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Abstract
Current finite element analysis (FEA) and optimizations require boundary conditions, i.e., constrained nodes. These nodes
represent structural supports. However, many realistic structures do not have such concrete supports. In a robust optimization,
i.e., optimization for uncertain load inputs, it is desirable to involve support uncertainty. However, such a robust optimization
has not been available since constrained nodes are required to convert the stiffness matrix to an invertible matrix. This
paper demonstrates a quite simple robust optimization based on a pseudo-inverse stiffness matrix and eigenvalue analysis
that successfully creates optimal design without constrained nodes. The optimization strategy is to minimize the largest
eigenvalue of the pseudo-inverse matrix. It was found that optimization for multiple eigenvalues, i.e., multiple load inputs, is
required as the nature of the minimax problem. The created structures are capable of carrying multiple load inputs—bending,
torsion, and more complex loads. Configurations created in rectangular design domains exhibited hollow monocoque
structures.

Keywords Robust optimization · Boundary condition · Constraint · Pseudo-inverse · Monocoque

1 Introduction

Various realistic structures, such as handheld electronic
devices or marine hull structures, are exposed to uncertain
load inputs, and these structures do not have concrete
supports. Robust structural optimization involves these
uncertainties in loading or other conditions. Practically,
the concept of ‘uncertain load’ should involve uncertain
supports. Therefore, the problem should preferably be
“support-free.” However, optimization for such support-free
problems have yet to be considered.

There are several approaches to robust optimizations,
such as worst-case oriented approaches (Ben-Tal and
Nemirovski 2002) and stochastic approaches. Cherkaev and
Cherkaev (1999, 2003, 2008) formulated worst loading as a
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loading that causes maximum strain energy under a certain
loading constraint. Takezawa et al. (2011) expanded the
formulation to a realistic methodology. Nakazawa et al.
(2016) formulated worst loading as an uncertain loading
position of a point loading. The concept of “uncertain load”
also involves uncertain loading directions (Csébfalvi 2018).
Chen et al. (2010) and Zhao and Wang (2014) formulated
stochastic approaches as random field loadings.

Other various approaches have also been presented
(Leliévre et al. 2016): uncertainty in material property and
manufacturing tolerances (Guest and Igusa 2008; Rostami
SAL Ghoddosian 2018), uncertain bounded buckling loads
(Kaveh et al. 2018), and the game theory approach
(Holmberg et al. 2017). Zhang et al. (2016) applied
eigenvalue analysis to dynamic compliance problems. An
optimization technique to assure robustness against small
loading uncertainty has also been described (Liu et al.
2017). Kogiso et al. (2008) considered stability with respect
to changes in loading. Beside the density-based approaches
of topology optimization, a level-set based structural
optimization method (De Gournay et al. 2008), methods
for shape optimization (Shimoda et al. 2015; Dambrine and
Laurain 2016), and a ground structure approach (Ahmadi
et al. 2018) have also been presented.
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All of these methods above require a boundary condi-
tion, i.e., support consisting of displacement constraints.
Basically, static structural analysis cannot determine a solu-
tion without a boundary condition. This is the difficulty
of support-free problems. Some methods have been devel-
oped to deal with such support-free systems. The inertia
relief analysis firstly introduced in NASTRAN (Reference
Manual 2005) enables analysis of support-free systems by
converting the static structural problem into a dynamic
problem. A structural optimization method including opti-
mization of supports is also available (Buhl 2002). However,
considering simplicity and flexibility, there is a requirement
for a straightforward analysis and optimization method for
support-free systems.

In finite element analysis, the stiffness matrix is not
invertible without boundary conditions (nodal constraints
with at least 6 degrees of freedom are required for 3D
problems). However, this does not mean that an elastic
equation does not have solutions. In principle, an input
load set has an elasticity solution without these constrained
nodes. If the load input is balanced, the sum of both the
loads and moments are zero. For such a non-invertible
matrix, eigenvalue analysis is still available. In addition,
the pseudo-inverse of a stiffness matrix can substitute for
the inverse. This yields an exact solution for balanced load
input.

This paper presents a robust structural optimization
methodology for support-free systems based on an estab-
lished topology optimization adopting the density-based
approach (Bendsøe 1989; Mlejnek 1992; Bendsøe and Sig-
mund 2003). This approach to robust optimization is worst-
case oriented. The use of a pseudo-inverse matrix and
eigenvalues is also widely applicable to other schemes, such
as shape optimization, the level set method, and stochastic
approaches to robust optimization. The following sections
describe the details of this method and the trials that were
carried out.

2 Theoretical remarks

2.1 Support-free problems

An elasticity problem with supports is a boundary value
problem. The supports provide the essential boundary
conditions as displacement constraints. The given loading
conditions at the surface of the elastic body also provide the
natural boundary conditions as stress constraints. Since the
problem is static, the total sum of the loadings must be zero,
and the reaction forces on the supports balance the total
load.

A support-free problem lacks the essential boundary
conditions. The displacement solution is not unique due to

uncertainty of the integration constants. If the load input is
not balanced, the equation does not have a solution because
the problem cannot satisfy the natural boundary conditions.

In realistic physics, the application of an unbalanced load
onto an unsupported body results in infinite displacements.
However, the load input consists of a balanced component
and an unbalanced component. The balanced component
may produce internal deformation of the body, and the
unbalanced component may produce infinite rigid body
motion. It can be expected that the internal deformation
produces unique strain and that the rigid body motion does
not produce strain. Optimization of the structure is possible
using the unique strain. The following subsection proves
this suggestion based on finite element systems. A brief
explanation for a one-dimensional continuum elasticity
problem is shown in Appendix A.

