3D hydrodynamic solver
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CD ¼ ∑
ns

i¼1
wiCdprof i þ CDind ð15Þ

where wi is the area weight coefficient of ith section, deter-
mined by the planform geometry, as shown in (16–17):

width ¼ b= 2⋅nsð Þ ð16Þ

wi ¼

3

4
⋅c1 þ 1

4
⋅c2

� �
⋅
width
Sw

i ¼ 1;

2⋅ci⋅width=Sw i ¼ 2; 3::: ns−1ð Þ;
3

4
⋅cns þ 1

4
⋅cns−1

� �
⋅
width
Sw

i ¼ ns;

8>>>>>><
>>>>>>:

ð17Þ

where ns is the number of wing sections, and this paper selects
eight sections in equidistant span-wise distance (Mariens et al.
2014). width is the span-wise distance between two selected
sections, and Sw is the total area of the wing planform. Thus,
wi is regarded as a simple function only related with the plan-
form parameters.

It seems that the objective function is with respect to
many variables, including Cl∞_i, Cdprof_i, and CDind, the
planform parameters and the far-field parameters. Among
them, the far-field parameters are constants in the optimi-
zation process. To write the objective function into a com-
pound function only related to the planform parameters,
analyses are needed to prove that Cl∞_i, Cdprof_i and CDind

are direct or indirect functions of the planform parameters,
and Fig. 5 shows the specific flow.

Firstly, for the direct relations, CDind is gained by (7) in
wing planform analysis phase 1. Hence, it is only influenced
by the planform geometry and the far-field parameters.

Secondly, for the indirect relations, Cl∞_i and Cdprof_i are
calculated by the effective incoming flow and ith section
shape. Among them, the effective incoming flow is a function
of the wing planform parameters. Though ith section shape is
not determined in the UL, its variable range is known. Hence,
the optimal Cl∞_i

* and Cdprof_i
* can be found by LL

optimizations. Thus, Cl∞_i
* and Cdprof_i

* are implicit functions
of the planform parameters, and they are counted as interme-
diate variables (IVs*) here.

Finally, the UL object function can be expressed as an
operation of the wing planform parameters and some output
IVs* from section analyses, and the optimization formula is
presented as follows.

Max Fu g xuð Þ½ � ¼ ∑
n

i¼1
wiC*

l∞ i
= ∑

n

i¼1
wiC*

dprof i
þ CDind

� �

wi;C*
l∞ i

;C*
dprof i

;CDind

h i
¼ g xu; xlð Þ

W :r:t xu ¼ planform geometry parameters½ �
S:t constrains about planform geometry;

xu∈XU ; xl∈ argmin
xl∈XL

f l xu; xlð Þf g;

ð18Þ

2.2.2 The LL optimization frame

The LL optimization is the follower level, in charge of
the local hydrodynamic performance. Thus, the effective
incoming flow is determined by the given planform ge-
ometry. LL optimizes the section shape for finding the
hydrofoil with maximum Cl∞_i/Cd∞_i. Thereafter, IVs*

including Cl∞_i
* and Cdprof_i

* is calculated through the
section analysis of the optimum shape and provided for
UL. The ith LL optimization problem is defined as
follows:

Max f l i ¼ Cl∞ i xl ið Þ=Cd∞ i xl ið Þ
W :r:t xl i ¼ ith hydrofoil parameters½ �
S:t constrains about ith hydrofoil geometry

xl i∈XL i

ð19Þ

The architecture of the bi-level optimization is shown in
Fig. 6. In addition to the benefit of the dimension reduction,
the LL optimization can be executed in parallel, which can
further improve the efficiency. Besides, the complex 3D

Fig. 5 Relations between Cl∞_i,
Cdprof_i and the planform
parameters
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RANS simulation is replaced by simpler and faster 2D hydro-
foil analyses, saving more computation source.

3 Multi-fidelity bi-level shape optimization
frame

It seems that the proposed bi-level optimization can be
easily realized by some traditional methods, such as
heuristic algorithms or surrogate-assisted optimization
methods. However, the optimization neglects the influ-
ence on the effective incoming flow distribution owing
to changes of sections, which may reduce the accuracy.
Moreover, different from conventional problems, the
nested feature brings other challenges, especially in the
following aspects:

& Though UL is a simple mathematical formula, it is still a
NP hard problem for the bi-level structure, and it is diffi-
cult to converge (Jeroslow 1985).

& It is time-consuming to get the global optima of LL,
which are required for each function evaluation in
UL.

It can be seen that most challenges are concentrated
on the expensive section analyses and optimization in
LL. Reducing the computation budget of section analyses
is essential and significant. Hence, MFMs are proposed
to keep the analysis precision and improve the computa-
tion efficiency.

3.1 Low-fidelity hydrodynamic solver

XFoil that is an interactive inviscid/viscous program for
analyses and designs of airfoils (Drela and Giles 1987;
Drela 1989) is used for the LF section analysis. It combines
a linear vorticity stream function panel code and an integral
boundary layer formulation and is able to get accurate re-
sults in low speed aerodynamics. Hence, XFoil can also
predict relatively accurate hydrodynamic data of hydro-
foils in water as long as the Reynolds number is inserted
correctly, according to the similarity criterion (Molland
et al. 2004). Besides, XFoil calculates transition with the
eN envelope method, and a proper NT is obtained by (20)
presented by van Ingen (2008).

