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Abstract

Kriging, one of the most popular surrogate models, is widely used in computationally expensive optimization problems to
improve the design efficiency. However, due to the “curse-of-dimensionality,” the time for generating the kriging model increases
exponentially as the dimension of the problem grows. When it comes to the cases that the kriging model needs to be frequently
constructed, such as sequential sampling for kriging modeling or global optimization based on kriging model, the increased
modeling time should be taken into consideration. To overcome this challenge, we propose a novel kriging modeling method
which combines kriging with maximal information coefficient (MIC). Taking the features of the optimized hyper-parameters into
consideration, MIC is utilized for estimating the relative magnitude of hyper-parameters. Then this knowledge of hyper-
parameters is incorporated into the maximum likelihood estimation problem to reduce the dimensionality. In this way, the high
dimensional optimization can be transformed into a one-dimensional optimization, which can significantly improve the modeling
efficiency. Five representative numerical examples from 20-D to 80-D and an industrial example with 35 variables are used to
show the effectiveness of the proposed method. Results show that compared with the conventional kriging, the modeling time of
the proposed method can be ignored, while the loss of accuracy is acceptable. For the problems with more than 40 variables, the
proposed method can even obtain a more accurate kriging model with given computational resources. Besides, the proposed
method is also compared with KPLS (kriging combined with the partial least squares method), another state-of-the-art kriging
modeling method for high-dimensional problems. Results show that the proposed method is more competitive than KPLS, which
means the proposed method is an efficient kriging modeling method for high-dimensional problems.
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1 Introduction

Over the past two decades, surrogate-based global optimi-
zation has played an increasingly important role in many
areas of engineering and science (Dong et al. 2019). By
constructing surrogate models to approximate or take place
of the time-consuming computer simulations, the design
efficiency can be impressively improved. Surrogate
models are also known as metamodels or response sur-
faces. There are a number of surrogate models available
in the literatures. The representative surrogate models in-
clude polynomial response surface model (Schmit and
Farshi 1974; Box and Draper 1987), kriging (Krige 1951;
Sacks et al. 1989), radial basis function model (Buhmann
2003; Mullur and Messac 2005), and support vector re-
gression (Smola and Scholkopf 2004). Among them,
kriging is one of the most popular methods, because it
can represent nonlinear and multidimensional functions
and has a unique feature of offering a mean-squared-error
estimation. Kriging, also known as Gaussian process
(Rasmussen and Williams 2005), is a statistical interpola-
tion method suggested by Krige (1951) and mathematical-
ly formulated by Matheron (1963). Owing to the research
work of Sacks et al. (1989), kriging becomes more and
more popular (Dong et al. 2018).

Although the basic theory of kriging has almost been
developed for seven decades, it still suffers from some
drawbacks for high-dimensional problems. As shown in
Liu et al. (2014), constructing a kriging model using 150
points for a 50-D problem with MATLAB optimization
toolbox takes from 240 to 400 s. For high-dimensional
problems, it seems that building a kriging model itself is
a computationally expensive task and even spends more
time than running a computer simulation. This drawback
limits the application of kriging for high-dimensional op-
timization problems where the kriging model needs to be
frequently constructed. Why is it so time-consuming to
build a kriging model for high-dimensional problems?
On the one hand, when constructing the kriging model,
a key process is estimating the values of the hyper-pa-
rameters. This process requires inverting the covariance
matrix for several times. The size of covariance matrix is
m *x m, where m is the number of training points.
Loeppky et al. (2009) showed that the appropriate initial
sample size for training a kriging model should be ten
times the dimensionality. As the dimensionality in-
creases, a larger m is required if we want to obtain a
kriging model with great accuracy. As a result, inverting
the covariance matrix is computationally expensive. On
the other hand, the hyper-parameters are often obtained
by maximizing the likelihood function. This is an opti-
mization sub-problem. If the number of design variables
is large, the design space of this optimization sub-
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problem will be a vast space. To find the global opti-
mum, a large amount of computational demand is need-
ed. This kind of difficulty by the dimensionality is
known as the “curse-of-dimensionality” (Shan and
Wang 2010). Emmerich et al. (2006) pointed out that
the time complexity of building a kriging model is
O(N;m>d), where N;, is the number of iterations, d is
the number of variables. For a high-dimensional prob-
lem, a large N, is required due to the vast search space.
Therefore, for a high-dimensional problem, it is very
difficult to build a high-quality kriging model with given
computational effort using traditional modeling methods.
Many recent works have addressed this challenge of
high-dimensional kriging model (Bouhlel et al. 2016;
Hartwig and Bestle 2017; Wang et al. 2017; Lee et al.
2019).

To overcome this challenge, three feasible strategies
can be considered: (1) integrate kriging model with
high-dimensional model representation (HDMR), (2) re-
duce the number of training points while maintaining
model accuracy by incorporating auxiliary information,
and (3) reduce the number of parameters we need to op-
timize when estimating hyper-parameters. The first two
strategies are investigated by many researchers in recent
years, such as gradient-enhanced kriging based on HDMR
(Ulaganathan et al. 2016a), HDMR using multi-fidelity
samples (Cai et al. 2017), weighted gradient-enhanced
kriging (Han et al. 2017), and screening-based gradient-
enhanced kriging (Chen et al. 2019). The third strategy
focuses on reducing the dimensionality of the optimiza-
tion sub-problem to improve the efficiency for estimating
hyper-parameters. A common way is to transform a set of
original variables into a smaller set of new variables that
retain most of the original information. For example, Liu
et al. (2014) applied Sammon mapping technique to trans-
form the design variables to a lower dimensional space. In
their work, only four hyper-parameters were optimized
when constructing the kriging model for medium-scale
problems (20-50 decision variables). Using the partial
least squares (PLS) technique, Bouhlel et al. (2016) pro-
posed an effective kriging modeling method named KPLS
for high-dimensional problems. KPLS can reduce the
number of hyper-parameters to a maximum of 4 parame-
ters and the modeling time can be significantly reduced.
To reduce the number of hyper-parameters when building
gradient-enhanced kriging, Bouhlel and Martins (2019)
proposed a new gradient-enhanced kriging by PLS. In this
article, we follow the third strategy and a novel dimension
reduction method is proposed to improve the modeling
efficiency.

This paper is motivated by the aspiration of developing a
novel kriging modeling method which could build a kriging
model with a little amount of computational effort for high-
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dimensional problems. The proposed method combines kriging
with maximal information coefficient (MIC) and is termed as
KMIC. MIC is used to estimate the relative magnitude of the
optimized hyper-parameters because both the optimized hyper-
parameters and MIC can be used for global sensitivity analysis.
To reduce the number of parameters that need to be optimized
when estimating hyper-parameters, the maximum likelihood es-
timation problem is reformulated by adding a set of equality
constraints. With our approach, only one auxiliary parameter is
needed to optimize when estimating hyper-parameters. As a con-
sequence, the modeling efficiency is dramatically improved. The
rest of the paper is organized as follows. Section 2 provides a
brief introduction of kriging, including the theoretical basis of the
kriging, the main steps for constructing kriging, and the relation-
ship between optimized hyper-parameters and global sensitivi-
ties. The proposed method is described in detail in Section 3. The
performance of KMIC is tested and compared in Section 4.
Finally, conclusions are described in Section 5.