2.2 Eigenvalue analysis and pseudo-inversematrix
for support-free systems

An elasticity problem consisting of finite elements can be
described in an elasticity equation as follows:

KU = F (1)

where K is the stiffness matrix, U is the displacement
vector, and F is the load input vector. The K matrix is
not invertible if the problem is support-free. From basic
physical considerations, a balanced load input Fb apparently
has a solution Us . However, the solution is not unique. The
sum of a solution of Us and an arbitrary rigid body motion
UR is also a solution of (1) because KUR = 0. The non-
uniqueness of this solution is attributed to the singularity
of the matrix K. To handle the problem, the load input
F is separated into the balanced component Fb and the
unbalanced component FR .

F = Fb + FR . (2)

The sum of an unbalanced load and an arbitrary balanced
load is also an unbalanced load. To determine a unique
separation, the unbalanced component is defined as the least
norm. It requires that any addition of an arbitrary balanced
load Fba results in increase of the norm of the unbalanced
component, namely:

||FR||2 ≤ ||FR + Fba||2. (3)

This definition implies that the unbalanced component does
not contain any balanced component.

Here, the unbalanced component is assumed to be in the
form of a rigid body motion, namely:

FR = SRF (4)

and

Fba = (I − SR)F ≡ SdFa (5)
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where, I is an identity matrix, and Fa is an arbitrary load.
The matrix SR is the extraction of the rigid body component
from a displacement. SR can be obtained by applying the
least-square method to rigid body motion. Substitution of
these equations into inequality (3) gives the following result:

||FR||2 ≤ ||FR||2 +||Fba||2 +FT ST
RSdFa +FT

a S
T
d SRF. (6)

SR and Sd are symmetric, and SRSR = SR . Hence, ST
RSd =

SRST
d = 0. These relationships prove that inequality

(3) is always satisfied. Thus, the least-norm unbalanced
component is in the form of a rigid body motion.

In general, a support-free problem does not have a
solution. Even a balanced load does not provide a unique
solution. However, it is possible to find a unique least
error solution Usq that minimizes ||KUsq − F||2 and its
norm ||Usq ||2. It is known that the pseudo-inverse K+
(also referred to as the Moore-Penrose generalized inverse
(Moore 1920; Penrose 1955; James 1978)) provides such a
solution as Usq = K+F.

The least-squares error is attributed to the least-norm
unbalanced component, namely:

||KUsq − F||2 = ||FR||2. (7)

This relationship and (2) suggest the following equation:

KUsq − F = −FR . (8)

The solution Usq can be regarded as the internal
deformation caused by the balanced component of the load.

From the definition of the pseudo-inverse, the following
vector is also a least-squares solution (James 1978):

U = K+Fb + [I − K+K]Uw (9)

where Uw is an arbitrary vector. The second term
[I − K+K]Uw corresponds to rigid body motion. The

absence of a boundary condition results in uncertainty of
the solution. However, the uncertain components of the
displacements are rigid body motion, and strain energy is
not produced. Hence,

the strain energy of the solution is unique, and the
pseudo-inverse extracts the component. Thus, the Moore-
Penrose generalized inverse consistently solves support-
free problems. The simplicity of this approach is a great
advantage.

An eigenvalue analysis is also available for the pseudo-
inverse K+ as follows:

K+F̌i = λi F̌i = Ǔi . (10)

An example of this analysis for a small two-dimensional
system is shown in Fig. 1. Although F̌i may be expected
to be balanced, this condition is actually not assured. The
considerations above suggest that the eigenvectors also have
balanced and unbalanced components as follows:

Ǔi = Ǔsi + ǓRi = λi(F̌bi + F̌Ri). (11)

In the following optimization trials, it was found that
the generated eigenvectors contain unbalanced compo-
nents. However, the compliance (strain energy) in the form

Ǔ
T

i KǓi eliminates the unbalanced components. Optimiza-
tion based on the strain energy is therefore possible.

2.3 Robust optimization scheme based
on eigenvalue analysis using aggregated
system

Takezawa et al. (2011) developed robust optimization based
on an aggregated system. The aggregated system provides
quite a useful platform. This subsection briefly describes the
details of this significant work.

Fig. 1 Two-dimensional small
elastic system. The
displacements for each non-zero
eigenvalues κ are shown below.
The system has eight degrees of
freedom, and three rigid body
motions, i.e., parallel
displacements in the x and y

directions and the rotation, have
zero eigenvalues. Hence, the
system has five non-zero
eigenvalues.
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The inverse of (1) is transformed to an aggregated form
as follows:

Ul = CFl (12)

where C is the aggregated compliance matrix, Fl is the
discretized local force vector that consists of only possible
load input components, and Ul is the corresponding local
displacements.

Eigenvalue analysis is applied to the compliance matrix
as follows:

CF̌li = λi F̌li (13)

where λi is the ith largest eigenvalue of C, and F̌li is the
eigenvector.

The problem formulation is the minimization of the
maximum compliance (“robust compliance”) FT

l CFl under
the constraint ||Fl || = 1. The corresponding loading
distribution Fl is called “worst loading.” According to the
Rayleigh-Ritz theorem (a brief introduction is presented
in Takezawa et al. (2011)), the worst loading corresponds
to the eigenvector belonging to the largest eigenvalue.
The robust optimization problem is reduced to a minimax
problem of the eigenvalues. Takezawa et al. demonstrated
that an optimization for only the largest eigenvalue
successfully creates optimum configurations. However, the
present work found that optimizations only for the largest
eigenvalue are not applicable to support-free problems. The
next subsection discusses this issue.

2.4 Physical interpretation of eigenvalues

As mentioned above, optimization only for the largest
eigenvalue actually causes unstable premature convergence.
To understand this difficulty, physical interpretation of the
eigenvalue is crucial.

The eigenvector F̌i denotes the loading distribution,
and these distributions exhibit periodic patterns similar to
other various eigenvalue analyses like buckling analysis.
The present work classifies these periodic patterns as “nth
order modes,” where the zeroth order is close to a uniform
distribution. A schematic diagram of these periodic patterns
is shown in Fig. 2.