NT ¼ −8:43−2:4ln Tuð Þ ð20Þ

where Tu denotes the turbulence intensity, and NT is set as
2 in this work for water environment. This corresponds to a
rough wing surface in a high turbulence intensity
freestream. In summary, the operation processes are pre-
sented as follows:

1) The coordinate data of the section shapes are uploaded to
XFoil.

2) Number of panels is inputted by users, and 201 panels are
proposed in this study.

3) The Reynolds value, AOA, and NT are inserted according
to the work condition.

4) The lift and the drag coefficients and the pressure distri-
bution curve are obtained.

Fig. 6 The bi-level shape
optimization frame
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The new solver for UWs is constructed by using XFoil in
the section analyses, which is more rapid but has lower fidel-
ity. The new solver is called Q3DL (Q3D in low-fidelity for-
mat), and it only costs about 4.5 s for calculating the hydro-
dynamics of an UW.

As Table 4 and Fig. 19 describe, 4 test cases under 9 work-
ing conditions are carried out to verify the effectiveness of
Q3D, Q3DL, and 3D RANS, and results are listed in Fig. 7.
These curves of the three results have a similar trend, which is
the prerequisite for constructing MFMs. Thus, MFMs com-
bining Q3DL and Q3D or RANS data can be used to acquire
an accurate result at a reasonable cost.

3.2 Multi-fidelity theory

The core part of constructing a MFM is the way of combining
the LF and HF data, and there are three popular methods,

including the correction-based method, space mapping, and
co-kriging (Li et al. 2018). The correction-based method is
also called “bridge function,” “scaling function,” or “calibra-
tion,” and it has simple structure and robust performance. The
correction can be additive, multiplicative, or hybrid additive
multiplicative, and the additive bridge function method is
adopted here (Choi et al. 2004), and its general descriptions
are as follows:

f M̂FM xð Þ ¼ f ̂LFM xð Þ þ γ ̂ xð Þ ð21Þ

γ ̂ xð Þ ¼ f HF xð Þ− f LF xð Þ ð22Þ
where γ ̂ xð Þ is the bridge function, and it is a SM built by the
difference between LF and HF response data. MFM f ̂MFM xð Þ
is the addition of LF SM f L̂FM xð Þ and the bridge
function γ ̂ xð Þ.

(1) Case 1 (2) Case 2

(3) Case 3 (4) Case 4

Fig. 7 Comparing results of Q3DL, Q3D, and RANS
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3.2.1 Tests on mathematical examples

It is important to determine the HF and LF data amounts for
constructing MFMs. Obviously, the quantity of HF and LF

data depends on the design dimension. Naturally, it is neces-
sary to explore the relationship between data amount and di-
mension. For low-dimensional (≤ 2) problems, HF and MFM
shapes can be captured from the function profiles, which can

(1) Function curves of 1D (3) Transformed function curves of 3D

(2) Function graphs and transformed function curves of 2D

(4) Transformed function curves of 4D (5) Transformed function curves of 6D

Fig. 8 Results of tests of five mathematical examples
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directly reflect the coincidence degree. For high-dimensional
(> 2) problems, a one-dimensional curve is utilized to reflect
the coincidence degree. Specifically, the curve is made up of
the grid sampling points and the corresponding response
values that are arranged in sequence.

Through tests on five different mathematical cases shown
in Table 5 (Li et al. 2018), the relationship between the HF
data amountmHF and the dimension n is determined asmHF =
5n + 2, whereas the expression about the LF data amount mLF

and dimension is confirmed as mLF = 8n + 4, which is called
the “5n + 2, 8n + 4” rule in this paper. Results of tests on the
five mathematical examples are shown in Fig. 8. The additive
bridge function MFM has an excellent performance on the
1D, 2D, and 6D examples and is also able to capture the
overall trend of 3D and 4D examples, which is good enough
for the following optimization.

3.2.2 Multi-fidelity bi-level hydrodynamic solver

This part aims at combining LF and HF data to predict hydro-
dynamic data of the UW, which has the optimal sections at a
given planform vector. As mentioned in Sect. 3.1 and
Appendix 3, Q3DL is used to generate LF data. For HF data,
there are two categories: One is the data obtained by Q3D
adopting 2D RANS; the other one is the data calculated by
3D RANS. Hence, there are three multi-fidelity approaches to
combine LF and HF data, named as CC1, CC2, and CC3.

(1) Construction progress of CC1

(2) Construction progress of CC2

Fig. 9 Testing progress of the MFMs

(3) Construction progress of CC3

Fig. 9 (continued)
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(1) As Fig. 9 (1) shows, CC1 combines data from XFoil
and 2D RANS to construct MFM to predict hydro-
dynamic data of sections. Thereafter, section optimi-
zations adopting MFM are carried out at the given
vector to obtain the UW and its predictive hydrody-
namic data.

Benefits are that data from XFoil and 2D RANS are
very similar, helping to improve LL accuracy. However,
CC1 also ignore the influence on the effective incoming
flow distribution, which may reduce the precision. More

importantly, computational costs of section analyses are
hardly reduced.

(2) As Fig. 9 (2) shows, CC2 adopts XFoil in section opti-
mizations at a few planform samples to obtain the opti-
mal UWs. Subsequently, hydrodynamic data of the opti-
mal UWs are calculated by Q3DL and 3D RANS to
construct the MFM.