2 Kriging

Suppose that we want to build a kriging model for an unknown
deterministic function y = f(x), x € R”. m sample points x'", ...,
x" and the corresponding response values y", ..., y are

given. These sample points could be aggregated in a matrix
T
X = {x<l),...7x(”’)} , (1)

where X € R™*“. The corresponding response values can be
aggregated as a m x 1 vector

y= ) = () )] @

2.1 The basic theory of kriging

The basic assumption of kriging model is that the true deter-
ministic response is realized with a trend function and a sto-
chastic process. There are different versions of kriging such as
“simple kriging,” “ordinary kriging,” and “universal kriging.”
The trend function is the main difference between them

(Sasena 2002). Among these different variants, ordinary
kriging is the most widely used kriging technique and is used
for the experiments in this paper. The proposed method in this
research can also be expressed in the same way for the other
variants. In ordinary kriging, we assume that the trend func-
tion is an unknown constant. The prediction formulation can
be written as follows:

9(x) = By +2(x), 3)

where (3, is the unknown constant. z(x) is a random process
having mean zero and covariance of

Cov [Z(XO)),Z(XU))} = o’R (x(i),x(j)> (4)
between x? and x?, where o2 is the process variance and R(x?,
x”) is known as spatial correlation function. Throughout the
literature, there are many choices of the spatial correlation func-
tion (see Appendix Table 8). In this work, we use the Gaussian
exponential correlation function:

o d a2
R(x9,x) = exp ( $ 00} >’V9keR+, (5)
k=1

where 6. is known as hyper-parameter. The number of hyper-
parameters here is equal to the number of the design variables.
For the sake of brevity, we aggregate the hyper-parameters as a
1 x d vector ©.

Under the hypothesis above, the best linear unbiased pre-
dictor for y(x) can be obtained as (Sacks et al. 1989; Jones
2001)

P(x) =B +r(x) R (y-18"), (6)

where (3 is obtained using generalized least-squares estima-
tion

g = ("R TRy, (7)
and 1 is a vector filled with ones, and R, r(x) are the correla-

tion matrix and the correlation vector, respectively. R and r(x)
are defined as follows:
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where x” and x* are the i—th and j—th sample points, respec-
tively. x is an untried point that we want to predict.

Moreover, the kriging model can provide an estimate of the
variance of the prediction. It is of the form

(I*r(x) R r(x)) ’

52 (x) = 62 (l—r(x)TRflr(x)) + & TRl 9)
where the parameter 67 is

1 w\ T oy — ®
azza(yflﬁ) R (y-18) (10)

2.2 Main steps for building a kriging model

Although the basic theory of kriging has been expressed
above, the process for building a kriging model still seems
unclear. For a better understanding, the main steps for building
a kriging model are summarized as follows:

Step 1: Provide the sample points X and the corresponding
response values y. Determine which spatial correla-
tion function to use (e.g., Gaussian exponential cor-
relation function).

Estimate the unknown hyper-parameters in spatial
correlation function by maximizing the concentrated
likelihood function.

Calculate the prediction (6) and the associated esti-
mation error (9) at untried points.

Step 2:

Step 3:

For a specific problem with given training data, the predictive
performance of the kriging model is associated with the values of
hyper-parameters (Hollingsworth and Mavris 2003). There is no
analytical solution for the hyper-parameters and an optimizer is
often used to estimate the hyper-parameters. A better set of opti-
mum values for hyper-parameters allow the kriging model to

25
e Training points
201 === True function
15 —— Kriging function
Fit Uncertainty
104
>
5 4
0 4
_5 4

(a) Optimized hyper-parameter

Fig. 1
Optimized hyper-parameter. b Overestimated hyper-parameter
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better represent the true response of the objective function.
Figure 1 shows an example of (a) an optimized hyper-
parameter and (b) an overestimated hyper-parameter. From this
example, we can find that estimating the hyper-parameters is very
important when constructing the kriging model.

In practice, the hyper-parameters are often estimated by
maximizing concentrated likelihood function. The optimiza-
tion sub-problem can be formulated as follows:

1
0 =arg max(—%ln&z—zlnm), (11)

where |R| denotes the determinant of the correlation matrix.
The concentrated likelihood function only depends on the hy-
per-parameters. For more details of the derivation of the con-
centrated likelihood function, see, for instance, Jones (2001).
The likelihood function is often multimodal and the gradient is
difficult to calculate. To avoid becoming trapped in a local
maximum, evolutionary algorithms are often used to solve this
optimization sub-problem, such as genetic algorithm (Forrester
et al. 2008) and differential evolution (Chen et al. 2019). The
evolutionary algorithms typically require tens of thousands fit-
ness evaluations of the concentrated likelihood function.
However, as mentioned in Section 1, each evaluation of the
likelihood function will be computationally expensive for
high-dimensional problems. Therefore, the Step 2 is the longest
process when building a kriging model. If we can reduce the
number of parameters, we need to optimize in this process, the
modeling efficiency of kriging will be significantly improved.
This proposition has been validated by Bouhlel et al. (2016).

2.3 Relationship between optimized
hyper-parameters and global sensitivities

Hyper-parameters are core parameters for kriging model.
From the previous studies, we can find that the optimized
hyper-parameter ¢, in kriging is a good indicator of the global

25
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(b) Overestimated hyper-parameter

Example of a 1-D function to show the importance of hyper-parameter optimization. The blue space is the uncertainty of the kriging model. a
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sensitivity of /th input variable (Forrester et al. 2008; Forrester
and Keane 2009; Chen et al. 2019). The novel kriging model-
ing method proposed in this study is based on this conclusion.
Therefore, it is essential to provide a brief introduction about
this conclusion before discussing our approach. First of all, the
global sensitivity analysis technique and Sobol’ indices are
briefly revisited in this section.