As described by Takezawa et al. (2011), for problems
with constrained nodes, the worst load patterns involve
loading in a certain direction. These modes correspond to
the zeroth order. Apparently, such unidirectional loads yield
high stress and strain energies around constrained nodes.
Thus, the eigenvalue of the zeroth-order mode overwhelms
the others. Although the loading distribution changes as the
optimization progress, the mode of the largest eigenvalue is
unchanged. Hence, the changes in the loading distribution
in each iterative calculation are rather small. Consequently,
optimization for the worst loading progresses successfully.

Fig. 2 Schematic diagram of loading distributions in each eigenvector
of one-dimensional systems: a support-free system and b system with
constraints at both ends

In a support-free problem, the zeroth-order mode does
not appear because the zeroth-order mode is not balanced.
Although lower order modes tend to have larger eigenvalues
of the compliance, the first order is not always the worst
mode. The worst mode may alternate as the optimization
progresses. If the optimization was solely for the worst
mode, a discontinuous change in the loading distribution
occurs, in which the worst mode alternates. Repeating such
alternations of the worst mode, the optimization wanders
and does not converge. A robust optimization solely for
the worst mode does not progress efficiently in the case
of a support-free system. This is an essential difficulty of
minimax problems.

3Method

3.1 Problem formulation

As with a conventional topology optimization, the present
scheme requires a volume fraction and design domain.
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Another design variable that is unique in the present
aggregated system approach is the possible load input
freedom, i.e., nodes and axes. The system can be described
in an aggregated form. Takezawa et al. (2011) showed that
the transformations F to Fl , K to C, and U to Ul are given
as follows:

Fl = HT F (14)

Ul = HT U (15)

C = HT K−1H (16)

where H is the conversion matrix connecting the local and
global vectors. The non-square conversion matrix HT can
be determined so that it eliminates non-loading components
from the force vector F.

An eigenvalue analysis applied to a stiffness matrix may
seem to provide an alternative method that does not require
an inverse of K. However, the stiffness matrix for the
substitute analysis must be in the form of the aggregated
system, and the transformation of the stiffness matrix is
complex. Eventually, it requires an operation to inverse the
global stiffness matrix K. Such an analysis is not practical.

For support-free problems, the aggregated compliance
matrix C can be re-defined using the pseudo-inverse of K as
follows:

C = HT K+H. (17)

The present work implements an optimization for the worst
eigenvalue of the compliance matrix. Hence, the objective
function should be the compliance of the largest eigenvalue
mode. However, optimization for the worst eigenvalue was
found to be unsuccessful due to the alternation of the
worst load mode. The present work tried optimizations
to minimize the compliance of multiple modes. The
compliance of ith eigenmode is as follows:

ci = Ǔ
T

i KǓi (18)

and

Ǔi = K+HF̌li . (19)

where K+ is the pseudo-inverse of K, and F̌li is the
eigenvector of the compliance matrix C.

3.2 Optimization sensitivity formultiple eigenvalues

The present work uses the density-based approach that
optimizes the densities of fixed-mesh finite elements ρe.
As a practical substitute of a minimax problem, the present

work uses a weighted sum of optimization sensitivities of N

largest eigenvalue modes as the sensitivity, namely:

se =
N∑

i=1

wisei = −
N∑

i=1

wi

∂ci

∂ρe

(20)

where sei is the optimization sensitivity of ith mode, and
the suffix “e” denotes the eth element. The weight of the ith
worst mode wi is determined so that a mode with a larger
eigenvalue has a larger weight as follows:

wi = (λi − λN+1)
μ

∑N
i=1(λi − λN+1)μ

(21)

where μ is the weighting power factor, and λi is the
ith largest eigenvalue of C. In the following iterative
calculation, previous values of λi are used in (21). When the
problem has a multiplicity of eigenvalues (Thore 2016), this
method is also applicable.

In the present scheme, the structure is optimized
mostly for the worst load, and the succeeding modes
are also involved. The worst load mode may alternate.
However, discontinuous changes in the optimization can
be suppressed. An appropriate setting for the factor μ and
number of incorporating eigenvalues N may exist. When
N is a large number, this may have an adverse effect on
convergence and the computation cost. When N is a small
number, alternation of the N th and N+1th mode may make
the optimization unstable. When the weighting power factor
μ is large, the optimization gives larger weight to the mode
with the larger eigenvalue. Although this might mitigate the
impact of alternation of the N th and N+1th mode, it enlarges
the impact of the alternation of the worst and the second
mode.

The present work adopts the solid isotropic material
with penalization (SIMP) method (Bendsøe 1989; Zhou and
Rozvany 1991), which penalizes intermediate densities by
setting a non-linear relationship between the density and the
elastic modulus E as follows:

E = Emin + ρ̃ p(E0 − Emin) (22)

where p > 1 is the penalization factor, and E0 and Emin

are the elastic moduluses of the solid material and the
void material, respectively. In the present work, the default
setting of the penalization factor was p = 3.