The advantage is that the accuracy is improved by the
highest-fidelity 3D RANS data. However, CC2 lacks HF data
in LL, which may be leading to a wrong optimization

(1) Test results of CC1

(2) Test results of CC2 

Fig. 10 Test results of the MFMs

(3) Test results of CC3

(4) Comparison results of HF data of the three MFMs

Fig. 10 (continued)
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direction. Furthermore, CC2 may be invalid due to the very
complex relation between the planform vector and its optimal
hydrodynamic data.

(3) As Fig. 9 (3) shows, CC3 employs CC1 to obtain the
optimal predictive data at a few planform samples.
Meanwhile, it combines the predictive and 3D RANS
data to construct MFM, which is similar to CC2.
Admittedly, this mode integrates the advantages of
CC1 and CC2. However, the computing burden is also
the summation of CC1 and CC2.

3.2.3 3.2.3 Performances of different MFMs

An engineering test is set up to compare the performances of
different MFMs, and the flow charts are shown in Fig. 9. Far-
field parameters are that V∞ and α are 1 m/s and 4°, respec-
tively. The testing samples are obtained by the grid sampling
method used in the transformation curves. The dotted lines in
Fig. 9 are not implemented here, because this part only con-
centrates on construction processes. The dotted lines represent
the update of MFMs by one HF and three LF data, which will
be adopted in optimization.

Table 2 Performance indices of the MFMs

Six quantitative indices

1 Error
E(|MFM-HF|)

2 Trend
D(|MFM-HF|)

3 LL abilities
(−L/D)

4 UL potential
(−L/D)

5 Optimization capability
(−L/D)

6 Costing time
(min)

CC1 4.9614 0.3147 −18.9495 −19.9738 −19.9738 16920

CC2 0.2464 0.1712 −18.7824 −19.8321 −19.8321 1102

CC3 0.3317 0.1547 −18.9495 −19.9738 −19.6885 23616

Six normalized indices

1 Error 2 Trend 3 LL abilities 4 UL potential 5 Optimization capability 6 Costing time

CC1 1.0000 1.0000 0.9912 0.9929 0.9857 0.7165

CC2 0.0497 0.5442 1.0000 1.0000 0.9928 0.0466

CC3 0.0668 0.4915 0.9912 0.9929 1.0000 1.0000

Fig. 11 Performances of different
MFMs

S. Sun et al.330



The results are shown in Fig. 10. Compared to the mathe-
matical examples, the engineering application is more compli-
cated, in which MFM is necessary. However, each MFM has
its merits and defects. To choose a proper MFM in the shape
design optimization, a comprehensive discussion is presented.

(1) For CC1, instead of HF data, the predictive results
have the same trend as LF data, which reveals that
ignoring the influence on the flow distribution indeed
causes errors.

(2) For CC2, though LF and HF data have a big difference,
MFM is precise. Besides, CC2 is the fastest one owing to
the reduction of computational budgets in LL.

(3) For CC3, due to the inclusion of CC1 in LL, CC3 and
CC1 have same HF and LF data. The predictive re-
sults show a very good agreement with HF data, but
CC3 cost a lot.

(4) In Fig. 10 (4), CC1 and CC3 have slightly better HF data
than CC2, which can be explained by the fact that accu-
rate LL result helps to find a right optimization direction.

1) NACA 0012 2) NACA 23012 3) NACA 43012

4) NACA 63412 5) NACA 16412 6) RAE 2822

7) NASA SC(2)-0412 8) WHITCOMB 9) Eppler 189

Fig. 12 Shapes of basis hydrofoils
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(5) To compare CC1, CC2, and CC3more quantitatively, six
indices are introduced: (1) The mean of differences be-
tween MFM and HF data, (2) the variance of the differ-
ences, (3) the mean of HF data, (4) the optimum HF
value, (5) the HF response value at the optimum solution
of MFM, and (6) the costing time. The first two indices
are the error and the trend between MFM and HF re-
sponses, respectively. The third index refers to LL opti-
mization abilities, which can provide better UWs under a
same condition. The fourth denotes the potential of UL,
whereas the fifth represents MFM optimization capabil-
ity. The last one reflects the computational cost. The
indices and their normalized values are listed in
Table 2, and the radar diagram is shown as Fig. 11.

Besides, the smaller all the indices are, the better the
performance MFM has. It is easy to find that CC2 has
the best performance.

4 Applications on underwater wing design

4.1 The UL optimization model

Shape parameterization method is a crucial part of UWs
optimization, which determines the design variable number
and the design space, and it also influences the optimum

a) AOA=0º b) AOA=2º c) AOA=4º

Fig. 13 Convergence processes of the 2D hydrofoil optimization tests. a AOA= 0º. b AOA= 2º. c AOA= 4º

Fig. 14 Flowchart of MFBLO
process
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(Masters et al. 2017). For the UL optimization, the plan-
form geometry is simple and can be directly gained by the
inputs listed in Table 1 and Fig. 1. The relative thickness t/
c is set as 0.1 to fit the thin hydrofoil theory. The section
number ns is set to 8, and thereby the span-wise positions
Spi are determined as [0, 0.1429, 0.2587, 0.4286, 0.5714,
0.7143, 0.8571, 1]·b/2. Hence, the wing span b, the wing
root cr, the wing tip ct, and the leading edge angle λ are
chosen as the UL design variables. Besides, the planform
area Sw should not be too small to have good bearing ca-
pacity. Thus, a constraint about the planform area that is
larger than a given value is introduced. Additionally, the
optimal conditions of corresponding LL problems are set
up as the constraints to obtain IVs*. The maximum L/D of
the UW is considered as the objective function and the UL
optimization model as the following:

Max L=D ¼ Fu xu; IVs* xu; xlð Þ� �
;

working conditions : α ¼ 4∘; t=c ¼ 0:1; v ¼ 1m=sð Þ;
W :r:t cr=m 0:2; 0:3½ �; b=m 0:8; 1:6½ �;

λ=∘ 0; 40½ �; ct=m 0:05; 0:2½ �;
S:t Sw > 0:325; xl∈ argmin

xl∈XL

f l xu; xlð Þf g;
ð23Þ

4.2 The LL optimization model

For the parameterized method of hydrofoil shapes, the
reduced-basis concept method is adopted (Vanderplaats
1984). In this paper, nine hydrofoils that are analyzed and
wind-tunnel tested are selected as the basis hydrofoils, as
shown in Fig. 12. Besides, the class and shape function trans-
formation method models the expressions of the basis hydro-
foils for the CFD mesh generator (Kulfan 2008).

Subsequently, coordinates of the new hydrofoil are provided
by the weighted average of the new expression. To match
sizes of the control sections, two scaling factors that adjust
the chord and the maximum thickness are added in the
parameterized method. In conclusion, nine weight
coefficients wli_j and two scaling factors totaling 11 inputs
are needed to generate a hydrofoil shape. Among them, the
weight coefficients are selected as the LL design variables,
and the scaling factors are obtained from the UL
optimization, which are constraints in the LL optimization.
The LL optimization model is expressed as the following:

Max f l i ¼ Cl∞ i xl ið Þ=Cd∞ i xl ið Þ;
working conditions : effective incoming flow;
W :r:t wli j∈ 0; 1½ �; i ¼ 1; 2:::8; j ¼ 1; 2:::9;

S:t ∑
9

j¼1
wli j ¼ 1;

scal1 i ¼ ci; scal2 i ¼ thicki;

ð24Þ

4.3 Optimizers

Multi-start space reduction (MSSR) algorithm that is a re-
cently presented surrogate-based global optimization algo-
rithm (Dong et al. 2016) is used as optimizer for UL and
LL. Moreover, some modifications like constraints han-
dling and surrogate modeling are added in the both level
applications.

MSSR defines three continuously updated design
spaces, including global space, medium space, and local
space. Meanwhile, a constantly regenerated kriging SM is
also constructed to reduce the cost. MSSR alternately
chooses the three spaces and employs the multi-start SQP
algorithm to find some local optima on kriging. Thereafter,
the most potential locations are chosen as supplementary
points to update kriging and the design space. Once the
multi-start SQP converges to a same point or there are no
suitable points in space, the estimated mean square error
(MSE) of kriging will be maximized to explore unknown
space. The algorithm will continue until the convergence
conditions are met.

For the UL optimization, kriging is replaced by CC2.
According to the 5n + 2, 8n + 4 rule, the initial sampling
amount of HF and LF data are 22 and 36, respectively.
Besides, an IF condition is set up to eliminate the infeasible
solutions before running the simulation for L/D, and the re-
sponse value of these infeasible solutions is defined as 18.
MSSR usually converges on four dimensional mathematical
problems within 200 function evaluations. Therefore, the UL
termination condition is set as 300 (3D RANS) simulation
evaluations.

Fig. 15 Optimization process of MFBLO
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Table 3 Hydrodynamics and geometries of the application UWs

Results of MFBLO and wing planform optimization (comparison with single-level optimization)
Hydrodynamics and geometries of the referenced UW (wing planform optimization)
The response L/D The wing planform geometry x (optimized) 8-section shape parameters (fixed)
HF 18.9023 (0.4064/0.0215) [0.2570, 0.8000 4.1549, 0.1499] [1/9]8 × 9

Area constraint Sw 0.3255 Normalized constraints ∑wli_j [1] 8 × 1

Hydrodynamics and geometries of MFBLO UW (|19.9180–18.9023|/18.9023 = 5.38% improvement than the referenced UW)
UL results LL results, section parameter [xl1_1–9; xl2_1–9…;xl8_1–9]
The response L/D The optimum xu [0.0192, 0.1727, 0.2014, 0.3407, 0.0523, 0.0495, 0.0689, 0.0509, 0.0444;

0.0119, 0.0609, 0.3955, 0.1997, 0.0945, 0.1039, 0.0565, 0.0394, 0.0378;
0.0879, 0.0354, 0.2339, 0.3795, 0.0588, 0.0874, 0.0273, 0.0621, 0.0276;
0.0176, 0.0704, 0.2759, 0.1560, 0.1098, 0.2099, 0.0160, 0.0140, 0.1304;
0.0485, 0.0256, 0.2820, 0.3464, 0.1842, 0.0319, 0.0083, 0.0156, 0.0575;
0.0374, 0.0056, 0.2457, 0.2517, 0.2197, 0.0228, 0.0172, 0.0094, 0.1904;
0.0144, 0.0647, 0.1870, 0.1870, 0.1655, 0.0576, 0.0935, 0.0288, 0.2014;
0.0082, 0.0191, 0.1257, 0.1341, 0.2044, 0.1033, 0.1599, 0.1887, 0.0566]