Sensitivity analysis is a technique that studies how the
variability of a function’s output responds to changes of its
inputs variables (Shan and Wang 2010). Sensitivity analy-
sis includes local and global sensitivity analysis. The local
sensitivity analysis often focuses the local variability of the
output at a given point, which is usually based on the de-
rivative and can be easily calculated (Haftka and Mroz
1986). While global sensitivity analysis allows input vari-
ables varying in their whole distribution ranges, which
provides an overall view of the impact of input variables
on the output (Saltelli et al. 2008). In the last several de-
cades, many global sensitivity analysis methods have been
proposed. Sobol” indices (Sobol 2001) are one of the clas-
sical global sensitivity analysis methods, which based on
variance decomposition. If the number of sample points is
enough, Sobol’ indices can identify the accurate influence
of input on output for any type of functions. Therefore,
Sobol’ indices are used to calculate the global sensitivities
in this research. According to the theory of analysis of
variance, an integrable function f{x) defined in 17 can be
decomposed as follows:

d d

S(x) = fo+ .Zlfi(xi) + 3 () + 0 fraea(vn,x2, 0 xa).
i= i<j

(12)

Then the total variance of f{x) can be defined as follows:

D = [uf*(x)dx—f3, (13)

which can be calculated as sum of partial variances as follows
d d

D=3%D;+ Y Dj+ Diyq, (14)
i i<j

where the partial variances are computed from each of the
terms in Eq. (12) as follows:

Dy = I pdxidxj+dxy, for 1<i < j < -+ < h<d. (15)

Using Eq. (14) and Eq. (15), the first-order Sobol’ index S;
is defined as follows:

D;
Sizﬁfor 1<i<d. (16)

Figure 2 a shows a specific example to visualize the rela-
tionship between optimized hyper-parameter 6; and global

sensitivity index S;. For this function, the functional change
almost depends on x, and x; has little effect (see Fig. 2a). The
optimized hyper-parameter #, is much larger than 6, and the
Sobol indices show that variable x, has a higher global sensi-
tivity for the output. It seems that there is a monotonic rela-
tionship between the optimized hyper-parameter 6; and the
Sobol’ index §,. To validate this proposition, a 20-D
Ellipsoid function is used here.

20
fx) = ;1 ix?, x;€[-5,5],i = 1, ..., 20. (17)

This function is suitable for demonstration, because the
global sensitivity of each variable on the output is
intuitionistic (for 1 <i<;<20,, the global sensitivity of x; is
higher than that of x;). Thus, the relationship between opti-
mized hyper-parameter 6, and global sensitivity index S; can
be clearly observed (see Fig. 2b). As a consequence, we can
conclude that the optimized hyper-parameter 6, in kriging is a
good indicator of the global sensitivity of /th input variable.
Actually, this conclusion has been demonstrated by Forrester
et al. (2008).

Here, an explanation about how the choice of hyper-
parameter 0, affects the output of the kriging model is provid-
ed. In kriging, the spatial correlation function is used for cal-
culating the correlation between two sample points. Taking
the Gaussian exponential correlation function (Eq. 5) as an
example, there are d hyper-parameters (61, 6, ***, 6,) corre-
sponding to the d design variables. Each hyper-parameter
can affect how far a sample point’s influence extends. As
shown in Fig. 3, a small 6, means that all points will have a
high correlation and the function values are similar across the
sample points in the /th coordinate direction. The higher
values of 6, denote that function values can change rapidly
over a small distance in the /th coordinate direction. In other
words, a larger value of 6, means that the /th variable has a
higher global sensitivity. This feather of hyper-parameters has
been discussed by many researchers (Jones 2001; Forrester
et al. 2008; Ulaganathan et al. 2016b).

3 Kriging model combined with MIC

The motivation for this research is to develop a novel kriging
modeling method which can build a high-dimensional kriging
model with a little amount of computational effort. One of the
main challenges for high-dimensional kriging model is due to
the huge searching space when optimizing hyper-parameters.
As explained above, there is a monotonic relationship between
Sobol’ indices and optimized hyper-parameter. If we can ob-
tain the global sensitivities of each input variable, we will
know the relative magnitude of the optimized hyper-
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(b) A 20-dimensional Ellipsoid function

Fig. 2 Examples to show the relationship between optimized hyper-parameters and global sensitivities. a A visual example. b A 20-dimensional

Ellipsoid function

parameters before optimizing hyper-parameters. Using this
knowledge reasonably, we could search the hyper-
parameters at a small region instead of the original high-
dimensional space. Then the modeling efficiency can be ef-
fectively improved. However, obtaining Sobol’ indices re-
quires Monte Carlo simulation and is very computationally
expensive (Lee et al. 2019). In the last several decades, many
global sensitivity analysis methods have been proposed. After
an extensive investigation, we find that dependence measure
can also be used for global sensitivity analysis (Da Veiga
2015) and MIC (Reshef et al. 2011) is a powerful dependence
measure method which is touted as a “correlation for the 21st
century” (Speed 2011). Many factors make MIC suitable for
the purpose of estimating the relative magnitude of optimized
hyper-parameters: (1) MIC can measure the dependence be-
tween variables and can be utilized for global sensitivity anal-
ysis. According to the proposition discussed in Section 2.3,
there is a relationship between MIC values and optimized
hyper-parameters; (2) MIC does not relay on the distributional
assumptions of data; (3) MIC could identify both linear and
non-linear dependencies between variables; (4) Better yet, the
MIC values are easy to compute.

1.0 1

e_g(lxtv) - X(/)|2
e
o

o
>

0.2 1

N S~—o
0.0 0.5 1.0 1.5 2.0 2.5 3.0
[x — x0)|

0.0

Fig. 3 Relationship between correlation and hyper-parameter ¢,
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In this section, a novel kriging modeling method KMIC is
developed to improve the modeling efficiency of kriging in
high-dimensional problems. The main steps of KMIC are
listed as follows:

1. Use MIC to compute the global sensitivities of each input
variable.

2. Assume MIC values can be used to estimate the relative
magnitude of optimized hyper-parameters.

3. Define a new maximum likelihood estimation problem by
using MIC values.

4. Optimize the unknown parameters in the new optimiza-
tion sub-problem.

The key steps of KMIC are introduced in the following.
Besides, a numerical function is chosen to validate the perfor-
mance of KMIC.

3.1 Maximal information coefficient for global
sensitivity analysis

MIC is an optimized version of mutual information (MI). Before
we introduce the MIC, we need to review the MI first. MI, based
on concepts from information theory, is a measure of how much
information two variables share. The value of MI ranges from 0
to +oo. A larger value of MI means a larger amount of informa-
tion about one random variable obtained through the other ran-
dom variable. The definition of MI between two random vari-
ables is given by

p(x.y)
1(X:Y) = LJup(x, y)log ==~ dxdy, (18)
g px)p(y)
where p(x) and p(y) are the probability density functions of X and
Y, and p(x, y) is the joint probability density function.
In this article, the design variables and output variable are
continuous, while we only have finite sample data. Hence, the
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density functions of these variables are all unknown. A simple
approach to estimate the probability density function is to
discrete the data (Kinney and Atwal 2014). By superimposing
a rectangular grid on the scatterplot of two variables x and y,
each continuous x value (or y value) to the column bin (or row
bin) can be assigned into which it falls. Then the estimated

density functions pA can be computed by simply counting the
data points falling into each bin. Taking the /th variable and
the output for example, the MI value of these two variables is
often estimated by the following formula in practice.

o ﬁ(xy), y“))
Alx- & AxD v Vo N7 T
](X],Y) = Z:p 1Y 0g AL A .
B i)

(19)

The basic idea of MIC is that the scatterplot of data x; and y

can be gridded by a row and b column and the data xgi) o)
can be assigned to the row (column) bin it belongs to. Then the
MI value for this grid is estimated. To calculate the MIC value
of two variables, various possible grids are explored. Then the
possible MI values are achieved and these MI values are nor-
malized to make the values from different grids comparable.
Different from MI, the MIC ranges from 0 to 1. The MIC of
two variables x; and y is defined as follows:
7 (x13)

MIC(x;;y) = max ———————

ab<Blog,(min(a, b)) (20)

where B is the upper bound of the grid size and is a function of
sample size m. The authors of MIC suggest B=m"¢ (Reshef
etal. 2011).

