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Abstract
In view of the lack of time-dependent reliability analysis model (TDRA) under fuzzy state, which is ubiquitous in engineering, a
TDRA model under fuzzy state is proposed in this paper, followed by the corresponding safety lifetime model. To establish the
TDRA model under fuzzy state, this paper firstly transforms the TDRA model under binary state into a form expressed by the
time-dependent failure domain indicator function, and then the TDRA model under fuzzy state is derived based on the basic
principle of the time-independent reliability analysis (TIRA) model under fuzzy state. By introducing an auxiliary variable and
establishing the time-dependent generalized performance function, the TDRA model under fuzzy state is transformed into a
generalized one under binary state, where the failure domain and safety domain are clearly defined. Then, the single-loop Kriging
(SLK) surrogate model approach is used to efficiently estimate the time-dependent failure probability (TDFP) in the special
service time interval under fuzzy state. Based on the generalized TDRAmodel and its efficient estimation, a safety lifetimemodel
constrained by the target TDFP under fuzzy state and a corresponding efficient solving method are presented. Finally, examples
are used to verify the rationality of the TDRAmodel and the safety lifetime model under fuzzy state established in this paper, and
the efficiency of the algorithm is also validated.
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1 Introduction

Due to the influence of external environment and self-aging,
the structural performance will decrease with the increase of
service time, and then the reliability level will decrease. The
safety lifetime of the structure is the longest service time under
the condition that the reliability of the structure is bigger than
the target value (Fan et al. 2018). In the traditional time-
independent reliability analysis (TIRA), it is generally consid-
ered that the loads on the structure and the performance of the
structure will not change with the time (Sahinidis 2004).
However, the loads usually change with service time, and
the performance of the structure will also change with time
because of the factors such as corrosion and fatigue (Hu et al.
2013; Yu et al. 2018; Yun et al. 2016). For this type of

problem, we need a time-dependent reliability analysis
(TDRA) model (Wang et al. 2018b; Wang et al. 2019) to
measure the reliability level.

TDRA often takes more computational cost than TIRA.
The proposed TDRA methods can be divided into three cate-
gories, i.e., the crossing rate-based method (Andrieu-Renaud
et al. 2004; Hu and Du 2013; Shi et al. 2017b), the extreme
value-based method (Li et al. 2007; Shi et al. 2017a; Shi et al.
2018b; Yu and Wang 2018), and the surrogate model method
(Feng et al. 2019; Hu and Mahadevan 2016; Wang and Wang
2015). The crossing rate-basedmethod firstly assumes that the
crossing of the performance function from the safety domain
to the failure domain at any time in a given time interval obeys
a specific distribution (such as Poisson distribution) and the
crossings are independent with each other (Andrieu-Renaud
et al. 2004). Thus, the time-dependent failure probability
(TDFP) can be rewritten into the form of the integral of the
crossing rate in the time interval of interest. The main draw-
back of this method is that the accuracy decreases if there
exists multiple dependent crossings during the time interval
of interest (Du 2014). The extreme value-based method only
focuses on the extreme value of the output in a given time
interval. By the extreme value transformation, the time-
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dependent problem can be transformed into the time-
independent one (Shi et al. 2017a), which can be analyzed
by efficient TIRA methods, i.e., approximately analytical
method, Monte Carlo Simulation (MCS) method and time-
independent surrogate model method. The approximately an-
alytical method uses the moments of the output expressed by
the performance function to estimate the failure probability
(Baran et al. 2012; Shi et al. 2018a). The MCS method is
widely applicable but time-consuming, and the various ad-
vanced MCS methods were proposed to reduce the computa-
tional cost, such as importance sampling method (Au 2004;
Au and Beck 1999; Grooteman 2008), subset simulation
method (Au and Beck 2001; Song et al. 2009), line sampling
method (Schuëller et al. 2004; Song and Lu 2007), and direc-
tional sampling method (Ditlevsen et al. 1990). The time-
independent surrogate model method estimates the failure
probability by constructing a cheap surrogate model replacing
the original performance function to reduce the computational
cost (Cheng and Lu 2018a, b; Echard et al. 2011; Yang et al.
2019). The extreme value method can greatly reduce the cost
of computation, but it should be noted that the extreme value
cannot be easily solved in engineering application. The surro-
gate model method performs the TDRA by constructing the
surrogate model of the actual performance function; thereby
the number of calling the actual model will be greatly reduced.
At present, the most commonly used surrogate model methods
for TDRA include the double-loop Kriging model (Wang and
Wang 2015) and the single-loop Kriging (SLK) model (Hu
and Mahadevan 2016; Yun et al. 2016). The double-loop
Kriging model is proposed on the idea of the extreme value-
based method. The inner loop establishes the Kriging surro-
gate model of the time-dependent performance function with
respect to the time at a given realization of the random input
vector. By using the inner Kriging surrogate model to obtain
the extreme value in the time interval of interest at the training
sample approximately, the outer loop establishes the Kriging
surrogate model of the extreme value with respect to the ran-
dom input vector for estimating the TDFP. The SLK model
performs reliability analysis by directly constructing the
Kriging surrogate model for the original time-dependent per-
formance function with respect to the random inputs and the
time. Comparedwith the double-loop Krigingmodel, the SLK
sufficiently considers the relationship between random input
vector and time, thus the SLKmodel is more efficient than the
double-loop one.

The methods introduced above are based on the assump-
tion of binary state, i.e., there is a clear boundary between
the failure state and the safety state of the structure.
However, in practical engineering, there exists universally
a gradual failure mode due to thermal creep or fatigue
cracks caused by alternating loads, where the boundary
between failure state and safety state is fuzzy (Tang and
Lu 2014). In view of the TIRA problem under fuzzy state,

Cai (Cai et al. 1991a, b, 1993) and Onisawa (Onisawa
1990) established a Profust reliability analysis model under
probability inputs and fuzzy state described by a given
membership function. In Profust reliability analysis model,
the failure probability can be defined as the expectation of
the membership function of the performance function to
the fuzzy failure state. Many scholars have researched the
estimation method of Profust model; the basic method to
estimate Profust model is the MCS method. When the sam-
ple size approaches infinity, the result of MCS converges
to the true value, but this method requires a large amount
of computation cost to obtain a convergent result because it
is based on the law of large numbers. In order to improve
the computational efficiency, Chen (Chen and Lu 2007)
employed the line sampling method under binary state to
estimate the Profust model. Feng (Feng et al. 2018) com-
bined the subset simulation method to reduce the compu-
tational cost of MCS for estimating the Profust model.
Wang (Wang et al. 2018a) reduced the computational cost
by converting the integral domain. However, the existing
reliability methods for Profust model are only applicable to
time-independent problems, and there still lacks TDRA
model under fuzzy state. But, the fuzzy state exists widely
in the time-dependent structural systems; therefore, it is
necessary to establish a TDRA model under fuzzy state.

The main contribution of this paper is establishing a
TDRA model under fuzzy state by referring to the TIRA
model under fuzzy state. To establish the TDRA model
under fuzzy state, the TDRA model under binary state is
transformed firstly. The TDFP under binary state is
expressed by the form of the time-dependent failure do-
main indicator function so that the TDRA model under
fuzzy state can be conveniently established by the basic
principle of TIRA model under fuzzy state. On the
established TDRA model under fuzzy state, the auxiliary
variable and time-dependent generalized performance
function are introduced to simplify the TDRA model
under fuzzy state. Then, the safety lifetime model is con-
structed by the constraints of target TDFP under fuzzy
state, and the SLK surrogate model method is introduced
to solve the TDFP and the safety lifetime.

In this paper, the method of establishing the TDRA
model under fuzzy state is given in Sect. 2, and the
derivation process and the corresponding solution meth-
od of time-dependent generalized performance function
are included. The safety lifetime model based on the
time-dependent generalized performance function is con-
structed in Sect. 3, and the corresponding solution meth-
od is also provided. Section 4 gives the example analysis
to validate the reasonability of the TDRA model under
fuzzy state and the efficiency of the corresponding safety
lifetime solution. The conclusions of this paper are
drawn in Sect. 5.
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2 TDRA model under fuzzy state and solving
method

In this section, the TIRAmodel under fuzzy state is reviewed,
on which the TDRA model under fuzzy state is established.
The algorithm for solving the TDFP under fuzzy state is also
provided in this section.

