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Abstract
Reliability analysis accounting for only randomness of input variables often shows a significant error due to the lack of
knowledge and insufficient data in the real world. Confidence of reliability indicates that the reliability has uncertainty caused
by epistemic uncertainties such as input statistical model and simulation model uncertainties, and these uncertainties can be
reduced and manipulated by additional knowledge. In this paper, uncertainty of input statistical models prevailing due to limited
resources in practical applications is mainly treated in the context of confidence-based design optimization (CBDO). The purpose
of this research is to estimate the optimal sample size for input variables in reliability-based design optimization (RBDO) to
reduce the overall cost incorporating development cost for collecting samples. There are two ways to increase the confidence of
reliability to be satisfied: (1) shifting the design vector toward feasible domain and (2) supplementing more input data. Thus, it is
essential to find a balanced optimum to minimize the overall cost accounting for trade-off between two operations, optimally
distributing the resources to the operating cost of the design vector and the development cost of acquiring new data. In this study,
two types of costs are integrated into a bi-objective function, and the probabilistic constraints for the confidence of reliability need
to be satisfied. Since the sample size for input variables is also included in the design variables to be optimized, stochastic
sensitivity analysis of confidence with respect to the sample size of input data is developed. As a result, the proposed bi-objective
CBDO can provide the optimal sample size for input data estimated from the initial data. Then, the designers are able to decide the
number of tests for collecting input samples according to the optimum of the bi-objective CBDO. In addition, the different
optimal sample size for each input variable can be an indicator of which random variables are relatively important to satisfy the
confidence of reliability. Numerical examples and an engineering application for the multi-scale composite frame are used to
demonstrate the effectiveness of the developed bi-objective CBDO.

Keywords Reliability-based design optimization (RBDO) . Epistemic uncertainty . Confidence-based design optimization
(CBDO) . Input model uncertainty

1 Introduction

Simulation-based design optimization considering various un-
certainties has been widely developed pursuing reliable opti-
mum for complex engineering systems. Representatively, two

sources of uncertainties have been usually quantified and
managed in design optimization to prevent unpredictable fail-
ure of a system: aleatory uncertainty represents inherent and
natural randomness that cannot be manipulated, and epistemic
uncertainty is incurred by a lack of knowledge that can be
reduced by additional data or more advanced theory (Der
Kiureghian and Ditlevsen 2009). Both uncertainties have to
be quantified and aggregated to guarantee the reliability of
performances in a system. In other words, not only natural
randomness of variables and parameters but also imperfect
knowledge and lack of data have been taken into account
through effective uncertainty quantification and propagation
in recent developments.
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Various methodologies accounting for epistemic uncertain-
ty in reliability-based design optimization (RBDO) have been
prominent in determining safe design. Conventional RBDOs
rely on complete statistical models of random input variables
and simulation models assumed to be accurate. Thus, re-
searches concentrating on how to compute multi-
dimensional integration (i.e., estimation of reliability) have
been proposed such as most probable point (MPP)-based
methods (Tu et al. 1999; Lee et al. 2012; Meng et al. 2015;
Kang et al. 2017; Jung et al. 2019a) and sampling-based
methods (Lee et al. 2011; Dubourg and Sudret 2014; Kang
et al. 2019; Moustapha and Sudret 2019). These methods
mainly treat the aleatory uncertainty of random variables;
thus, uncertainty of a performance function propagated from
the randomness of input variables is widely investigated.

However, simulation model results may not be consis-
tent with experimental results due to missing underlying
physics and unknown model parameters, and also statisti-
cal representations for input variables can be inaccurate
due to insufficient samples. As a result, epistemic uncer-
tainty in simulation-based design optimization can gener-
ally be categorized into two types: (1) simulation model
uncertainty and (2) input model uncertainty. The simula-
tion model uncertainty includes model parameter uncer-
tainty, model bias, and random error and can be calibrated
with experiment results using either Bayesian approaches
or Gaussian process (Noh et al. 2011; Jiang et al. 2013;
Pan et al. 2016; Moon et al. 2017, 2018; Xi 2019). On the
other hand, the uncertainty of input statistical models is
also critical since estimating true input statistical informa-
tion is difficult due to cost limitation for testing samples
to quantify the variability of random variables. Extensive
researches associated with the distribution of reliability
have been developed to handle the input model uncertain-
ty representing the uncertainty of input distribution pa-
rameters and types (Gunawan and Papalambros 2006;
Youn and Wang 2008 ; P i c h eny e t a l . 2 010 ;
Sankararaman and Mahadevan 2011; Lee et al. 2013;
McDonald et al. 2013; Yoo and Lee 2014; Nannapaneni
and Mahadevan 2016; Peng et al. 2017; Hao et al. 2017;
Ito et al. 2018; Moon et al. 2019). Recently, conservative
RBDO (CRBDO) using the Bayes’ theorem has been pro-
posed (Gelman et al. 2013; Cho et al. 2016), and then
confidence-based design optimization (CBDO) to elimi-
nate the double-loop MCS in CRBDO is developed
(Jung et al. 2019b).

One of the notable features of the epistemic uncertainty
in comparison with the aleatory uncertainty is that it can
be reduced by gathering more experimental and computa-
tional data and acquiring more knowledge from experts.
Thus, acquiring new data should be conducted that leads
to the maximum impact on reducing the epistemic uncer-
tainty using the minimum resource under the given

budget. In other words, resource allocation for each test
is necessary to enable practical cost optimization consid-
ering epistemic and aleatory uncertainties. A few works to
develop test resource allocation in the context of model
uncertainty have been proposed. It can provide an optimal
scheme to distribute resources to different simulation
models especially in multidisciplinary design optimization
(MDO) (Sankararaman et al. 2013). On the other hand,
there has been research on the trade-off between the num-
ber of samplings for MCS and system objective since
insufficient samples for numerical integration can lead to
inaccurate reliability estimation (Bae et al. 2018, 2019). In
spite of the aforementioned developments, research on the
trade-off between the sample size for input variables and
system cost considering confidence of reliability has been
quite limited.