After MIC and its algorithm were published, several
researchers have utilized the MIC for feature selection or
feature screening (Zhao et al. 2013; Sun et al. 2018;
Hemmateenejad and Baumann 2018). Feature selection or
feature screening is an important topic of machine learning
research (Chen et al. 2019). These applications demon-
strate that MIC is an efficient method for identifying the
variables with significant influence on the output. Thus,
MIC is used in this study to compute the global sensitivi-
ties of each design variable. The Python package minepy'
provides an implementation of MIC (Albanese et al. 2013).
In this study, we use this package with default parameters
to calculate the MIC values.

3.2 An example to show the relationship
between optimized hyper-parameters and MIC values

According to the description above, given a set of sample
data about a nonlinear function y=f(x), both the opti-
mized hyper-parameter ¢, in kriging and the MIC value

! http://minepy.readthedocs.io/

can be used as an indicator of the global sensitivity of /th
input variable. It is reasonable to believe that there exists
a relationship between the optimized hyper-parameters
values and MIC values. To have a better understanding
of this relationship, the g07 function (Michalewicz and
Schoenauer 2014) with 10 dimensions is used here. The
experiment is conducted at a PC with Intel Core 17-2600
CPU @ 3.40GHz and 8 GB RAM.

F(x) =22 422 + xix0-14x-16x3 + (x3-10)% + 4(x4—5)* + (x5—3)°
+ 206 1) + 52 + T(xg—11)* + 2(x0—-10)* + (x10-7)° + 45,
x€[10,10],i = 1,...,10.

(21)

First of all, we generate a 100 x 10 matrix of observed
points X by Latin hypercube sampling (Mckay et al. 1979).
Then obtain the 100 x 1 responses vector y. Before calculating
the hyper-parameters and MIC values, data pre-treatment is
carried out, where the data X and y are centered to have zero
mean.

Secondly, calculate the MIC values of each input variable
and output variable. The MIC values for this design of exper-
iment are 0.22, 0.24, 0.23, 0.33, 0.22, 0.21, 0.23, 0.81, 0.25,
and 0.22 from (x1,y) to (Xjg, y). It takes 0.024 s to calculate
these values.

Next, build the ordinary kriging model with the observed
points X and the corresponding response values y. To estimate
the hyper-parameters, an effective differential evolution (DE)
algorithm, jDE (Brest et al. 2006), is used. DE is a popular
global optimization algorithm and there are quite a few differ-
ent DE variants. In this article, we use DE/rand-to-best/1 to
generate new solutions. The population size is set as 100, and
the maximum number of function evaluations is 10,000. Then
the unknown hyper-parameters are searched in the range of
[107°, 10%]. Despite DE is a stable algorithm with high perfor-
mance, we cannot guarantee that we can find the global max-
imum of the likelihood function with given computational
effort. Thus, the process of training the kriging model is re-
peated 20 times. Each experiment takes about 13 s to estimate
the hyper-parameters. The best result in these experiments is

1.0
7e-06 -
0.8
6e-06 -
5e-06 - 0.6
@ Q
4e-06 A =
F0.4
3e-06
2€-06 - [ 92
le061 . . . . . ; . . —L o0
X1 X2 X3 X4 Xs X6 X7 Xg X9 X10
Variables

Fig. 4 The hyper-parameters and MIC values for the g07 function
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recorded. The recorded hyper-parameters corresponding to
the ten variables are 1.56e-06, 1.39¢-06, 1.27e-06, 4.00e-06,
1.22e-06, 2.18e-06, 5.78e-06, 7.32e-06, 2.32¢-06, and 1.13e-
06, respectively.

Finally, we plot the hyper-parameters and MIC values in
Fig. 4.

As can be seen in Fig. 4, the trends of the optimized
hyper-parameters and MIC values are very similar. From
the expression of the g07 function, we can see that variable
xg has the largest coefficient and should be the most impor-
tant variable (the variable with the highest global sensitiv-
ity). In practice, both hyper-parameters and MIC values
show that the influence of variable xg on the output is the
most significant. The coefficients of five variables x;, x5,
X3, X5 and xo are small. Similarly, the hyper-parameters
corresponding to these five variables are smaller than the
hyper-parameter corresponding to variable xg. It is obvious
that the magnitude of hyper-parameters can reflect the
global sensitivities of each design variable. Unfortunately,
MIC cannot clearly distinguish the variables except vari-
able x4 and variable xg in this case. Hyper-parameter values
show variable x; is the second most important variable,
while the MIC values show that variable x7 is less impor-
tant than variable x4. However, it should be noted that the
time for estimating hyper-parameters is about 542 times
longer than that for calculating the corresponding MIC
values. MIC cannot capture variables x4, x7 and xo, but
the MIC values for these variables are not much lower than
the MIC value of variable x; and output. Therefore, MIC is
an alternative method for quickly estimating the relative
magnitude of optimized hyper-parameters with less loss
of information.

0, 4 m., ., 1
max| ——Iné’ ——In|R|
) 2 2
‘9:
Multimodal
Unconstrained
0': Global maxima point
C : A small region
0 6 6

1 1

(a) Conventional kriging

3.3 Construction of new maximum likelihood
estimation problem for KMIC model

As explained above, if the number of design variables is large,
maximum likelihood estimation problem itself is a high-
dimensional optimization sub-problem when constructing
kriging model. If we can improve the efficiency for solving
this optimization sub-problem, the time for constructing
kriging model can be significantly reduced. The question is
how to speed up the process of solving this optimization sub-
problem. In recent years, knowledge-assisted optimization be-
comes an interesting research topic for tackling high-
dimensionality optimization problems (Wu et al. 2017; Wu
and Wang 2018). By incorporating existing knowledge into
optimization, the optimization efficiency can be improved.
Inspired by this idea, we take the relationship between opti-
mized hyper-parameters and global sensitivities into consider-
ation when maximizing the likelihood function.

