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Abstract
An innovative strategy of the design of experiments (DoE) is proposed to reduce the number of calls of the
performance function in the kriging-based structural reliability analysis procedure. Benefitting from the local
uncertainty provided by the kriging model and the joint probability density function of performance function values
of untried points derived in this research, the epistemic variance of the target failure probability is calculated
approximately. The variance is treated as the accuracy measurement of the estimated failure probability. The next
best point is defined as the untried point that can minimize the variance of failure probability in the sense of
expectation which is computed by Gauss–Hermite quadrature. The basic idea of the proposed strategy is to refresh
the current DoE by adding the next best point into it. The candidate points of the next best one are randomly
generated by Markov chain Monte Carlo method from the kriging-based conditional distribution. A structural
reliability analysis procedure is introduced to apply the proposed DoE strategy, whose stopping criterion is con-
structed mainly on the basis of the coefficient of variation of failure probability. To validate the efficiency of the
proposed DoE strategy, three examples are analyzed in which there are explict and implict performance function.
And, the analysis results demonstrate the outperformance of the innovative strategy.

Keywords Kriging . The stepwise variance reduction strategy . Structural reliability analysis . Epistemic uncertainty of failure
probability

1 Introduction

As is known to all, the most important purpose of struc-
tural reliability analysis is to estimate the reliability or
the failure probability of a mechanical structure whose
safety is influenced by kinds of randomness of input
variables. This research focuses on the estimation of
failure probability, which is defined as follows:

Pf ¼ E IG≤0 Xð Þð Þ ¼ ∫IG≤0 xð Þ f xð Þdx ð1Þ

G(x) is the performance function of a studied structure. The
random vectorX = [X1, X2, ...,XM]

Twith joint probability den-
sity function f(x) contains all input variables with uncertainty.
The performance function divides the whole space of X into
the safe domainG(x) > 0 and the failure domainG(x) ≤ 0. IG ≤

0(x)is the failure indicator function defined as (2):

IG≤0 xð Þ ¼ 0 G xð Þ > 0
1 G xð Þ≤ 0

�
ð2Þ

The multidimensional integral is not easy to perform be-
cause the performance function of interest is usually implicit
and time-consuming to calculate in engineering. As the devel-
opment of computer codes, complex numerical models are
widely employed to define a performance function with a sca-
lar or vector output, which enhances the estimate of failure
probability. Nowadays, three kinds of methods are used to
approximately perform (1), i.e., random simulation methods,

Responsible Editor: Raphael Haftka

* Mingang Yin
yinma@mail.neu.edu.cn

Jian Wang
jianwang8805@163.com

1 College of Mechanical and Automation, Northeastern University,
No. 3-11, Wenhua Road, Heping District, Shenyang, People’s
Republic of China

https://doi.org/10.1007/s00158-019-02337-0
Structural and Multidisciplinary Optimization (2019) 60:2493–2509

/Published online: 255 2019July5

http://crossmark.crossref.org/dialog/?doi=10.1007/s00158-019-02337-0&domain=pdf
http://orcid.org/0000-0002-7155-1585
mailto:yinma@mail.neu.edu.cn


the first- and second-order reliability method (FORM and
SORM), and surrogate model-based methods.

Random simulation methods, including Monte Carlo
simulation (MCS) (Sobol and Tutunnikov 1996; Gaspar
et al. 2014; Zhang et al. 2010), importance sampling
(Melchers 1990; Richard and Zhang 2007; Cornuet
et al. 2012), subset simulation (Au and Beck 2001; Au
2016), line sampling (Pradlwarter et al. 2007), etc.,
need to call a great deal of the performance function
to acquire accurate result, which is generally unafford-
able. The accuracy of FORM and SORM is undesirable
for engineering when the performance function is high-
ly nonlinear (Zhao and Ono 1999). In recent years, sur-
rogate models obtain much popularity (Bucher and
Most 2008; Kleijnen 2009; Bourinet et al. 2011;
Schueremans and Van Gemert 2005). The basic idea
of this kind of method is to construct an explicit expres-
sion based on the data from the design of experiments
(DoE) of computer codes, and the explicit expression is
treated as a surrogate of the real performance function
to estimate the failure probability (Bucher and Most
2008). An accurate surrogate is essential to guarantee
the accuracy of the estimated failure probability.
Several surrogate models including polynomial re-
sponse surface (Gayton et al. 2003), spare polynomial
expansion (Blatman and Sudret 2008; Yu et al. 2012),
kriging(Kaymaz 2005; Shimoyama et al. 2013; Bae
et al. 2018), support vector machine (Song et al. 2013;
Alibrandi et al. 2015), neural network (Schueremans
and Van Gemert 2005), etc. are available for structural
reliability analysis.

This research focuses on the kriging model with two
characteristics that are indeed valuable for structural
reliability analysis. The first of them is that the kriging
model is a method of interpolation, which makes it pos-
sible to improve the local accuracy of the surrogate
model. The second is that it provides both the best lin-
ear unbiased estimator and the so-called kriging vari-
ance which quantifies the local accuracy of the kriging
model or the local epistemic uncertainty of the perfor-
mance function value. (Jones et al. (1998)) applies
kriging to global optimization and constructs the ex-
pected improvement function based on the statistical
information mentioned above to acquire an explicit
tradeoff between improvement of the global accuracy
of the kriging model and exploration of the area of
interest. During structural reliability analysis, (1) indi-
cates that only the sign of G(x) or the limit state G(x) =
0 matters to the estimate of failure probability. To ob-
tain a global fitting of the limit, Bichon et al. (2008)
proposes the expected feasibility function (EFF) to
quantify the degree that a point satisfies G(x) = 0 in
the sense of expectation and refresh DoE iteratively

by adding the maximum point or the next best point
into it until the maximum value of EFF is lower than
a given threshold. After ref. (Bichon et al. 2008),
Bichon et al. (Echard et al. 2011, 2013), Lv et al.
(2015), and Yang et al. (2015a), Yang et al. (2015b)
construct learning function U, learning function H,
and the expected risk function, respectively. These
“learning functions” for reliability analysis measure a
point by taking only the statistical information provided
by the kriging model into consideration and ignoring its
importance or the joint PDF f(x). The next best point
from the above-mentioned learning functions may lo-
cate in the area of little significance for the target fail-
ure probability. The least improvement function (LIF)
in ref. (Sun et al. 2017) is designed to quantify how
much the fraction of the domain with uncertain signs
could be minished at least in terms of expectation if
adding a point into the current DoE. It provides the
tradeoff between the local uncertainty of signs and the
joint PDF. The hypotheses formed during the derivation
of LIF make its efficiency vary with problems.