In this paper, costs for both system objective and collecting
additional data are simultaneously taken into consideration to
allocate the optimal number of tests. It is noted that the opti-
mum of CBDO is more conservative than RBDOwhere input
statistical models are assumed to be known. It means that
insufficient input data cause loss of the objective function in
CBDO. However, acquiring new samples for input variables
also demands engineering resources. That is, there is a trade-
off between shifting design vector corresponding to the sys-
tem objective and reducing epistemic uncertainty of input sta-
tistical models corresponding to the cost for additional sam-
ples. Following the previous studies (Bae et al. 2018), the
system objective is defined as an operating cost, and the cost
for collecting new samples for input variables is defined as a
development cost. Acquiring new data may decrease the op-
erating cost by reducing the epistemic uncertainty, but the
development cost increases. Hence, the objective function in
CBDO should include the development cost as well to find a
practically balanced optimum in real engineering applications.
In this paper, the proposed approach is called a bi-objective
CBDO to determine the optimal sample size for input vari-
ables by balancing the development and operating cost. Note
that the operating cost is affected only by random design var-
iables, but the development cost is involved in both random
design variables and random parameters. Consequently, the
following question can be answered from the proposed bi-
objective CBDO: How to determine sample size for input
variables in RBDO to minimize the overall cost?

The remainder of the paper is organized as follows: brief
reviews for CBDO including quantification of input distribu-
tion parameters and estimation of confidence in parameter
space are presented in Sect. 2. Then, the proposed bi-
objective CBDO explained with uncertainty on input distribu-
tion type, formulation, and sensitivity analysis of confidence
with respect to the sample size for input variables is developed
in Sect. 3. In Sect. 4, the proposed bi-objective CBDO is
applied to numerical examples under various configurations
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to verify its feasibility and effectiveness. In addition, the bi-
objective CBDO associated with a 4-beam multi-scale com-
posite frame is given in Sect. 5. Finally, conclusions are pre-
sented in Sect. 6.

2 Review of confidence-based design
optimization under insufficient input data

In this section, brief reviews for the confidence of reliability
and CBDO using a reliability measure approach (RMA) under
insufficient input samples to quantify the statistical models of
random variables will be given (Jung et al. 2019b). The con-
fidence is defined as a probability that reliability is larger than
user-specified target reliability under epistemic uncertainty,
and the reliability is defined as the probability that a limit-
state function is less than zero to prevent failure of the system
considering only aleatory uncertainty (e.g., randomness of
input variables). CBDO quantifies the confidence of reliability
induced by uncertainties of input statistical models such as
input distribution types and parameters.

2.1 Uncertainty of input distribution model

Uncertain input statistical models have been taken into con-
sideration using a Bayesian approach with uncertain input
distribution parameters and types. However, in order to elim-
inate the uncertainty of input distribution types avoiding the
discrete random variables, this research assumed that input
distribution types are decided deterministically to concentrate
on the proposed bi-objective optimization. Thus, only uncer-
tainties of input distribution parameters affect the uncertainty
of output reliability. In recent study on CBDO, when input
distribution types are unknown, kernel density estimation
(KDE) is exploited to construct the input distribution with
varying parameters (Jung et al. 2019b). It will be briefly
discussed in Sect. 3.1 for determination of input distribution
type when only sparse data are available.

The variance and mean for input variables are quantified as
inverse-gamma and normal distribution, respectively, based
on the normality assumption as Cho et al. (2016)

σ2
i j∗xi∼IG

NDi−1
2

;
NDi−1ð Þs2i

2

� �
ð1Þ

and

μijσ2
i ;

∗xi∼N ∗xi;

ffiffiffiffiffiffiffiffi
σ2
i

ND

r !
ð2Þ

where ∗xi, NDi, s2i , and
∗xi are the given input dataset, the

sample size, the sample variance, and the sample mean of
the ith random variable, respectively. The normal distribution

of μi in (2) is conditional to realization of the variance from
(1). As a result, variability of input distribution parameters is
affected by the sample mean, variance, and the sample size.
Note that the sample mean of random design variables is
equivalent to the initial design point (i.e., mean vector) in
CBDO to evaluate the cost function, and as the design moves,
all the samples are shifted by the same amount meaning that
the sample variance is fixed during the design optimization
(Cho et al. 2016). However, the sample mean of random pa-
rameters is invariant and directly used in the optimization
process.

2.2 Confidence of reliability

The confidence of reliability is computed using a cumu-
lative distribution function (CDF) of reliability as a func-
tion of input distribution parameters when input distribu-
tion types are known. The confidence to satisfy the given
reliability denoted as Re is expressed as Cho et al. (2016);
Moon et al. (2018)

CLðRej x* Þ≡1−FReðRej x* Þ

¼ 1−∫Re0 ∫ΩΨ f ðϕ;ψj x* Þdψdϕ

ð3Þ

where ϕ is a variable corresponding to the reliability; ψ
denotes a vector of input distribution parameters. The
joint probability density function (PDF) in (3) is described
using the Bayes’ theorem as

f ðϕ;ψj x* Þ¼ f ðϕjψ; x* Þ f ðψj x* Þ ð4Þ

Therefore, the confidence of reliability can be estimated
through uncertainty quantification and propagation from the
uncertainty of input statistical models quantified by the given
input dataset.

2.3 Reliability measure approach

Recently, reliability measure approach (RMA) of CBDO
has been proposed to alleviate computational demands re-
quired to compute the confidence of reliability (Jung et al.
2019b). The key concept of RMA is identical to perfor-
mance measure approach (PMA) of RBDO that the multi-
dimensional integration is approximated on MPP. In RMA,
MPP-search is performed in P-space where the input dis-
tribution parameters are transformed to the standard nor-
mal space through the Rosenblatt transformation
(Rosenblatt 1952). The MPP of RMA is the point with
the smallest reliability on the given hypersphere in P-
space. The RMA formulation is given by
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minimize
p

Re G Xð Þjμ;σ2
� �

subject to ‖p‖ ¼ Φ−1 CLTarget

� �
where Re G Xð Þjμ;σ2

� �
≅

1

NMCS
∑
j¼1

NMCS

IΩR G x jð Þ
� �� �

IΩR G xð Þð Þ ¼ 1; G xð Þ≤0
0; otherwise

	