2.1 TIRA model

Based on the definition of the TIRA model under binary
state and that under fuzzy state, the corresponding rela-
tionship between the two models is analyzed in Sect. 2.1.
Then, according to the existing literature (Wang et al.
2018a), the TIRA model under fuzzy state is transformed
into that under binary state (where the failure domain is
clearly separated from the safety domain) by introducing
an auxiliary variable. By virtue of the TIRA model under
fuzzy state and its transformed form, the TDRA model
under fuzzy state and its generalized form are established
in Sect. 2.2, on which Sect. 2.3 provides the solution for
the TDFP under fuzzy state.

2.1.1 TIRA model under binary state

The indicator function IF(⋅) of the failure domain F = {x :
g(x) ≤ 0} and the indicator function IS(⋅) of the safety domain
S = {x : g(x) > 0} in the TIRA model under binary state pos-
sess the following relationship:

I F g xð Þð Þ ¼ 1−IS g xð Þð Þ ð1Þ

where g(x) is the time-independent performance function and
x = {x1, x2,…, xn} is a realization of the n-dimensional ran-
dom input vector X = {X1, X2,…, Xn}.

The failure domain is defined as F = {x : g(x) ≤ 0}.
IF(g(x)) = 1 if x ∈ F, and IF(g(x)) = 0 otherwise. The
safety domain is defined as S = {x : g(x) > 0}. IS(g(x)) =
1 if x ∈ S, and IS(g(x)) = 0 otherwise. Figure 1 shows the
relationship of IF(g(x)) and IS(g(x)) vs g(x). The

corresponding failure probability Pf has the following
relationship with the reliability Pr.

P f ¼ ∫þ∞
−∞ I F g xð Þð Þ f X xð Þdx ð2Þ

Pr ¼ ∫þ∞
−∞ IS g xð Þð Þ f X xð Þdx

¼ ∫þ∞
−∞ 1−I F g xð Þð Þð Þ f X xð Þdx ¼ 1−P f

ð3Þ

2.1.2 TIRA model under fuzzy state

Under the condition of fuzzy state, the membership function
μF̃ g xð Þð Þ of g(x) to the fuzzy failure domain F̃ and the mem-
bership function μS̃ g xð Þð Þ of g(x) to the fuzzy safety domain
S̃ have the following relationship.

μF̃ g xð Þð Þ ¼ 1−μS̃ g xð Þð Þ ð4Þ

μF̃ g xð Þð Þ is a non-increasing function of g(x) and
μS̃ g xð Þð Þ is a non-decreasing function of g(x) generally.
Figure 2 shows the schematic diagram of μF̃ g xð Þð Þ and
μS̃ g xð Þð Þ vs g(x). The relationship between the failure proba-
bility P̃ f and the reliability P̃ r under fuzzy state is the same as
that under binary state, and it is shown as follows:

P̃ f ¼ ∫þ∞
−∞ μF̃ g xð Þð Þ f X xð Þdx ð5Þ

P̃ r ¼ ∫þ∞
−∞ μS̃ g xð Þð Þ f X xð Þdx

¼ ∫þ∞
−∞ 1−μF̃ g xð Þð Þ
� �

f X xð Þdx ¼ 1−P̃ f

ð6Þ

Comparing Eqs. (2) and (5), it can be found that after
considering the fuzziness of the failure state, the failure
probability model is transformed from the expectation of
the indicator function of the failure domain under binary
state to that of the membership function of the failure
domain under fuzzy state. A similar connection can also
be found by comparing Eqs. (3) and (6). Section 2.2 will

Fig. 1 The relationship of IF(g(x)) and IS(g(x)) vs g(x) Fig. 2 The relationship of μ
F̃

g xð Þð Þ and μ
S̃

g xð Þð Þ vs g(x)
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use this corresponding relationship to establish a TDRA
model under fuzzy state.

2.1.3 TIRA model under fuzzy state and its generalized form
under binary state

According to the proof in literature (Wang et al. 2018a), Eqs.
(5) and (6) can be rewritten into the following forms,

P̃ f ¼ ∫þ∞
−∞ μF̃ g xð Þð Þ f X xð Þdx ¼ ∫10Prob g xð Þ≤μF̃

−1 λð Þ
n o

dλ ð7Þ

P̃ r ¼ ∫þ∞
−∞ μS̃

g xð Þð Þ f X xð Þdx ¼ ∫10Prob g xð Þ > μ
F̃
−1 λð Þ

n o
dλ ð8Þ

in which λ ∈ [0, 1] is the corresponding membership degree of
g(x), μF̃

−1 ⋅ð Þ is the inverse function of the fuzzy failure domain
membership function, Prob{⋅} is the probability operator.

Because Prob g xð Þ≤μ
F̃
−1 λð Þ

n o
þ Prob g xð Þ > μ

F̃
−1 λð Þ

n o
¼ 1,

P̃ f þ P̃ r ¼ 1 still holds, which shows that P̃ f and P̃ r satisfy
the property of self-duality. Define the clear domain defined

by the inequality g xð Þ≤μ
F̃
−1

λð Þ as the generalized clear failure
domain Fλ, then Fλ can be expressed as follows:

Fλ ¼ x : g xð Þ≤μF̃
−1 λð Þ

n o
ð9Þ

Introduce a standard normal random variable Xn + 1~N(0, 1)
independent with X, and let λ =Φ(xn + 1) (Φ(⋅) is the cumula-
tive distribution function of the standard normal variable), and
substitute it into Eq. (7). Then, the conversion expression of
the failure probability under fuzzy state can be obtained as
follows:

P̃ f ¼ ∫þ∞
−∞ Prob g xð Þ≤μF̃

−1 Φ xnþ1ð Þð Þ
n o

dΦ xnþ1ð Þ

¼ ∫þ∞
−∞ Prob g xð Þ≤μF̃

−1 Φ xnþ1ð Þð Þ
n o

ϕ xnþ1ð Þdxnþ1

¼ ∫g xð Þ≤μ
F̃
−1 Φ xnþ1ð Þð Þ f X xð Þϕ xnþ1ð Þdxdxnþ1

ð10Þ

where ϕ(⋅) is the probability density function (PDF) of the
standard normal variable.

Equation (10) is a time-independent failure probability un-
der binary state with the generalized clear failure domain

x : g xð Þ−μF̃
−1 Φ xnþ1ð Þð Þ≤0

n o
. Compared with the original

problem, the time-independent failure probability under fuzzy
state is transformed into that under binary state with the gen-

eralized clear failure domain x : g xð Þ−μF̃
−1 Φ xnþ1ð Þð Þ≤0

n o

by introducing a standard normal variable Xn + 1 independent
with X. Similarly, the reliability under fuzzy state can also be
converted by the following Eq. (11).

P̃ r ¼ ∫þ∞
−∞ Prob g xð Þ > μF̃

−1 Φ xnþ1ð Þð Þ
n o

dΦ xnþ1ð Þ

¼ ∫þ∞
−∞ Prob g xð Þ > μF̃

−1 Φ xnþ1ð Þð Þ
n o

ϕ xnþ1ð Þdxnþ1

¼ ∫g xð Þ>μ
F̃
−1 Φ xnþ1ð Þð Þ f X xð Þϕ xnþ1ð Þdxdxnþ1

ð11Þ

Equations (10) and (11) completely convert the time-

independent failure probability P̃ f and reliability P̃ r under fuzzy
state into those under binary state with the generalized clear

failure domain x : g xð Þ−μF̃
−1 Φ xnþ1ð Þð Þ≤0

n o
and the general-

ized clear safety domain x : g xð Þ−μF̃
−1 Φ xnþ1ð Þð Þ > 0

n o
, re-

spectively. Therefore, many existing reliability analysis methods
developed under binary state can be used to estimate the reliabil-
ity under fuzzy state.