Taking the g07 function as an example, we actually have
some knowledge about the hyper-parameters before maximiz-
ing the likelihood function. Variable xg is the most important
variable for the g07 function. Thus, the hyper-parameter cor-
responding to variable xg should be the biggest. Variables x;,
X2, X3, X5 and x are less important than variable xg but cannot
be excluded. Compared with variable xg, the hyper-parameters
corresponding to these five variables should be smaller but
will not be too small. These knowledge can be taken into
consideration when estimating the hyper-parameters.
However, when constructing kriging model for a specific
problem, the design function is often a black-box. We do not
know the coefficient of each variable and will not know which
variable is more important. Fortunately, MIC can be used to

m, ., 1
0, 4 max(——lna' ——ln‘R‘j
2 2
. s.t. 0,=Aw,,i=1,2.
02 /
,/" Multimodal
o ,/' Constrained
)
w, O
11 ) 11: 121*
e w, 0,
I/’ [ * ﬁ: 1
A 4N S ¥
4 w2 02
0 A
(b) KMIC

Fig. 5 Maximum likelihood estimation problem. a Conventional kriging. b KMIC
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Table 1 Comparison results for g07 function with 100-point
Statistic  Times(s) R> NRMSE NMAE

OK Mean 12.7947  1.0000 9.3148e—06 1.0630e—04
Std 03640  1.3398e—10 2.3200e—06 3.3265¢—05

KMIC Mean  0.0724  1.0000 1.4148¢—05 1.8897¢e—04
Std 0.0044  2.5795¢e-10 4.0723¢e—06 7.0258¢—05

estimate the relative magnitude of optimized hyper-parame-
ters. This has been discussed in Section 3.2. Therefore, for a
black-box problem, the MIC values can be regarded as the
existing knowledge that can help to improve the optimization
efficiency of the maximum likelihood estimation.

How can we incorporate the known knowledge into the
optimization? In order to improve the optimization efficiency
as much as possible, a simple strategy is to assume the relation-
ship between hyper-parameters and MIC values is a linear pro-
portional relationship. Then we can add a set of equality con-
straints to the maximum likelihood estimation problem. The
new optimization sub-problem can be expressed as follows:

1
0 =arg max(—%]n?fz—glnm\),
s.t. 9,‘ = )\Wi,i: 1,2, 7d

(22)

where ) is an auxiliary parameter and w; is the MIC value of x;
and y. For any problems, §;€ R*, w;€[0,1] and Ae R*. In
practice, a set of boundary constraints should be given when
using an optimizer to estimate the auxiliary parameter. The
authors suggest searching the unknown auxiliary parameter A
in the range of [10°¢, 100] for high-dimensional problems.

In this way, our new optimization sub-problem for estimat-
ing hyper-parameters has only one unknown parameter.
However, there is an obvious drawback to this approach.
Since we bind the original variables together using an auxil-
iary parameter, their values cannot be changed independently
of each other anymore. This limits the reachable solutions in
the original search space to get a better result.

Table 2  Numerical test functions

For a better understanding of our approach, a geometric
explanation is provided here. For the conventional kriging,
the concentrated likelihood function is a multimodal, uncon-
strained function. As shown in Fig. 5a, the global maxima
point ©* locates at comparatively very small regions in the
d—dimensional space. However, to find the maximizer, we
have to search in the whole d—dimensional space. As the di-
mensionality increases, the search space will become vaster
and vaster and this optimization problem will be more and
more complex. Therefore, it is very time-consuming to solve
Eq. (11) for the high-dimensional problem.

Different from the conventional kriging, KMIC estimates
the hyper-parameters by solving the new maximum likelihood
estimation problem. The new optimization sub-problem is a
multimodal, constrained optimization problem. As shown in
Fig. 5b, we can think that the new optimization sub-problem
has still the same number of design variables as the original
one. Owing to these equality constraints, KMIC only needs to
search along a straight line in the vast space when solving Eq.
(22). The slope of this line is obtained by taking the features of
hyper-parameters into consideration. Assume the relationship
between optimized hyper-parameters and MIC values is a lin-
ear proportional relationship. Then KMIC searches along the
line /; when maximizing the likelihood function, and KMIC
can easily find the global maxima point ©”. Unfortunately, it is
difficult to guarantee this assumption. From the example
shown in Section 3.2, it is found that there are differences
between the hyper-parameters and MIC values. Actually,
KMIC searches the maximizer along the line /. For most

cases, KMIC will obtain an approximate maximizer at 0.
Despite there is loss of accuracy, it should be noted that
KMIC is more efficient than conventional kriging for high-
dimensional problem. Besides, the likelihood function around
the global maxima point is often flat and there is no point to
find the maximizer with great accuracy when constructing the
kriging model (Lophaven et al. 2002). Empirical studies show
that the accuracy loss of KMIC is acceptable for problems with
40 or more design variables. Therefore, KMIC can provide an
alternative way for high-dimensional kriging modeling.

Name d m Expression
Ellipsoid 20 200 20
e S() = Y i xel-S5, 8]0 = 1,..,20
Dixon-Pri 30 300 30
ponee @) = (012 + 3 i(22 )’ xel-10,10),i = 1,..,30
i=2
R brock 40 400 39
oserbroe =3 [1oo(x,-+1—x?)2 5 (xrl)z},xie[fi 10],i = 1,..., 40
i=1
Griewank 50 400 ) d o d . .
80 500 f(x) = -;1 40’00— H COS(?{') + 1,X,'€[‘575},l = 17 7d
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Table 3 Optimizer settings for
maximizing the likelihood Model Optimization algorithms Initial coefficient Max. NFE Interval
function
OK jDE 1000d [107°,100]
KMIC COBYLA A=m " 1000 [10°°, 100]
KPLS1 COBYLA G=m"m 1000 [107%,100]
KPLS2 COBYLA O=m™"m j=1,2 2000 [1075,100]
KPLS3 COBYLA O=m " i=1,2,3 3000 [10°°, 100]

3.4 Algorithm implementation

We summarize the implementation of the proposed KMIC
model in the following:

Step 1: Provide the sample points X and the corresponding
response values y. Determine which spatial correla-
tion function to use (e.g., Gaussian exponential cor-
relation function).

Calculate the MIC values of each input variable and
output variable.

Estimate the unknown auxiliary parameter by using
the numerical optimization algorithm to solve the
new maximum likelihood estimation problem.
Calculate the approximate hyper-parameters.
Calculate the prediction (6) and the associated esti-
mation error (9) at untried points.