Φ p2i−1ð Þ ¼ Fσ2i
σ2
i j∗xi

� �
Φ p2ið Þ ¼ Fμi

μijσ2
i ;

∗xi
� �

for i ¼ 1; 2; :::;N

ð5Þ

In (5), Re(G(X)|μ,σ2) is the reliability for the given input
distribution parameters, and CLTarget is the target confidence to
be satisfied in CBDO. The indicator function for a reliable

domain, IΩR G x jð Þ� �� �
is to judge whether the jth sampling

point is in the reliable region or not. NMCS means the number
of samples for MCS, and N is the number of input random
variables including both design variables and parameters. The
random variables are assumed to be independent in this study,
but it is easily able to be expanded to correlated random var-
iables. It can be seen that two input parameter distributions for
the ith random variable denoted as Fμi

μijσi;
∗xi

� �
and Fσ2i

σ2
i j∗xi

� �
are transformed to the standard normal distribution

(Rosenblatt 1952). Thus, the number of random variables in
P-space becomes 2N since a two-parameter distribution is
assumed for the input random variables. Details regarding
(5) and the concept of RMA are found in the literature (Jung
et al. 2019b). In addition, sensitivity analysis for reliability in
P-space has been developed using the first-order score func-
tion. Therefore, the optimization in (5) to find the input pa-
rameter realizations having the minimum reliability in P-space
can be performed employing any gradient-based MPP-search
algorithm.

2.4 Confidence-based design optimization

Instead of directly estimating the confidence of reliability at
each design point, RMA judges whether the probabilistic con-
straint is satisfied or violated following the concept of PMA.
Therefore, RMA facilitates efficient CBDO by checking the
only reliability at MPP obtained from MCS. Therefore,
CBDO is formulated as

given ∗ x

minimize
d

cost dð Þ
subject to Re Gj Xjψ*

j

� �� �
−ReTargetj ≥0 for j ¼ 1; 2; :::; nc

ð6Þ

whereψ*
j is the MPP of the jth constraint in P-space obtained

from (5); ReTargetj is the user-specified target confidence for the

jth constraint; d is the mean vector of random design variables
among random vector X; nc is the number of constraints. The

sensitivity analysis with respect to design point (i.e., the mean
vector of random design variables) is obtained from the gra-
dient at the MPP. To avoid repetitive reliability computations
for numerical sensitivity analysis, a gradient vector of reliabil-
ity at MPP using the first-order score function is required
whose derivation is given in the literature (Lee et al. 2010;
Jung et al. 2019b).

3 Bi-objective confidence-based design
optimization

Epistemic uncertainty caused by insufficient input data
yields uncertainty of performance reliability. Different re-
liabilities may be obtained under different realizations of
uncertain input models. Since CBDO takes uncertainty of
input distribution parameters into account, a more conser-
vative optimum would be obtained compared with an
RBDO optimum, which leads to a loss in the objective
function of the system defined as an operating cost. That
is, the operating cost at the RBDO optimum without input
model uncertainty is always less than that of the CBDO
optimum for compensating the input model uncertainty.
Therefore, reduction of the epistemic uncertainty by in-
creasing the sample size for input variables saves the op-
erating cost of the system, while it increases the develop-
ment cost. If so, how to determine sample size for input
variables in RBDO to minimize the overall cost?

To answer the question above, we present a new bi-
objective CBDO accounting for both the operating cost
and the development cost simultaneously during the de-
sign optimization. There are two ways to satisfy confi-
dence constraints in CBDO: (1) shifting the design vector
toward the feasible region, which increases the operating
cost, and (2) adding more input samples to reduce the
epistemic uncertainty, which increases the development
cost. Once the development cost for testing samples of
each variable and relative weights between two costs are
quantified and aggregated, a balanced optimum can be
estimated through the proposed bi-objective CBDO where
a mean vector and the sample size for input variables are
included in design vector to be optimized.

The purpose of the proposed method is to provide es-
timated optimal sample size under given conditions before
actually acquiring samples. In other words, the optimal
sample size for each input variable is estimated through
initial sample estimates since the true parameters cannot
be assessed without a large number of samples. Therefore,
if the proposed bi-objective CBDO provides the optimal
amount of additional data, and new samples are obtained,
designers have to conduct CBDO again with new input
data to validate the results.
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3.1 Uncertainty on input distribution type

Uncertainties on input distribution parameters should be
decoupled with uncertainties on input distribution types to
employ the framework of RMA for CBDO. Discrete uncer-
tainty on the input distribution type is difficult to handle com-
pared with those of input distribution parameters. Since the
proposed research assumes that the input distribution types are
known, this section briefly explains several ways to select
appropriate input distribution types based on given
information.

1. Model identification method
Model identification methods could be practical when

multiple types of distribution candidates are given (Kang
et al. 2016). For instance, various goodness-of-fit (GOF)
tests can verify the suitability of a candidate distribution
such as the Kolmogorov-Smirnov (K-S) test. On the other
hand, the model selection method is capable of ranking
multiple candidate distributions based on a specific crite-
rion, so that the best distribution type fitting the given data
can be selected. Akaike information criterion (AIC) and
Bayesian information criterion (BIC) are the typical
criteria to measure the fitness (Akaike 1974).

2. Johnson distribution
The Johnson distribution is a four-parameter distribu-

tion that has flexibility for a wide range of different dis-
tributions and used to resolve the difficulty caused by
uncertainty in distribution types (Johnson 1949). Since
the Johnson distribution includes four parameters, higher
moments such as skewness and kurtosis need to be incor-
porated in the framework of RMAwhich increases dimen-
sion from 2N to 4N in P-space where N is the number of
random variable with insufficient samples.

3. Kernel density estimation
Kernel density estimation (KDE) is an alternative for a

parametric distribution when there is no prior knowledge
on distribution type (Silverman 2018). As used in previ-
ous works on CBDO, an explicit PDF is obtained from
given sample data. It is not necessary to determine specif-
ic distribution type, and its accuracy gradually increases
as the sample size of input variable increases. In addition,
when input variables follow a multimodal distribution,
KDE can be the best option to hanlde the input distribu-
tion type. Readers can refer to the literature (Jung et al.
2019b) for detailed explanations on exploiting KDE in
CBDO.