2.2 TDRA model

This section constructs the TDRA model under fuzzy
state based on the concept of constructing the TIRA
model under fuzzy state in Sect. 2.1. For employing the
principle and the derivation of TIRA model under fuzzy
state to establish the TDRA model under fuzzy state, the
TDRA model under binary state is firstly transformed as
the expectation of the time-dependent failure domain in-
dicator. Then, the expression of the TDRA model under
binary state is consistent with that of the TIRA model
under binary state, on which the basic principle of the
TIRA model under fuzzy state can be conveniently used
to establish the TDRA model under fuzzy state. On the
other hand, the TDRA model expressed by the expecta-
tion of the time-dependent failure domain indicator can
also be validated by the equivalent TIRA model obtained
by the extreme value of the TDRA model. To simplify
the established TDRA model under fuzzy state, an aux-
iliary variable is introduced so that the existing solving
methods for the TDRA model under binary state can be
directly employed to solve the established TDRA model
under fuzzy state.

2.2.1 TDRA model under binary state

The time-dependent performance function y = g(x, t) changes
with time in the time interval t ∈ [t0, te] of interest generally.
When the TDRA model is established from the perspective of
the time-dependent failure domain and safety domain under
binary state, the time-dependent failure domain F(t0, te) and
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the time-dependent safety domain S(t0, te) can be expressed by
Eqs. (12) and (13), and Fig. 3 gives the relationship of the
time-dependent failure domain F(t0, te) in the time interval
[t0, te] with the failure domain F(t, t) = {x : g(x, t) ≤ 0} at in-
stant t (t ∈ [t0, te]) for a more intuitive understanding of the
time-dependent failure domain.

F t0; teð Þ ¼ x : g x; tð Þ≤0;∃t∈ t0; te½ �f g

¼ x : min
t∈ t0;te½ �

g x; tð Þ≤0
� �

¼ x : g x; t*
� �

≤0
� 	 ð12Þ

S t0; teð Þ ¼ x : g x; tð Þ > 0;∀t∈ t0; te½ �f g

¼ x : min
t∈ t0;te½ �

g x; tð Þ > 0

� �
¼ x : g x; t*

� �
> 0

� 	 ð13Þ

where t* ¼ arg min
t∈ t0;te½ �

g x; tð Þ.

Then, the corresponding TDFP Pf(t0, te) and time-
dependent reliability Pr(t0, te) can be obtained as follows:

P f t0; teð Þ ¼ Prob F t0; teð Þf g ¼ Prob x : min
t∈ t0;te½ �

g x; tð Þ≤0
� �

¼ ∫ min
t∈ t0;te½ �

g x; tð Þ≤0 f X xð Þdx

ð14Þ

Pr t0; teð Þ ¼ Prob S t0; teð Þf g ¼ Prob x : min
t∈ t0;te½ �

g x; tð Þ > 0

� �
¼ ∫ min

t∈ t0;te½ �
g x; tð Þ > 0 f X xð Þdx

ð15Þ

Obviously, we have Pf(t0, te) + Pr(t0, te) = 1, which satisfies
the property of self-duality. By virtue of the construction of the
TIRA model under fuzzy state, in order to use the TDRA

model under binary state to construct the TDRA model under
fuzzy state, the TDRA model under binary state should be
rewritten from the perspective of the failure domain indicator
function and the safety domain indicator function firstly.

The failure domain F(t, t) = {x : g(x, t) ≤ 0} indicator func-
tion IF(t, t)(g(x, t)) at instant t in the time-dependent problem
has the following relationship with the safety domain S(t,
t) = {x : g(x, t) > 0} indicator function IS(t, t)(g(x, t)) at instant t,

I F t;tð Þ g x; tð Þð Þ ¼ 1−IS t;tð Þ g x; tð Þð Þ ð16Þ

i n w h i c h I F t;tð Þ g x; tð Þð Þ ¼ 1 g x; tð Þ≤0
0 g x; tð Þ > 0

�
, IS t;tð Þ g x; tð Þð Þ ¼

1 g x; tð Þ > 0
0 g x; tð Þ≤0

�
. Generally, IF(t, t)(g) is a non-increasing function

of g, and IS(t, t)(g) is a non-decreasing function of g.
For time-dependent failure domain F(t0, te) = {x : g(x, t) ≤

0, ∃t ∈ [t0, te]} and time-dependent safety domain S(t0, te)-
= {x : g(x, t) > 0, ∀t ∈ [t

0
, te]}, their indicator functions I F t0;teð Þ

g x; tð Þð Þ and IS t0;teð Þ g x; tð Þð Þ are respectively shown as fol-

lows:

I F t0;teð Þ g x; tð Þð Þ ¼ max
t∈ t0;te½ �

I F t;tð Þ g x; tð Þð Þ ð17Þ

IS t0;teð Þ g x; tð Þð Þ ¼ min
t∈ t0;te½ �

IS t;tð Þ g x; tð Þð Þ ð18Þ

i n w h i c h I F t;tð Þ g x; tð Þð Þ ¼ 1 g x; tð Þ≤0
0 g x; tð Þ > 0

�
, IS t;tð Þ g x; tð Þð Þ

¼ 1 g x; tð Þ > 0
0 g x; tð Þ≤0

�
.

Since IF(t, t)(g(x, t)) is a non-increasing function of g(x, t)
and IS(t, t)(g(x, t)) is a non-decreasing function of g(x, t), Eqs.
(17) and (18) can be rewritten as

I F t0;teð Þ g x; tð Þð Þ ¼ I F t;tð Þ min
t∈ t0;te½ �

g x; tð Þ

 �

¼ I F t*;t*ð Þ g x; t*
� �� � ð19Þ

IS t0;teð Þ g x; tð Þð Þ ¼ IS t;tð Þ min
t∈ t0;te½ �

g x; tð Þ

 �

¼ IS t*;t*ð Þ g x; t*
� �� � ð20Þ

where t* ¼ arg min
t∈ t0;te½ �

g x; tð Þ.

According to the above formula and from the perspective
of the time-dependent failure domain indicator function
I F t0;teð Þ g x; tð Þð Þ, the TDFP under binary state can be

established as follows:

P f t0; teð Þ ¼ ∫þ∞
−∞ I F t0;teð Þ g x; tð Þð Þ f X xð Þdx

¼ ∫þ∞
−∞ max

t∈ t0;te½ �
I F t;tð Þ g x; tð Þð Þ f X xð Þdx

¼ ∫þ∞
−∞ I F t;tð Þ min

t∈ t0;te½ �
g x; tð Þ


 �
f X xð Þdx

¼ ∫ min
t∈ t0;te½ �

g x; tð Þ≤0 f X xð Þdx ð21Þ
Fig. 3 The relationship of F(t0, te) with F(t, t)
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Comparing Eqs. (14) and (21), it can be seen that the TDFP
under binary state established from the conversion of extreme
value (Eq. (14)) and that from the conversion of time-
dependent failure domain indicator function (Eq. (21)) have
the same form. Similarly, the time-dependent reliability model
shown as follows can be estimated from the perspective of the
time-dependent safety domain indicator function.