Step 2:

Step 3:

Step 4:
Step 5:

3.5 An example for KMIC modeling demonstration

To validate the performance of KMIC, we build KMIC model
and ordinary kriging model using the same sample points. The
experiment is repeated 20 times and each experiment has a
different set of sample points obtained by Latin hypercube
sampling with “maximin” criterion. To measure the prediction
accuracy of these surrogates, 5000 validation points are

randomly selected by Latin hypercube sampling, and the co-
efficient of determination R?, normalized root-mean-square
error (NRMSE), and normalized maximum absolute error
(NMAE) are calculated.
2
(J’i_y ) )

Ror¥(9) /%

(23)
i=1 i=1
N A\ 2
NRMSE = ,| 3 (”) / N (24)
i=1 Yi
_A_
NMAE = max< YVt > (25)
Vi

where N is the number of validation points, y; is the true
response of the ith validation point, )A/, is the predicted value
of the ith validation point, and y is the mean of true response.
R? and NRMSE can reflect the global accuracy of the surro-
gates. NMAE is a criterion that can represent the local
predicting performance of the surrogates. The closer the value
of R? is to 1, the better the model fits the data. The smaller
values of the NRMSE and the NMAE, the more accurate the
model is.

The results are listed in Table 1. The abbreviation “OK”
refers to the ordinary kriging. From the results, we can see that
the modeling time is drastically reduced when using the
KMIC. More precisely, the ordinary kriging requires an aver-
age time of 12.7947 s whereas KMIC requires only 0.0724 s.

Table 4 CPU time for numerical

test functions Surrogate Statistic Ellipsoid Dixon-Price Rosenbrock Griewank Griewank
(20-D) (30-D) (40-D) (50-D) (80-D)
OK Mean 103.92 s 418.44 s 1229.86 s 1875.72 s 5670.74 s
Std 1.14 s 845 s 4.19 s 834 s 3729 s
KMIC Mean 0.35s 0.99 s 2.30s 2.86s 6.10 s
Std 1.61e-02 s 3.36e-02 s 5.78¢—02 s 5.77e-02 s 0.11s
KPLSI Mean 5.78¢02 s 0.11 s 0.24 s 0.26 s 0.39 s
Std 8.93¢—03 s 2.02e—02 s 141e-02 s 243e¢02s 1.78e-02 s
KPLS2 Mean 0.35s 0.31s 049 s 049 s 0.66 s
Std 0.96 s 023 s 4.95¢—02 s 532e-02s 5.40e-02 s
KPLS3 Mean 2.13s 2.59s 1.39 s 0.73 s 1.04 s
Std 3.28s 521s 224s 7.63¢—02 s 022s
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Table 5 Metrics of modeling accuracy for numerical test functions
R NRMSE NMAE R NRMSE NMAE R NRMSE NMAE
Ellipsoid (20-D) Dixon-Price (30-D) Rosenbrock (40-D)
OK 0.98 3.36e—02 0.13 0.78 0.14 0.77 0.78 0.14 0.79
KMIC 0.83 9.76e—02 0.60 0.64 0.19 1.25 0.79 0.13 0.75
KPLS1 0.26 0.22 1.66 0.21 0.31 2.64 0.63 0.18 1.26
KPLS2 0.43 0.19 1.33 0.34 0.27 223 0.70 0.16 1.07
KPLS3 0.54 0.17 1.06 0.38 0.26 2.02 0.70 0.16 1.08
Griewank (50-D) Griewank (80-D)
OK 0.82 5.02¢—03 1.58¢—02 0.65 8.41e—03 2.88¢—02
KMIC 0.90 3.72e—03 1.13e-02 0.83 5.85e—03 1.83¢—02
KPLS1 0.30 9.97¢-03 3.64¢-02 0.26 1.23¢-02 4.55¢-02
KPLS2 0.46 8.81e—03 3.16e—02 0.39 1.11e-02 4.12e-02
KPLS3 0.54 8.14e-03 2.83e—02 0.45 1.06e—02 3.74e—02

A 99.4% saving of time is achieved using our approach. In the
respect of model accuracy, R* cannot distinguish which model
is worse. NRMSE and NMAE show that the accuracy of
KMIC is slightly lower. Therefore, with the result of compar-
ison, we can conclude that the efficiency of the ordinary
kriging can be improved by KMIC, and the loss of accuracy
is acceptable.

4 Experimental study

In this section, to further examine the performance of the
proposed method, KMIC is compared with the ordinary
kriging and KPLS. KPLS is a recently proposed method
which can accelerate the computational process of build-
ing the kriging model in high-dimensional problems. By
combining the partial least squares (PLS) technique with
kriging, the relationship between input variables and out-
put variable is considered and some principal compo-
nents of the original data are reserved. The KPLS has
shown an outstanding result in terms of saving computa-
tion time, which is similar with KMIC. It is worth men-
tioning that the accuracy and modeling time of KPLS are
related to the number of principal components.
Therefore, the KPLS models with one to three principal
components are all considered in this section and these
models are denoted by KPLS1, KPLS2, and KPLS3, re-
spectively. Review of the theory and implementation of
KPLS are beyond the scope of this article. Interested
readers can refer to the literature (Bouhlel et al. 2016;
Hartwig and Bestle 2017) for more details. The modeling
of KPLS is implemented using the surrogate modeling
toolbox (SMT).2 The experiments for each test function

2 https://github.com/SMTorg/smt.

in this section are done in the same experimental envi-
ronment described in Section 3.2.

4.1 Numerical examples

To demonstrate the efficiency of the KMIC for tacking differ-
ent kinds of complex, high-dimensional problems, five repre-
sentative numerical test functions varied from 20-D to 80-D
are used here. Descriptions of these test functions are summa-
rized in Table 2.

Similar to the example in Section 3.5, both the sample
points and validation points are selected by Latin hypercube
sampling. Once the kriging models are constructed, 5000 val-
idation points are randomly selected to assess the model accu-
racy under three metrics R?, NRMSE, and NMAE. To analyze
the robustness of these methods, the experiments are repeated
20 times. Then the mean and standard deviation values of
modeling time and three accuracy metrics are calculate.

In practice, the accuracy of kriging model can be greatly
affected by the choice of optimization algorithm for the pro-
cess of estimating the hyper-parameters. The main character-
istics of the optimization algorithms we adopted are shown in
Table 3. Similar to the example in Section 3, jDE is used for
the ordinary kriging considering its high performance when
handling complex, high-dimensional problems. The popula-
tion size is set as 100. The maximum number of function
evaluations (Max. NFE) is 1000d. The unknown hyper-
parameters of the ordinary kriging are searched in the range
of [1076, 100]. The KPLS available in SMT optimizes the
hyper-parameters by a derivative-free optimization algorithm
COBYLA (Powell 1994). Compared with evolutionary algo-
rithms, COBYLA is more suitable to optimize the likelihood
function for problems with a small number of design vari-
ables. KMIC only needs to optimize one parameter. To be fair,
optimizer settings for KMIC are the same as that of the KPLS
with one principal component.
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4.2 Results discussion
4.2.1 Comparison of computational efficiency

