
RESEARCH PAPER

Xiaohu Dong1
& Xiaohong Ding1

& Guojie Li2 & Gareth Peter Lewis3

Received: 16 October 2018 /Revised: 7 July 2019 /Accepted: 15 July 2019 /Published online: 1 August 2019
# Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Under axial pressure or shear load, thin-walled plate and shell structures are easily destroyed by buckling. This paper presents the
design method for finding the optimal stiffener layout on thin-walled plate and shell structures against the buckling by using the
adaptive growth method (AGM), which is based on the growth mechanism of branch systems in nature. Firstly, a mathematical
model for optimization of the stiffener layout against buckling is established, and a Karush-Kuhn-Tucker (KKT)-based iteration
formula is derived. Next, the stiffeners grow or degenerate from “seeds” according to the adaptive growth principle. Several
examples, including imperforated and perforated rectangular plates with unilateral axial pressure and shear loading, are demon-
strated to validate the effectiveness of the suggested method, and well-defined stiffener layouts are obtained. The results show
that the stiffener layout is clear, and the buckling resistance performance of the optimized stiffened structures is greatly improved.
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1 Introduction

Stiffened plate and shell structures have been widely applied
to aerospace, marine, automotive, and other industries because
of their lightweight construction. Under axial pressure or shear
load, buckling is one of the main failure forms of these struc-
tures. To obtain better buckling resistance, the optimum layout
of stiffeners on the thin-walled plate and shell structure is of
critical significance. In recent years, many research works
have focused on finding the optimal geometry and position
of stiffeners to improve structural buckling performance.With
respect to the patch loading longitudinally stiffened webs
problem, Cevik (2007), Cevik et al. (2010) studied the opti-
mum size of longitudinally stiffened webs based on an

existing database of previous experimental tests by genetic
programming and stepwise regression. Maiorana et al.
(2011) applied different typologies of stiffeners on stiffened
plates and gave new practical insights about the shape and
optimum position of longitudinal stiffener in webs under axial
force in-plane bending or shear act. Chacon et al. (2013a, b,
2014, 2017) and Carlos (2015) discussed the influence of
transverse stiffener of steel girders subjected to patch loading
by experimental and numerical studies. Nelson et al. (2017)
revealed the effect of the compressive load length and the
relative position and size of the stiffeners on the ultimate
strength. Wang et al. (2014) proposed a two-stage computa-
tional framework for cylindrical or flat stiffened panels under
uniform or non-uniform axial compression, which contained
size and layout optimization of stiffened panels simultaneous-
ly. Cheng and Xu (2016) considered two-scale topology opti-
mization of maximum out-of-plane global buckling load fac-
tor of stiffened or porous plates subjected to volume con-
straints on both the macroplate and the microbase cell. To
simplify the analysis and to enable the gradient-based optimi-
zation, the numerical implementation of the asymptotic ho-
mogenization method (NIAH) was introduced. In regard to
the shear buckling, Alinia (2005) analyzed 1200 plates sub-
jected to shear loading in order to study the role of stiffeners
and to come up with some limits for an optimized design
procedure by using ANSYS finite element method of analysis.
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Subsequently, they gave more details about the shear investi-
gation (Alinia et al. 2007, 2008). Pavlovcic et al. (2007a, b)
numerically and experimentally investigated the shear
strength of steel plate with trapezoidal stiffeners, and the op-
timal position of stiffeners was studied. Alinia and Moosavi
(2009) and Issa-El-Khoury et al. (2016) also investigated the
buckling characteristic of web plates having a longitudinal
stiffener in different positions under simultaneous shear and
in-plane bending. Conversely, because the presence of holes is
often indispensable in many engineering fields, such as main-
tenance or inspection cutouts in a ship hull, many research
works discuss the ultimate strength characteristics of plate
and shell structures considering the presence of holes. Paik
(2007, 2008) and Komur and Sonmez (2015) gave the ulti-
mate strength characteristics of perforated steel plates under
combined biaxial compression and edge shear loads. In
addition, Mohammadzadeh et al. (2018) conducted similar
research to explore the effects of having the hole in the plate.
Shimoda et al. (2016) developed a shape optimization process
based on a free-form optimization method to optimize a shell
structure with holes under out-of-plane and in-plane shape
variations in order to tackle the linear elastic buckling prob-
lem. Hao et al. (2016, 2018) studied shape optimization of
curvilinear stiffeners around multicutouts. However, most of
the abovementioned literature dealt with the size and shape
optimization of plate and shell structures, because of the com-
plexity of directly adopting topology optimization. Although
the method in these literatures can result in optimal stiffener
layout with cutouts structures, the stiffener layout strongly
depends on the initial design.