Pr t0; teð Þ ¼ ∫þ∞
−∞ IS t0;teð Þ g x; tð Þð Þ f X xð Þdx

¼ ∫þ∞
−∞ min

t∈ t0;te½ �
IS t;tð Þ g x; tð Þð Þ f X xð Þdx

¼ ∫þ∞
−∞ IS t;tð Þ min

t∈ t0;te½ �
g x; tð Þ


 �
f X xð Þdx

¼ ∫ min
t∈ t0;te½ �

g x; tð Þ > 0 f X xð Þdx ð22Þ

2.2.2 TDFP model under fuzzy state

Comparing the time-independent failure probability model
under binary state shown in Eq. (2) with that under fuzzy state
shown in Eq. (5), and combining with the TDFP model
established from the perspective of the time-dependent failure
domain indicator function I F t0;teð Þ ⋅ð Þ shown in Eq. (21), we

can establish the TDFP P̃ f t0; teð Þ model under fuzzy state in
the following Eq. (23):

P̃ f t0; teð Þ ¼ ∫þ∞
−∞ μ F̃ t;tð Þ min

t∈ t0;te½ �
g x; tð Þ


 �
f X xð Þdx ð23Þ

in which the fuzzy failure domain F̃ t; tð Þ membership func-
tion μ F̃ t;tð Þ ⋅ð Þ and the fuzzy safety domain S̃ t; tð Þmembership

function μ S̃ t;tð Þ ⋅ð Þ have the following relationship under the

instant t:

μ F̃ t;tð Þ g x; tð Þð Þ ¼ 1−μ S̃ t;tð Þ g x; tð Þð Þ ð24Þ

Note that μ F̃ t;tð Þ g x; tð Þð Þ is a non-increasing function of

g(x, t) and μ S̃ t;tð Þ g x; tð Þð Þ is a non-decreasing function of

g(x, t).
Let t* ¼ arg min

t∈ t0;te½ �
g x; tð Þ, then Eq. (23) can be rewritten as

the following form:

P̃ f t0; teð Þ ¼ ∫þ∞
−∞ μ F̃ t;tð Þ min

t∈ t0;te½ �
g x; tð Þ


 �
f X xð Þdx

¼ ∫þ∞
−∞ μ F̃ t*;t*ð Þ g x; t*

� �� �
f X xð Þdx

ð25Þ

Equation (25) completely transforms the TDFP under
fuzzy state into a time-independent failure probability un-
der fuzzy state with the performance function of

g x; t*ð Þ ¼ min
t∈ t0;te½ �

g x; tð Þ. Therefore, Eq. (25) can be trans-

formed into the following form with reference to Eq. (7).

P̃ f t0; teð Þ ¼ ∫þ∞
−∞ μ F̃ t*;t*ð Þ g x; t*

� �� �
f X xð Þdx

¼ ∫10Prob g x; t*
� �

≤μ−1
F̃ t*;t*ð Þ λð Þ

n o
dλ

ð26Þ

Similarly, introduce Xn + 1~N(0, 1) which is independent
with X, and let λ =Φ(xn + 1). Then, substitute λ =Φ(Xn + 1)
and dλ = ϕ(xn + 1)dxn + 1 into Eq. (26), we have Eq. (27) as
follows:

P̃ f t0; teð Þ ¼ ∫10Prob g x; t*
� �

≤μ−1
F̃ t*;t*ð Þ λð Þ

n o
dλ

¼ ∫þ∞
−∞ Prob g x; t*

� �
≤μ−1

F̃ t*;t*ð Þ Φ xnþ1ð Þð Þ
n o

ϕ xnþ1ð Þdxnþ1

¼ ∫g x;t*ð Þ≤μ−1
F̃ t* ;t*ð Þ Φ xnþ1ð Þð Þ f X xð Þϕ xnþ1ð Þdxdxnþ1

ð27Þ

The above formula transforms the TDFP under fuzzy state
into the failure probability with the time-independent clear

failure domain Fe ¼ x; xnþ1ð Þ : g x; t*ð Þ≤μ−1
F̃ t*;t*ð Þ Φ xnþ1ð Þð Þ

� �
. The

time-independent generalized performance function ge(x, xn-
+ 1) corresponding to Fe is defined as follows:

ge x; xnþ1ð Þ ¼ g x; t*
� �

−μ−1
F̃ t*;t*ð Þ Φ xnþ1ð Þð Þ ð28Þ

In general, μ F̃ t;tð Þ gð Þ does not change with time, and only

this case is considered in this paper. Then, the equivalent time-
independent generalized performance function shown in Eq.
(28) can be rewritten as

ge x; xnþ1ð Þ ¼ g x; t*
� �

−μ−1
F̃ t0;t0ð Þ Φ xnþ1ð Þð Þ ð29Þ

And, the equivalent time-independent clear failure domain
Fe can be rewritten as follows.

Fe ¼ x; xnþ1ð Þ : g x; t*
� �

−μ−1
F̃ t0;t0ð Þ Φ xnþ1ð Þð Þ≤0

n o
ð30Þ

Then, the TDFP P̃ f t0; teð Þ under fuzzy state can be trans-
formed as the time-independent failure probability with the time-
independent generalized performance function ge(x, xn+ 1).

P̃ f t0; teð Þ ¼ ∫Fe f X xð Þϕ xnþ1ð Þdxdxnþ1

¼ ∫ge x;xnþ1ð Þ≤0 f X xð Þϕ xnþ1ð Þdxdxnþ1

ð31Þ

Similarly, the time-dependent reliability model under fuzzy
state can be established in Sect. 2.2.3 as follows.

2.2.3 Time-dependent reliability model under fuzzy state

Comparing the time-independent reliability model under bi-
nary state shown in Eq. (3) with that under fuzzy state shown
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in Eq. (6), and combining with the time-dependent reliability
model established from the perspective of the time-dependent
safety domain indicator function IS t0;teð Þ ⋅ð Þ shown in Eq. (22),
we can establish the time-dependent reliability P̃ r t0; teð Þmod-
el under fuzzy state in the following Eq. (32):

P̃ r t0; teð Þ ¼ ∫þ∞
−∞ μ S̃ t;tð Þ min

t∈ t0;te½ �
g x; tð Þ


 �
f X xð Þdx ð32Þ

Similarly, let t* ¼ arg min
t∈ t0;te½ �

g x; tð Þ, Eq. (32) can be rewrit-
ten as follows:

P̃ r t0; teð Þ ¼ ∫þ∞
−∞ μ S̃ t;tð Þ min

t∈ t0;te½ �
g x; tð Þ


 �
f X xð Þdx

¼ ∫þ∞
−∞ μ S̃ t*;t*ð Þ g x; t*

� �� �
f X xð Þdx

ð33Þ

Obviously, the above formula completely transforms the
time-dependent reliability under fuzzy state into a time-
independent one with the performance function
g x; t*ð Þ ¼ min

t∈ t0;te½ �
g x; tð Þ. Refer to the transformation formula

of time-independent reliability under fuzzy state in Eq. (8),
and Eq. (33) can be written as follows:

P̃ r t0; teð Þ ¼ ∫þ∞
−∞ μ S̃ t*;t*ð Þ g x; t*

� �� �
f X xð Þdx

¼ ∫10Prob g x; t*
� �

> μ−1
F̃ t*;t*ð Þ λð Þ

n o
dλ

ð34Þ

Similarly, introduce Xn + 1~N(0, 1) independent with X, and
let λ =Φ(xn + 1). Then substitute λ =Φ(Xn + 1) and dλ = ϕ(xn +
1)dxn + 1 into Eq. (34), considering μ F̃ t;tð Þ gð Þ ¼ μ F̃ t0;t0ð Þ gð Þ;
meanwhile, Eq. (35) can be derived as follows:

P̃ r t0; teð Þ ¼ ∫10Prob g x; t*
� �

> μ−1
F̃ t0;t0ð Þ λð Þ

n o
dλ

¼ ∫þ∞
−∞ Prob g x; t*

� �
> μ−1

F̃ t0;t0ð Þ Φ xnþ1ð Þð Þ
n o

ϕ xnþ1ð Þdxnþ1

¼ ∫g x;t*ð Þ>μ−1
F̃ t0 ;t0ð Þ Φ xnþ1ð Þð Þ f X xð Þϕ xnþ1ð Þdxdxnþ1

ð35Þ

The above formula transforms the time-dependent reliabil-
ity under fuzzy state into a time-independent reliability with a

clear safety domain Se ¼ x; xnþ1ð Þ : g x; t*ð Þ > μ−1
F̃ t0;t0ð Þ Φ xnþ1ð Þð Þ

n o
.