To further reduce the number of calling the performance
function during structural reliability, this research proposes
an innovative DoE strategy named as stepwise variance
reduction strategy. The epistemic variance of the target
failure probability is proposed as the accuracy measure-
ment of the estimated failure probability and calculated
approximately. The basic idea of the innovative strategy
is to research the next best point that can minimize the
epistemic uncertainty of the target failure probability or
improve the accuracy of the estimate of failure probability
most in the sense of expectation and refresh DoE by adding
the next best point into it. Markov chain Monte Carlo
(MCMC) method is employed to generate approximately
i.i.d. (independent and identically distributed) candidates
of the next best point from the domain that contributes
most of the epistemic uncertainty of failure probability.
Gauss–Hermite quadrature is used to approximate the ex-
pectation of the variance of failure probability after adding
a given point into the current DoE. The next best point is
defined as the one that minimizes the expectation. A reli-
ability analysis procedure is introduced to apply the pro-
posed DoE strategy. In the introduced procedure, the stop-
ping criterion is based on the idea that the estimated failure
probability meets the requirement of accuracy if the coef-
ficient of variation of failure probability is smaller than a
given threshold.

The remainder of this paper is organized as follows.
Section 2 reviews the theory of the kriging model brief-
ly and derives the joint PDF of the performance func-
tion values of untried points in detail, which is the key
to the approximation of the epistemic variance of fail-
ure probability. The proposed strategy is constructed in
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Sect. 3 and applied in Sect. 4. Section 5 studies three
examples to validate the efficiency of the proposed
strategy. Section 6 is the conclusion.

2 Theory of the kriging model

2.1 Review of the kriging model

In the framework of the kriging model, the target perfor-
mance function G(x) is treated as a realization of a
Gaussian process. G(x) consists of two parts:

G xð Þ ¼ gT xð Þβþ z xð Þ ð3Þ
where g(x) is a scalar or multi-variable polynomial gen-
erally. Suitable basic functions benefit the accuracy of
the kriging model especially when the number of points
in DoE to build the kriging model is small. β is the
coefficient vector of g(x). It is unknown and estimated
with generalized least squares. gT(x)β is the determinis-
tic part of G(x), while z(x) is the stochastic part which is
a realization of a stationary Gaussian process with zero-
mean and constant variance (σ2). The covariance func-
tion of z(x) is defined as follows:

Cov z xið Þ; z x j
� �� � ¼ σ2R xi; x j; θ

� � ð4Þ

where R(xi, xj; θ) denotes the correlation between z(xi)
and z(xj) and θ is an undetermined parameter vector.
Among several correlation functions, the Gaussian cor-
relation function performs well when dealing with non-
linear performance function. Therefore, it is employed in
this research.

R xi; x j; θ
� � ¼ ∏

M

m¼1
exp −θ mð Þ x mð Þ

i −x mð Þ
j

� �2� �
ð5Þ

where θ(m) and x(m)i are the mth elements of θ and xi,
respectively.

Given a DoE containing N points SDoE = [x1,x2,…,xN] and
performance function values of these points Y = [y1, y2,…, yN]

T,
the best linear unbiased estimator of G(x) for an untried point x
is written as follows:

μG;N xð Þ ¼ bG xð Þ ¼ gT xð Þbβþ r xð ÞTγ ð6Þ

where

bβ ¼ GTR−1G
� �−1

GTR−1Y ð7Þ
γ ¼ R−1ðY−GbβÞ ð8Þ
r xð Þ ¼ R x1; x; θð Þ; :::;R xN ; x; θð Þ½ �T ð9Þ

R ¼ R xi; x j; θ
� �� �

N�N ð10Þ
G ¼ g x1ð Þ; g x2ð Þ; :::; g xNð Þ½ �T ð11Þ

The mean square error of bG xð Þ or the so-called kriging
variance is

σ2
G;N xð Þ ¼ bσ2

1þ uT xð Þ GTR−1G
� �−1

u xð Þ−rT xð ÞR−1r xð Þ
� �

ð12Þ
where

bσ2 ¼ 1

N
ðY−GbβÞTR−1ðY−GbβÞ ð13Þ

u xð Þ ¼ GTR−1r xð Þ−g xð Þ ð14Þ

The subscript N in (6) and (12) denotes the number of
points in DoE.

In the framework of Gaussian process,G(x) is treated as an
epistemic random variable and subject to normal distribution.

G xð Þ∼N μG;N xð Þ;σ2
G;N xð Þ

� �
ð15Þ

Equation(15) provides the epistemic uncertainty (or
the conditional distribution) of G(x) on the condition of
SDoE and Y, which makes it possible to quantify the
local accuracy of the kriging surrogate model. Most of
the kriging-based DoE strategies for reliability analysis,
optimization, global sensitivity analysis, etc. are based
on the statistical information provided by (15) (Jones
et al. 1998; Bichon et al. 2008; Echard et al. 2011; Lv
et al. 2015; Yang et al. 2015b; Sun et al. 2017). To find
an optimal θ, both cross-validation and maximum like-
lihood estimation are available. The core issue of this
article is how to use the Gaussian process instead of
improving it, so the model-form uncertainty is ignored.
The latter is used in this research.

bθ ¼ argmax
θ

ð−N lnðbσ2Þ−ln det Rð Þ½ �Þ ð16Þ

2.2 The joint distribution of the performance function
values of untried points

According to the information shown by (15), the local un-
certainty of any untried point x can be measured, which is
far from enough for reliability analysis application. The
estimated performance function values of huge number of
untried points are needed to determine an estimation of the
target failure probability, and any two of the untried points
have correlation. This research is interested in the joint

distribution of YU ¼ G xU;1
� �

;G xU;2
� �

; :::;G xU;NU

� �	 
T
of

an untried sample of points SU ¼ xU;1; xU;2; :::; xU;NU
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which may be helpful to construct a global accurate mea-
surement of the kriging model or an uncertain quantifica-
tion of a kriging-based estimation of failure probability.

To derive the joint PDF of YU ¼ G xU;1
� �

;G xU;2
� �

; :::;
	

G xU;NU

� ��T , a preparatory theorem is necessary and shown
as follows:

Theorem 1: Yt = [Y1, Y2, ...., Yh]
T is a multivariate normal

distributed vector with mean vector μ and covariance ma-

trixΣ. Y 1 ¼ Y 1; :::; Yk1½ �T and Y 2 ¼ Yk1þ1; :::; Yk½ �T are
two sub-vectors of Yt and satisfy (17),

Y 1∼N μ1;Σ11ð Þ and Y 2∼N μ2;Σ22ð Þ ð17Þ
where

Σ1 ¼ Σ11 Σ12

Σ21 Σ22

� �
and μ ¼ μ1

μ2

� �
ð18Þ

Σ12 ¼ E Y 1−μ1ð Þ Y 2−μ2ð ÞT
h i

ð19Þ

Σ21 ¼ E Y 2−μ2ð Þ Y 1−μ1ð ÞT
h i

ð20Þ

Suppose that vector y2 is a realization of Y2. Then, the
conditional distribution of Y1 is shown as follows:

Y 1jy2∼N μ1⋅2;Σ11⋅2ð Þ ð21Þ
where

μ1⋅2 ¼ μ1 þΣ12Σ
−1
22 x2−μ2ð Þ ð22Þ

Σ11⋅2 ¼ Σ11−Σ12Σ
−1
22Σ21 ð23Þ

Proof: Construct an auxiliary vector W,

W ¼ W1

W2

� �
¼ AY t ¼ I k1 −Σ12Σ

−1
22

0 Ik−k1

� �
Y 1

Y 2

� �
ð24Þ

It can be derived from (25),

W1∼N μ1−Σ12Σ
−1
22μ2;Σ11⋅2

� � ð25Þ

var Wð Þ ¼ AΣAT ¼ Σ11⋅2 0
0 Σ22

� �
ð26Þ

Therefore, W1 and W2 are independent with each other.
Then, the joint PDF of W can be written as

f W wð Þ ¼ f W1
w1ð Þ⋅ f W2

w2ð Þ ð27Þ

One can notice,

f Y t
ytð Þ ¼ f W wð Þ⋅jAj ¼ f W wð Þ ð28Þ

Now taking (25), (27), and (28) into account, the condi-
tional PDF of Y1 is

f Y 1jy2 y1ð Þ ¼ f Y yð Þ
f Y 2

y2ð Þ ¼
f Y yð Þ

f W2
w2ð Þ ¼ f W1

w1ð Þ ð29Þ

f W1
w1ð Þ ¼ 2πð Þ−k1=2 Σ11⋅2j j−1=2exp

−
1

2
w1−μ1−Σ12Σ

−1
22μ2

� �T
Σ−1

11⋅2 w1−μ1−Σ12Σ
−1
22μ2

� �� �

¼ 2πð Þ−k1=2 Σ11⋅2j j−1=2exp −
1

2
y1−μ1⋅2ð ÞTΣ−1

11⋅2 y1−μ1⋅2ð Þ
� �

ð30Þ

Hence, it can be concluded as follows:

Y 1jy2∼N μ1⋅2;Σ11⋅2ð Þ ð31Þ

Prove up.
Theorem 2: X is the input vector of a studied mechanical

structure. Given SDoE = [x1,x2,…,xN] and Y = [y1,y2,…,yN]
T,

construct the kriging model (6) and (12) based on the theory
in Sect. 2.1. SU ¼ xU;1; xU;2; :::; xU;NU

	 

contains NU untried

p o i n t s b e l o n g i n g t o t h e X s p a c e , a n d YU ¼
G xU;1
� �

;G xU;2
� �

; :::;G xU;NU

� �	 
T
is the performance func-

tion values with respect to SU. The vector YU on the condition
of Y = [y1,y2,…,yN]

T is subject to multivariate normal distribu-
tion.

YUjY∼N μU;ΣUð Þ ð32Þ

where

μU ¼ μG;N xU;1
� �

;μG;N xU;2
� �

; :::;μG;N xU;NU

� �	 
T
¼ GUbβþ rTUR

−1 Y−GbβÞ� ð33Þ

ΣU ¼ σ2 RU þ uTU GTR−1G
� �−1

uU−rTUR
−1rU

� �
ð34Þ

RU ¼ R xU;m; xU;n; θ
� �� �

NU�NU
ð35Þ

rU ¼ R xn; xU;m; θ
� �� �

N�NU
ð36Þ

uU¼GTR−1rU−GT
U ð37Þ

GU xð Þ ¼ g xU;1
� �

; g xU;2
� �

; :::; g xU;NU

� �	 
T ð38Þ

Proof: According to the theory listed in Sect. 2.1, the per-
formance function G(x) is treated as a realization of a
Gaussian process with mean function gT(x)β and covariance
function σ2R(⋅, ⋅ ; θ). And, [SU, SDoE] is a finite set of points
c o n t a i n e d i n t h e X s p a c e . T h e r e f o r e , YA ¼
G xU;1
� �

; :::;G xU;NU

� �
; y1;…; yN

	 
T
is subject to multivariate

normal distribution if the values of yn (n = 1,…,N) are not
calculated.
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YAjβ∼N μA;ΣAð Þ ð39Þ
where

μA ¼ GUβ
Gβ

� �
;ΣA ¼ σ2 RU rTU

rU R

� �
ð40Þ

Now given the realization of Y = [y1,y2,…,yN]
T, the

conditional distribution of YU on the condition of
Y = [y1,y2,…,yN]

T and β can be obtained according to
(21) in Theorem 1.

YUj Y ;βð Þ∼N μU⋅Y ;ΣU⋅Yð Þ ð41Þ
where

μU⋅Y ¼ GUβþ rTUR
−1 Y−Gβð Þ ð42Þ

ΣU⋅Y ¼ σ2 RU−rTUR
−1rU

� � ð43Þ

Notice that the coefficient vector β is still unknown and
needs to be estimated with generalized least squares as shown
by (7). And, according to the theory of generalized least
squares, one can easily derive the following:

ðβ−bβÞjY∼N 0;Σβð Þ ð44Þ
β1jY∼N 0; uTUΣβuU

� � ð45Þ

where

Σβ ¼ σ2 GTR−1G
� �−1 ð46Þ

β1 ¼ uTUðβ−bβÞ ð47Þ

It is obvious that

ΣU ¼ ΣU⋅Y þ uTUΣβuU ð48Þ

Taking (41), (44), and (45) into consideration, the condi-
tional PDF of YU ( f YUjY yUð Þ ) on the condition of

Y = [y1,y2,…,yN]
T can be derived as follows:

f YUjY yUð Þ∝∫ f YUjY ;β yUð Þ⋅ f βjY βð Þdβ ¼ ∫ f YUjY ;β1
yUð Þ⋅ f β1jY β1ð Þdβ1

∝∫exp −
1

2
yU−μU⋅Yð ÞTΣ−1

U⋅Y yU−μU⋅Yð Þ
� �

exp −
1

2
βT
1 uTUΣβuU
� �−1

β1

� �
dβ1

¼ ∫exp −
1

2
yU−μUð Þ þ β1½ �TΣ−1

U⋅Y yU−μUð Þ þ β1½ � þ βT
1 uTUΣβuU
� �−1

β1

� �� �
dβ1

ð49Þ

Then,

f YUjY yU þ μUð Þ∝∫exp −
1

2
yU þ β1ð ÞTΣ−1

U⋅Y yU þ β1ð Þ þ βT
1 uTUΣβuU
� �−1

β1

� �� �
dβ1

¼ ∫exp −
1

2
yTUΣ

−1
U⋅Y yU þ yTUΣ

−1
U⋅Yβ1 þ βT

1Σ
−1
U⋅Y yU þ βT

1 Σ−1
U⋅Y þ uTUΣβuU

� �−1� �
β1

h i� �
dβ1

¼ ∫exp −
1

2

yTUΣ
−1
U⋅Y yU−y

T
UΣ

−1
U⋅Y Σ−1

U⋅Y þ uTUΣβuU
� �−1h i−1

Σ−1
U⋅Y yU

þβT
2 Σ−1

U⋅Y þ uTUΣβuU
� �−1h i

β2

24 350@ 1Adβ2

∝exp −
1

2
yTUΣ

−1
U⋅YyU−y

T
UΣ

−1
U⋅Y Σ−1

U⋅Y þ uTUΣβuU
� �−1h i−1

Σ−1
U⋅YyU

� �� �
¼ exp −

1

2
yTU Σ−1

U⋅Y Σ−1
U⋅Y þ uTUΣβuU

� �−1h i−1
uTUΣβuU
� �−1� �

yU

� �
¼ exp −

1

2
yTU ΣU⋅Y þ uTUΣβuU

� �	 
−1
yU

� �
¼ exp −

1

2
yTUΣ

−1
U yU

� �

ð50Þ
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where

β2 ¼ β1 þ Σ−1
U⋅Y þ uTUΣβuU

� �−1h i−1
Σ−1

U⋅Y yU ð51Þ

Therefore, the conclusion is

f YUjY yUð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð ÞNU jΣUj

q exp −
1

2
yU−μUð ÞTΣ−1

U yU−μUð Þ
� �

ð52Þ

or

YUjY∼N μU;ΣUð Þ ð53Þ
Prove up.