Bendsoe and Sigmund (2003) and Neves et al. (1995) used
Solid Isotropic Material with Penalization (SIMP) method to
address the stability issues. Manickarajah et al. (1995, 1998)
applied the evolutionary structural optimization (ESO) meth-
od for optimization of plate buckling resistance, and the
optimum thickness distribution of plates that satisfies the
prescribed buckling load constraint was obtained. Butler
et al. (2001) considered optimum panel design using
VICONOPT, which is a fast-running optimization package
based on linear eigenvalue buckling theory, and they
designed corresponding experiments to identify the buckling
modes. Kasaiezadeh et al. (2010) used the level set method
(LSM) to maximize the critical buckling load in the topology
optimization of engineering structures. Luo and Tong (2015)
presented a novel formulation for maximizing linear buckling
loads with additional constraints on load-path continuity and
lower bound of eigenvalue and investigated topology design
optimization of thin-walled structures using a moving iso-
surface threshold (MIST) method. Gao and Ma (2015) devel-
oped two-phase optimization algorithms for minimization of
structural compliance considering constraints of volume and
buckling load factors, which based on the eigenvalue shift and
pseudomode identification. Ye et al. (2017a, b) established a

model of topology optimization with linear buckling con-
straints based on the independent and continuous mapping
(ICM) method to minimize the structure weight and
investigated the buckling topology optimization of
orthotropic plate and shell structures. Wang et al. (2017,
2019) optimized curved stiffener distributions to enhance the
grid-stiffened composite structural buckling resistance. Wu
et al. (2019) proposed multimaterial topology optimization
for thermo-mechanical buckling problems. To date, different
topology optimization techniques have been put into use to
address the stability and buckling issues in engineering struc-
tures. However, most of the design results are usually fuzzy
and complex, which leads to difficulties in the engineering
application. Therefore, it is still necessary to develop new
design methods for stiffener layout of thin-walled plate and
shell structures against buckling.

Huang et al. (2019) presented an engineering method for
optimizing complex structures made of bars, beams, shells, or
a combination of those components, involving both size and
topology design variables. In order to make the primal
problem explicit, a branched multipoint function was
constructed to approximate the primal functions. Soon
afterward, Chen et al. (2019) used an improved gradient-
based two-level approximation (GATA) to deal with the si-
multaneous optimization of stiffened shells with respect to
distribution and sizing. An et al. (2018, 2019) introduced extra
discrete and continuous variables related to the existence of
stiffeners to study on simultaneous optimization of stacking
sequence and stiffener layout of a composite stiffened panel.
Compared with other structural topology optimization
methods, a simple and effective approach termed as adaptive
growth method (AGM) has been put forward by Ding and
Yamazaki (2004, 2005), Ji et al. (2014). This method is in-
spired by the growth mechanism of branch systems in nature
and has been applied to the optimum layout design of stiff-
eners in plate and shell structures to minimize strain energy or
to maximize fundamental frequency. The advantages of AGM
include the following: (1) The implementation of the method
is simple and only a few design parameters are introduced, and
(2) the method is valid and highly efficient, and well-defined
distribution of the stiffeners can be obtained directly. This
paper expands AGM to design the stiffener layout for enhanc-
ing the buckling resistance of plate and shell structures. A
mathematical model for stiffener layout optimization against
buckling is established. The optimal iterative process based on
AGM drives the stiffeners growing from “seeds” towards the
direction to achieve the best buckling resistance of the plate
and shell structures, in which the iterative formula is derived
from Karush-Kuhn-Tucker (KKT) optimality criterion. A fil-
tering function is used to solve the mesh-dependent problem.
Several typical design examples, including imperforated rect-
angular plates with different aspect ratios and perforated rect-
angular plates with different holes under unilateral axial
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pressure or shear loading, are studied, and their design results
are discussed and compared with the SIMP method.

The remainder of this paper is organized as follows. In Sect.
2, the design method of adaptive growth method (AGM) is
introduced, and a designmodel for stiffener layout optimization
of plate and shell structures against buckling is constructed.
Moreover, an iteration formula is derived based on KKT opti-
mum conditions. Several typical design examples, including
imperforated and perforated rectangular plates under unilateral
axial pressure and shear loading, are studied in Sect. 3, and the
obtained well-defined stiffener layouts are discussed. Finally,
the main concluding remarks are given in Sect. 4.