Using the time-dependent generalized performance function

defined by Eq. (29), the time-dependent reliability P̃ r t0; teð Þ
under fuzzy state can be rewritten as the time-independent
reliability with the time-independent generalized performance
function ge(x, xn + 1) as follows:

P̃ r t0; teð Þ ¼ ∫Se f X xð Þϕ xnþ1ð Þdxdxnþ1

¼ ∫ge x;xnþ1ð Þ>0 f X xð Þϕ xnþ1ð Þdxdxnþ1

ð36Þ

Observing Eqs. (31) and (36), it is not difficult to find that
the time-dependent reliability under fuzzy state can be solved
by the traditional TIRAmethod under binary state. The TDFP

P̃ f t0; teð Þ under fuzzy state and the corresponding reliability

P̃ r t0; teð Þ s a t i s f y t h e s e l f - d u a l i t y e q u a t i o n

P̃ f t0; teð Þ þ P̃ r t0; teð Þ ¼ 1.

2.3 SLK surrogate model method for solving TDFP
under fuzzy state

The SLK surrogate model method performs well for solving
the TDFP under binary state. At this time, the SLK surrogate
model represents the relationship of the time-dependent per-
formance function with respect to the random input vector and

the time. In order to obtain the TDFP P̃ f t0; teð Þ under fuzzy
state by using the SLK surrogate model method under binary
state, it is necessary to construct the corresponding time-
dependent clear generalized failure domain Fe

t corresponding

to Fe ¼ x; xnþ1ð Þ : g x; t*ð Þ−μ−1
F̃ t0;t0ð Þ Φ xnþ1ð Þð Þ≤0

n o
and the

time-dependent generalized performance function get
x; xnþ1; tð Þ corresponding to ge(x, xn + 1).
Because the first term of ge x; xnþ1ð Þ ¼ g x; t*ð Þ−μ−1

F̃ t0;t0ð Þ
Φ xnþ1ð Þð Þ can be written as g x; t*ð Þ ¼ min

t∈ t0;te½ �
g x; tð Þ, the sec-

ond term μ−1
F̃ t0;t0ð Þ Φ xnþ1ð Þð Þ is independent of time. Therefore,

the time-dependent generalized performance function get
x; xnþ1; tð Þ corresponding to ge(x, xn + 1) and the time-
dependent failure domain Fe

t corresponding to Fe can be
expressed as follows:

get x; xnþ1; tð Þ ¼ g x; tð Þ−μ−1
F̃ t0;t0ð Þ Φ xnþ1ð Þð Þ ð37Þ

Fe
t ¼ x; xnþ1ð Þ : g x; tð Þ−μ−1

F̃ t0;t0ð Þ Φ xnþ1ð Þð Þ≤0;∃t∈ t0; te½ �
n o

ð38Þ

Equation (38) shows the equivalent time-dependent gener-
alized clear failure domain under fuzzy state. It is not difficult

to prove that the probability of Fe
t is the TDFP P̃ f t0; teð Þ

under fuzzy state shown in Eq. (31). The proof is provided
as follows:

Prob Fe
t

� 	 ¼ Prob g x; tð Þ−μ−1
F̃ t0;t0ð Þ Φ xnþ1ð Þð Þ≤0;∃t∈ t0; te½ �

n o
¼ Prob min

t∈ t0;te½ �
g x; tð Þ−μ−1

F̃ t0;t0ð Þ Φ xnþ1ð Þð Þ
h i

≤0
� �

¼ Prob min
t∈ t0;te½ �

g x; tð Þ−μ−1
F̃ t0;t0ð Þ Φ xnþ1ð Þð Þ≤0

� �
¼ Prob g x; t*

� �
−μ−1

F̃ t0;t0ð Þ Φ xnþ1ð Þð Þ≤0
n o

¼ Prob ge x; xnþ1ð Þ≤0f g
¼ P̃ f t0; teð Þ

ð39Þ

Thus, it can be seen that get x; xnþ1; tð Þ ¼ g x; tð Þ−μ−1
F̃ t0;t0ð Þ

Φ xnþ1ð Þð Þ is the time-dependent generalized performance
function considering the fuzzy failure state. The SLK surro-
gate model method under binary state therefore can be directly
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used to obtain the TDFP under fuzzy state when regarding get
x; xnþ1; tð Þ as the time-dependent performance function. The
SLK (Yun et al. 2016) is based on the cumulative confidence
level, and it is demonstrated in Appendix A for the sake of
conveniently reading.

3 Safety lifetime model and its solution
under fuzzy state

3.1 Safety lifetime model under fuzzy state

Similar to the condition of binary state, the engineering often
concerns the structural safety lifetime under the constraint of
target TDFP by taking the fuzzy state into account. Taking the
starting instant of service t0 = 0 as an example, the safety life-
time under the constraint of target TDFP P*

f can be obtained

by the following optimization model:

Max te
s:t: P̃ f 0; teð Þ≤P*

f
ð40Þ

where P̃ f 0; teð Þ is the TDFP in the working time interval [0,
te] by considering the fuzzy state.

For t 1ð Þ
e < t 2ð Þ

e , the equivalent time-dependent failure do-

main Fe
t 0; t 1ð Þ

e

� �
and Fe

t 0; t 2ð Þ
e

� �
corresponding to t∈ 0; t 1ð Þ

e

� 

and t∈ 0; t 2ð Þ

e

� 

are shown as follows:

Fe
t 0; t 1ð Þ

e

� �
¼ x; xnþ1ð Þ : get x; xnþ1; tð Þ≤0;∃t∈ 0; t 1ð Þ

e

h in o
ð41Þ

Fe
t 0; t 2ð Þ

e

� �
¼ x; xnþ1ð Þ : get x; xnþ1; tð Þ≤0;∃t∈ 0; t 2ð Þ

e

h in o
ð42Þ

Based on the relationship of Fe
t 0; t 1ð Þ

e

� �
and Fe

t 0; t 2ð Þ
e

� �
shown in Eq. (43), Eq. (44) holds.

Fe
t 0; t 1ð Þ

e

� �
⊆Fe

t 0; t 2ð Þ
e

� �
ð43Þ

P̃ f 0; t 1ð Þ
e

� �
¼ Prob Fe

t 0; t 1ð Þ
e

� �n o
≤Prob Fe

t 0; t 2ð Þ
e

� �n o
¼ P̃ f 0; t 2ð Þ

e

� �
ð44Þ

Equation (44) indicates that P̃ f 0; teð Þ is a non-decreasing
function of te, so the solution of the optimization model shown
in Eq. (40) is the solution of the following Eq. (45):

P̃ f 0; teð Þ ¼ P*
f ð45Þ

3.2 Solving method of safety lifetime under fuzzy
state

Since the TDFP under fuzzy state P̃ f 0; teð Þ is a non-
decreasing function of te, the root of Eq. (45) can be searched

efficiently by using the dichotomy. Before starting the dichot-
omy search, it is necessary to adaptively determine the upper
bound tu of the working time for dichotomy search, tu should
satisfy the following inequality:

P̃ f 0; tuð Þ > P*
f ð46Þ

In order to determine the appropriate tu, we can give an
initial value for tu firstly, then the SLK surrogate model

method is employed to estimate P̃ f 0; tuð Þ. If

P̃ f 0; tuð Þ > P*
f is satisfied, the Kriging surrogate model

getK x; xnþ1; tð Þ established for the time-dependent general-

ized performance function get x; xnþ1; tð Þ ¼ g x; tð Þ−μ−1
F̃ t0;t0ð Þ

Φ xnþ1ð Þð Þ in the time interval [0, tu] is used to start the
dichotomy search for the safety lifetime. If tu does not

satisfy P̃ f 0; tuð Þ > P*
f , give tu an increment Δtu, and let

tu = tu + Δtu to adaptively search the feasible tu continuous-

ly until P̃ f 0; tuð Þ > P*
f , then the dichotomy search is used

to find the safety lifetime. The steps for adaptively
searching tu and solving the safety lifetime te are shown
as follows, and the corresponding flow chart is shown in
Fig. 4.

Step 1 Adaptively search the feasible tu.
Step 1.1 Set an initial value tu as the upper bound of the

search interval.

