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Abstract
This paper presents a computational framework for multimaterial topology optimization under uncertainty. We combine
stochastic collocation with design sensitivity analysis to facilitate robust design optimization. The presence of uncertainty is
motivated by the induced scatter in the mechanical properties of candidate materials in the additive manufacturing process.
The effective elastic modulus in each finite element is obtained by an interpolation scheme which is parameterized with
three distinct elastic moduli corresponding to the available design materials. The parametrization enables the SIMP-style
penalization of intermediate material properties, thus ensuring convergence to a discrete manufacturable design. We consider
independent random variables for the elastic modulus of different materials and generate designs that minimize the variability
in the performance, namely structural compliance. We use a newly developed quadrature rule, designed quadrature, to
compute statistical moments with reduced computational cost. We show our approach on numerical benchmark problems
of linear elastic continua where we demonstrate the improved performance of robust designs compared with deterministic
designs. We provide the MATLAB implementation of our approach.

Keywords Multimaterial topology optimization · Additive manufacturing · Robust design optimization ·
Stochastic collocation

1 Introduction

Topology optimization is a computational tool for the
distribution of given material resources within a specified
spatial domain to achieve the maximum performance,
typically maximum stiffness. This technique was originally
introduced by Bendsøe and Kikuchi (1988), who sought
to optimize the structural layout, instead of structural
boundaries as is done in shape optimization. In the early
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stages, the main focus of topology optimization was on
solid mechanics (Sigmund and Torquato 1997); however,
this method has been significantly developed and extended
throughout the decades to various fields such as heat
conduction, fluid dynamics, and multiphysics problems
(Alexandersen et al. 2018; Li et al. 1999; Dilgen et al. 2018;
Lundgaard and Sigmund 2018; Behrou and Maute 2017;
Behrou et al. 2017).

Topology optimization researchers have long recognized
the importance of accounting for the manufacturing process
during design optimization, in order to allow the algorithms
to access to full feasible design space efficiently. Early
research on this topic focused on defining appropriate
design constraints that would ensure that the resulting
optimized designs remained feasible given the limitations
of the intended manufacturing process. Early efforts to
solve this problem include a 2012 study by Guest and
Zhu in which they used projection methods to enforce
geometry specifications corresponding to the casting and
milling manufacturing processes (Guest and Zhu 2012).
More recently, a 2016 paper by Vatanabe et al. presented
a unified projection-based method for generating optimized
designs that are compatible with a variety of manufacturing
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processes including extrusion, turning, casting, forging, and
rolling (Vatanabe et al. 2016).

In contrast to casting and milling, additive manufac-
turing (AM) enables the fabrication of very complex,
intricate geometries. This capability provides designers
with nearly full access to the space of potential designs;
however, each AM process comes with its own set of
specific limitations that must be considered when devel-
oping AM-compatible topology optimization algorithms
(Liu et al. 2018). One of the primary challenges when 3D
printing topology–optimized designs is the need for post-
processing in order to convert a rasterized representation of
the design geometry into a CAD model that can be pro-
totyped. Zegard and Paulino have introduced an algorithm
and software tool for automating this process and for ensur-
ing the connectedness of the design geometry using a
novel convolution (weighting) function for filtering densi-
ties (Zegard and Paulino 2016). Another pervasive challenge
in design for additive manufacturing is the issue of over-
hang. Because 3D printed parts are built layer-by-layer,
geometries that have large regions of overhang require the
use of extensive support material to be used as scaffolding.
It has been estimated that the printing of support mate-
rial accounts for 40–70% additive manufacturing costs (Liu
et al. 2018); therefore, reducing the amount of support
material required to manufacture a part can significantly
reduce both the time and cost of the manufacturing pro-
cess. A large number of studies have investigated various
approaches to addressing this issue using topology opti-
mization (Leary et al. 2014; Brackett et al. 2011; Mass and
Amir 2017), with several authors implementing projection-
based approaches (Gaynor and Guest 2016; Langelaar 2016,
2017; Qian 2017) similar to those mentioned above.