2 Design method

2.1 Design method of adaptive growth method

In the natural world, branching systems (e.g., the root system
of plants) are controlled by the law of adaptive growth to meet
the requirements of the life activities (e.g., geotropism, hydrot-
ropism, and thigmotropism of roots). The adaptive growth
method (AGM) was suggested to solve the design problem
of the stiffener layout optimization on the basis of the growth

mechanisms of branching systems in nature. As shown in
Fig. 1, stiffeners grow from seeds (red point), which are se-
lected according to the loading and supporting conditions. The
stiffeners can either grow or degenerate according to their
contribution to the design objective. When the stiffeners grow
to a certain scale, “branching” will occur, and the stiffeners
connected with the “branching points” can participate to grow
in the next iteration. The stiffeners are removed if they degen-
erate to a certain degree. This generate-degenerate process
repeats until the convergence conditions are satisfied, and
the well-defined distribution of the stiffeners can be obtained.

According to the growth principle of AGM, a ground struc-
ture is constructed, which includes two parts, one is plate and
the other is stiffener, as shown in Fig. 2. The design domain in
Fig. 2a is discretized by four-node shell elements, while two-
node beam elements formed by nodes of the corresponding
shell elements simulate stiffeners. Thus, each unit consists of
one shell element and six beam elements (four beams at four
edges and two beams cross in the middle). However, in some
cases with complex geometric configurations, there are 3-node
triangular elements. In this case, the basic unit contains one
triangular shell element and three beam elements, as shown in
Fig. 2b. Figure 2c shows the cross section of the stiffened plate
structure, where h is the height of the stiffener, and t is the width

(b) Stiffeners’ growing from seed   (a) “Seeding” (c) Branching and degenerating

Seed

Fig. 1 Adaptive growing and branching process. a “Seeding.” b Stiffeners’ growing from seed. c Branching and degenerating

(c) Cross section of stiffened 

plate structure
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(a) Stiffened plate structure
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Fig. 2 Ground structure. a Stiffened plate structure. b Triangular element. c Cross section of stiffened plate structure
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of the stiffener, which represents the thickness of the plate. It is
noted that if the ratio of the stiffener length to height is smaller
than 10, the beam element cannot be used.

2.2 Mathematical model and iterative formula

To maximize the critical buckling load Λ(A), under the given
volume constraints, the optimization mathematical model is
expressed by (1),

find A ¼ A1;A2;…Anð ÞT

max Λ Að Þ ¼ λp ¼ −
φT

pΚφp

φT
pΚgφp

s:t:
g Að Þ ¼ v−ηv0≤0
0 < Amin≤Ai≤Amax i ¼ 1; 2;…; nð Þ

ð1Þ

where Ai is the cross-sectional area of the ith stiffener, n is the
total number of stiffeners, g(A) is the given volume constraints
function, and v and v0 are the final volume and the initial vol-
ume of the whole structure, respectively. η is the volume factor,
and Amin and Amax are the lower and upper limits of Ai. In the
objective function Λ, λp is the pth eigenvalue and φp is the
corresponding eigenvector.K is the global stiffness matrix, and
Kg is the global geometric stiffness matrix.

The iterative updating formula of the design variable Ai is
derived from KKToptimality criterion, as expressed by (2) (Ji
et al. 2014):

Akþ1
i ¼

Amin Ai≤Amin

−α
si
χli

Ak
i þ 1−αð ÞAk

i Amin < Ai < Amax

Amax Ai≥Amax

8><
>:

ð2Þ

where k is the iteration number and li is the length of the ith
stiffener. To ensure convergence, the step factor α is intro-
duced (Chen 1989). The sensitivity Si of the critical buckling
load Λ(A) and Lagrange multiplier χ is expressed by (3) and
(4), respectively:

Si ¼ ∂Λ
∂Ai

ð3Þ

χ ¼ −
Si

Akþ1
i li

Ak
i ¼ −

Ak
i Si

vkþ1
i

¼ −
Ak
1S1
vkþ1
1

¼ −
Ak
2S2
vkþ1
2

¼ ⋯ ¼ −
Ak
nSn
vkþ1
n

¼ −
∑
n

i¼1
Ak
i Si

∑
n

i¼1
vkþ1
i

¼ −
∑
n

i¼1
Ak
i Si

ηv0

ð4Þ

2.3 Sensitivity analysis

The linear buckling behavior of the stiffened plate and shell
structure is governed by the generalized eigenvalue problem,

K þ λpKg
� �

φp ¼ 0 ð5Þ

If (5) has distinct eigenvalues, the derivative of the eigen-
values λp with respect to the design variable Ai is given as (6),

∂λp

∂Ai
¼ −

φT
p

∂K
∂Ai

þ λp
∂Kg

∂Ai

� �
φp

φT
pKgφp

ð6Þ

Considering the small change of the cross-sectional area of
the ith stiffener Ai, (6) is approximated as the discrete form of
(7) in the optimization process,