LF 22.7424 (0.4503/0.0198) cr/m 0.3000
HF 19.9180 (0.4255/0.0213) b/2/m 0.8000
MFM 19.9192 λ/° 8.6058
MFM error 6.3 × 10−5 ct/m 0.1095

Area constraint Sw 0.3276 Normalized constraints ∑wli_j [1] 8 × 1

Results of GWO and EGO (comparison with typical approaches)
Hydrodynamics and geometries of GWO UW (|19.6136–19.9180|/19.6136 = 1.55% worse than MFBLO UW)
UL results LL results, section parameter [xl1_1–9; xl2_1–9…;xl8_1–9]
The response L/D The optimum xu [0.3331, 0.1401, 0.1326, 0.0000, 0.0226, 0.0755, 0.00000, 0.2370, 0.0591;

0.0000, 0.3243, 0.0000, 0.0047, 0.0408, 0.0036, 0.2133, 0.2081, 0.2052;
0.0168, 0.0516, 0.1028, 0.0158, 0.0978, 0.2217, 0.0189, 0.4724, 0.0022;
0.0552, 0.1723, 0.0271, 0.3635, 0.0346, 0.0002, 0.1187, 0.1620, 0.0665;
0.0345, 0.0473, 0.0363, 0.3077, 0.0387, 0.0009, 0.2531, 0.2673, 0.0141;
0.0421, 0.1414, 0.2525, 0.0719, 0.3086, 0.0812, 0.0000, 0.0703, 0.0320;
0.0154, 0.0000, 0.0946, 0.0170, 0.1778, 0.0254, 0.2125, 0.0230, 0.4344;
0.0779, 0.1687, 0.2383, 0.0002, 0.1746, 0.1157, 0.1354, 0.0734, 0.0158]

LF – cr/m 0.3000
b/2/m 0.8000

HF 19.6136 (0.4315/0.0220) λ/° 0.2635
ct/m 0.1070

Area constraint Sw 0.3256 Normalized constraints ∑wli_j [1] 8 × 1

Hydrodynamics and geometries of EGO UW (|19.4960–19.9180|/19.4960 = 2.16% worse than MFBLO UW)
UL results LL results, section parameter [xl1_1–9; xl2_1–9…;xl8_1–9]
The response L/D The optimum xu [0.1444, 0.0634, 0.1369, 0.0960, 0.0990, 0.0461, 0.1505, 0.1184, 0.1455;

0.1150, 0.0516, 0.1085, 0.0643, 0.1653, 0.0669, 0.1473, 0.1186, 0.1625;
0.1472, 0.1339, 0.0896, 0.1564, 0.1068, 0.1384, 0.0908, 0.0819, 0.0550;
0.1268, 0.0706, 0.1847, 0.0984, 0.1353, 0.1592, 0.0400, 0.0841, 0.1010;
0.0921, 0.1706, 0.1408, 0.0654, 0.1339, 0.0568, 0.1454, 0.1028, 0.0921;
0.1047, 0.0811, 0.1628, 0.1771, 0.0780, 0.1711, 0.1305, 0.0687, 0.0260;
0.0906, 0.1005, 0.0734, 0.0410, 0.0720, 0.2170, 0.1262, 0.1804, 0.0988;
0.1286, 0.1085, 0.1135, 0.1046, 0.1443, 0.0999, 0.1315, 0.1015, 0.0677]

LF – cr/m 0.3000
b/2/m 0.7983

HF 19.4960 (0.4190/0.02149) λ/° 13.4137
ct/m 0.1084

Area constraint Sw 0.3260 Normalized constraints ∑wli_j [1] 8 × 1

Results of EXP1 and EXP2 (Comparison with LF Optimizations)
Hydrodynamics and geometries of EXP1 UW (|19.5063–19.9180|/19.5063 = 2.11% worse than MFBLO UW)
UL results LL results, section parameter [xl1_1–9; xl2_1–9…;xl8_1–9]
The response L/D The optimum xu [0.0062, 0.1514, 0.1667, 0.2093, 0.2665, 0.0437, 0.0054, 0.1248, 0.0259

0.0119, 0.0058, 0.3149, 0.4251, 0.1843, 0.0071, 0.0062, 0.0188, 0.0259
0.0247, 0.0422, 0.2865, 0.3620, 0.2075, 0.0319, 0.0190, 0.0103, 0.0159
0.0047, 0.0461, 0.3647, 0.3663, 0.0554, 0.0251, 0.0930, 0.0006, 0.0441
0.0736, 0.0509, 0.2033, 0.1714, 0.2135, 0.1692, 0.0000, 0.0149, 0.1032
0.0147, 0.1159, 0.2060, 0.4177, 0.1380, 0.0326, 0.0334, 0.0113, 0.0304
0.0294, 0.0689, 0.1314, 0.2421, 0.2792, 0.1095, 0.0173, 0.0382, 0.0840
0.0322, 0.0309, 0.0234, 0.2093, 0.1605, 0.1420, 0.1350, 0.2133, 0.0533]