Similar to (12), the epistemic uncertainty of σ2 is

neglected, and σ2 in (34) is replaced with σ̂2 estimated
as (13). Then,(32) provides the joint distribution of YU

on the condition of Y, while (15) focuses on the episte-
mic randomness of the performance function value of
one single point, which is the most important difference
between them. Besides, (32) coincides with (15) exactly
if NU = 1.

3 The stepwise variance reduction strategy
for structure reliability analysis

3.1 Estimate of the target failure probability

The kriging model performs as a surrogate of the target
performance function during the reliability analysis
procedure. According to the definition of failure prob-
ability, only the sign of G(x) matters. And, almost all of
points in X space are untried. For a given kriging mod-
el, the sign of G(x) is with epistemic uncertainty caused
by the randomness of G(x). Taking (15) into account,
one can obtain

P IG≤0 xð Þ ¼ 1ð Þ ¼ P G xð Þ≤0ð Þ ¼ π xð Þ ð54Þ

where

πN xð Þ ¼ Φ
0−μG;N xð Þ
σG;N xð Þ

� �
ð55Þ

πN(x)is the probabilistic classification function pro-
posed by Dubourg et al. (2013). Perform expectation
operation on both sides of (1),

bPf ;N ¼ E Pf
� � ¼ E ∫IG≤0 xð Þ f xð Þdx� �

¼ ∫E IG≤0 xð Þð Þ f xð Þdx ¼ ∫πN xð Þ f xð Þdx ð56Þ

P̂ f ;N defined by (56) is the kriging-based estimation
of the failure probability employed by this research.

Numerical methods of integration and methods of
simulation are available to perform the multivariate in-
tegration involved in (56). As πN(x) has an explicit ex-
pression and therefore can be calculated millions of
times in a short time, the most robust method is MCS
used here.

bP f ;N≈
1

NMC
∑
i¼1

NMC

πN xMC;i
� � ð57Þ

where{xMC, i} (i = 1,…,NMC) are i.i.d. (independent and
identically distributed) random points subject to f(x)
and NMC with the number of MCS points. It is widely
known that any foregone accuracy of (57) can be ob-
tained as the increase of NMC. The coefficient of varia-
tion of (57) is measured as follows:

δMC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var bP f ;N
� �q

bP f ;N

¼ 1bP f ;N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NMC
var πN Xð Þð Þ

r
≈

1

NMCbP f ;N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
i¼1

NMC

π2N xMC;i
� �

−NMCbP 2
f ;N

s
ð58Þ

3.2 Variance of the target failure probability

Because of the epistemic uncertainty of IG ≤ 0(x) and
G(x), Pf defined by (1) is also a random variable. Its
exact distribution is almost impossible to derive be-
cause it involves infinite number of Bernoulli distribut-
ed variables. Besides, any two of the variables have
correlation. This research tries to approximately calcu-
late the variance of Pf. According to the definition ofbP f ;N , it is the expectation of Pf. So, the variance of Pf

can be written as follows:

σ2
P f ;N ¼ var P f

� � ¼ E ðP f −bPf ;N Þ2
� �

ð59Þ

It is understandable that σ2
P f ;N quantifies the episte-

mic uncertainty of Pf as well as the accuracy of bPf ;N . A

smal l va lue of σ2
P f ;N or σP f ;N ind ica tes tha t the
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difference between Pf and bPf ;N is negligible with a large
probability, in the case of which the corresponding
kriging model is accurate enough and unnecessary to
improve. Otherwise, more points are needed to refresh
current DoE and construct a better kriging model.

Similar to the distribution of Pf, σ2
P f ;N is also difficult

to obtain. To handle the awkward situation, this re-

search replaces Pf and bP f ;N in (59) with their corre-
sponding MCS estimates.

σ2
P f ;N ¼ E ∫IG≤0 xð Þ f xð Þdx−∫πN xð Þ f xð Þdx� �2h i

≈E
1

NMC
∑
i¼1

NMC

IG<0 xMC;i
� �

−
1

NMC
∑
i¼1

NMC

πN xMC;i
� � !2

24 35
¼ 1

N2
MC

E ∑
i¼1

NMC

IG<0 xMC;i
� �

−πN xMC;i
� �� � !2

24 35
ð60Þ

The idea of (60) is to approximate the expectation
that involve infinite points with finitepoints. It is wor-

thy to emphasize that the MCS estimates of Pf and bPf ;N

are acquired from the same i.i.d. random points.
Equation(60) can be rewritten as follows:

σ2
P f ;N≈

1

N 2
MC

E ∑
i¼1

NMC

IG<0 xMC;i
� �

−πN xMC;i
� �� � !2

24 35
¼ 1

N2
MC

∑
i¼1

NMC

Φ UG;N xMC;i
� �� �

⋅Φ −UG;N xMC;i
� �� �þ

∑
i≠ j

E IG<0 xMC;i
� �

IG<0 xMC; j
� �� �

−πN xMC;i
� �

πN xMC; j
� �

2664
3775

¼ 1

N2
MC

∑
i¼1

NMC

πN xMC;i
� �

⋅ 1−πN xMC;i
� �	 
þ

∑
i≠ j

P G xMC;i
� �

≤0;G xMC; j
� �

≤0
� �

−πN xMC;i
� �

πN xMC; j
� �	 


2664
3775

ð61Þ

where

UG;N xð Þ ¼ j μG;N xð Þ
σG;N xð Þ j ð62Þ

The computation of P(G(xMC, i) ≤ 0, G(xMC, j) ≤ 0)
needs the joint distribution information of [G(xMC, i),
G(xMC, j)]

T, which has already been derived in Sect. 2.2
(see (32)). The approximation of σ2

P f :N shown in (61)

includes 2N2
MC−NMC terms. And, an engineering struc-

ture may be a rare event to fail. Therefore, (61) may be
out of computational affordability even though all of
the terms are with explicit expression. Actually, the ep-
istemic uncertainty of Pf mainly originates from the

domain of UG, N ≤ 2 where the signs of G(x) and Ĝ xð Þ
are different with considerable probability. Taking Ref.
(Echard et al. 2011) as reference, this research neglects
the probability that points in the domain of UG, N > 2
are wrongly predicted in terms of the sign of the per-
fo rmance func t ion and t rea t s IG < 0 (x ) a s non-
randomness if UG, N(x) > 2, that is to say (59) can be
approximated by the following way:

σ2
P f

¼ E ∫IG≤0 xð Þ f xð Þdx−∫πN xð Þ f xð Þdx� �2h i
≈E ∫UG;N xð Þ≤2IG≤0 xð Þ f xð Þdx−∫UG;N xð Þ≤2πN xð Þ f xð Þdx� �2h i

ð63Þ

So,(61) can be further simplified as follows:

σ2
P f
≈

1

N2
MC

∑
UG;N xMC;ið Þ≤2

πN xMC;i
� �

⋅ 1−πN xMC;i
� �	 
þ

∑
UG;N xMC;i

� �
≤2

� �
∪ UG;N xMC; j

� �
≤2

� � P G xMC;i
� �

≤0;G xMC; j
� �

≤0
� �

−πN xMC;i
� �

πN xMC; j
� �	 


2666664

3777775 ð64Þ

Equation(63) or (64) is the proposed approximation
of the variance of Pf, which is treated as the measure-

ment of the accuracy of bPf ;N defined by (56) or (57).
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3.3 The proposed stepwise variance reduction
strategy

This section constructs an innovative DoE strategy
named stepwise variance reduction strategy whose prin-
ciple is to find the point that can minimize the proposed

accuracy measurement of bPf ;N in the sense of expecta-
tion. The optimal point is named as the next best point.

To search the next best point, a new symbol is introduced
here.

σ̃2
P f ;N ¼ E ∫IG≤0 xð Þ f xjUG;N xð Þ≤2� �

dx−∫πN xð Þ f xjUG;N xð Þ≤2� �
dx

� �2h i

≈
1

N2
σ

∑
i¼1

Nσ

πN xσ;i
� �

⋅ 1−πN xσ;i
� �	 
þ

∑
i≠ j

P G xσ;i
� �

≤0;G xσ; j
� �

≤0
� �

−πN xσ;i
� �

πN xσ; j
� �	 


2664
3775 ð65Þ

where Sσ ¼ xσ;1; :::; xσ;Nσ

� �
is a sample of i.i.d. random

points subject to the conditional PDF f(x|UG, N(x) ≤ 2).
They can be generated with both MC method and
MCMC method. As the improvement of the quality of
the kriging model, the fraction of UG, N ≤ 2 tends to be
insignificant, which decreases the efficiency of MC
method. MCMC method performs well in sampling ran-
dom points from conditional distribution. This kind of
algorithm can generate approximate i.i.d. random points
from given conditional PDF if parameters involved are
appropriately set. Besides, the efficiency of MCMC
method does not degenerate seriously as the available
area of UG, N ≤ 2 becomes cabined. Therefore, this re-
search employs MCMC simulation to sample Sσfrom
f(x|UG, N(x) ≤ 2).

3.3.1 Candidates of the next best point

Obviously, σ̃2
P f ;N is proportional to the proposed ap-

proximation of σ2
P f ;N . So, the next best point can also

be defined as the one that can minimize σ̃2
P f ;N in the

sense of expectation. To simplify the search of the next
best point, two restrictions are formed as follows:

1. The uncertainty of Pf caused by the current domain
UG, N > 2 is limited and is still negligible if adding
point x into DoE and rebuilding the kriging model.

2. The next best point locates in the domain UG, N ≤ 2.

During searching the best next point, one needs to

compute the expectation of σ̃2
P f ;Nþ1 or σ2

P f ;Nþ1 by virtu-

ally adding a point into the current DoE and rebuilding
the kriging model several times. The first hypothesis
means that the uncertainties of Pf for the virtually new
kriging modelare still up to the domain UG, N ≤ 2 rather
than UG, N > 2. This hypothesis is difficult to prove and
may not be rigorous in theory, but it makes sense in
engineering and eases the computational cost of the
evaluation of a point. The second hypothesis shrinks
the searching area from the whole X space to UG, N ≤
2, which is understandable.

Gradient descent algorithms and swarm intelligence-
based algorithms may not be suitable for optimizing the
next best point. The domain UG, N ≤ 2 may multiply and
be connected, and have more than one local optimums
especially when the performance function has multi-
design points. Besides, when the kriging model is high-
ly accurate, the domain UG , N ≤ 2 is surely much
cabined and difficult to locate. To overcome above
awkward situations, a second best alternative is that
the candidates of the next best point reduce from the
domain UG, N ≤ 2 to Sσ. In other words, this research
treats the best point in Sσ as the next best one rather
than searches it in the whole UG, N ≤ 2.

3.3.2 The expectation of σ̃2
P f ;Nþ1

To quantify xσ;nσ (xσ;nσ∈Sσ ) in terms of the expectation of

σ̃2
P f ;Nþ1 after adding it into the current DoE, one needs to recon-

struct the krigingmodel based onSDOE ¼ x1; :::; xN ; xσ;nσ
	 


and

Y ¼ y1; :::; yN ;G xσ;nσ
� �	 
T

, where xσ;nσ is one of the candidate
points generated by MCMC method. The value of

σ̃2
P f ;Nþ1 xσ;nσ ;G xσ;nσ

� �� �
can be estimated as follows:

σ̃2
P f ;Nþ1 xσ;nσ ;G xσ;nσ

� �� �
≈

1

N 2
σ

∑
i¼1

Nσ

πNþ1 xσ;ijxσ;nσ ;G xσ;nσ
� �� �

⋅ 1−πNþ1 xσ;ijxσ;nσ ;G xσ;nσ
� �� �	 


þ ∑
i≠ j

P G xσ;i
� �

≤0;G xσ; j
� �

≤0jxσ;nσ ;G xσ;nσ
� �� �

− ∑
i≠ j

πNþ1 xσ;ijxσ;nσ ;G xσ;nσ
� �� �

πNþ1 xσ; jjxσ;nσ ;G xσ;nσ
� �� �

26666666664

37777777775
ð66Þ
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Obviously, σ̃2
P f ;Nþ1 depends on both xσ;nσ and

G xσ;nσ
� �

. It is worthy to emphasize that G xσ;nσ
� �

is a
normal distributed variable defined by (15) before
performing the structural model to calculate it. Given

xσ;nσ , σ̃2
P f ;Nþ1 xσ;nσ ;G xσ;nσ

� �� �
i s a r andom var i ab l e

whose randomness comes from the epistemic uncertain-

ty of G xσ;nσ
� �

. The expectation of σ̃2
P f ;Nþ1 xσ;nσ

� �
with

respect to G xσ;nσ
� �

is

E xσ;nσ
� � ¼ E σ̃2

P f ;Nþ1 xσ;nσ ;G xσ;nσ
� �� �h i

¼ ∫þ∞
−∞ σ̃

2
P f ;Nþ1 xσ;nσ ; y

� �
f G xσ;nσð Þ yð Þdy

ð67Þ

where

f G xσ;nσð Þ yð Þ

¼ 1ffiffiffiffiffiffi
2π

p
σG;N xσ;nσ

� � exp −
y−μG;N xσ;nσ

� �� �2
2σ2

G;N xσ;nσ
� � !