Δλp ¼ −
φT

p ΔK þ λpΔKg
� �

φp

φT
pKgφp

ð7Þ

In (7), the change of the global stiffness matrixΔK is equal
to the change of the ith stiffener stiffness matrix, which can be
obtained. However, Kg depends on the current stress distribu-
tion in the structure, because the cross-sectional area change
of the ith stiffener affects the buckling stress in its surrounding
stiffeners, and Kg is not equal to the change of the geometric
stiffness matrix of the ith stiffener only. The calculation ofKg

is generally much involved. Nevertheless, for the statically
indeterminate structure, ΔKg can be neglected if the cross-
sectional area modification at each iteration step is kept suffi-
ciently small, which does not cause a significant change of
stress distribution in other stiffeners. By doing so, the change
in the pth eigenvalue of the ith stiffener Δλip is given by (8),

Δλip ¼ −
φT

ipΔKiφip

φT
pKgφp

ð8Þ

where φip is the pth eigenvector of the ith stiffener and Ki is
the stiffness matrix of the ith stiffener.

To normalize the eigenvectors in the denominator such that
φT

p Kgφp = 1, (8) is further rewritten to (9),

Δλip ¼ −φT
ipΔKiφip ð9Þ

where,

ΔKi ¼ Ki Ai þΔAið Þ−Ki Aið Þ ð10Þ
where ΔAi is the change of the cross-sectional area Ai of the
ith stiffener.

Considering λp is the design objective Λ(A) in (1), the
sensitivity Si in (3) is equal to Δλip, that is,

Si ¼ −φT
ipΔKiφip ð11Þ

It should be noted that (11) is valid only if the distinct
eigenvalues exist. However, while the first eigenvalue in-
creases, the subsequent eigenvalues may reduce, and gradual-
ly, as the first two or more eigenvalues become very close, it
will cause serious interference among themselves. In addition,
repeated eigenvalues may occur in physical symmetrically
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stiffened plates due to the quasi-symmetry of the problem. For
these cases, multiple eigenvalues are not differentiable in

general by (11). In order to deal with existing closely spaced
eigenvalues or repeated eigenvalues, an eigenvalue

Fig. 3 Design flowchart of
stiffener layout for plate and shell
structures
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multiplicity parameter β value of β = 5% is introduced
(Manickarajah et al. 1998). It means that within the limits of

β = 5%, the sensitivity is taken as the average of Si1, Si2, Si3,…,
Siq, when there are q eigenvalues in the β-neighborhood of λ1.
Consequently, the sensitivity formula is regenerated as shown:

Si ¼ −
1

q
∑
q

p¼1
φT

ipΔKiφip

¼ −
1

q
φT

i1ΔKiφi1 þφT
i2ΔKiφi2 þ⋯þφT

iqΔKiφiq

� 	

ð12Þ

2.4 Sensitivity filtering

In order to solve the mesh-dependency problem in the process
of optimization, the sensitivity filtering scheme that was

(a) Deformation contour plot of

the first buckling mode
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0.56

0.45

0.34

0.23

Element Densities

(b) Result given by SIMP method

Fig. 5 Design result of rectangle
plate with simply supported on
one edge under unilateral axial
pressure. a Deformation contour
plot of the first buckling mode. b
Result given by SIMP method. c
k = 5. d k = 200. e k = 400

Fig. 4 Design model

306 X. Dong et al.



proposed by Sigmund (2007) is adopted. The sensitivity of each
stiffener is averaged by its surrounding stiffener sensitivities.
The revised sensitivity of the stiffener i is expressed by (13),

Si ¼ 1

Ai ∑
N

f¼1
H f

∑
N

f¼1
H f Af Si ð13Þ

H f ¼ Rmin−dist i; fð Þ ð14Þ

where Si is the revised sensitivity, Hf is the weight factor, Rmin

is the minimum filtering radius, which is equal to 2.5 herein,
dist(i, f) is the distance between the stiffener f located within

the filtering radius and the center of the stiffener i, and N is the
total number of stiffeners within the filtering radius.