When it comes to the cases that the kriging model needs to be
frequently constructed, the modeling efficiency of kriging
model should be a considerable issue. The ideal case is that
both the modeling accuracy and the modeling efficiency are as
high as possible. But it is difficult to balance the modeling
accuracy and modeling efficiency. KMIC is proposed as an
attempt to approach this goal. To verify the modeling

20-D Ellipsoid function

efficiency of the proposed method, the CPU time for con-
structing kriging models using different methods was mea-
sured as shown in Table 4. The mean values are shown in
italics for ease of comparison. From the results, we can find
that the modeling time of KMIC is significantly shorter than
that of the ordinary kriging in all the test functions. KMIC has
achieved a 99.7~99.9% saving of time for constructing the
kriging model. The computational cost of KMIC can be neg-
ligible for most of the problems in engineering. In addition,
both KMIC and KPLS can build a kriging model in several
seconds for high-dimensional problems.
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4.2.2 Accuracy comparison

To demonstrate comparative performance of KMIC in terms
of accuracy, three metrics R?, NRMSE, and NMAE are used
to assess the global and the local accuracy of the kriging
models. The results of the three kriging modeling methods
(ordinary kriging, KPLS, and KMIC) on the five test functions
are shown in Table 5. For ease of comparison, the mean values
of the best results are shown in italics. To better visualize the
results, boxplots are used in Figs. 6, 7, 8, 9, and 10. With a
glance over the results, the ordinary kriging behaves best for

40-D Rosenbrock function

the Ellipsoid function and Dixon-Price function. For problems
with 40 or more variables, results show that KMIC is even
more accurate than the ordinary kriging. Besides, KMIC out-
performs KPLS with one to three principal components for all
the test functions.

For the Ellipsoid function, as shown in Table 5 and Fig. 6,
three metrics all show that the accuracy of the ordinary kriging
performs the best and KPLS is the worst. A larger R* means a
better fitting of the kriging model. The R? of the ordinary kriging
and KMIC are 0.98 and 0.83, respectively. This means the glob-
al accuracy of KMIC is slightly worse than that of the ordinary
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kriging. It can be seen that NRMSE could also reflects the global
accuracy of the kriging models. NMAE shows that the ordinary
kriging performs best in terms of the local accuracy. However, it
should be noted that the modeling time of the ordinary kriging is
about 297 times that of KMIC. KMIC can obtain a balance
between modeling accuracy and modeling efficiency. The re-
sults of the Dixon-Price function and Ellipsoid function are sim-
ilar (see Table 5 and Fig. 7). The Rosenbrock function is a
multimodal problem with a steep, curved valley. As can be seen
in Table 5 and Fig. 8, the R* of the ordinary kriging and KMIC
are 0.78 and 0.79, respectively. The NRMSE and NMAE also
show that KMIC is slightly more accurate than the ordinary
kriging. For the Griewank functions with 50 and 80 variables,
the accuracy of KMIC is the best. For the Griewank function
with 80 variables, the global accuracy of KMIC is better than
that of the ordinary kriging, with an R* of 0.83 for the former and
0.65 for the latter. The NMAE of KMIC is 1.83e-02 which is
lower than that of the ordinary kriging. Therefore, the local

Fig. 11 3-D shape of the blended-wing-body underwater glider

@ Springer

KPLS3 oK KMIC  KPLSL  KPLS2  KPLS3

80-D Griewank function

KPLS2

accuracy of KMIC is better than that of the ordinary kriging
for the 80-D Griewank function.

From the above observations, we can find that the proposed
method is suitable for tackling high-dimensional problems
when the kriging model needs to be frequently constructed.
It should be noted that the model accuracy of KMIC is expect-
ed to be somewhat worse than that of ordinary kriging.
However, for the problems with more than 40 variables,
KMIC can obtain a more accurate kriging model than ordinary
kriging with given computational effort. The most probable
reason is that the process of optimizing hyper-parameters be-
comes harder as the dimensionality of the test function in-
creases. Under limited computational effort, it is difficult to
build an ordinary kriging model with great accuracy. If we do
not consider the limit of the maximum number of function
evaluations when maximizing the likelihood function, we be-
lieve that the ordinary kriging will be more accurate than
KMIC for all the test functions. This phenomenon shows that
for problems with more than 40 variables, KMIC is better than
ordinary kriging in practice. Liu et al. (2014) draw a similar
conclusion that the accuracy of direct kriging modeling for
problems with 30 or less variables is better.

Another interesting phenomenon is that as the number of
training points increases, the time for constructing KMIC be-
comes longer. This phenomenon is also found for KPLS.
Actually, the main reason has been mentioned in Section 1.
Despite both KMIC and KPLS1 only need to optimize one
parameter when training the kriging model, they require
inverting the covariance matrix for several times. If the num-
ber of training points increases, inverting the covariance ma-
trix will require more time. The number of training points for
Rosenbrock function and 50-D Griewank function is 400,
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while the 50-D Griewank function requires slightly more time.
This is because that as the dimensionality increases, calculat-
ing MIC values and utilizing PLS require more computational
effort. Besides, calculating MIC values requires more time
than utilizing PLS. Thus, KMIC requires more time than
KPLS1 in all the test cases.

4.3 Industrial example

In this part, the performance of KMIC is validated through
an engineering application. Here, we focus on a blended-
wing-body underwater glider and use KMIC to generate
kriging model for the drag coefficients (C,) as function of
35 variables. For the sake of simplicity, a blended-wing-
body underwater glider formed with five control sections
is used here (see Fig. 11). The planar shape of this under-
water glider is determined and is shown in Fig. 12.
Geometric parameters of the planar shape are shown in
Table 6. The shape of the underwater glider is mainly de-
termined by the five control sections. The five control sec-
tions are all symmetrical airfoils. Initially, the standard
NACA0022, NACA0019, NACA0016, NACAO0014, and
NACAO0012 airfoils are selected as the section 1, 2, 3, 4,
and 5, respectively. The class-shape function transformation

(CST) method (Kulfan and Bussoletti 2006) is then used to
parameterize each of the control sections. A sixth-order
Bernstein polynomial is chosen to fit each sectional airfoil.
Each sectional airfoil is represented with 7 design variables.
Therefore, there are totally 35 variables describing the
shape of the underwater glider. In this research, each of
the control sections is confined within another two airfoils.
For example, section 1 is confined between the standard
NACA0016 and NACAO0028 airfoils.

Then a CFD-based numerical simulation process is built to
calculate the drag coefficients. The fluid material is water-
liquid which is regarded as incompressible fluid with a density
0f998.2 kg/m?, and a dynamic viscosity of 1.003 x 10> Pas.
The k-w shear stress transport (SST) turbulence model is
adopted to solve the 3-D Reynolds-averaged Navier-Stokes
control equations. The magnitude of the inlet velocity and
the angle of attack are set to 1 m/s and 6°, respectively.
Besides, the pressure at the pressure outlet is set to be 0 Pa.
The convergence criterion is that the root-mean-square resid-
ual is less than 10> for each equation or the total number of
iterations reaches 500. The time for each simulation is about
20 min. Interested readers can refer to the literature (Li et al.
2018) for more details of the CFD-based numerical simulation
process.