Step 1.2 Generate a Nx̃ -size sample pool
Sx̃ ¼ x̃1; x̃2;…; x̃Nx̃ g

�
a c c o r d i n g t o t h e j o i n t

P D F f X̃ðx̃Þ ¼ f X ;X nþ1ð Þ x; xnþ1ð Þ ¼ f X xð Þ f X nþ1
xnþ1ð Þ o f

x̃ ¼ x; xnþ1ð Þ.
Step 1.3 Generate a Nt-size time sample pool St ¼

t1; t2; :::; tNtf g based on the time intervalt ∈ [0, tu]. Then, com-
bine Sx̃ and St to obtain a comprehensive sample pool S as
follows:

S ¼ x̃1; t1Þ; :::; x̃1; tNt Þ; x̃2; t1Þ; :::; x̃2; tNt Þ; :::; x̃Nxe; t1Þ; :::; x̃Nxe; tN t Þ� 	�����n ð47Þ

Step 1.4 Select the initial training set in from S and use the
Kriging toolbox to establish the initial Kriging model getK
x; xnþ1; tð Þ for get x; xnþ1; tð Þ. Then, according to the learning
function (Eq. (A4)) given in Appendix A, the training set and
getK x; xnþ1; tð Þ are adaptively updated until getK x; xnþ1; tð Þ is

converged, on which P̃ f 0; tuð Þ is obtained accordingly.

Step 1.5 If P̃ f 0; tuð Þ > P*
f , turn to Step 2, otherwise exe-

cute Step 1.6.
Step 1.6 Let tu = tu + Δtu, generate aNΔt-size additional time

sample pool SΔt ¼ tΔ1 ; t
Δ
2 ; :::; t

Δ
NΔt

n o
based on t ∈ [tu − Δtu, tu],

and a new updated sample pool S is constructed as follows.
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S ¼ S∪ x̃1; tΔ1 Þ; :::; x̃1; tΔNΔtÞ; x̃2; tΔ2 Þ; :::; x̃2; tΔNΔt Þ; :::; x̃Nxe; tΔ1 Þ; :::; x̃Nxe; tΔNΔt Þ
� 	������ ð48Þ

According to the learning function in Appendix A (Eq.
(A4)), the training sample point is selected from S, and getK
x; xnþ1; tð Þ is adaptively updated until the convergent condi-

tion is satisfied, then the P̃ f 0; tuð Þ can be obtained according-
ly. Execute Step 1.6 until P̃ f 0; tuð Þ > P*

f .

Step 2 Search the safety lifetime te in the interval [0, tu] by
dichotomy strategy.

Step 2.1 Set the initial value for the safety lifetime search
interval [a, b], let the lower bound a = 0, and the upper bound
b = tu.

Step 2.2 Set c = (a + b)/2.
Step 2.3 Use the getK x; xnþ1; tð Þ constructed by Step 1 to

estimate P̃ f 0; cð Þ, P̃ f 0; bð Þ, and the corresponding indicators
as follows:

ξ cð Þ ¼ P̃ f 0; cð Þ−P*
f ð49Þ

ξ bð Þ ¼ P̃ f 0; bð Þ−P*
f ð50Þ

Step 2.4 Update the upper and lower bounds of the safety
lifetime search interval. If ξ(b) ⋅ ξ(c) > 0, then let b = c, other-
wise a = c.

Step 2.5 Determine the convergence of the dichotomy
search. If ∣a − b ∣ < ε (ε is the predefined precision require-
ment), output the safety lifetime te = c; otherwise, return to
Step 2.2 and continue to search for the safety lifetime.

It can be seen from the above process that the proposed
method updates the Kriging surrogate model getK x; xnþ1; tð Þ of
the time-dependent generalized performance function get
x; xnþ1; tð Þ adaptively in Step 1 for determining the feasible
upper bound tu to search the safety lifetime. Moreover, when
the dichotomy search is used to search the safety lifetime after
the feasible tu is obtained, since all the time points searched in
the whole dichotomy are smaller than tu, the convergence getK
x; xnþ1; tð Þ obtained from Step 1 can be used to estimate the
indicator in the whole dichotomy search process, which great-
ly improves the efficiency for searching the safety lifetime.

4 Examples

In this section, a numerical example is employed to verify the
rationality of the TDRA model under fuzzy state established
in Sect. 2, and the dichotomy searching method for safety
lifetime model is used in a corrosion-forced bar model under
fuzzy state constrained by a target TDFP. The results obtained
by the proposed method will be compared to those of the

Fig. 4 Flow chart of searching
safety lifetime under fuzzy state

Fig. 5 Schematic diagram of μ F̃ 1
gð Þ, μ F̃ 2

gð Þ and μ F̃ 3
gð Þ
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direct Monte Carlo Simulation (D-MCS) method to verify the
efficiency of the proposed method.

4.1 Verification of TDRA model under fuzzy state

Consider a numerical example with the time-dependent per-
formance function listed as follows:

g x; tð Þ ¼ x1t2−8x2t þ 50 x1x2−0:2ð Þ ð51Þ

in which the input variables X1 and X2 are independent normal
distribution variables, and the means are μX 1

¼ μX 2
¼ 1, the

standard deviations are σX 1 ¼ σX 2 ¼ 0:3.
In order to verify the rationality of the TDRA model

under fuzzy state established in Sect. 2, we use Eqs. (23)
and (31) and Eqs. (32) and (36) to respectively estimate
the TDFP and time-dependent reliability under the fol-
lowing three different fuzzy failure domain membership
functions.

μ F̃ 1
gð Þ ¼

1 g < 0
1−g 0≤g≤1
0 g > 1

μ F̃ 2
gð Þ ¼

1 g < 0

1−
g
2

0≤g≤2
0 g > 2

μ F̃ 3
gð Þ ¼

1 g < 1
1−g 1≤g≤2
0 g > 2

8<:
8><>:

8><>: ð52Þ

Figure 5 shows the schematic diagrams of the three fuzzy
failure domain membership functions. In the three specific
time intervals of interest t ∈ [0, 1], t ∈ [0, 3], and t ∈ [0, 5], we
estimate the corresponding TDFP by Eqs. (23) and (31) with
105-size D-MCS, and the results are listed in Table 1. Table 2
provides the time-dependent reliability results estimated by
Eqs. (32) and (36), respectively.

To illustrate the proposed method, the process of calculat-
ing the TDFP by Eq. (31) is given as follows. The first step to
perform the proposed method is to introduce an auxiliary var-
iable X3 ∼N(0, 1) (X3 is a standard normal variable and X3is
independent with X1 and X2) and establish the time-dependent
generalized performance function get x; x3; tð Þ by Eq. (37). For
the example of μ F̃ 1

gð Þ, the get x; x3; tð Þ is given by

get x; x3; tð Þ ¼ x1t2−8x2t þ 50 x1x2−0:2ð Þ− 1−Φ x3ð Þ½ � ð53Þ

Because X1, X2, and X3 are independent variables, the joint
probability density function f X 1;X 2;X 3ð Þ x1; x2; x3ð Þ of X1, X2,

and X3 is given by

f X 1;X 2;X 3ð Þ x1; x2; x3ð Þ ¼ f X 1
x1ð Þ⋅ f X 2

x2ð Þ⋅ f X 3
x3ð Þ ð54Þ

Then, the D-MCS method can be used to calculate the
TDFP of Eq. (53) with f X 1;X 2;X 3ð Þ x1; x2; x3ð Þ given by Eq. (54).