It is difficult to address that one method is superior since its
effectiveness varies according to a given condition, and the
thorough comparison between three methods is beyond the
purpose of this research. In this paper, the Johnson distribution
will be used for comparison since the model identification

method and KDE have been already validated in the previous
study (Kang et al. 2016; Jung et al. 2019b). For the compar-
ison, it is assumed that the first two moments of the Johnson
distribution will have uncertainties given by (1) and (2), and
skewness and kurtosis will be deterministically estimated.

3.2 Formulation of bi-objective confidence-based
design optimization

The proposed bi-objective CBDO is formulated as

minimize
d;ND

wd � costoperating dð Þ þ wND � costdevelopment NDð Þ

subject to Pr Pr G Xð Þ≤0½ �≥ReTarget

 �

≥CLTarget

where X i∼
ζ i μi di;NDi; σ

2
i

� �
; σ2i NDi; sið Þ� �

for i ¼ 1; :::;Nd

ζ i μi
∗xi;NDi; σ

2
i

� �
; σ2i NDi; sið Þ

� �
for i ¼ Nd þ 1; :::;Nd þ Np

(

ð7Þ

where wd and wND are weights for operating and development

cost, respectively; d ¼ d1; d2; :::; dNdf gT is the mean vector

o f r a n d o m d e s i g n v a r i a b l e s a n d ND ¼
ND1;ND2; :::;NDNdþNp

� T
is the vector including the sam-

ple size for input variables including random design variables
and parameters; X includes random design variables and ran-
dom parameters; NDi, s2i ,

∗xi, and di are the sample size, sam-
ple variance, sample mean, and design vector for the ith ran-
dom variable, respectively;Nd is the number of random design
variables andNp is the number of random parameters. In (7), it
is assumed that all input variables have input model uncertain-
ty. Variabilities of the mean and variance are shown in (1) and
(2), and the distribution type is denoted as ζ.

There are two major differences between conventional
CBDO and the proposed bi-objective CBDO:

1. The sample size for input variables denoted as ND is the
design variable in the proposed bi-objective CBDO. Even
if the number of data has to be an integer, it will be treated
as a continuous positive variable to employ a gradient-
based optimization algorithm and sensitivity analysis.
That is, not only the mean vector but also the sample size
for input variables can change the confidence of reliabil-
ity. It should be noted that the sample size for random
parameters is also included in ND.

2. The development cost, which is a function of ND, is in-
cluded in the objective function as can be seen in (7).
Figure 1 shows four examples of functional relationship
between the development cost and the sample size for
input variables in case of a one-dimensional problem:
linear, logarithmic, high-order polynomial, and exponen-
tial. As the sample size increases, all functions seem to
converge to a point; however, that is only for better
visualization.
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Therefore, to perform the proposed bi-objective CBDO in
(7), relative weights which are wd and wND between the oper-
ating cost and development cost need to be quantified. In
addition, functional forms of the operating cost primarily re-
lated to design performances and the development cost as a
function of the sample size for input variables need to be
established. The formulations of operating cost and develop-
ment cost obviously depend on what kind of applications it
will be applied to, and how to quantify each cost is beyond the
purpose of the proposed research.

3.3 Sensitivity analysis of confidence with respect
to design variables

Sensitivity analysis is an essential process in gradient-based
optimizers to provide an accurate and efficient direction for
searching the optimum. Since the framework of RMA is
adopted, the sensitivity analysis with respect to design vector
is identical to the gradient vector of reliability with respect to
mean vector and the sample size at the MPP (Jung et al.
2019b). The stochastic sensitivity analysis for reliability with
respect to mean vector can be performed analytically using the
first-order score functions (Lee et al. 2011). Therefore, sensi-
tivity analysis for confidence constraints with respect to ith
design variable is to obtain the gradient of reliability at MPP
written as

∂Re
∂di ψ¼ψ∗

¼ ∂Re
∂μi

����
����
ψ¼ψ∗

¼ ∫IΩRðG xð ÞÞ ∂ln f x x;ψ*
� �
∂μi

f x x;ψ*� �
dx

ð8Þ

where
∂ln f x x;ψ*ð Þ

∂μi
is the first-order score function with respect

to the mean of i-th random variable and ψ∗ is the MPP in P-
space which represents the specific realizations of input

distribution parameters obtained from (5). The first-order
score functions for parametric distributions have been explic-
itly derived in the literature (Lee et al. 2011). However, the
sensitivity of reliability with respect to the sample size for
each input variable is also necessary.

In addition to (8), the proposed optimization demands ad-
ditional sensitivity analysis with respect to ND formulated as

∂Re
∂NDi

¼ ∫IΩRðG xð ÞÞ dln f x x;ψð Þ
dNDi

f x x;ψð Þdx

¼ ∫IΩRðG xð ÞÞ ∂ln f x x;ψð Þ
∂μi

dμi

dNDi
þ dln f x x;ψð Þ

dσ2i

∂σ2i
∂NDi

� �
f x x;ψð Þdx

¼ ∫IΩRðG xð ÞÞ
h ∂ln f x x;ψð Þ

∂μi

∂μi

∂NDi
þ dμi

dσ2i

∂σ2i
∂NDi

� �

þ ∂ln f x x;ψð Þ
∂σ2

i
þ ∂ln f x x;ψð Þ

∂μi

dμi

dσ2
i

� �
∂σ2i
∂NDi

i
f x x;ψð Þdx

ð9Þ
where ψ includes mean and variance of input variables since
two-parameter distribution is assumed in this study.

To further simplify (9), dxidpi
is obtained by taking a derivative

of CDF with respect to pi which is either mean or variance as
(Cho et al. 2017)

dxi
dpi

¼ −
1

f X i
xi; ai; bið Þ

∂
∂pi

FX i xi; ai; bið Þ ð10Þ

where ai and bi are distribution parameters expressed by mean

and variance. Using (10), ∂μi
∂NDi

in (9) is derived as

∂μi

∂NDi
¼ ∂μi

∂σ2μi

∂σ2μi

∂NDi

¼ −
−NDi μi−∗xi

� �
=σ2i

� �
f μ μi;

∗xi;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2i =NDi

p� � � ϕ
μi−

∗xiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2i =NDi

p
 !