Other researchers have sought to develop algorithms that
optimally exploit the multimaterial capability of various
AM technologies. In a 2014 paper, Gaynor et al. pre-
sented a SIMP-style multimaterial topology optimization
method for 3D printed mechanisms (Gaynor et al. 2014).
In this approach, the material properties were computed
as a superposition of the respective properties the various
design material options. The method was validated experi-
mentally by prototyping a series of multimaterial compliant
mechanisms using the Polyjet 3D printing process. More
recently, Conlan-Smith and James presented a multiphase
topology optimization method for the design of functionally
graded compliant mechanisms (Conlan-Smith et al. 2017).
Here, they introduced a novel material interpolation scheme
in which the material properties could vary continuously
within a set of bounds corresponding to two base material
phases. The co-author, James, also published a 2018 paper
in which he introduced a method for performing multimate-
rial topology optimization in which the algorithm optimally

selects from a suite of candidate materials. This method was
designed to accommodate AM technologies in which the
printer offers a wide selection of material options, but can
include only two or three of these materials within a single
part.

The majority of existing research on design for AM
and multimaterial topology optimization focuses on deter-
ministic analysis and optimization. However, the design
performance varies due to inherent uncertainties in different
parameters such as loading, boundary conditions, mate-
rial properties, and geometry. The additive manufacturing
process presents unique challenges with regard to robust
design, since AM methods contain multiple unique sources
of uncertainty (Hu and Mahadevan 2017) that can dimin-
ish the performance of the manufactured part. Stochastic
design methods tackle this deficiency by incorporating
uncertainty analysis in the optimization process. Such meth-
ods fall into two main categories: robust design optimization
(RDO) (Bendsøe and Kikuchi 2016; De Gournay et al.
2008, Keshavarzzadeh et al. 2016, 2017), which minimizes
the performance variation, and reliability-based design opti-
mization (RBDO) (Torii et al. 2017; Martinez-Frutos et al.
2018) which constrains the failure probability (or failure
events). The computational complexity is the outstanding
challenge in these approaches, which require a considerable
number of expensive simulations to capture variations in the
response function.

In this work, we present a systematic topology optimiza-
tion approach which considers the scatter in the material
properties of candidate materials within an AM process.
We present our approach in the context of density-based
topology optimization, and focus on RDO to minimize the
performance variability in the optimal design. In particu-
lar, we take advantage of the stochastic collocation method,
which provides a generic tool for estimation of statistical
moments and their sensitivities (Xiu and Hesthaven 2005).
The key ingredient of the stochastic collocation method is
the numerical integration strategy for multivariate functions.
Sparse grids are a widely used tool for such integration
tasks, as they provide a level of computational efficiency
that exceeds that of other integration approaches such as
Monte Carlo or the standard tensor product of univariate
Gaussian quadrature (Lazarov et al. 2012). In this work, we
adopt a newly developed quadrature rule, called designed
quadrature, for integration of multivariate functions, which
has been shown to be superior to sparse grids integration
(Keshavarzzadeh et al. 2018).