Table 6 Values of the planform

parameters Notation ~ Values Description Notation  Values Description

L, 250 mm Distance between section l and2 ~ C, 225 mm  Chord length of section 4
L, 250 mm Distance between section 2 and 3 Cs 100 mm  Chord length of section 5
L; 500 mm Distance between section 3 and4 D, 225 mm  Offset of section 2

Ly 500 mm Distance between section 4 and 5 D, 450 mm  Offset of section 3

C, 1000 mm  Chord length of section 1 D; 675 mm  Offset of section 4

C, 675 mm Chord length of section 2 Dy 900 mm  Offset of section 5

C; 350 mm Chord length of section 3
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Table 7 Results for the drag coefficient problem of the underwater
glider
Statistic ~ Times(s) R’ NRMSE ~ NMAE
OK Mean 591.35 0.99 1.10e=03  3.47e—03
Std 9.35 1.64e-03  1.34e—04  5.78¢—04
KMIC  Mean 1.45 0.99 1.54e—03  4.50e—03
Std 3.49¢-02  6.45¢—04 3.82¢-05  5.10e—04
KPLS1  Mean 0.13 0.98 1.73¢=03  4.84e-03
Std 1.12¢02 3.84e—03 2.0le—04 9.62¢—04
KPLS2  Mean 0.29 0.99 1.49¢—03  4.20e—03
Std 1.56e—02 2.23e—03 1.30e-04  9.23e—04
KPLS3  Mean 1.16 0.99 1.40e—03  4.34e—03
Std 1.03 9.65¢-04  6.23e—05  1.09¢-03

The number of sample points is set to 350, which is ten
times the dimensionality. With the given number of training
points, five different training sets are obtained by Latin hyper-
cube sampling and used to construct five surrogates by each of
the five methods which are used in Section 4.2. The prediction
accuracy of the kriging models is evaluated with R*, NRMSE,
and NMAE at 500 testing samples. The average and standard
deviation of the three metrics over the five surrogates are
calculated to evaluate the statistical performance. The opti-
mizer settings for estimating the hyper-parameters are the
same as the parameters listed in Table 3.

The experimental results are shown in Table 7 and Fig. 13.
The mean values in Table 7 are shown in italics for ease of
comparison. It can be seen that the accuracy of these five
surrogates is comparable. However, the ordinary kriging re-
quires an average time of 591.35 s to training the model. In

contrast, the modeling time of KMIC and KPLS can be ig-
nored. In terms of modeling accuracy, ordinary kriging is the
best and KPLS1 is the worst. The accuracy of KMIC is slight-
ly worse than that of KPLS2 and KPLS3. It should be note
that the accuracy of KPLS is related to the number of principal
components. However, there is no rule for determining how
much number of principal components should be chose, if we
want to achieve a balance between model accuracy and
modeling efficiency. In contrast, KMIC is more simplicity.

5 Conclusion

In this article, a novel kriging modeling method (KMIC) is
developed for high-dimensional design problems. Before train-
ing the kriging model, we use the MIC to estimate relative
magnitude of hyper-parameters. Then we reformulate the max-
imum likelihood estimation problem to improve the modeling
efficiency. Based on this, KMIC only needs to optimize one
auxiliary parameter when estimating the hyper-parameters. For
ease of understanding, a geometric explanation about the
reformulated maximum likelihood estimation problem is pro-
vided and the g07 function with 10 variables is used to dem-
onstrate the efficiency of KMIC. Five representative numerical
test functions varied from 20-D to 80-D and an industrial ex-
ample with 35 variables is used to study the performance of
KMIC. Some conclusions can be drawn as follows.

1. Compared with the conventional kriging, a 99% saving of
time can be achieved using our approach. Therefore,
KMIC is an efficient kriging modeling method for high-

Fig. 13 Box-plots for the 35-D 600 =5
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dimensional problems when the kriging model needs to
be frequently constructed.

2. For the problems with 40 or more variables, KMIC is
even more accurate than the ordinary kriging with given
computational resources. Thus, we recommend KMIC for
tackling the design problems with more than 40 design
variables.

3. Compared with KPLS, KMIC is more competitive. Thus,
KMIC provides a new alternative way for improving the
modeling efficiency of kriging.

In our continuous research, the influences of sampling
strategies and sample size on the performance of KMIC will
be studied. Other verification functions and other types of
spatial correlation function will be used to further study the
performance of KMIC. Besides, developing some strategies to
improve the accuracy of KMIC is an interesting direction for
future work.

6 Replication of results
The main steps for constructing the proposed KMIC

model are presented in the Section 3.4 to help readers
understand better.

Table 8 Examples of commonly used spatial correlation functions
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Appendix: Examples of spatial correlation
functions

The proposed method (KMIC) combines kriging with maxi-
mal information coefficient and constructs a new maximum
likelihood estimation problem (Eq. 22). Then the number of
parameters we need to optimize when estimating hyper-
parameters is reduced to one. It seems that KMIC constructs
a new spatial correlation function which depends on only one
parameter. In this article, Gaussian exponential correlation
function is applied with the proposed method. For the other
spatial correlation functions, the proposed method is also suit-
able. Appendix Table 8 presents the most popular examples of
spatial correlation functions. Appendix Table 9 presents the
new KMIC spatial correlation functions based on the exam-
ples given in Appendix Table 8.

Spatial correlation functions ~ Expression

Number of
hyper-parameters
to estimate

Hyper-parameters ¢

Exponential

S
o
/\

=~

Generalized exponential

Gaussian exponential

g
o
/I\
B
M= 1 M= i M&
S
S

2
o
/I\

By

Spline d
IT s(&), (&) = § 1.25(1-¢,)°
k=1 0 &=l

1- 155k+3ogk 0<€,<0.2
02 < & < 1, where §; 70k\xk x|

01, ..., 04 d
01, 0 p d+1
01, ..., 04 d
01, ..., 04 d

o)

Table 9  Examples of KMIC spatial correlation functions

Spatial correlation functions ~ Expression

New hyper-parameters ~ Number of hyper-parameters to estimate

Exponential

exp( Z/\wk|r 7x \)

Generalized exponential

A 1
AP 2
A 1
A 1

exp( Z |xk =/ ‘ )
. . !
Gaussian exponential < ; |xk _xk ‘
Spline 4 1-15¢7 + 303, 0<€,<0.2
H (&)ss(&) = { 125(1-¢,)°  ,02<¢& <1,
- 0 6=l
where &, = )\wk\xﬁ,i)—x,&/ )\
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