From Tables 1 and 2, it can be found that (1) the
TDFP and the time-dependent reliability always satisfy

P̃ f 0; teð Þ þ P̃ r 0; teð Þ ¼ 1, that is, P̃ f 0; teð Þ and P̃ r 0; teð Þ
satisfy the self-duality property. (2) In the case of the
same working time interval, the TDFPs corresponding

to the fuzzy failure domains F̃ 1, F̃ 2, and F̃ 3 increase.
It can be seen from Fig. 5 that three fuzzy failure do-

mains satisfy F̃ 1 ⊂ F̃ 2 ⊂ F̃ 3; thus the TDFP P̃ f 1, P̃ f 2 ,

Table 1 TDFP under different fuzzy failure domains and time intervals

t ∈ [0, 1] t ∈ [0, 3] t ∈ [0, 5]

Eq. (23) Eq. (31) Eq. (23) Eq. (31) Eq. (23) Eq. (31)

μ F̃ 1
gð Þ 0.02916 0.02934 0.09267 0.09268 0.14429 0.14423

μ F̃ 2
gð Þ 0.03201 0.03202 0.09824 0.09798 0.15033 0.15016

μ F̃ 3
gð Þ 0.03487 0.03490 0.10380 0.10381 0.15638 0.15637

Table 2 Time-dependent reliability under different fuzzy failure domains and time intervals

t ∈ [0, 1] t ∈ [0, 3] t ∈ [0, 5]

Eq. (32) Eq. (36) Eq. (32) Eq. (36) Eq. (32) Eq. (36)

μ F̃ 1
gð Þ 0.97084 0.97066 0.90733 0.90732 0.85571 0.85577

μ F̃ 2
gð Þ 0.96799 0.96798 0.90176 0.90202 0.84967 0.84984

μ F̃ 3
gð Þ 0.96513 0.96510 0.89620 0.89619 0.84362 0.84363
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and P̃ f 3 respectively corresponding to F̃ 1, F̃ 2, and F̃ 3

should satisfy the inequality P̃ f 1 ≤ P̃ f 2 ≤ P̃ f 3, which is in
agreement with the quantitative results shown in Table 1.
(3) Under the same fuzzy failure domain membership

function, the TDFP P̃ f 0; teð Þ increases with te, which
coincides with the fact that TDFP is a non-decreasing
function of the service time.

In order to further explain that the TDFP under fuzzy state
obtained by Eq. (32) is a non-decreasing function with time,
Fig. 6 shows the relationship curve of TDFP vs time under
μ F̃ 1

gð Þ. It can be seen from Fig. 6 that the TDFP under fuzzy
state is a non-decreasing function of the upper bound te of the
service time interval. Combining the above three points, it is
verified that the TDRAmodel under fuzzy state established by
Eqs. (23) and (32) is reasonable.

Continue to observe Table 1, it can be seen that in the
case where the fuzzy failure domain membership func-
tion and the time observation interval are the same, the
result obtained by Eq. (23) is consistent with that obtain-
ed by Eq. (31), which is also confirmed by Fig. 6. It can
also be seen in Table 2 that the time-dependent reliability
results under fuzzy state estimated by Eqs. (32) and (36)
are also consistent, which fully demonstrates the rational-
ity and correctness of the generalized performance func-
tion under binary state ge(x, xn + 1) obtained by introduc-
ing an auxiliary variable based on Eq. (23). To further
illustrate that Eqs. (23) and (31) are still consistent under
different forms of fuzzy failure domain membership
function, Table 3 shows the TDFP results under the
Gaussian fuzzy failure domain membership function
μ F̃ 4

gð Þ, μ F̃ 5
gð Þ, and μ F̃ 6

gð Þ in the time observation in-

terval t ∈ [0, 5]. The formulas of μ F̃ 4
gð Þ, μ F̃ 5

gð Þ, and μ F̃ 6

gð Þ are shown as follows. Figure 7 shows the schematic
diagram of these three kinds of fuzzy failure domain
membership functions.

μ
F̃ 4ð Þ

gð Þ ¼
1 g < 0

exp −
g2

100


 �
g≥0 μ

F̃ 5ð Þ
gð Þ ¼ 1 g < 0

exp −g2
� �

g≥0 μ
F̃ 6ð Þ

gð Þ ¼ 1 g < 0
exp −100g2
� �

g≥0

�(8<: ð55Þ

It can be seen from Table 3 that the results obtained by Eqs.
(23) and (31) are still consistent under Gaussian fuzzy failure
domain membership function. At the same time, it can be seen

from Fig. 7 that F̃ 4 ⊃ F̃ 5 ⊃ F̃ 6. Therefore, the TDFP P̃ f 4, P̃ f 5 ,

and P̃ f 6 respectively corresponding to F̃ 4, F̃ 5, and F̃ 6 should

satisfy P̃ f 4 ≥ P̃ f 5 ≥ P̃ f 6, which is consistent with the quantitative
results shown in Table 3.

In order to validate that the proposed method is applicable to
the non-normal inputs, Table 5 gives the TDFP obtained by Eqs.
(23) and (31) in the case of μ F̃ 1

gð Þ and t ∈ [0, 5] where the input
variables obey different non-normal distributions shown in
Table 4.

FromTable 5, we can see that the TDFP obtained by Eqs. (23)
and (31) are still applicable to the different non-normal distribu-
tions of the input variables, whichmeans that the proposedmeth-
od has no limit for the distribution type of the inputs.

Fig. 6 Relationship curve of TDFP Pf(0, te) vs time te under μ F̃ 1
gð Þ

Table 3 TDFP under different fuzzy failure domains

μ F̃ 4
gð Þ μ F̃ 5

gð Þ μ F̃ 6
gð Þ

Eq. (23) 0.27207 0.14892 0.13982

Eq. (31) 0.27233 0.14898 0.13983

Fig. 7 Schematic diagram of μ F̃ 4
gð Þ, μ F̃ 5

gð Þ, and μ F̃ 6
gð Þ
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Through the above analysis, the rationality of the TDRA
model under fuzzy state established in Sect. 2 is fully verified,
and it is completely reasonable and feasible to convert the
TDRA model under fuzzy state into that with binary state by
adding an auxiliary variable.

4.2 Corrosion-forced bar model

Figure 8 is a schematic diagram of a corrosion-forced bar
(Sudret 2008) whose random input vector in the time-
dependent performance function is X = {a0, b0, σu, F}, where
a0 is the initial length of vertical section of the bar, and b0 is
the initial height; σu is the ultimate stress of the material, and F
is the force applied to the midpoint of the bar. All input

variables obey the normal distribution, and their parameters
are shown in Table 6.

Now consider the influence of corrosion on the structure,
and assume that the width a and height b of the bar section
have the following relationship with the corrosion time t:

a tð Þ ¼ a0−2κt; b tð Þ ¼ b0−2κt ð56Þ
in which the corrosion coefficient κ = 0.25mm/year.

The law of the external load subjected to the midpoint of
the bar is sin(t/4)F, which changes with time. According to
these conditions, the time-dependent performance function of
the corrosion-forced bar can be established as follows:

G X ; tð Þ ¼ Mu tð Þ �M tð Þ
1000

¼ a tð Þb2 tð Þσu

4
� sin t=4ð ÞFL

4
þ ρsta0b0L

2

8


 �� �
� 1

1000
ð57Þ

in whichMu tð Þ ¼ a tð Þb2 tð Þσu
4 is the ultimate bending moment of

the bar, M tð Þ ¼ FL
4 þ ρsta0b0L

2

8 is the bending moment at the
midpoint of the bar, and it is the largest bending moment. ρst
indicates the density of the bar, and ρst = 78.5kN/m3. L is the
length of the bar, and L = 9m.

For this example, the safety lifetime is obtained by the
method shown in Sect. 3 under the fuzzy states with member-
ship functions μ F̃ 1

gð Þ, μ F̃ 2
gð Þ, and μ F̃ 3

gð Þ in Eq. (52), and

the corresponding target TDFP P*
f ¼ 0:01, the accuracy re-

quirement is set as ε = 0.001. Table 7 gives comparison of the
safety lifetime results under different fuzzy failure domains.