� −
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2i =ND3

i

q� �

¼ −
1

2

μi−
∗xi

NDi

 !

ð11Þ

where σ2
μi

is the variance of μi expressed as
ffiffiffiffiffiffiffi
σ2i
NDi

q
distin-

guished from σ2
i , and fμ is PDF of mean described in (2).

Similarly,

∂σ2
i

∂NDi
¼ ∂σ2

i

∂α
∂α

∂NDi
þ ∂σ2i

∂β
∂β

∂NDi

¼ −
1

2

1

f σ2 σ2i ;α;βð Þ �
h ln β=σ2i

� �
−ψ0 αð Þ� �

Γ α; β=σ2i
� �þ T 3;α; β=σ2i

� �
Γ αð Þ

þ −
e−β=σ

2
i β=σ2i
� �α

βΓ αð Þ

 !
s2i
i

ð12Þ

where T(•, • , •) is a Meijer G-function; Γ s; xð Þ ¼ ∫∞x ts−1e−tdt

is an upper incomplete gamma function; α ¼ NDi−1
2 and β

Fig. 1 Four examples of relationship between development cost and
number of data
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¼ NDi−1ð Þs2i
2 are the shape and scale parameter of an inverse-

gamma distribution of σ2
i , respectively. f σ2 is PDF of variance

described in (1). Since μi and σ2
i are correlated as can be seen

from (2), dμi
dσ2i

is obtained by taking a derivative on (2) as

dμi

dσ2
i
¼ −

−NDi μi−∗xi
� �

=σ2
i

� �
f μ μi;

∗xi;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
i =NDi

p� � � ϕ
μi−

∗xiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
i =NDi

p
 !

� 1

2σi
ffiffiffiffiffiffiffiffiffi
NDi

p

¼ 1

2

μi−
∗xi

σ2
i

 !

ð13Þ

Finally, the sensitivity in (9) is capable of being calculated
through (11) to (13). Note that ∗xi would be replaced with the
ith entry of the design vector di when the ith random variable
is a design variable, not a random parameter.

Through the sensitivity analysis in this section, the optimiz-
er can explore next design candidates. The sensitivity analysis
with respect to mean vector and the sample size in this section
should be distinguished from the sensitivity analysis during
MPP-search in P-space. This process is performed after the
MPP is found as (5).

3.4 Overall procedures

As shown in Fig. 2, the overall procedure of the proposed
bi-objective CBDO is very similar to PMA of RBDO
except for the Rosenblatt transformation to P-space and
the sensitivity analysis with respect to the sample size for
input variables. The identification of input distribution
type in Fig. 2 means determination of distribution types
among parametric distributions, Johnson distribution, and
KDE. In the bi-objective CBDO, MPP in P-space could
be found at a current design point as (5) by MPP-search
algorithm, and gradient-based optimizers such as sequen-
tial quadratic programming (SQP) provides appropriate
search direction and step size for searching the optimal
design vector as (7).

It should be noted that there are two main assump-
tions made for the bi-objective CBDO: (1) the confi-
dence of reliability is treated in MPP-based approach as
conventional CBDO, so that the linearization of reliabil-
ity with respect to input distribution parameters is
employed, and (2) the sample estimates to quantify the
input parameter distributions are invariant during the op-
timization since there is no additional knowledge to
change it. In other words, the variabilities of input dis-
tribution parameters are only affected by the mean vector
d and the sample size ND since the input dataset is not
actually updated during the bi-objective CBDO even
though ND is changed.

4 Numerical studies: 2D mathematical
example

A mathematical 2D optimization problem widely used in the
previous RBDO studies is analyzed in various ways. Firstly,
the proposed stochastic sensitivity analysis with respect to the
sample size for input variables in Sect. 3.3 is validated.
Secondly, the 2D bi-objective CBDO is tested with various
weights for operating and development costs, and the discrep-
ancies with true optimum are calculated to capture the error
due to the bias of sample estimates. Thirdly, the Johnson dis-
tribution is used to grasp the error compared with the results
when the true distribution type is identified. Fourthly, various
types of development cost functions are tested for comparison.
Finally, repeated tests with various initial input datasets are
performed.

The bi-objective CBDO for the 2D example is formulated
as

minimize
d;ND

w� −
d1 þ d2−10ð Þ2

30
−

d1−d2 þ 10ð Þ2
120

 !

þ costdevelopment ND1;ND2ð Þ
subject to Pr Pr Gj Xð Þ≤0
 �

≥97:72%

 �

≥90:00% for j ¼ 1; 2; 3

where G1 Xð Þ ¼ 1−
X 2

1X 2

20
;

G2 Xð Þ ¼ −1þ 0:9063X 1 þ 0:4226X 2−6ð Þ2
þ 0:9063X 1 þ 0:4226X 2−6ð Þ3
−0:6 0:9063X 1 þ 0:4226X 2−6ð Þ4
− −0:4226X 1 þ 0:9063X 2ð Þ;

G3 Xð Þ ¼ 1−
80

X 2
1 þ 8X 2 þ 5

;

X i∼N μi di; s
2
i ;NDi

� �
;σ2

i s2i ;NDi
� �� �

;

10≤NDi≤100 for i ¼ 1; 2

w ¼ wd

wND

ð14Þ

where target confidence and target reliability are set to
90.00% and 97.72%, respectively. The initial number of
data is set to 10 for both random variables. w is the
weight ratio of two costs, and costdevelopment(ND1, ND2)
is the development cost. The operating cost is assumed
to be the same as the objective function of the original
optimization problem. Lower bounds of ND are set to
10 which is the initial number of data, and upper
bounds are set to 100. The initial samples are drawn
from a normal distribution with the true variance of
0.52. Note that initial design vector is RBDO optimum
obtained from deterministic sample estimates to enhance
the convergence.
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4.1 Validation of sensitivity analysis

Sensitivity analysis of reliability with respect to ND is
validated in this section by comparing analytically calcu-
lated values with results of the finite difference method
(FDM). Since sensitivity with respect to mean vector is
already validated in the previous works (Lee et al. 2010),
only the results for the sample size are shown in this
section. The highly nonlinear second constraint in (14)
is used for the comparison. Therefore, when the vector of
the sample size is ND = {10, 10}T at the lower bound, the
MPP, p∗ = {1.1853, 0.4671, 0.1276, −0.0551}T, is obtain-
ed through the hybrid mean value (HMV) method (Youn
et al. 2003) in P-space using the given sample mean and
variance. The number of samples to compute the reliabil-
ity using MCS is 108. Table 1 shows sensitivity analysis
results obtained from FDM and the proposed method
with two different ND cases. To alleviate sampling un-
certainty due to repetitive random samplings, the random
seeds for MCS are controlled in this test. It can be

concluded from Table 1 that the proposed sensitivity
analysis is very accurate compared with FDM.