2.5 Design flowchart

The design flowchart of stiffener layout for plate and shell
structures against buckling is shown in Fig. 3. Initially, a
ground structure is built, and “seeds” are then selected accord-
ing to the constraint condition and the loading positions of the
structure. Secondly, the iterative step factor α, the initial di-
mension Amin, the branching dimension Ab, and the maximum
number of iterations kn are specified. The convergence

Fig. 6 Iterative history of
rectangle plate with simply
supported on one edge under
unilateral axial pressure. a First-
order eigenvalue ratio λ1/λ1

0. b
Volume ratio v/v0

Fig. 7 Buckling performance of
SIMP design result. a Optimized
stiffener layout using SIMP
method. b Deformation contour
plot of the first buckling mode
under axial pressure λ1 = 0.715

Fig. 8 Buckling performance of
AGM design result. a Optimized
stiffener layout using AGM. b
Deformation contour plot of the
first buckling mode under axial
pressure λ1 = 0.776
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tolerance ε is set to be 1 × 10−6 in this study. After that, the kth
iteration begins. The structural buckling eigenvalue problem
is solved, and the revised sensitivities of the growing stiffeners
are evaluated. Next, the design variable Ai is updated accord-
ing to its sensitivity. IfAi > Ab, the stiffener is branched, and all
stiffeners around the new branching points are added to the
active stiffeners group in the (k + 1)th iteration. If Ai < Amin,
the stiffener is degenerated, and it is removed from the active
stiffener group in the (k + 1)th iteration. When all of the active
stiffeners in the kth iteration have grown, the number of active
stiffeners m is updated, and the iteration continues. If the

difference of the objective value between two successive iter-
ations is smaller than the convergence tolerance ε, or the num-
ber of iterations k reaches the maximum value kn, the iteration
process stops. Finally, the optimal stiffener layout is obtained.

3 Design examples

In order to validate the suggested method, several typical ex-
amples including imperforated rectangular plates with differ-
ent aspect ratios and perforated rectangular plates with differ-
ent holes under pressure or shear loading are studied. In this
paper, the Young’s modulus is E = 210 GPa and the Poisson’s
ratio is v = 0.3. The volume’s constraint factor η is set to be
1.15, and the iterative step factor α is 0.05.

3.1 Rectangle plate simply supported on one edge
under unilateral axial pressure

Figure 4 shows a rectangle plate supported on one edge under
unilateral axial pressurePcr. The width-length ratio of the plate
is a: b = 1:2. The plate is discretized into 20 × 10 shell ele-
ments and has 20 × 10 × 6 beam elements. Based on the
growth principle of AGM, the “seeds” are selected on the

Fig. 9 Design model

Fig. 10 Design result of the rectangle plate with aspect ratios of 4:3 under unilateral axial pressure. a Deformation contour plot of the first buckling
mode. b Stiffener layout λ1/λ1

0 = 1.71 v/v0 = 1.15. c Iterative history
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supporting and loading edges and are marked with red points
shown in Fig. 5. The deformation contour of the first buckling
mode is shown in Fig. 5a. Figure 5c–e show the growth pro-
cess of the stiffeners on the plate when the iteration number k
is 5, 200, and 400, respectively. It can be found that the stiff-
eners grow from the “seeds” and finally connect the loading
points and the constraint edges and either grow or degenerate
in the growth process. The final layout of the stiffeners is
shown in Fig. 5e. From Fig. 5c and e, it is found that two
broader vertical stiffeners are formed on both edges of the
plate to resist the pressure. Because the deformation in the
middle part of the plate is the greatest, the cross sections of
the vertical stiffeners in the middle part are relatively larger,
and a horizontal stiffener appears at this location. Moreover,
two symmetric diagonal stiffeners are formed both in the up-
per and lower parts. The first-order eigenvalue ratio of the
final and the initial plates λ1/λ1

0 is 4.4 when the total volume
increases by 15%.

Figure 6a shows the iterative history of the first-order ei-
genvalue ratio λ1/λ1

0 and Fig. 6b shows the volume ratio v/v0.
The first-order eigenvalue and the volume increase sharply
initially. Due to the continuous growth and degradation of

the stiffeners, the stiffener layout does not change greatly,
the increase of the first-order eigenvalue changes gradually,
and finally remains unchanged. When the structural volume
achieves the specified upper limited value, which is v/v0 =
1.15, the stiffener growth stops.

To verify the rationality and effectiveness of the produced
stiffener distribution, design results obtained by the SIMP
method are shown in Fig. 5b. It is found that the stiffeners
are comparatively difficult to identify from the density distri-
bution, and the layout is different from that resulted from
AGM. In order to further verify the superiority of the pro-
duced stiffener distribution by AGM, a comparative analysis
is conducted. Figure 7a shows the stiffened plate based on the
SIMP result (Fig. 5b). Figure 7b shows deformation contour
plot of the first buckling mode under unilateral axial pressure,
and the first-order eigenvalue is λ1 = 0.715. Figure 8a shows a
stiffened plate based on the AGM result (Fig. 5e). Figure 8b
shows deformation contour plot of the first buckling mode
under axial pressure and the first-order eigenvalue λ1 =
0.776. The first-order eigenvalue λ1 of the AGM design result
increases by 8.5% when compared with the SIMP design re-
sult under the same structural volume.