LF 24.5274 (0.4930/0.0201) cr/m 0.3000
b/2/m 0.7996

HF 19.5063 (4.2793/2.1938) λ/° 5.2426
ct/m 0.1145

Area constraint Sw 0.3314 Normalized constraints ∑wli_j [1] 8 × 1

Hydrodynamics and geometries of EXP2 UW (|18.7655–19.9180|/18.7655 = 6.14% worse than MFBLO UW)
UL results LL results, section parameter [xl1_1–9; xl2_1–9…;xl8_1–9]
The response L/D The optimum xu [0.0000, 0.6539, 0.0000, 0.3327, 0.0000, 0.0073, 0.0000, 0.0000, 0.0060;

0.3478, 0.0000, 0.0000, 0.3913, 0.0000, 0.1539, 0.0622, 0.0381, 0.0066;
0.0000, 0.0000, 0.0000, 0.1681, 0.8312, 0.0007, 0.0000, 0.0000, 0.0000;
0.0003, 0.0000, 0.0592, 0.3173, 0.0909, 0.1166, 0.4119, 0.0000, 0.0037;
0.1202, 0.3551, 0.0118, 0.0000, 0.0000, 0.0512, 0.4618, 0.0000, 0.0000;
0.4080, 0.0000, 0.4080, 0.0001, 0.0000, 0.1684, 0.0000, 0.0155, 0.0000;
0.0089, 0.0012, 0.0030, 0.0000, 0.0000, 0.0000, 0.0110, 0.9758, 0.0000;
0.0054, 0.0000, 0.0031, 0.0000, 0.0009, 0.9467, 0.0000, 0.0438, 0.0000]

LF 22.4129 (0.4505/0.0201) cr/m 0.3000
b/2/m 0.7947

HF 18.7655 (0.4241/0.0226) λ/° 2.2332
ct/m 0.1094

Area constraint Sw 0.3254 Normalized constraints ∑wli_j [1] 8 × 1
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For the LL optimization, each task has one kriging model.
What is more, four additional parameters including chord,
thickness, speed, and AOA are needed. Besides, the design
variables are 9 weighted coefficients, the sum of which equals
to 1. However, it is almost impossible to satisfy the equality
constraint in a 9-dimensional problem due to the huge design
space. Hence, the design variables are normalized after each
sampling. For the constraints about the chord and the thick-
ness, they are gained by the UL design variables and are di-
rectly used in the hydrofoil geometric model.

Considering that the LL iteration number affects the UL
optimization, several hydrofoils with different chords and un-
der different AOAs are optimized using MSSR, and the con-
vergence processes of the tests are shown in Fig. 13.
Obviously, 300 iterations are good enough for MSSR in the
LL optimization. The total flowchart of MFBLO is presented
in Fig. 14.

4.4 Result and discussion

HF samples are recorded to describe the convergence process,
and the present best values are extracted to plot the iterative
curve in Fig. 15. In total, 342 HF samples are obtained, indi-
cating that there are 42 infeasible planform geometries.
Besides, the response values locate at [17.8, 19.9], and it is
easy to find that the first 22 HF samples generated by LHS are
poor (mostly less than 18.5). As the iteration number in-
creases, larger L/D are gradually caputred, proving the effec-
tiveness of the proposed algorithm. Finally, the optimum is
found at the 253th iteration, and its response and solution
are shown in Table 3. The relative error of HF and MFM
response values at optimum point is 6.3 × 10−5, which dem-
onstrates that the MFMwill becomemore and more precise as
the iteration proceeds.

4.4.1 Comparison with single-level optimizations

In Fig. 15, each point involves a single-level optimiza-
tion loop for the optimal section shapes. Hence, the ob-
jective function values of these points in Fig. 15 are
always better than those without optimization. Besides,
the planform optimization with fixed section parameters
needs to be introduced for comparison. Thus, the results
of the planform optimization are selected as the refer-
enced UW, listed in Table 3. The bi-level optimization
result still has 5.38% improvements than that of the wing
planform optimization. Thus, it is necessary to carry out
the bi-level optimization to improve the performance.
The optimal planform and sections, the corresponding
pressure contour, as well as the referenced UWs are
shown in Figs. 16 and 17.

Some conclusions in this part can be drawn as follows:

& The planform optimization with sections fixed tends
to maximize the aspect ratio to reduce the effect of
wing-tip vortices. Nevertheless, the bi-level optimi-
zation only attempts to extend the wing spanwise
and change shapes of sections, which indicates that
the chord is not the most important factor affecting
the vortices.

& Due to the strict restriction of section sizes, there is little
difference in the section shapes of the referenced and op-
timized UWs. However, the small perturbations of these
shapes have a great impact on the overall fluid perfor-
mance of the UW.

& The optimized UW has a larger planform area than
the referenced case. Hence, the optimized UW has a
better bearing capacity. Besides, the optimized UW
has a better performance accroding to the pressure

Fig. 16 Pressure counters and
planform geometries
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contour. For the upper surface contour, the leading
edge low-pressure areas of the optimized UW is lager
than that of the referenced case, which can imporve
the lift. Moreover, the the optimized UW has a more
uniform and smooth pressure distribution, and the
equivalent lines are almost parallel. For the lower
surface contour, fixed section shapes provide a more
smooth pressure distribution for the referenced UW.
However, multiple section shapes provide a smaller
vortex for the optimized UW, according to the wing-
tip low-pressure area. A smaller vortex can improve
the lift and reduce the induced drag of the UW.