4.2 Results of various weights for two costs

Effect of the weight ratio in the bi-objective CBDO is shown
in this section. The development function is set toND1 +ND2,
in which the cost is linear to each number of data. Increasing
the weight ratio indicates that the operating cost becomes
higher than the development cost. Thus, the optimizer would
try to reduce the operating cost by adding more data rather
than shifting the mean vector. The test results of various
weight ratios are listed in Table 2.

Table 2 shows that the optimal sample size increases as
the weight ratio increases, representing that large weight
on operating cost forces to add more samples to satisfy
the confidence constraints by reducing uncertainty of in-
put distribution models. Similarly, the optimal sample size
decreases as the weight ratio decreases meaning that the
optimization tries to find an optimum by sacrificing the
operating cost since adding more samples is much more
expensive. In case of w = 500, the bi-objective CBDO
recommends to add 10 more input samples for X1 and
14 more for X2 to reduce the total cost.

Table 3 shows results of the bi-objective CBDOwhen sam-
ple estimates are inaccurate compared with the true bi-
objective CBDO optimum where its sample variance is equal
to the true variance (i.e., population variance) of 0.25 for both

Table 1 Results of sensitivity
analysis of reliability with respect
to the number of data

Analysis method 10 samples 15 samples

∂Re
∂ND1

∂Re
∂ND2

∂Re
∂ND1

∂Re
∂ND2

FDM (1.0%) − 0.0029 − 1.714E-4 − 9.338E−4 − 5.920e−5
FDM (0.5%) − 0.0029 − 1.750E-4 − 9.520E−4 − 6.426E−5
FDM (0.1%) − 0.0029 − 1.720E-4 − 9.566E−4 − 6.400E−5
Proposed method − 0.0030 − 1.706E-4 − 9.577E−4 − 6.019E−5

Fig. 2 Flowchart of the proposed bi-objective CBDO

Table 2 Results of bi-objective CBDO with various weight ratios

Weight ratio Bi-objective CBDO optimum

μX 1
μX 2

ND1 ND2

100 4.5907 2.6149 10.3577 10.5671

200 4.6237 2.4863 13.3243 14.6549

300 4.6362 2.4249 15.7140 18.1443

400 4.6431 2.3873 17.8801 21.1178

500 4.6475 2.3581 19.7201 24.2515

1000 4.6580 2.2893 28.2633 35.6679

2000 4.6630 2.2349 41.5480 54.0487

5000 4.6771 2.1776 70.0856 91.9751
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random variables. The weight ratio is set to 2000. As the initial
sample size increases, the sample variance will become closer
to the true variance. It can be seen that discrepancy between
estimated and true total costs gradually reduces as the sample
variance is closer to the true variance. Consequently, Table 3
shows how much error quality of initial sample can cause to
estimate the optimal sample size. For instance, if we have the
initial dataset having the sample variance as 0.22, the estimat-
ed optimal sample size is {39, 53}T. However, the true opti-
mum is {42, 54}T which makes the total cost minimum. The
discrepancy between two optima indicates the error due to
bias of initial sample estimates.

4.3 Results of uncertainty on input distribution type

This section shows feasibility of the Johnson distribution in-
stead of the parametric distribution selected from prior knowl-
edge or model identification methods. In this test, the identical
dataset used in the previous section. The weight ratio is set to
1000 with linear development cost, and the initial sample size
for two random variables is 10. Note that each trial has a
different dataset so that different optima are obtained since
the sample variance, skewness, and kurtosis would be all dif-
ferent. Table 4 compares two results of the bi-objective CBDO
with normal distributions and the Johnson distribution as an
input, respectively. The optimal sample size using population
variance is ND = {28.7602, 35.6763}T, and the mean of 5

trials is shown in the last row of Table 4. It is shown that the
Johnson distribution can be successfully implemented in the
proposed framework even though there is an error because the
true distribution is a normal distribution, and the biased sam-
ple skewness and kurtosis are used. However, deviation of
each optimum seems to be smaller for the Johnson distribution
because higher-order moments are considered even though
they have no uncertainty. In addition, the Johnson distribution
can widely cover various types of distributions which may be
more appropriate in the real world.

4.4 Results of various development costs

In real engineering problems, the behavior of the development
cost would vary depending on applications. As shown in Fig.
1, it behaves like a simple linear function or nonlinear func-
tions. Therefore, to verify the effectiveness of the proposed bi-
objective CBDO in various conditions, two kinds of nonlinear
development cost functions with opposite properties are addi-
tionally tested in this section.