Fig. 11 Design result of the rectangle plate with aspect ratios of 2:1 under unilateral axial pressure. a Deformation contour plot of the first buckling
mode. b Stiffener layout λ1/λ1

0 = 2.84 v/v0 = 1.15. c Iterative history
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3.2 Rectangle plate supported on four edges
under unilateral axial pressure

Figure 9 shows a rectangle plate supported on four edges
under unilateral axial pressure Pcr. Three rectangular plates
with different aspect ratios of 4:3, 2:1, and 3:1 are shown in
Figs. 10, 11, and 12, respectively. In Figs. 10, 11, and 12,
panel a shows the deformation contour plot of the first buck-
ling mode, where the left image shows the front view, and the
right image shows the side view; panel b shows the final
layout of the stiffeners and the selected six “seeds”; and panel
c shows the iterative history of the first-order eigenvalue ratio
λ1/λ1

0 and volume ratio v/v0. It can be observed that as the
plate aspect ratio increases, the number of sinusoidal wave-
forms of the deformation contour plot of the first buckling
mode increases, and the location of stiffeners along the hori-
zontal direction changes correspondingly. As shown in Fig.
10, when the aspect ratio is 4:3, double crisscross stiffeners are
located in the central part of the plate. When the aspect ratio is
increased to 2:1, as shown in Fig. 11, there is not only one

broader crisscross stiffeners in the center of the plate but
also a triangle stiffener frame is formed in the upper part of
the plate , connecting the f i rs t peak and trough.
Additionally, a small horizontal stiffener appears in the
second peak wave of the deformation contour plot of the
first buckling mode, and when the aspect ratio is 3:1, as
shown in Fig. 12, there is a broader vertical stiffener in
the center of the plate. In this case, because three half-
sine waves appear in the deformation contour plot of the
first buckling mode, two broader horizontal stiffeners are
formed in the upper and lower parts of the structure respec-
tively. Furthermore, between the first trough and the second
peak, a frame stiffener appears. The iterative history of each
example shows that both the first-order eigenvalue and the
volume all rise by increasing the iterative number initially
and gradually reach a stable state. When the structural vol-
ume achieves the specified upper limited value, which is
v/v0 = 1.15, the optimal layout of the stiffeners is obtained,
and the first-order eigenvalue ratio of the final and the ini-
tial structure λ1/λ1

0 is 1.71, 2.84 and 3.67 respectively.

Fig. 12 Design result of the n rectangle plate with aspect ratios of 3:1 under unilateral axial pressure. a Deformation contour plot of the first buckling
mode. b Stiffener layout λ1/λ1

0 = 3.67 v/v0 = 1.15. c Iterative history
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3.3 Perforated rectangle plates simply supported
on four edges under unilateral axial pressure

Figure 13 shows two perforated rectangle plates supported on
four edges under unilateral axial pressure Pcr, in which one
has a central round hole shown in Fig. 10a, and the other has a
central oval hole shown in Fig. 13b. Both the diameter of the
round hole and the minor axis of the ellipse are d, and the
major axis of the ellipse is l. The geometric ratios of the plate
shown in Fig. 10 are a:b = 1:2.4, d:a = 1:2, and l:b = 1:3.
Figure 13c and d are the FE mesh for the plates with a central
round hole and an oval hole respectively. These two plates are
discretized into 340 and 360 shell elements and have 340 × 6
and 360 × 6 beam elements respectively.

Figures 14 and 15 show the design results, where the figure
arrangements are replicated from Fig. 12. By comparing
Fig. 14b with Fig. 15b, it is found that the stiffeners grow to
adapt to the different shape of the hole although the final
layout of the stiffeners is similar. It is found that there is a

broader vertical stiffener in the center of each plate to directly
bear the axial pressure, and in the center of each plate where
the deformation is maximum, there are two crisscross stiff-
eners connecting to the stiffeners around the hole to resist
the deformation. When the structural volume reaches 1.15
times of the initial volume, the first-order eigenvalue ratios
of the final and the initial plates λ1/λ1

0 are 2.7 and 3.86
respectively.