3.3 Iterative calculation

The present work adopts the optimality criteria (OC)
method (Bendsøe 1995). In each iterative calculation, the
amplification factors Be for each element are determined
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uncertain load input 

x z
y

Fig. 3 Design domain and loading inputs. Uncertain loads are applied
at the bottom of the domain. The loading vectors are limited to the
y-direction. The models consist of unit size elements

based on the sensitivity and the required total volume
fraction as follows:

Be = Hb(se)

(
�

∂v(ρe)

∂ρe

)−1

(23)

where Hb is a blurring filter that suppresses mesh dependent
irregularities such as checkerboards (Bruns and Tortorelli
2001). The Lagrange multiplier � is determined so that the
total volume v(ρ) (sum of all densities) is kept within the
volume fraction limit Vf . The temporal renewed densities
ρnew are calculated from the previous densities ρe as
follows:

ρnew = max(ρe − m, min(ρe + m, ρeB
η
e )) (24)

where η is the numerical damping coefficient, and m is
the change limit. These convergence control parameters
m and η control the speed of the optimization progress.
The OC method is historically older than other modern
methods, such as sequential quadratic programming (SQP)
(Nocedal and Wright 2006) or the method of moving
asymptotes (MMA) (Svanberg 1987). However, simple
and straightforward speed control plays an important
role in this robust optimization. Unlike ordinal structural
optimizations, the load input changes as optimization
progress, and large changes in each iterative calculation
make the optimization unstable. Hence, slower progress—
smaller settings of these parameters—is preferable. For
ordinal topology optimization, a setting of η = 0.5 and
m = 0.2 has been recommended (Bendsøe 1995; Sigmund
2001; Liu and Tovar 2014). In contrast, the present work
found that these factors have to be much smaller.

To reduce the computation cost, the present work uses an
approximation of B

η
e as follows:

Bη
e � 1 + η(Be − 1). (25)

A robust optimization program for a rectangular design
domain loaded at the bottom surface was implemented
in MATLAB R2018a based on the efficient 3D topology
optimization code provided by Liu and Tovar (2014). The
MATLAB functions “eigs” and “lsqminnorm” were used for
the eigenvalue analysis and the pseudo-inverse computation,
respectively. It should be noted that these computations have

Table 1 Trial conditions and results

ID Domain size IT Vf C.time Mnd λ1 Figure Remarks

x × y × z (minute) (%) No.

A1 14×7×18 100 0.3 1 64.4 359.2 Figure 6, 7 Standard

A2 14×7×18 ↑ 0.3 ↑ - 351.1 Figure 14 Larger convergence control parameters and μ

A3 14×7×18 ↑ 0.3 ↑ - 362.2 Figure 15 and 16 Larger convergence control parameters

A4 14×7×18 150 0.3 ↑ 63.4 5052.9 Figure 17a High penalization and fixed load input in late stage

A5 14×7×18 100 0.45 ↑ 64.5 121.5 Figure 10 Larger volume fraction

B 19×10×25 ↑ 0.3 35 57.3 665.9 Figure 8 Larger design domain

C 14×7×34 ↑ 0.3 5 57.3 959.4 Figure 9 Longer design domain

D1 84×26×1 150 0.5 4.2 52.2 578.9 Figure 11a Quasi-two-dimensional cantilever

D2 57×38×1 150 0.5 4.5 63.0 198.7 Figure 11b Quasi-two-dimensional narrow and tall cantilever

D3 115×19×1 150 0.5 4.9 41.1 2524.0 Figure 11c Quasi-two-dimensional wide and low cantilever

D4 84×26×1 150 0.5 4.2 51.4 5533.0 Figure 17b D1 with high penalization and fixed load input in late

stage

E1 20×4×40 100 0.5 20 61.5 2576.8 Figure 13a Low design domain

E2 20×4×40 100 0.5 ↑ 76.6 6223.6 Figure 13b Low design domain with overhang penalization

E3 18×3×25 100 0.35 2 66.9 6779.7 Figure 13c Low design domain and resolution with overhang

penalization

E4 20×4×40 100 0.5 20 64.2 41922.6 Figure 17c E2 with high penalization

IT, number of iterations, Vf , volume fraction; C.time, computation time per each iterative calculation
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Fig. 4 The loading distributions corresponding to each eigenvector for
the initial configuration (rectangular solid) of case A1. a The largest
eigenvalue: the loading is symmetric torsional input and the first order
is in both the x and z directions, i.e., the mode is 1 × 1. b Second
largest: loading = bending, mode = 0×2. c Third largest: loading =

periodic torsion, mode = 1×2. d Fourth largest: loading = bending,
mode = 2×0. e Fifth largest: loading = complex periodic torsion and
periodic bending, mode = 2×1. f Sixth largest: loading = periodic tor-
sion in both the x and z directions, mode = 1×3. The 0×0th, 0×1th,
and 1×0th order modes are prohibited because these are not balanced

finite errors. The details of the implementation are described
in the latter section.

4 Results and discussion

4.1 Optimization in 3D rectangular design domain

Optimization trials were conducted for several domain sizes
and parameter settings. An HP Z420 workstation (Intel
Xeon ES-1620, 3.60GHz/16.0GB) was used for the trials.
The present methodology can handle arbitrary problems,
i.e., any design domains and loading nodes. However, the

present program code is specialized for the conditions
described in Fig. 3. Table 1 lists the conditions of the trials.

Figure 4 shows the loading distributions corresponding
to each eigenvector for the common initial configuration
(rectangular solid) of cases A1 to A4.

This sequence of the modes may change as the
optimization progresses. The lowest order of torsion and
bending in x and z are the most basic load input
modes and correspond to the first, second, and fourth
largest eigenvalues. These basic input modes should be
incorporated in the optimization. This means that the
number of incorporated eigenvalues N must be at least four.
The present work adopts N = 4. It should be noted that

Fig. 5 The loading distributions
corresponding to each
eigenvector for the final
configuration of case A1: a the
largest eigenvalue, b second
largest, c third largest, d fourth
largest, e fifth largest, and f
sixth largest. Existence of rigid
body motion–type components
can be seen especially in the
fifth and sixth largest modes
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Fig. 6 The convergence of the eigenvalues in case A1. The parameters are η = 0.15, m = 0.05, and μ = 1. Smooth convergence was obtained

the appropriate setting for N may vary according to the
problem. The N th largest eigenvalue must be sufficiently
smaller than the largest eigenvalue.