First, a logarithm function given by

10log ND1 � ND2ð Þ ð15Þ

Table 3 Validation of bi-objective CBDO optima under inaccurate
sample variance

Sample variance Optimum = μX 1
;μX 2

;ND1;ND2

� T
Total cost

0.20 {4.674, 2.095, 36.466, 51.846}T − 3244.5
0.22 {4.673, 2.156, 38.536, 52.820}T − 3190.0
0.24 {4.672, 2.215, 43.312, 52.461}T − 3136.5
0.25 (true) {4.666, 2.246, 42.153, 54.138}T − 3110.1
0.26 {4.664, 2.276, 43.167, 54.152}T − 3084.5
0.28 {4.661, 2.338, 48.551, 50.500}T − 3031.7
0.30 {4.651, 2.397, 50.171, 52.744}T − 2980.2

Table 4 Bi-objective CBDO results of two different input distribution types

Trial number Normal distribution Johnson distribution

μX 1
μX 2

ND1 ND2 μX 1
μX 2

ND1 ND2

1 4.6148 2.4770 37.2448 35.5813 4.4758 2.2982 26.5322 29.2628

2 4.6455 2.3985 31.0973 37.0581 4.5946 2.3249 23.4575 33.1698

3 4.6657 2.3394 27.1869 38.9949 4.7407 2.4566 22.9170 35.4182

4 4.6884 2.2569 22.6936 38.4188 4.5820 2.1131 25.6007 30.8697

5 4.6495 2.4094 30.3166 37.7880 4.6764 2.3846 26.4505 33.4234

Mean – – 29.7020 33.5588 – – 24.9915 31.8287

Table 5 Results of bi-objective CBDOwith various weight ratios under
logarithm development cost

Weight ratio Bi-objective CBDO optimum

μX 1
μX 2

ND1 ND2

100 4.5994 2.5953 10.4875 10.9738

200 4.6439 2.3869 17.0697 21.1062

300 4.6540 2.2933 25.2740 36.3807

400 4.6626 2.2367 35.8474 55.8690

500 4.6680 2.1991 49.2196 80.1483

1000 4.6845 2.1641 99.8540 100.0000

2000 4.6844 2.1641 100.0000 100.0000

5000 4.6844 2.1641 100.0000 100.0000
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is used for the development cost and test results with various
weight ratios are listed in Table 5. Since the logarithm devel-
opment function in (15) has gradually decreasing slope, the
optimal sample size increases rapidly as the weight for oper-
ating cost increases.

Secondly, the development cost is given as an exponential
function written as

exp
ND1

10

� �
þ exp

ND2

10

� �
ð16Þ

The results are listed in Table 6 which indicates that larger
sample size is avoided even for large weight ratio due to rapid
increases in the development cost. The results of these differ-
ent trends for the two contrasting functions, logarithm and
exponential, support the feasibility of the proposed method.

4.5 Repeated tests with various initial samples

Previous test results are obtained using the same initial sam-
ples for fair comparisons. In this section, iteratively generated

input datasets are repeatedly tested to demonstrate robustness
of the proposed method. Other parameters and conditions
such as weight ratio, development cost, and true input statis-
tical models are invariant during the repeated tests. The dif-
ferent initial dataset in the bi-objective CBDO means that its
sample estimates are different, thereby resulting in the differ-
ent optima. With more data, sample variances are gradually
closer to the true variance, but the sample size in the design
variable is fixed as 10 in tests. In other words, the actual
sample size for calculating the sample variance increases for
validation since the purpose of repeated tests is to capture the
effect on the bias of sample variance. However, it does not
mean that the initial sample size in the design vector increases.

In Fig. 3, optima of the repeated tests with different sample
variances are illustrated where 100 trials are performed for
each case. It can be seen in Table 7 that variability of optima
decreases as more samples are used to estimate the sample
variance meaning that the optimal mean vectors gradually
converge to the true optimum. The number of data in Fig. 3
and Table 7 is only for calculation of the sample variance and
has no relation with the sample size in the design vector. Note
that the optimum often goes to the boundary of the design
space since the confidence of reliability may have multiple
local optima.

5 Engineering example:multi-scale composite
frame optimization

To validate feasibility of the proposed method, multi-scale
composite frame optimization is used in this section.
Deterministic multi-scale design optimization of the compos-
ite frames for the minimum structural compliance with
manufacturing constraints (Yan et al. 2017), maximum funda-
mental frequency design with continuous fiber winding angles
(Duan et al. 2018), and a two-step optimization scheme for
forcing convexity of fiber winding angles in the composite

Table 6 Results of bi-objective CBDO varying weight ratio under
exponential development cost

Weight ratio Bi-objective CBDO optimum

μX 1
μX 2

ND1 ND2

100 4.6364 2.4624 14.1546 15.3662

200 4.6487 2.4066 16.8988 18.6470

300 4.6529 2.3800 18.7169 20.7489

400 4.6543 2.3640 20.0977 22.3195

500 4.6563 2.3522 21.1892 23.5811

1000 4.6621 2.3195 24.8491 27.7140

2000 4.6670 2.2933 28.8465 32.1357

5000 4.6702 2.2663 34.6163 38.3892

Fig. 3 Optima of 100 repeated multi-objective CBDOs

Table 7 Variance of optima for each number of samples

No. of samples Variance of optima

μX 1
μX 2

ND1 ND2

10 1.688E−3 3.802E−2 606.6 602.5

50 2.948E−4 8.056E−3 227.9 200.1

100 1.876E−4 3.468E−3 162.4 157.4

150 1.872E−4 4.690E−3 138.7 145.6

200 9.886E−5 2.035E−3 56.1 110.6

300 9.465E−5 1.648E−3 77.3 78.6

400 6.467E−5 1.241E−3 47.3 114.6

500 3.659E−5 8.200E−4 24.1 93.0

600 3.504E−5 6.789E−4 27.1 54.7
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frames (Duan et al. 2019) have been studied. Similarly with
the previous studies considering practical engineering appli-
cations, it is assumed in this example that each composite tube
has the same number of layers, (i.e., Nlay = 20) with the same
thickness in the initial design of 0.1 mm for the sake of sim-
plicity. The fiber candidate material is carbon fiber-reinforced
epoxy with orthotropic properties as listed in Table 8.
Loading/boundary conditions and geometry of the composite
frame are shown in Fig. 4. There are four deterministic design
variables, radius of each beam, and three random parameters
under insufficient data that are longitudinal modulus, magni-
tude, and direction of the load. True mean and variance of
each random parameter are listed in Table 9.