From an engineering perspective, perforated steel plates are
widely used in the aerospace and ship industry. To enhance
mechanical performance, placing stiffeners on perforated
plates is a preferred option. Figure 16a shows a stiffened per-
forated steel plate, which is widely used in ship structures. The
dimensions of the plate are 1000 mm× 2400 mm× 20 mm,
the diameter of the central cutout is 500 mm, and the height of
the stiffener is 100 mm. Figure 16b shows a deformation con-
tour plot of the first buckling mode under unilateral axial
pressure, and the first-order eigenvalue is λ1 = 0.429.
Figure 17a shows the optimized stiffened perforated plates

Fig. 13 Design model. a Rectangle plate with central round hole. b Rectangle plate with central oval hole. c A sample of the FE mesh for a plate with
central round hole. d A sample of the FE mesh for a plate with oval hole
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according to Fig. 14b. The volumes of the two structures
shown in Figs. 16a and 17a are equivalent. Figure 17b shows
the deformation contour plot of the first buckling mode under
axial pressure, where the first-order eigenvalue is λ1 = 0.496.
It can be concluded that the first-order eigenvalue λ1 of the
optimized stiffener layout increases by 15.6% by comparing
with the empirical design.

3.4 Square plate with simply supported on four edges
under shear loading

Figure 18 shows a shear loading square plate supported on
four edges. Figure 19a shows the deformation contour plot
of the first buckling mode. The maximum deformation occurs
along the diagonal direction; therefore, five parallel diagonal
stiffeners are formed perpendicular to the deformation direc-
tion to resist the shear load, as shown in Fig. 19b. Figure 19d
shows the iterative history of the first-order eigenvalue ratio
λ1/λ1

0 and volume ratio v/v0, respectively. It is also found that
as the iteration number increases, the first-order eigenvalue
and its corresponding volume both increase and finally reach

a stable state. When the structural volume reaches 1.15 times
the initial volume, the ratio of the ultimate first-order eigen-
value ratio λ1/λ1

0 is 6.27. Figure 19c shows the density dis-
tribution patterns given by the SIMP method. It is found that
the density distribution shows a certain similarity with that
resulted from AGM, but it is difficult to obtain the real stiff-
ener layout.

3.5 Perforated rectangle plates simply supported
on four edges under shear loading

Figure 20 shows two rectangle plates supported on four edges
under shear loading τcr, in which one has a central round-hole
shown in Fig. 20a, and another has a central oval-hole shown
in Fig. 20b. The other parameters are as same as Sect. 3.3.

Figures 21 and 22 show the design results. Four “seeds” are
selected at the corners of the plates. As shown in Fig. 21b,
there are several parallel broader diagonal stiffeners, which
have a similar appearance to Fig. 19b, but with curved
ripple-like stiffeners near the hole. However, in the case of
the oval-hole, as shown in Fig. 20b, the stiffener layout is very

Fig. 14 Design result of rectangle plate with central round-hole under unilateral axial pressure. aDeformation contour plot of the first buckling mode. b
Stiffener layout λ1/λ1

0 = 2.7 v/v0 = 1.15. c Iterative history

312 X. Dong et al.



different from Figs. 19b and 22b. The oval hole almost de-
stroys the parallel diagonal stiffener layout; instead, petal-like
stiffeners formed by small stiffeners reinforce the main diag-
onal stiffener. The first-order eigenvalue ratio of the final and
the initial plates λ1/λ1

0 is 4.85 and 8.88, respectively.
Figures 21c and 22c show the density distribution patterns
given by the SIMP method. It also can be found that the
density distributions are similar with that resulted from

AGM, but because the density distributions do not continue,
the real stiffener layouts cannot be obtained directly.

4 Conclusions

AGM is applied to design the stiffener layout for enhancing
the buckling resistance of plate and shell structures. Inspired

Fig. 15 Design result of the rectangle plate with central oval-hole under unilateral axial pressure. aDeformation contour plot of the first buckling mode.
b Stiffener layout λ1/λ1

0 = 3.68 v/v0 = 1.15. c Iterative history

Fig. 16 Buckling performance of
empirical design. a Original
stiffener layout. b Deformation
contour plot of the first buckling
mode under axial pressure λ1 =
0.429
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by the bionic growth principle, clear and continuous stiffener
layout can be obtained, and the buckling performance of the
optimized structures is greatly enhanced.

Considering the practical application of stiffened plate
and shell structures, especially for aerospace and ship
structures, several typical design examples, including
imperforated and perforated rectangular plates with unilat-
eral axial pressure and shear loading, are studied. Unlike
general stiffener layouts, distinctive stiffener layouts are
obtained, which reveal the following design principles of

Fig. 17 Buckling performance of
optimal design. a Original
stiffener layout. b Deformation
contour plot of the first buckling
mode under axial pressure λ1 =
0.576

Fig. 18 Design model

Fig. 19 Design results of the square plate with simply supported on four edges under shear loading. a Deformation contour plot of the first buckling
mode. b Stiffener layout λ1/λ1