Figure 5 shows the loading distributions of each
eigenvalue for the final configuration. The modes are
basically maintained, and the sharp peaks at the corners
are significantly relaxed. This may be the result of
“reinforcements” to high loading areas. The optimization
changes the structure to reduce the high strain energies
around the corners. Figures 6 and 7 show the convergence
history and the final configuration when η = 0.15, m =

0.5

0.9

0.8

0.7

0.6

1.0

Fig. 7 The final configuration of case A1. Uncertain loads were
applied at the bottom surface of the domain. Voxels are shown when
the densities are more than 0.5, and the shades indicate the density.
Note that intermediate densities ρ < 0.5 may exist in the hollow spaces

0.05, and μ = 1. Although this setting slows down the
convergence, it stabilizes the optimization.

Intermediate densities can be seen in the final configura-
tions. These intermediate densities were not eliminated even
if the number of iterations was increased. The SIMP method
does not completely remove intermediate densities, which
occur around the boundary between black and white regions
in ordinal topology optimization. However, in the present
work, these intermediate densities occurred in almost the
whole structure. An extremely high penalization setting of
p = 6 was also tried, but the result was disappointing.

0.5

0.9

0.8

0.7

0.6

1.0

Fig. 8 The final configuration of case B. The parameters are standard
η = 0.15, m = 0.05, and μ = 1
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0.5

0.9

0.8

0.7

0.6

1.0

Fig. 9 The final configuration of case C. The parameters are standard
η = 0.15, m = 0.05, and μ = 1

Since further processes may solve this problem, these are
described in a subsection below.

A more serious problem is the long computation time
of the pseudo-inverse matrix and the slow convergence.
The present work uses quite a coarse mesh because
of the time-consuming pseudo-inverse computation. As
listed in Table 1, slightly larger scale problems resulted
in unrealistically long computation times or computation
interruptions due to memory shortage. The Moore-Penrose
pseudo-inverse is notorious for its high computation
cost, and new computation methods have been proposed
(Courrieu 2005). According to his research, the computation
cost is proportional to the third to fourth power of the
rank. Although the eigenvalue analysis computation is also
a time-consuming process, most of the computation time
seems to be taken by the pseudo-inverse computation,
especially when the design domain is large.

The slow convergence is the result of securing stability
for the worst-mode alternations as well as sensitivity
to computation errors. Due to these requirements, the
optimization requires a large number of iterations. A long

0.5

0.9

0.8

0.7

0.6

1.0

Fig. 10 The final configuration of case A5 with larger volume fraction.
The penalization is the same as the standard case (p = 3)
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0.7
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Fig. 11 The final configuration of two-dimensional condition of case
D1 to D3. The parameters are standard η = 0.15, m = 0.05, and
μ = 1. a Quasi-two-dimensional cantilever. b Quasi-two-dimensional
narrow and tall cantilever. c Quasi-two-dimensional wide and low
cantilever

computation time due to this factor above is a major concern
related to the industrial application of this method.

Figures 8 and 9 show cases of longer and larger
design domains. The larger design domain has an almost
similar shape and is 1.4 times larger than the standard
condition. The longer design domain is close to the one used
by Takezawa et al. (2011). These configurations exhibit
hollow “monocoque” structures. Since the present work
uses unit size elements, the domain size represents the
resolution of the topology. If the optimum “thickness”
is smaller than the size of the unit cell, the density
stays at an intermediate value. Figure 10 shows the
result of the larger volume fraction. The densities of
the walls increased, but the “walls” still consist of
a single layer. This monocoque structures formation
contrasts to two-dimensional problems that exhibit truss
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Fig. 12 The loading distributions corresponding to each eigenvector
for the initial configuration of quasi-two-dimensional case D1. Only
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back is indicated as (sym.) or (asym.). Note that the 5th largest is not
balanced

structures. As growths of ribbed structures were observed
in three-dimensional curved beam optimization (Fukada
et al. 2018a, b), three-dimensional problems are crucially
important.

Most structures formed by conventional robust optimiza-
tion with an uncertain load distribution (Chen et al. 2010;
Takezawa et al. 2011) are optimized only for bending.
In contrast, the present trials formed monocoque struc-
tures for combined torsional and bending loads, and this
may be the most prominent difference from these conven-
tional approaches. Monocoque structures are widely used
in automobiles, marine vessels, and aircraft fuselages. The
present results may demonstrate the excellent character-
istics of monocoque structures. Similar results were also
found in eigenfrequency optimizations (Ma et al. 1995; Ishii
et al. 2001, 2004). Obtained structures optimized for bend-
ing and mean eigenfrequencies exhibit hollow thin-walled
pipe structures (Ishii and Aomura 2004). When loading
direction uncertainty is considered, the formed structures
tend to exhibit more complex configurations (Takezawa

et al. 2011; Shimoda et al. 2015). If multiple loading points
were applied in their trials, monocoques may form to carry
torsional loadings.

A monocoque is an excellent structure. However, care
may be required when adopting these structures to industrial
applications. The present problem formulation adopts the
minimum compliance—minimum strain energy. In contrast,
industrially realistic requirements often involve minimum
displacement. A minimum displacement problem is only
equivalent to a minimum strain energy problem when the
load inputs areas are small. In the present 3D cases, some
elements at the bottom vanished. These parts (actually
the elements still maintain finite densities) are apparently
structural ‘ weak points.” These weak points are allowed
because their contribution to the total strain energy is small.
Monocoques are preferred because of their overall structural
rigidity and are not designed to support point loadings.
If such weak points are not acceptable in the application,
the problem formulation should be reconsidered. A scheme
involving an uncertain load position (Nakazawa et al. 2016)
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Fig. 13 The final configurations of low design domains E1 to E3. a
The final configuration of case E1. b The final configuration of case E2
with overhang penalization. c The final configuration of low resolution
E3 with overhang penalization

is also a good means to create structures without weak
points.