5.1 Formulation of bi-objective confidence-based
design optimization for 4-beam composite frame

The bi-objective CBDO for 4-beam composite frame structure
is formulated as

given ∗pi ; s
2
i

minimize
r;ND

w� V rð Þ þ costDevelopment NDð Þ

subject to Pr Pr C r;Pð Þ≤CTarget


 �
≥ReTarget


 �
≥CLTarget

Pi∼N μi
∗pi; s

2
i ;NDi

� �
;σ2

i s2i ;NDi
� �� �

;

10≤NDi≤100 for i ¼ 1; 2; 3

0:05≤ri≤1 for j ¼ 1; 2; 3; 4

ð17Þ

where V(r) is the total volume; C(r, P) is the compliance as a
function of radius vector r and three random parameters

denoted as P in Table 9; CTarget, ReTarget, and CLTarget are the
target compliance, target reliability, and target confidence, re-
spectively; ∗pi and s

2
i are the sample mean and variance of the

ith random parameter in Table 9 obtained from the initial
samples; NDi is the sample size for the ith random parameter.
The target compliance and reliability are set to 0.7 and 95%,
respectively. Various target confidences and weight ratios be-
tween two costs are utilized for validation. Linear develop-
ment cost is used for the bi-objective CBDO. The initial radius
is 0.25 mm for all beams, and the initial sample size for three
random parameters is set to 10. In this example, Kriging mod-
el for compliance is utilized to improve computational effi-
ciency for reliability estimation. To generate the surrogate
models, 300 samples in the design domain by the Latin hy-
percube sampling are used.

5.2 Results of bi-objective confidence-based design
optimization

Results of the bi-objective CBDO under various weights are
listed in Table 10. Volume of the structure decreases as the
weight ratio increases since large weight means that reducing
volume is relatively more valuable than the development cost
for increasing sample size. Therefore, the optimal sample size
gradually increases as the weight ratio increases. The estimat-
ed optimal radii of 4 beams are exact only when the sample
variance of the initial sample is exact. It is evident that the
RBDO optimum has the minimal volume since it has no ep-
istemic uncertainty. On the other hand, increasing the target
confidence means more conservative design is achieved, so
that the optimal volume and sample size increase as listed in

Table 8 Material properties of the
uni-directional carbon fiber-
reinforced epoxy

Material property E11 E22 = E33 G12 G13 G23 v12 v13 v23 ρ

Value 143 GPa 10 GPa 6 GPa 5 GPa 3 GPa 0.3 0.2 0.52 1800 kg/m3

Fig. 4 Configuration of 4-beam
composite frame structure
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Table 11. Both costs are raised since the target confidence to
be satisfied is increased, leading to much conservative design.
In all tests, ND3 which is the sample size for loading direction
goes to the lower bound implying that the loading direction is
relatively insignificant on compliance compared with material
properties and load magnitude.

6 Conclusion

Bi-objective CBDO accounting for both operating and devel-
opment costs simultaneously is proposed for practical appli-
cation of CBDO. The overall process of the bi-objective
CBDO is developed based on the CBDO framework to effi-
ciently handle the confidence of reliability that is derived from
epistemic uncertainty. The confidence of reliability increases
by collecting more input samples which increases the devel-
opment cost as well as shifting the design vector toward fea-
sible domain which increases the operating cost. Thus, the
objective function includes both costs, and the sample size
for input variables is handled as the design variable in the
bi-objective CBDOwhich enable to facilitate decisionmaking
for the designers on how to allocate engineering efforts. The

estimated optimal sample size is affected by the relative
weights between two costs and the specification of a given
system such as the process to acquire input samples, repre-
sented as an explicit expression for a development cost. Since
the sample size changes during the optimization, the stochas-
tic sensitivity analysis of confidence with respect to the sam-
ple size for input variables is developed to avoid repetitive
reliability computations. Although the optimal sample size is
obtained based on the assumption that the sample estimates
are invariant during optimization, the estimated optimum can
guarantee accuracy as the initial sample size increases.
Various numerical tests and one engineering application have
successfully supported the effectiveness of the proposedmeth-
od. In consequence, the proposed bi-objective CBDO answers
to the question: How to determine sample size for input vari-
ables in RBDO to minimize the overall cost?

On the other hand, there are many types of epistemic un-
certainties besides the uncertainty of input statistical models,
and each epistemic uncertainty can be reduced through addi-
tional information such as experiments to validate the simula-
tion model. Therefore, it is crucial to consider the cost for
gathering information which enables to reduce the epistemic
uncertainty in practical applications. In future work, the multi-

Table 9 Statistical
representations of random
parameters

Random parameter Symbol Mean Standard deviation Distribution type

Longitudinal modulus (Pa) E11 ≡ P1 1.43E11 1.43E10 Normal

Load magnitude (N) F ≡ P2 − 1.00E4 1.00E3 Normal

Load direction (°) θ ≡ P3 0 10 Normal

Table 11 Optima of bi-objective
CBDO with various target
confidences

CLTarget Bi-objective CBDO optimum Volume

r1 r2 r3 r4 ND1 ND2 ND3

80% 0.6115 0.2918 0.0500 0.0500 17.8362 21.0700 10.0000 0.0254

85% 0.6147 0.2962 0.0500 0.0500 19.7775 24.0683 10.0000 0.0256

90% 0.5887 0.3312 0.0500 0.0500 22.8590 29.0776 10.0000 0.0258

95% 0.6144 0.3167 0.0500 0.0500 27.4510 31.8341 10.0000 0.0261

RBDO 0.6226 0.2737 0.0500 0.0500 – – – 0.0252

Table 10 Optima of bi-objective
CBDO with various weights
between two costs

Weight Bi-objective CBDO optimum Volume

r1 r2 r3 r4 ND1 ND2 ND3

500 0.6460 0.2816 0.0500 0.0500 20.0326 23.1935 10.0000 0.0260

1000 0.5887 0.3312 0.0500 0.0500 22.8590 29.0776 10.0000 0.0258

2000 0.6346 0.2676 0.0503 0.0500 34.9868 43.8620 10.0000 0.0254

RBDO 0.6226 0.2737 0.0500 0.0500 – – – 0.0252
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objective CBDO including model uncertainty to distribute the
optimal number of experiments, simulations, and collecting
input data will be investigated.

7 Replication of results

Matlab codes for the mathematical examples in Sect. 4 are
uploaded on https://github.com/Yongsu-Jung/Bi-objective-
CBDO.git. Overall concepts and algorithms can be validated
through the mathematical example.
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