4.4.2 Comparison with typical approaches

Nowadays, approaches of hydrodynamic shape optimiza-
tions can be classified into three categories: gradient-
based methods, heuristic algorithm assistant methods,
and surrogate-based optimizations (Liu et al. 2017). The
gradient-based methods are usually very effective, but the
solution optimality can be sensitive to the initial guesses
and the method often becomes trapped into a local mini-
mum (Chernukhin and Zingg 2013). Thus, to show the
advantages of MFBLO, representative approaches in the
other two categories that are global optimizations are

1) Section 1 2) Section 2 3) Section 3

4) Section 4 5) Section 5

7) Section 7 8) Section 8

6) Section 6

Fig. 17 Shapes of the referenced and optimized sections
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chose to design UWs for comparison, including grey wolf
optimization (GWO) (Mirjalili et al. 2014) and efficient
global optimization (EGO) (Jones et al. 1998). The opti-
mization model is expressed in (25), which keeps same
working conditions and design requirements with
MFBLO. Besides, all the objective functions are evaluat-
ed by RANS simulations. Same as MFBLO, the two ap-
proaches also utilize 300 function evaluations as the ter-
mination criterion.

Max L=D;
working conditions : α ¼ 4∘; t=c ¼ 0:1; v ¼ 1m=sð Þ;
W:r:t cr=m 0:2; 0:3½ �; b=m 0:8; 1:6½ �;

λ=∘ 0; 40½ �; ct=m 0:05; 0:2½ �;
wli j 0; 1½ �; i ¼ 1; 2:::8; j ¼ 1; 2:::9;

S:t Sw > 0:325; ∑
9

j¼1
wli j ¼ 1;

ð25Þ

The obtained results from the two methods are listed in
Table 3. Obviously, MFBLO gets a bigger L/D than the
two approaches. Additionally, about 6.3 × 102 and 1.5 ×
104 infeasible samples are generated in GWO and EGO,
respectively. Thus, the iterative feasible results of the two
optimization methods and MFBLO are also provided in
Fig. 18. It is clear that MFBLO has the faster convergence
rate. EGO performs worse within the first 50 simulation
analyses. Moreover, EGO can hardly find a better solution
after 200 analyses, whereas GWO can gradually find bet-
ter solutions as the iteration progresses. In summary,
MFBLO outperforms the two methods on the shape opti-
mization of UWs.

4.4.3 Comparison with LF optimizations

To demonstrate the necessity of constructing MFMs, two
experiments EXP1 and EXP2 are carried out. EXP1 is LF
bi-level optimization, which adopts (23) and (24) as the
mathematical model (Elham et al. 2014). EXP2 is LF
traditional optimization, which employ (25) as the model.
Both of them adopts LF Q3DL solvers to evaluate the L/
D. For optimizer, EXP1 takes MSSR in the two levels.
For EXP2, SQP is not able for finning a global optimum,
whereas surrogate models need more construction time.
Considering that the objective function is a computation-
ally efficient problem, GWO is suitable to apply. The
termination criteria of EXP1 and EXP2 are 300 function
evaluations, and the optimal results are shown in Table 3.
It can be easily found that EXP1 and EXP2 have worse
performances than the proposed MFBLO, which demon-
strates the necessity of constructing MFMs.

For LF results, the optimum of EXP1 is 24.5274, whereas
the optimum of EXP2 is 22.4129. Hence, EXP2 is far from
reaching the global optimum of the optimization using LF
solver. Similarly, unlike the small numerical gap between the
MFBLO and the typical approaches, there may be a large
quantity of UWs waiting to be found and evaluated in this
gap, because the variance of HF is smaller than that of LF.
This may bring an additional long calculation time for the
typical approaches to achieve the same result of MFBLO
strategy.

5 Conclusions and further research

In this paper, the design variables of the UW shape opti-
mization are classified into an outer layer planform vector
and several inner layer section vectors. Meanwhile, based
on the finite wing phenomenon, hydrodynamics of UWs
can be predicted by the Q3D solver, which combines the
planform analysis and several section analyses to gain the
results. After separating the design variables and hydro-
dynamic analyses, the UW shape optimization is divided
into an UL optimization merely concerning the planform
design and several LL optimizations only related to the
wing section designs, which can reduce the dimension.
However, the bi-level optimization frame also brings
new challenges: large numbers of iterations in LL and
the precision reduction. Thus, the additive bridge function
MFM is introduced to improve the efficiency and accura-
cy. Subsequently, three multi-fidelity data fusion ap-
proaches are presented and tested for comparison.
Among them, CC2 has the best performance and is pro-
vided for the shape design. Finally, MFBLO is imple-
mented on the UW shape optimization. For LL, 250 func-
tion evaluations are required to find the optimal solution;

Fig. 18 Convergence curves of MFBLO, GWO, and EGO
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for UL, the optimum is found at 253th iteration. The L/D
optimized by MFBLO has 5.38% improvements than that
of the single-level optimization, 1.55% better than that
obtained by the traditional high-dimensional method,
and 2 .11% improvement s than tha t o f the LF
optimization.

In our further research, it is of great interest to use the
proposedMFBLO to optimize blended wing body underwater
gilders. Moreover, MFBLO will also be expanded to solve
more challenging problems.