In Table 7, te is the estimated safety lifetime, and Ncall

indicates the number of calling the time-dependent perfor-

mance function. Because F̃ 1 ⊂ F̃ 2 ⊂ F̃ 3, the safety lifetimes

te1 , te2 , and te3 corresponding to F̃ 1, F̃ 2, and F̃ 3 respectively

should qualitatively satisfy te1 ≥ te2 ≥ te3, which is consistent
with the quantitative results shown in Table 7. Since the di-
chotomy search only requires to call the established Kriging
model constructed in the first step for searching the feasible tu,
the safety lifetime can be efficiently estimated by the SLK
surrogate model. In the other hand, the D-MCS method needs
to call the actual time-dependent performance function in each
step of dichotomy search; thus, the computational burden of
the D-MCS is very heavy. It can be seen from Table 7 that the
results obtained by the SLK surrogate model method are con-
sistent with those by the D-MCS method, which verifies the
correctness of the SLK surrogate model method. To further
illustrate the correctness of the SLK method, Fig. 9 shows the
relationship curves of Pf(0, te) vs te (the upper bound of the
working time interval [0, te]) under the fuzzy failure domain

Table 4 Distributions and
corresponding parameters of X1

and X2

X1 X2

Parameter 1 Parameter 2 Distribution type Parameter 1 Parameter 2 Distribution type

Case 1 μ = 0.6 σ = 0.3 Lognormal μ = 1 σ = 0.3 Lognormal

Case 2 Low = 0.5 Up = 1.5 Uniform Low = 0.5 Up = 1.5 Uniform

Case 3 μ = 1 σ = 0.3 Extreme I μ = 1 σ = 0.3 Extreme I

μ mean, σ standard deviation, Low lower boundary, Up upper boundary

Table 5 TDFP under different cases

Case 1 Case 2 Case 3

Eq. (23) 0.00125 0.17220 0.33924

Eq. (31) 0.00126 0.17220 0.33931
Fig. 8 Corrosion-forced bar model (Sudret 2008)
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F̃ 1 estimated respectively by the SLK method and the D-
MCS method, while Fig. 10 shows the curve of the safety
lifetime te vs target TDFP P*

f .

It can be seen from Fig. 9 that the TDFP Pf(0, te) obtained
by the SLK method is almost identical to that by the D-MCS
method, and the TDFP under fuzzy state increases with te.
From Fig. 10, we can see that the safety lifetime obtained by
the SLKmethod is also completely consistent with that by the
D-MCS method, and the safety lifetime is increased with P*

f

increasing. These results fully illustrate that the SLK surrogate
model method is efficient and accurate in analyzing the safety
lifetime under fuzzy state.

5 Conclusion

The main contribution of this paper is to establish a TDRA
model under fuzzy state and construct a safety lifetime model
based on the target TDFP constraint. In the process of estab-
lishing the TDRA model under fuzzy state, the TDRA model
under binary state is firstly transformed. The TDFP under
binary state is expressed in the form of time-dependent failure
domain indicator function; then based on the basic principle of
establishing the TIRA model under fuzzy state, the TDRA
model under fuzzy state is reasonably derived. After that, the
auxiliary variable and time-dependent generalized perfor-
mance function are introduced to simplify the established
TDRA model under fuzzy state. Based on the obtained
TDRA model, the safety lifetime model under fuzzy state is
established, and the SLK surrogate model method is
employed to estimate the TDFP and solve the safety lifetime
under fuzzy state. Through the qualitative and quantitative
comparison analysis of the examples, the correctness and ra-
tionality of the TDRA model under fuzzy state established in
this paper are fully verified. The correctness and efficiency of
using the SLK surrogate model method to estimate the TDFP
and the safety lifetime under fuzzy state are also verified.

At the same time, it should be noted that the TDRA model
under fuzzy state established in this paper is based on the
assumption that the membership function of fuzzy failure do-
main does not change with time. How to establish the TDRA
model under fuzzy state in which the membership function of
fuzzy failure domain changes with time will be carried out in
the subsequent work.

6 Replication of results

TheMATLAB code of searching the safety lifetime for example
4.2 is presented as follows, where the “dace” toolbox is utilized
for constructing the SLKmodel.When the performance function
“G” needs to be estimated, the function “G1” is called.

Table 6 Distribution types and parameters of input variables of
corrosion-forced bar

Variables Distribution type Mean Standard deviation

a0(m) Normal 0.2 0.01

b0(m) Normal 0.04 0.001

σu(Pa) Normal 2.4 × 108 1 × 107

F(N) Normal 3500 100

Table 7 Safety lifetime under different fuzzy failure domains

Single-loop Kriging Direct MCS

te Ncall te Ncall

μ F̃ 1
gð Þ 4.761 106 4.760 4 × 108

μ F̃ 2
gð Þ 4.190 112 4.190 4 × 108

μ F̃ 3
gð Þ 4.011 127 4.011 4 × 108

Fig. 9 Pf(0, te) vs te under F̃ 1

Fig. 10 Safety lifetime te vs P*
f
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Appendix A. SLK surrogate model method

The SLK surrogate model method used in this paper adopts
the idea of single-loop adaptive sampling meta-model method
in ref. Yun et al. (2016). The main feature of this method is the
introduction of new convergence criteria and update point
selection criteria. The convergence criteria is that the cumula-
tive confidence levelC is greater than a predefined confidence
target C∗ (0.9999 is used in this paper, and the larger C∗

corresponds the more accurate results). C is determined by
the following formula:

C ¼ E Prcð Þ ¼ 1

N
∑
N

i¼1

1

Nt
∑
j¼1

Nt

Prc xi; t j
� � !

ðA1Þ

in which E(⋅) is expectation operator, N is the number of sam-
ples extracted by the PDF of x, Nt is the number of time-
discrete points uniformly extracted in the time interval, and
Prc(xi, tj) indicates the probability of correctly identifying the
sign of the response at the sample point xi and time instant tj
by the built Kriging model, which is determined by the fol-
lowing formula (Echard et al. 2011):

Prc xi; t j
� � ¼ Φ

jgK xi; t j
� �j

σgK xi; t j
� � !

ðA2Þ

in which Φ(⋅) is the cumulative distribution function of the
standard normal distribution, gK(⋅) represents the predicted
value of the Kriging model, and σgK ⋅ð Þ represents the standard
deviation of the predicted value.

In order to maximize the cumulative confidence level, the
following criteria is used (Wang and Wang 2013):

ψ xi; t j
� � ¼ 1−Prc xi; t j

� �� �� f X ;tð Þ xi; t j
� �� σgK xi; t j

� � ðA3Þ

where f(X, t)(xi, tj) is the PDF of the point (xi, tj).
In order to maximize the confidence level of the Kriging

model, the point that maximizes the contribution to the cumu-
lative confidence level should be added to update the Kriging
model, i.e., update point is selected by the following Eq. (A4).

xi; t j
� � ¼ argmax

i; j
ψ xi; t j
� �

i ¼ 1; 2;…;N j ¼ 1; 2;…;Nt ðA4Þ

By using the convergence criteria C >C∗ and update point
selection criteria shown in Eq. (A4), the established Kriging
model can have a higher cumulative confidence level in the
global scope, on which the reliability analysis result can be
more accurate. For the time-dependent generalized perfor-
mance function considering fuzzy state shown in Eq. (37),
the steps for solving the TDFP are listed as follows:

S t e p 1 G e n e r a t e a N x̃ - s i z e s am p l e p o o l
Sx̃ ¼ x̃1; x̃2;…; x̃N x̃ g

�
by f X̃ x̃Þð .

Step 2 Generate an Nt-size time sample pool St ¼
t1; t2; :::; tNtf g based on t ∈ [t0, te], then combine Sx̃ and St

to obtain the comprehensive sample pool shown as follows:

S ¼ x̃1; t1Þ; :::; x̃1; tNtÞ; x̃2; t1Þ; :::; x̃2; tNtÞ; :::; x̃Nxe; t1Þ; :::; x̃Nxe; tNtÞ
� o�����n

ðA5Þ

Step 3 Select the initial training set from S, and use the
Kriging toolbox to establish the initial surrogate model getK
x; xnþ1; tð Þ of the get x; xnþ1; tð Þ in S.
Step 4 Calculate the cumulative confidence level C accord-

ing to Eq. (A1) to determine whether C >C∗ is satisfied, if
C >C∗, execute to Step 5. Otherwise, select the update point
by Eq. (A4) and add it in the training set to update getK
x; xnþ1; tð Þ until C >C∗.

Step 5 Estimate P̃ f t0; teð Þ by

P̃ f t0; teð Þ ¼ N f

N x̃

ðA6Þ

where Nf is the number of failure sample points screened by
getK x; xnþ1; tð Þ in S.
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