4.2 Two dimensional cases

Two-dimensional problems enable trials with higher reso-
lution and good validation of the method. Problems with
narrow design domains were used to represent quasi-two-
dimensional problems. Figure 11 shows the results. Truss
bridge–like structures were created in these design domains.
The load distributions in conventional robust optimization

(Buhl 2002; Zhao and Wang 2014) are basically three-point
loading. In contrast, the distributions in the present opti-
mization are combinations of alternative multipoint bend-
ing. The difference between the present method and con-
ventional methods is remarkable when the design domain is
wide and low.

Figure 12 shows the loading distributions for the
initial configuration of quasi-two-dimensional case D1. The
present MATLAB code is for three-dimensional problems.
Although the model consist of a single-element layer in
the thickness direction, there are two rows of load input
nodes. An asymmetric loading in the front and back is an
out-of-plane component. Hence, the trials are not purely
two-dimensional. Physically meaningful inputs as a two-
dimensional problem are only the modes of the first and the
4th largest eigenvalue, and they correspond to three-point
bending and bending with four-point alternative load inputs,
respectively. The adequate number of N may be two for this
type of pure two-dimensional problem.

4.3 Low design domain

Figure 13a shows a configuration in the low design domain.
A flat hollow monocoque was obtained. This configuration
has two “bulkheads,” which may assure torsional rigidity by
transferring shear loadings.

In realistic manufacturing process, hollows or overhangs
are troublesome features for casting. To incorporate
such manufacturing limitations, an additional overhang
penalization, i.e., penalization for negative density gradients
in the thickness (y) direction, was introduced. The following
penalization factors pcu

k and pcl
k are applied to the

calculation of Be.

pcu
k = max(1, min(pcmax, 1 + gc(rcu − ρk/ρy−1))) (26)

and

pcl
k = max(pcmin, min(1, 1 + gc(rcl − ρk/ρy+1))) (27)

here, ρy−1 and ρy+1 indicate the densities of the upper
and lower adjacent cells, respectively. These factors were
applied prior to the smoothing filter. Each parameter was
set as follows: pcmax = 8, pcmin = 0.125, gc = 20,
rcu = 1.005, and rcl = 0.995. Figure 13b shows the
obtained configurations. Flanged or cross-ribbed structures
were obtained depending on the resolution. These types of
configurations are commonly used for reinforcements on
flat thin plates. This peculiar mesh dependency requires
further investigation.

4.4 Convergence speed and weighting

Figure 14 shows the convergence history when the settings
of the convergence control parameters and the weighting
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Fig. 16 Asymmetric
configurations of case A3.
These configurations appeared
alternatively and damping of the
oscillation did not occur

It = 86 It = 87

power factor are large η = 0.2, m = 0.1, and μ = 2.
Singular fluctuations in the largest eigenvalue can be seen,
which occur when the mode sequence alternates. Prior to the
fluctuations, alternation of the modes at the largest and the
second largest eigenvalue occurred. The weighting power
factor μ in (21) controls the weight distribution among the
worst modes. A higher μ setting provides a heavier weight
to the worse mode. Hence, it is likely that mode alternation
occurs especially in the worst mode. Figure 15 shows the
convergence history when the settings of the convergence
control parameters η and m are large, and the weighting
power factor μ is unity. Thanks to the lowered weighting
power factor, the singularities when mode alternations
occur are sufficiently suppressed compared with the case
in Fig. 14. The progress of the optimization is rapid
due to the higher setting of the convergence control
parameters. However, oscillation occurs at a later stage,
which was found to be the appearance of asymmetric
configurations. These asymmetric configurations appeared
periodically in the progress of the optimization. Figure 16
shows the asymmetric configurations. Since the system
is completely symmetric, such asymmetric configurations
are not supposed to appear. These are probably due to
computation errors. The optimization tends to compensate
for the asymmetry. However, the optimization likely
overcompensates for the asymmetry when the settings of the
convergence control parameters are large. As a result, the
optimization becomes oscillatory and the oscillation may
diverge. Thus, it was found that slow optimization and flat
weight distribution are preferable to suppress the effect of
computation errors and the impact of eigenvalue alternation.

4.5 Remaining intermediate densities

Intermediate densities still can be seen in the final
configurations above. These are created by two factors.
One is the variation in the input load distribution. Although
a slower optimization speed and a flat weighting scheme
significantly improve stability, changes in the input load
distribution may retard the convergence. Since the concept

of “robust optimization” is actually quite ambiguous, the
creation of realistic configurations can be prioritized over
mathematical rigorousness. Accordingly, interruption of the
loading distribution update, i.e., the fixation of the input
load distribution at a later stage of the optimization was
tried. An extremely high penalization was also applied with
a continuation method involving a gradual increment of
the penalty. After the iteration number exceeded 50, the
penalty p was increased by factor of 1.015 until it reached
p = 6. Figure 17 shows the results. Except for the singular
spikes located at the corners, these configuration exhibit
more realistic structures, especially in the two-dimensional
case. The persistent intermediate densities in the 3D case
are results of the thin-walled optimal structure. A limited
resolution may result in a space-frame structure.

As shown by Sigmund (2007), the existence of interme-
diate densities, i.e., the “measure of discreteness” can be
evaluated quantitatively as follows:

Mnd ≡
∑Ne

e=1 ρe(1 − ρe)

Ne

× 100%, (28)

where Ne is the number of the elements. A low Mnd

indicates high discreteness. The values are listed in Table 1.
Improvements in high penalization and high resolution (the
large design domain) can be seen.

The final eigenvalues are indicated in Table 1 as
representative values of the compliance. The values for
the high penalization cases are large. This is due to the
penalties for intermediate values, and not realistic for actual
structures.

Optimizations for multiple load conditions basically
yield successful results (Dı́az and Bendsøe 1992). However,
the loadings (eigenvectors) in the present work are orthog-
onal. This orthogonality may bring additional difficulty to
the removal of intermediate densities. The selection of the
optimization algorithm may not be the major factor in the
formation of intermediate densities.