ð68Þ

Therefore, the next best point is in Sσ, which can minimize
(67).

xNþ1 ¼ argmin
xσ;nσ∈Sσ

E xσ;nσ
� � ð69Þ

3.3.3 About the calculation of (67)

Equation(67) can be rewritten as

E xσ;nσ
� � ¼ ∫þ∞

−∞ σ̃
2
P f ;Nþ1 xσ;nσ ; y

� �
f G xσ;nσð Þ yð Þdy

¼ 1ffiffiffi
π

p ∫þ∞
−∞ σ̃

2
P f ;Nþ1 xσ;nσ ;

ffiffiffi
2

p
σG;N xσ;nσ

� �
t þ μG;N xσ;nσ

� �� �
exp −t2
� �

dt

ð70Þ

where

t ¼ y−μG;N xσ;nσ
� �ffiffiffi

2
p

σG;N xσ;nσ
� � ð71Þ

Obviously, Gauss–Hermite quadrature is available to per-
form the integral of (70).

E xσ;nσ
� � ¼ 1ffiffiffi

π
p ∫þ∞

−∞ σ̃
2
P f ;Nþ1 xσ;nσ ;

ffiffiffi
2

p
σG;N xσ;nσ

� �
t þ μG;N xσ;nσ

� �� �
exp −t2
� �

dt

≈
1ffiffiffi
π

p ∑
j¼1

nG

wjσ̃
2
P f ;Nþ1 xσ;nσ ;

ffiffiffi
2

p
σG;N xσ;nσ

� �
v j þ μG;N xσ;nσ

� �� �
ð72Þ

where vj (j = 1,…,nG) denote the quadrature points and wj is
the weight associated with vj. As the growth of the number of
quadrature points nG, (72) is accurate enough to meet the
requirement of engineering.

3.3.4 The procedure of the proposed stepwise variance
reduction strategy

The main steps of the proposed stepwise variance reduction
strategy are summarized as follows:

Step 1. Generate Nσi.i.d. points (Sσ ¼ xσ;1; :::; xσ;Nσ

� �
)

approximately from the conditional PDF f(x|UG, N(x)≤ 2)
by MCMC method. Points in Sσ are candidates of the next
best one.
Step 2. For each point xσ;nσ∈Sσ

For each Gauss–Hermite quadrature point vj (j = 1,…,nG)
Construct the kriging model using SDOE ¼ x1; :::; xN ; xσ;nσ

	 

and Y ¼ y1; :::; yN ; yσ;nσ; j

h iT
.

yσ;nσ; j ¼
ffiffiffi
2

p
σG;N xσ;nσ

� �
v j þ μG;N xσ;nσ

� � ð73Þ

Compute σ̃2
P f ;Nþ1 xσ;nσ ; yσ;nσ; j

� �
according to (66).

Step 3. According to (72), calculate E xσ;nσ
� �

xσ;nσ∈Sσ

based on the results of step 2.
Step 4. Find the next best point that minimizes E xσ;nσ

� �
((69)).

In the proposed strategy, the only function of
MCMC method is to generate i.i.d. candidates of the
next best point from the given conditional PDF f(x|
UG, N(x) ≤ 2). In spite of efficiency, other random
simulation methods are potential to do this in the case
of guaranteeing that random points are independent
and identically distributed. If the sampling PDF is
not f(x| UG, N(x) ≤ 2), one needs to do some change
to (65) and other relative equations.
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4 Application of the proposed stepwise
variance reduction strategy

As illustrated above, the proposed strategy is designed
for structural reliability analysis. It performs as the

similar role with learning functions to find the next best
point with respect to the given criterion (Bichon et al.
2008; Echard et al. 2011). In theory, any kriging-based
procedure of structural reliability analysis involving se-
quential DoE strategy can employ the proposed strategy.

Table 1 Results of the series system with four branches

Method [δ] Ncall P̂ f P f ≈4:50� 10−3
� �

ε(%)

AK-MCS+U 0.05 54 4.51 × 10−3 0.25

0.03 54 4.51 × 10−3 0.25

0.01 58 4.51 × 10−3 0.19

AK-MCS+EFF 0.05 54 4.10 × 10−3 8.8

0.03 58 4.48 × 10−3 0.47

0.01 58 4.49 × 10−3 0.23

AK-MCS+LIF 0.05 42 4.67 × 10−3 3.9

0.03 50 4.48 × 10−3 0.38

0.01 58 4.44 × 10−3 1.3

AK-MCS+the proposed DoE
strategy

0.05 26 4.28 × 10−3 4.9

0.03 38 4.31 × 10−3 4.1

0.01 50 4.41 × 10−3 1.8

The adopted method 0.05 26 4.35 × 10−3 3.4

0.03 30 4.40 × 10−3 2.2

0.01 45 4.44 × 10−3 1.3

Fig. 1 The flow chart of the
stepwise variance reduction
strategy

Yin et al.2502



This research applies it to the procedure constructed in
ref. (Sun et al. 2017) to replace the learning function
called LIF. Besides, the stopping criterion of the reli-
ability procedure is also reconstructed. The new criteri-
on proposed below is mainly based on the variance of
Pf approximated in Sect. 3.2. The main steps of the
procedure which employs the proposed DoE strategy
and the new stopping criterion are summarized as
follows:

Step 1: Generate the initial DoE with N0 points
SDoE ¼ x1; :::; xN0½ � and run the model of studied

structure to calculate Y ¼ y1; :::; yN0

	 
T
. Latin hyper-

cube sampling (LHS) is used to produce SDoE.
Since abnormal distributed vector can be trans-
formed into normal one exactly or approximately,
this research supposes that the input random vector
X is subject to standard multivariate normal distri-
bution. The hypercube for generating SDoE is [− 5,5]M.
Step 2: Construct the kriging surrogate model based on
the current SDoE and Y.
Step 3: Approximate estimation of failure probabil-

ity (P̂ f ;N ) and the variance of Pf (σ2
P f ;N ) with

MCS according to (57) in Sect. 3.1and (64) in
Sect. 3.2, respectively. The sample of random

points for P̂ f ;N is the same with the one for σ2
P f ;N.

If P̂ f ;N and σP f ;N satisfy (74), terminate the reliabil-

ity analysis procedure and P̂ f ;N is the estimation of
the target failure probability that meets a given ac-
curate requirement. Otherwise, continue the proce-
dure to Step 4.

δN ¼ σP f ;NbP f ;N
< δ½ � ð74Þ

where[δ] is the threshold coefficient of variation of Pf.

Equation(74) means that the potential error of bP f ;N is negligi-
ble if the coefficient of variation of Pf (δN) is smaller than the
given threshold value ([δ]).

It is worthy to emphasize that this step is optional. Its main
purpose is to judge whether the kriging model constructed by
step 2 is accurate enough. Therefore, it may be unnecessary to
perform this step every iteration.