0 = 6.27 v/v0 = 1.15. c Result given by SIMP method. d Iterative history
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stiffened plate and shell structures to resist buckling. (1)
Under unilateral axial pressure, a broader vertical stiffener
in the central part of structure is crucial, which resists di-
rectly the pressure load. As the plate aspect ratios in-
creases, some horizontal stiffeners distribute in the peak
or trough of the deformation of the first buckling mode,
and frame stiffeners connecting the peak and trough further

strengthen the structures against buckling. (2) Under shear
loading, due to the maximum deformation taking place
along the diagonal direction, parallel diagonal stiffeners
are formed perpendicular to the deformation direction to
resist the shear load. (3) In the case of perforated plate
structures, stiffeners grow adapting to the different shape
of the hole, and form curved ripple-like or petal-like

Fig. 20 Design model. a
Rectangle plate with central
round hole. b Rectangle plate
with central oval hole

Fig. 21 Design result of the rectangle plate with central round-hole under shear loading. a Deformation contour plot of the first buckling mode. b
Stiffener layout λ1/λ1

0 = 4.85 v/v0 = 1.15. c Result given by SIMP method. d Iterative history
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special stiffener layouts. The design results show that
AGM is effective to deal with the buckling problem, and
it is expected that AGM can be applied to more complex
practical engineering structures and the revealed design
principles may guide engineers to design more effective
stiffened plate and shell structures to resist buckling. (4)
Because of the bionic growth mechanism, AGM is more
efficient to achieve a clearer design result that includes
concise distribution of the stiffeners compared with the
traditional topology design method.

5 Replication of results

AGM iterative process is written by APDL (ANSYS), com-
bining with the structural analysis by ANSYS. The iterative
process includes the following parts.

Part 1: Ground structure construction
*do,j,1,nshell,1
*if,elem_node(3,j),eq,elem_node(4,j),then
nsel,s,node,,elem_node(1,j)
nsel,a,node,,elem_node(2,j)

esln,s,1,active
*if,elmiqr(0,13),eq,0,then
k=k+1
n s e c=n s e c+1 n l o c _x= ( nx ( e l em_nod e ( 1 , j ) ) +

n x ( e l e m _ n o d e ( 2 , j ) ) ) / 2 +
normnx(elem_node(1,j),elem_node(2,j),elem_node(3,j))*dis-
t n d ( e l e m _ n o d e ( 1 , j ) , e l e m _ n o d e ( 2 , j ) )
nloc_y=(ny(elem_node(1,j))+ny(elem_node(2,j)))/2+
normny(elem_node(1,j),elem_node(2,j),elem_node(3,j))*dis-
t n d ( e l e m _ n o d e ( 1 , j ) , e l e m _ n o d e ( 2 , j ) )
nloc_z=(nz(elem_node(1,j))+nz(elem_node(2,j)))/2+
n o r m n z ( e l e m _ n o d e ( 1 , j ) , e l e m _
node(2,j) ,elem_node(3,j))*distnd(elem_node(1,j) ,
elem_node(2,j))

n,k,nloc_x,nloc_y,nloc_z
sectype,nsec,beam,bst,root
secdata,width,height
secoffset,cent
secnum,nsec
e,elem_node(1,j),elem_node(2,j),k
*endif
allsel

Fig. 22 Design result of the rectangle plate with central oval-hole under shear loading. aDeformation contour plot of the first buckling mode. b Stiffener
layout λ1/λ1

0 = 8.88 v/v0 = 1.15. c Result given by SIMP method. d Iterative history
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*endif
*enddo
Part 2: Update process
The design variables update according to (2). The sensitiv-

ity is calculated by analytical method, in which the stiffness
matrix of beam element is input directly.

Part 3: Degradation and Branching:
*get,numet,etyp,,num,max
*vget,r(1,1),elem, nshell +1,node,1,,,2
*vget,r(1,2),elem, nshell +1,node,2,,,2
*vget,r(1,3),elem, nshell +1,node,3,,,2
*vget,r(1,4),elem, nshell +1,esel,,,,2
*do,j,1,numrib,1
*if,r(j,5),eq, A0,then
r(j,9)=r(j,9)+1
*else
r(j,9)=0
*endif
*enddo
*do,j,1,numrib,1
*if,r(j,9),ge,2,then
r(j,4)=-1
*endif
*enddo
nsel,none
*do,j,1,numrib,1
*if,r(j,5),ge, Ab,and,r(j,4),eq,1,then
nsel,a,node,,r(j,1)
nsel,a,node,,r(j,2)
*endif
*enddo
esel,s,type,,numet+1
esln,r,0,all
*do,j,1,numrib,1
*if,elmiqr(nshelem+j,1),eq,1,then
r(j,4)=1
*endif
*enddo
allsel
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