Various filtering techniques exist to remove intermediate
densities (Sigmund 1997, 2007; Groenwold and Etman
2009; Andreassen et al. 2011; Guest et al. 2004, 2011;
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Fig. 17 The result of high penalization and fixation of input loads.
A gradual increment in the penalization p up to p = 6 was applied
after iteration number 50. The update of the eigenvectors (input
load distributions) was interrupted and the loading distributions were
maintained after iteration number 70. a The final configuration of case
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penalization E4. It exhibits a double-wall-framed structure. Vertical
“spikes” can be seen at the corners in (a) and (b)

Yamasaki et al. 2017; Rong et al. 2017). It will be an
interesting future work to observe the responses of these
techniques to this support-free robust optimization method.
An application of the level set method (Wang et al. 2003;
De Gournay et al. 2008; Yamada et al. 2010), which is
intermediate-density free, is also an interesting topic for
future work.

4.6 Expansion of themethod

As mentioned in Section 4.1, the “worst load” does not
mean that it produces the “largest displacement.” In the
same way, the present approach does not solve stress design
problems. An extensive modification may be required to
deal with stress design problems. The introduction of a
stress constraint instead of a stress minimization seems
appropriate. da Silva and Beck (2018) provide an example
to approach stress design problems.

An arbitrary load distribution can be expressed as a sum
of eigenvectors. Hence, the eigenvalue-based approach can
be applied to other problem formulations like stochastic
approaches. The problem of this expansion is computation
cost since it requires high-order eigenvalue analysis.

The aggregated system approach has great possibilities.
The components of the conversion matrices H and HT take
0 or 1 discrete values and denote “possible load inputs.”
It may be possible to give 0–1 continuous values to the
components and denote the “load input possibilities.”

5 Conclusion

This paper presented an approach to robust structural topol-
ogy optimization for support-free problems. The optimiza-
tion adopts the scheme of minimizing the largest eigen-
value in an aggregated system. A pseudo-inverse matrix
was used as a substitution of the inverse stiffness matrix.
The characteristics of the eigenvalue and the eigenvector
of the pseudo-inverse were also discussed. Optimization
solely for the largest eigenvalue does not converge because
the mode of the largest eigenvalue alternates as the opti-
mization progress. Accordingly, weighted optimization for
multiple largest eigenvalues was proposed. It was found that
slow optimization is required to mitigate disturbance from
changes in the eigenvectors and computation errors.

Several trials were conducted using rectangular design
domains with uncertain vertical loadings at the bottom
surface. Under higher resolution conditions, thin-walled
monocoque structures were formed. These results show that
monocoque structures have superior structural robustness.

There are some remaining issues. The computation time
of the optimization trials was long due to the computation
of the pseudo-inverse matrix. New efficient algorithms or
approximation methods to compute the pseudo-inverse are
required for industrial applications.

The created configurations still contain intermediate den-
sities. Extreme penalization was required to remove these
intermediates. This may be attributed to the orthogonality of
the eigenvectors.

This support-free method is applicable to various prob-
lems. However, the concept of “robust” itself is ambiguous
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and certain variations in requirements and expectations
exist. Efforts to find a new problem formulation should be
continued.

Although it is difficult to obtain a high-resolution
configuration with this method, it may be useful to propose
initial designs for support-free structures such as handheld
devices or marine hull structures.

6 Replication of results

The present work was performed as a modification to the
MATLAB code by Liu and Tovar (2014). Their original
code can be downloaded from their web site. This section
presents minimum requirements to reproduce the present
work. The line numbers presented here are those in their
original code. The following lines must be added around the
beginning of the code.
eta = 0.15;

n = 1;

In the original Liu and Tovar code, the load input nodes
are at the edge x = nelx and y = 0. In the present case,
the load input nodes are at the y = 0 bottom surface. To
change the load input nodes, replace lines 12 to 18 with the
following lines:

jl = 0; % Coordinates

loadn_index=1;

for kl = 0:nelz

for il =0:nelx

loadnid(loadn_index) = ...

kl*(nelx+1)*(nely+1)+il*(nely+1)+

(nely+1-jl);

loadn_index=1+loadn_index;

end

end

To create the H matrix (‘Ht’ in the code) , replace lines
22 to 24 with the following lines:

nload = (nelx+1)*(nelz+1);

Hf = zeros(ndof, nload);

for nload_i=1:nload

Hf(3*loadnid(nload_i)-1, nload_i)=1;

end

Ht = sparse(Hf);

F=zeros(ndof);

F1=zeros(ndof);

F2=zeros(ndof);

F3=zeros(ndof);

F4=zeros(ndof);

F5=zeros(ndof);

F6=zeros(ndof);

In the main part of the optimization, variables Z, C, K+
(“Kinv” in the code), Fi , and λi (c1, c2... in the code) are

obtained. In addition, the sensitivities of each load input
(“dc1, dc2...” in the code) are the subject of the weighted
sum into “dc.” Replace lines 72 to 76 with the following
lines:

Z = lsqminnorm(K,Ht);

Kinv = Z*Ht’;

C = Ht’*Kinv*Ht;

[phi,c_array] = eigs(C);

phi1 = phi*([1,0,0,0,0,0])’;

phi2 = phi*([0,1,0,0,0,0])’;

phi3 = phi*([0,0,1,0,0,0])’;

phi4 = phi*([0,0,0,1,0,0])’;

phi5 = phi*([0,0,0,0,1,0])’;

phi6 = phi*([0,0,0,0,0,1])’;

c1 = [1,0,0,0,0,0]*c_array*([1,0,0,0,0,0])’;

c2 = [0,1,0,0,0,0]*c_array*([0,1,0,0,0,0])’;

c3 = [0,0,1,0,0,0]*c_array*([0,0,1,0,0,0])’;

c4 = [0,0,0,1,0,0]*c_array*([0,0,0,1,0,0])’;

c5 = [0,0,0,0,1,0]*c_array*([0,0,0,0,1,0])’;

c6 = [0,0,0,0,0,1]*c_array*([0,0,0,0,0,1])’;