6 Replication of results

Pseudocodes are presented in the Supplementary material to
help readers understand better, which includes the part of UL
Shape Designer (ULSD), Multi-Fidelity Hydrodynamic
Solver (MFHS), and LL Shape Designer (LLSD).
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Appendix 1. Four test cases

Two different wing planform shapes, including straight and
swept wings, are selected as basic geometries, and Table 4
lists the parameters. Besides, two different hydrofoils, in-
cluding symmetric and cambered sections, are chosen as
fundamental profiles, as Fig. 19 shows. By combining
them arbitrarily, four different test wings are generated,
and Table 4 also gives the nomenclatures of the cases. To
simulate actual working condition for the UW, the AOAs
are set from 0 to 8 degree, and meanwhile, the far-field
velocity is set to 1 m/s.

Table 4 Geometry parameters of wings

b (mm) cr (mm) ct (mm) λ° t/c

Straight 1000.0 250.0 100.0 11.0 0.1
Swept 1260.0 248.786 64.286 27.0

Nomenclature Straight wing Swept wing

Symmetric Case 1 Case 2

Cambered Case 3 Case 4

(a) Symmetric (b) Cambered

Fig. 19 Fundamental profile. a
Symmetric. b Cambered
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Appendix 2. Five mathematical examples

Appendix 3. Validation of Q3DL, Q3D,
and RANS simulations

The simulation results need to be validated with the experi-
ment results to ensure the accuracy. Hence, we adopt experi-
ment results of “Type I-SS” UW, which are tested by Zarruk
et al. (2014) in a water tunnel at University of Tasmania. Type
I-SS UW is made by stainless steel, whose sections are
NACA0009 hydrofoils. Besides, the mesh used for RANS

simulation is a structured mesh with 438,870 cells (y+ = 5).
The shape and the computational mesh of Type I-SS UW are
shown in Fig. 20. The simulation results are shown in Fig. 21.
The comparison illustrates that RANS simulation results are in
good agreement with the experimental data. Besides, Q3DL
andQ3D solvers have the same trend with the experiment data
as the angle of attack varies. Thus, RANS is regarded as the
highest-fidelity solver, and Q3D is a high-fidelity solver,
whereas Q3DL has the lowest fidelity.

Table 5 Five MF mathematical examples and their expressions

Formula Dim Design space

(1) One-dimensional function:
f(x) = (6x − 2)3 sin(12x − 4); yh = f(x); yl = 0.5f(x) + 10(x − 0.5) − 5;

1 [0, 1]

(2) Six-hump camel-back function:
f x1; x2ð Þ ¼ 4x21−2:1x

4
1 þ x61=3þ x1x2−4x22 þ 4x42;

yh ¼ f x1; x2ð Þ; yl ¼ f 0:7x1; 0:7x2ð Þ þ x1x2−15;

2 [−2, 2]2

(3) 3D Rosenbrock function:

f x1; x2; x3ð Þ ¼ ∑
2

i¼1
100 x2i −xiþ1

� �2 þ xi−1ð Þ2
h i

;

yh ¼ f x1; x2; x3ð Þ;
yl ¼ 90 x21−x2

� �2 þ 1:1 x3−1ð Þ2 þ 100 x22−x3
� �2 þ x2−1ð Þ2;

3 [−2.048, 2.048]3

(4) Colville-Himmelblau function:

f x1; x2; x3; x4ð Þ ¼ 100 x2−x21
� �2 þ 1−x1ð Þ2 þ 90 x4−x23

� �2 þ 1−x3ð Þ2
þ10:1 x2−1ð Þ2 þ x4−1ð Þ2

� �
þ 19:8 x2−1ð Þ x4−1ð Þ; yh ¼ f x1; x2; x3; x4ð Þ;

yl ¼ 100 x2−x21
� �2 þ 1:1 1−x1ð Þ2 þ 90 x4−x23

� �2 þ 1:1 1−x3ð Þ2
þ10:1 x2−1ð Þ2 þ x4−1ð Þ2

� �
þ 20 x2−1ð Þ x4−1ð Þ;

4 [−10, 10]4

(5) Hessen function:

f x1; :::; x6ð Þ ¼ 25 x1−2ð Þ2 þ x2−2ð Þ2 þ x3−1ð Þ2 þ x4−4ð Þ2 þ x5−1ð Þ2 þ x6−4ð Þ2;
yh ¼ f x1; :::; x6ð Þ; yl ¼ 0:6 f x1; :::; x6ð Þ þ 0:25 x2−2ð Þ2 þ 0:75 x4−4ð Þ2;

6 [0, 10]6

(a) Geometric model of “Type I-SS” UW (b) Detailed meshes of boundary layers

Fig. 20 Shape and computational mesh of “Type I-SS” UW. a Geometric model of “Type I-SS” UW. b Detailed meshes of boundary layers
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To make sure the simulation results are independent to
mesh size, simulated results with different mesh sizes and
y + values are compared. The mesh with the sizes 2,205,450
(y+ = 0.5), 1,141,380 (y+ = 1) and 438,870 cells (y+ = 5) are
used for simulating the hydrodynamic performance of Type
I-SS UW, respectively. Besides, Reynolds number and AOA
is set to 1.0 × 106 and 4 degrees, respectively. The results
shown in Table 6 indicate that CL and CD are almost the same
between the finest and coarsest mesh. There are 0.18% and
1.7% differences in CL and CD. Hence, compromising be-
tween the efficiency and accuracy, the mesh with the sizes
438,870 cells (y+ = 5) are used in this paper.
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