Step 4: Perform the proposed stepwise variance reduction
strategy to look for the next best point according to pro-
cedure introduced in Sect. 3.3.4. Add the next best point
into DoE and calculate its performance function value.
Return to step 2.

The flow chart is shown below. The left part of Fig.1 is the
main body of the stepwise variance reduction strategy, and the
left part is the proposed DoE strategy.

5 Examples for validation

Three benchmark examples are analyzed in this section.
Results from different methods are compared to validate the
efficiency of the proposed DoE strategy.

5.1 A series system with four branches

This section studies a series system that includes four
branches. Its performance function is explicit and has
two independent variables.

G xð Þ ¼ min

3þ 0:1 x1−x2ð Þ2− x1 þ x2ð Þ=
ffiffiffi
2

p
;

3þ 0:1 x1−x2ð Þ2 þ x1 þ x2ð Þ=
ffiffiffi
2

p
;

x1−x2ð Þ þ 6=
ffiffiffi
2

p
;

x2−x1ð Þ þ 6=
ffiffiffi
2

p
;

8>>><>>>:
9>>>=>>>; ð75Þ

where X = [X1,X2]
T is the input variable vector and sub-

ject to standard multivariate normal distribution. The
main purpose of employing this example is to visualize
the efficiency of the proposed DoE strategy in improv-
ing the accuracy of the kriging model and the estima-
tion of failure probability.

Apply the reliability analysis procedure introduced
in Sect. 4 to this example with Nσ = 3000. Results are
summarized in Table 1. Besides, results from some
other methods are also listed as comparisons. As most
of existing learning functions are not suitable for re-
liability procedure that generates candidates of the
next best point every iteration (such as the procedure
in Sect. 4), AK-MCS-based methods are employed
(Echard et al. 2011). AK-MCS+the proposed DoE strat-
egy means that the proposed DoE strategy is combined
with AK-MCS, in which the candidates of the next best
point come from a given sample of i.i.d. points rather
than MCMC method. AK-MCS+the proposed DoE strat-
egy here is to provide a fair comparison between the
proposed strategy in Sect. 3 and other learning func-
tions. Ncall denotes the number of calls to the real per-
formance function ((75)). [δ]is the threshold coefficient
of variation of Pf. Different values of [δ] are set to
investigate how much the proposed estimation of the
variance (or standard deviation) of Pf can reflect the

real accuracy of bPf and demonstrate the efficiency of
the proposed DoE strategy in terms of Ncall when the
requirement of accuracy is given. εinTable 1 presents
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the relative error of estimates of failure probability

when bP f satisfies (74).

Figure2 details the convergence process of bPf and
the decrement of δN ((74)) as the iteration of different
methods goes. The proposed strategy tends to give a
rough estimate of the target failure probability quickly
for this series system. Figure 3 compares estimated limit

states with the real one and visualizes the outstanding
of the proposed DoE strategy from the others. As
shown in Fig.3, the proposed strategy is able to provide
more accurate estimated limit state for a given Ncall, as
a result of which it needs lower number of calls to (75)
to meet a given accuracy requirement (Table 1 and
Fig.2).

Fig. 3 Comparison of methods in terms of estimated limit states

Fig. 2 Lines of P̂ f and δN from different methods
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According to the meaning of [δ] and the stopping

criterion of (74), the relative error of bP f with respect
to the referential value may be tolerable for engineering
applications if it is less than 3[δ]. As listed in Table 1,
the accuracy of methods based on the proposed strategy
is acceptable even though they may provide less accu-
rate estimation of Pf than other methods for a given
value of [δ] and regardless of Ncall. Figure 3 shows that
AK-MCS+U method focuses on only one of the four
branches firstly and then goes to another after the
kriging model is accurate enough in this area. The same
conclusion can be derived from refs. (Echard et al.
2011; Sun et al. 2017), too. This characteristic explains
the huge wave of the line of δN (Fig.2) from AK-MCS+
U.

5.2 A truss structure

This section analyzes a widely referenced truss structure
(Sun et al. 2017; Blatman and Sudret 2010; Roussouly
et al. 2013). As shown by Fig.4, it contains 23 bars.
Eleven of them are horizontal with random cross section
A1 and Young’s moduli E1, and the others are sloping
with random cross section A2 and Young’s moduli E2.
Six Gumbel distributed loads are applied on nodes of
horizontal bars. The distribution information of these
inputs is listed in Table 2. Similar with the first exam-
ple, all variables involved are mutually independent.

This structure is treated as failed if the deflection of node E
|s(x)| is larger than a given threshold which is 0.14 m in this
research to keep in accordance with ref. (Sun et al. 2017;
Blatman and Sudret 2010). Therefore, the performance func-
tion of the structure is defined as

G xð Þ ¼ 0:14−js xð Þj ð76Þ

Reference (Blatman and Sudret 2010) gives the ref-
erence value of failure probability, which is obtained by
IS with 500,000 simulations. References (Sun et al.

2017; Roussouly et al. 2013) indicate that the result is
credible.

Pf ≈3:45� 10−5 ð77Þ

Apply the reliability analysis method in Sect. 4 and
some other methods to this truss structure. Results are
all summarized in Table 3. The proposed DoE strategy
is not combined with AK-MCS, because the structure is
rare event to fail and AK-MCS+the proposed DoE strat-
egy needs too much time.

Figure 5 shows the lines of bP f and δN. FromFig.5,
several methods including AK-MCS-based methods can
roughly estimate the failure probability very soon, and
the advantage of the proposed DoE strategy is not ob-
vious. However, the proposed strategy needs less num-

ber of calls the real performance function to let bPf

satisfy the stopping criterion defined by (74) with dif-
ferent values of [δ].

5.3 A frame structure

Figure 6 shows a frame structure that contains 8 finite
elements. Table 4 lists properties of these elements in-
cluding Young’s modulus (E), Moment of Inertia (I),
and cross section (A). P1, P2, and P3 are three random
loads. Distribution information of involved variables is
summarized in Table 5. Unlike the above examples,

Fig. 4 The truss structure with 10
input variables (unit m)

Table 2 Distribution information of variables involved in Sect.5.2

Variable Distribution Mean Standard deviation

P1–P6 Gumbel 5 × 104 7.5 × 103

A1 Lognormal 2 × 10−3 2 × 10−4

A2 Lognormal 1 × 10−3 1 × 10−4

E1 Lognormal 2.1 × 1011 2.1 × 1010

E2 Lognormal 2.1 × 1011 2.1 × 1010
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some correlation exists between variables of this struc-
ture.

ρ Ai; I ið Þ ¼ 0:95 i ¼ 1; 2ð Þ ð78Þ

ρ Ai;Aj
� � ¼ ρ I i; I j

� � ¼ ρ Ai; I j
� � ¼ 0:13 i≠ jð Þ ð79Þ

ρ E1;E2ð Þ ¼ 0:9 ð80Þ

The rest of variables are mutually independent.
The performance function of this frame structure is defined

as (81).

G xð Þ ¼ 0:06−js xð Þj ð81Þ
wheres(x) denotes the top displacement as depicted in Fig.6.