F(:)=0;F1(:)=0;F2(:)=0;

F3(:)=0;F4(:)=0;F5(:)=0;F6(:)=0;

for nload_i=1:nload

F1(3*loadnid(nload_i)-1)=phi1(nload_i);

F2(3*loadnid(nload_i)-1)=phi2(nload_i);

F3(3*loadnid(nload_i)-1)=phi3(nload_i);

F4(3*loadnid(nload_i)-1)=phi4(nload_i);

F5(3*loadnid(nload_i)-1)=phi5(nload_i);

F6(3*loadnid(nload_i)-1)=phi6(nload_i);

end

U1 = Kinv*F1;

U2 = Kinv*F2;

U3 = Kinv*F3;

U4 = Kinv*F4;

ce1=reshape(sum((U1(edofMat)*KE).*U1

(edofMat),2),...

[nely,nelx,nelz]);

ce2=reshape(sum((U2(edofMat)*KE).*U2

(edofMat),2),...

[nely,nelx,nelz]);

ce3=reshape(sum((U3(edofMat)*KE).*U3

(edofMat),2),...

[nely,nelx,nelz]);

ce4=reshape(sum((U4(edofMat)*KE).*U4

(edofMat),2),...

[nely,nelx,nelz]);

dc1 = penal*(E0-Emin)*xPhys.ˆ(penal-1).*ce1;

dc2 = penal*(E0-Emin)*xPhys.ˆ(penal-1).*ce2;

dc3 = penal*(E0-Emin)*xPhys.ˆ(penal-1).*ce3;

dc4 = penal*(E0-Emin)*xPhys.ˆ(penal-1).*ce4;

wall =(c1-c5)ˆn +(c2-c5)ˆn +(c3-c5)ˆn + ...

(c4-c5)ˆn;

w1 = (c1-c5)ˆn/wall; w2 = (c2-c5)ˆn/wall;

w3 = (c3-c5)ˆn/wall; w4 = (c4-c5)ˆn/wall;
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dc = -(w1*dc1 + w2*dc2 + w3*dc3 + w4*dc4);

The value “move” at the original line 82 corresponds to
m in (24). This value should be replaced with a small value
around 0.05.

The present work uses the approximation (25), and η is
no more than 0.5. Replace line 85 with the following lines:
xnew = max(0.0,max(x-move,min(1,min(x+move,

... x.*(((-dc./dv/lmid)-1)*eta+1) ))));

This code does not calculate the compliance. Hence, the
echo back (Line 85) must be modified.

The MATLAB function “lsqminnorm” was introduced
since R2017b. For older versions, another function “pinv”
is available. Note that this function requires longer
computation time. The following line provides a substitute
for older versions:
Kinv = pinv(K);

The MATLAB function “eigs” adopts different com-
putation methods for eigenvalue analysis. The ARPACK
method was adopted before R2017b and the Krylov-Schur
Algorithm method is used in R2017b and later. Significant
differences in accuracy exist between these versions.

The penalization for overhang can be activated by adding
the following lines after original line 77:

for xc=1:nelx, for zc=1:nelz, for yc=1:nely

if yc == 1

pcu = 1;

else

ru = xPhys(yc,xc,zc)/xPhys(yc-1,xc,zc);

pcu = max(1,min(pcmax,1+gc*(rcu-ru)));

end

if yc == nely

pcl = 1;

else

rl = xPhys(yc,xc,zc)/xPhys(yc+1,xc,zc);

pcl = max(pcmin,min(1,1+gc*(rcl-rl)));

end

dc(yc,xc,zc) = dc(yc,xc,zc)*pcu*pcl;

end, end, end

Following lines also must be added around the beginning
the code:
pcmax = 40.0; pcmin = 0.025; gc = 20.0;

rcu = 1.05; rcl = 0.95;
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Appendix A: An example of a continuum
elastic body

Consider a one-dimensional elastic body. The equilibrium
equation and the formula of strain tensors in the body are as
follows:

dσ(x)

dx
= f (x) (29)

and

ε = du(x)

dx
(30)

where f (x) is the force per volume.
In the same way as the finite element model, (29) and

(30) can be reduced by Hook’s law as follows:

E
d2u(x)

dx2
= f (x). (31)

The solution of this equation is as follows:

u(x) =
∫∫

f (x)

E
dx2 + C1x + C2 (32)

where C1 and C2 are the constants of integration, and C1

corresponds to an effect of uniform background pressure
which should be neglected. The constant C2 determines the
displacement at certain position, and denotes a rigid body
motion.

When the problem is support-free and the mean value of
the input force is not zero, the natural boundary condition
(zero stresses at the free ends of the body) cannot be
satisfied.

The force input can be regarded as the sum of the
balanced component fb and the unbalanced component fR ,
i.e., the mean value of f (x).

f (x) = fb(x) + fR . (33)

Substituting (33)–(31), the following relationship can be
obtained.

E
d2u(x)

dx2
− f (x) = −fR . (34)

This relationship seems equivalent with (8).
To cope with the difficulty of an unbalanced load, an

additional weak constraint k is introduced as follows:

E
d2u(x)

dx2
− kE

du(x)

dx
= f (x). (35)

The exact solution of this equation is as follows:

u(x) =
∫∫

fb(x)

E
dx2 + C3e

qxx + C4e
−qx, (36)

and

q = k1/2. (37)
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C3 and C4 are constants. The natural boundary conditions
determine the constants. At the limit of small k, the
constants are as follows:

C3 = C4 = LfR

4k
(38)

where L is the length of the body. Thus, the unbalanced
component yields infinite rigid-body motion.
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