To get a reference value of the failure probability,
1.3 × 106i.i.d. simulations are performed, and 154 of

random points are located in the failure domain.
Therefore, the reference value of the failure probability
is 1.185 × 10−4 whose coefficient of variation is 0.081.

Apply kriging-based methods mentioned in Sects. 5.1
and 5.2 to the frame structure. Table 6 summarizes all
results. As the reference value of Pf is not accurate

enough, the estimations of failure probability (bPf ) with
respect to all kriging models are obtained by testing the
sample of random points mentioned above to eliminate

the inaccuracy of the reference value. Lines of bPf and δN
are shown in Fig.7. It is obvious that the proposed strat-
egy outperforms other methods very much in terms of
this example.

From Fig.7, the stepwise variance reduction strategy

fails to make bP f satisfy (74) with fewer DoE points than
180 if [δ] equals to 0.05 or 0.03, and other learning
functions perform even worse. As this example has 21

Table 3 Results of the truss structure

Method [δ] Ncall P̂ f P f ≈3:45� 10−5
� �

ε(%)

AK-MCS+U 0.05 115 3.36 × 10−5 2.7

0.03 125 3.35 × 10−5 2.9

0.01 > 200 3.39 × 10−5 1.8

AK-MCS+EFF 0.05 155 3.26 × 10−5 5.5

0.03 175 3.21 × 10−5 6.9

0.01 > 200 3.36 × 10−5 2.5

The method proposed in ref.(Sun et al. 2017) 0.05 105 3.23 × 10−5 6.3

0.03 125 3.37 × 10−5 2.4

0.01 > 200 3.29 × 10−5 4.7

The adopted method 0.05 45 2.93 × 10−5 15

0.03 65 3.33 × 10−5 3.5

0.01 145 3.36 × 10−5 2.6

Fig. 5 Comparison of methods in terms of P̂ f and δN (LIF means the method proposed in ref. (Sun et al. 2017))
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random inputs, the variable space of importance to the
failure probability is too broad and most of points in the

vicinity of bG xð Þ ¼ 0 or G(x)) = 0 are with local inaccura-
cy. To remarkably reduce the value of δ, many more DoE
points are needed. Since, similarly with the series system
in Sect. 5.1, the performance function of the frame struc-
ture may contain multi-design points or the limit state
near the design point is approximated to be a hyper
spherical surface with its center at the origin. In those
cases, it is not easy to roughly fit the target limit state
quickly. The instability of AK-MCS+U and AK-MCS+
EFF also indicates the complexity of the problem.

6 Conclusion

A stepwise variance reduction DoE strategy for structur-
al reliability analysis is proposed in this research. Its

principle is to find the point that is able to minimize
the epistemic variance of Pf in the sense of expectation.
The variance of Pf is an accuracy measurement of the
estimation of failure probability defined by (56). It can
also be treated as a global accuracy measurement of the

Fig. 6 The frame structure (unit
m)

Table 5 Distribution information of variables involved in Sect.5.3

Variable Distribution Mean Standard deviation

P1(N) Lognormal 133.454 40.04

P2(N) 88.97 35.59

P3(N) 71.175 28.47

E1(Pa) Normal 2.1738 × 107 1.9152 × 106

E2(Pa) 2.3796 × 107 1.9152 × 106

I1(kgm
2) Truncated normal(0,∞) 8.1344 × 10−3 1.0834 × 10−3

I2(kgm
2) 1.1509 × 10−2 1.2980 × 10−3

I3(kgm
2) 2.1375 × 10−2 2.5961 × 10−3

I4(kgm
2) 2.5961 × 10−2 3.0288 × 10−3

I5(kgm
2) 1.0812 × 10−2 2.5961 × 10−3

I6(kgm
2) 1.4105 × 10−2 3.4615 × 10−3

I7(kgm
2) 2.3279 × 10−2 5.6249 × 10−3

I8(kgm
2) 2.5961 × 10−2 6.4902 × 10−3

A1(m
2) Truncated normal(0,∞) 3.1256 × 10−1 5.5815 × 10−2

A2(m
2) 3.7210 × 10−1 7.4420 × 10−2

A3(m
2) 5.0606 × 10−1 9.3025 × 10−2

A4(m
2) 5.5815 × 10−1 1.1163 × 10−1

A5(m
2) 2.5302 × 10−1 9.3025 × 10−2

A6(m
2) 2.9117 × 10−1 1.0232 × 10−1

A7(m
2) 3.7303 × 10−1 1.2093 × 10−1

A8(m
2) 4.1860 × 10−1 1.9537 × 10−1

Table 4 Finite element properties of the frame structure—Sect. 5.3

Elements Young’s modulus Moment of inertia Cross section

1 E1 I5 A5
2 E1 I6 A6
3 E1 I7 A7
4 E1 I8 A8
5 E2 I1 A1
6 E2 I2 A2
7 E2 I3 A3
8 E2 I4 A4
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kriging model. To assess it, the joint distribution of
performance function values of untried points is derived
in detail, which is the key to the approximation of the
variance of Pf and the proposed strategy. The strategy
performs the role similar to learning functions in reli-
ability analysis procedure to determine the next best
point among lots of candidates. A kriging-based reliabil-
ity analysis procedure is introduced, which is mainly
based on the proposed DoE strategy and the procedure
constructed in ref. (Sun et al. 2017). A new stopping
criterion is also proposed. Its basic idea is that one can
terminate the reliability analysis procedure if the coeffi-
cient of variation of Pf is less than a given threshold or

the potential error of bP f is negligible.
To validate the efficiency of the proposed DoE

strategy, three examples are analyzed. One of them
is a series system with explicit performance function.
The others are structures with implicit performance
functions. According to the results of the validation,
conclusion can be summarized as follows: (1) Most of
the next best points from the proposed strategy are
located in the area of importance. It can roughly es-
timate the target failure probability and the target lim-
it state quickly. (2) The stepwise variance reduction

strategy does well when dealing with problems with
multi-design points, implicit and nonlinear perfor-
mance function, and high-dimensional input vector.
(3) The proposed stopping criterion has understand-
able meaning and is able to terminate the reliability
analysis procedure timely according to the accuracy
requirement. (4) If it takes a few hours or more to
simulate a model once, the proposed DoE strategy
will have some advantages. Besides, the decrement
of δN is log-linear generally if the proposed DoE
strategy is employed in a reliability analysis proce-
dure, which may be useful for further simplifying
the reliability analysis steps and releasing computa-
tional burden.
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Fig. 7 Lines of P̂ f and δN from different methods

Table 6 Results of the frame structure

Method [δ] Ncall P̂ f P f ≈1:185� 10−4
� �

ε(%)

AK-MCS+U 0.05 > 150 – –

AK-MCS+EFF 0.05 > 150 – –

The method proposed in Ref. (Sun et al. 2017) 0.05 > 150 1.38 × 10−4 17

The adopted method 0.05 75 1.18 × 10−4 0.32

0.03 125 1.16 × 10−4 2
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