The merits of our contribution are twofold. First, it
is one of the first few papers which consider a robust
design formulation for multimaterial topology optimization.
It is noteworthy to mention some of the similar works in
the literature at this juncture. In Xu et al. (2015), robust
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concurrent optimization of material and structure under
unknown-but-bounded load uncertainties is investigated in a
multiscale framework. Authors in Rostami and Ghoddosian
(2018) study the topology optimization for mechanical
systems with hybrid material and geometric uncertainties
using a memory-less transformation of random fields. In
Martı́nez-Frutos and Herrero-Pérez (2018), authors present
an approach for robust topology optimization of continuum
structures under loading and material uncertainties based
on an optimality criterion obtained from the stochastic
linear elasticity problem. In Zhao et al. (2015), authors use
stochastic collocation combined with full tensor product
grid and Smolyak sparse grid to transform the robust
formulation into a weighted multiple loading deterministic
problem at the collocation points. Authors in Shintani et al.
(2017) propose a density-based approach in conjuction with
a univariate dimension-reduction method combined with
Gauss-type quadrature sampling for robust multimaterial
topology optimization. While these works consider a
similar problem to the one we consider in this paper, we
believe our contribution is the first one which provides
a systematic and rigorous way for robust multimaterial
topology optimization. In particular, our approach combines
two well-established methods: (1) a SIMP-style approach
for multimaterial topology optimization and (2) a stochastic
collocation approach for uncertainty analysis. Second, we
successfully utilize the designed quadrature capability in
approximating statistical moments with reduced cost within
a robust design framework. We discuss the key steps of
the computational procedure for robust multiphase topology
optimization in detail. In addition, we provide the MATLAB
code which computes the quantities of interest such as the
statistical moments of compliance, volume, and mechanical
advantage for multiphase continua, which can be found in
the repository whose Uniform Resource Locator (URL) is
given in Keshavarzzadeh and James (2018). All gradient-
based optimization is performed using the method of moving
asymptotes (MMA), details of which can be found in
Svanberg (1987). Part of our implementation leverages the
fast routine for FEA in Andreassen et al. (2011), and the rest
of our implementation uses MATLAB vectorization, which
together comprise an efficient code for optimization under
uncertainty.

The rest of paper is organized as follows. Section 2
briefly describes the topology optimization method includ-
ing its deterministic and robust forms. The details of mul-
timaterial parameterization with uncertainty and sensitivity
analyses are presented in Section 3. Section 4 presents
numerical results for topology optimization of linear elastic
structures and a heat sink which involves a similar boundary
value problem. Finally, Section 5 contains the concluding
remarks.

2 Topology optimization: deterministic
and robust

2.1 Notation and setup

– We use bold characters to denote multivariate quantities
such as matrices and vectors; e.g., x indicates a
vector of variables in the domain of a multivariate
function.

– We denote sets with uppercase letters; e.g., � is a set of
events (or event space).

– We show the index for variable coordinates in
multivariate quantities via subscripts .i and the sample
realization of such quantities via superscripts .(j). For
example, y

(j)
i is the (j)th realization of variable yi .

– Suppose data (y
(j)

1 , y
(j)

2 , . . . , y
(j)
d )nj=1 is given. Each

datum is sampled from a joint distribution on a compact
space (y

(j)

1 , y
(j)

2 , . . . , y
(j)
d ) ∈ � ⊂ R

d , where � =
Y1 × . . . × Yd is a tensor product space with Yk ⊂ R.
The joint distribution is denoted by π(y) = πy1 ×
. . . × πyd

, where πyk
is the marginal distribution of

variable yk .

We solve a robust design optimization problem, which is
formulated based on the statistical moments of volume and
compliance (cf. Fig. 1). The uncertainty is considered in
the nominal elastic modulus of candidate materials in mul-
timaterial topology optimization. Our stochastic analysis
at each design iterate is comprised of several determinis-
tic simulations on particularly designed quadrature points
to compute the statistical moments of compliance, volume,
and their sensitivities (cf. Section 2). We also present a
numerical example considering thermal compliance with
multiple materials with uncertain thermal conductivity. Our
deterministic simulations follow a particular multimaterial
algorithm (James 2018), which will be briefly described in
Section 3.

2.2 Deterministic topology optimization

The topology optimization method distributes a given
material resource within a prescribed physical domain
to maximize structural performance. It is a constrained
optimization problem in which typically the objection
function is the structural compliance and the constraint is
the mass (or volume) of material. The optimization problem
in its general form can be written as

min
ρ

g0(ρ)

subject to gi(ρ) = 0 i = 1, . . . , ne

g̃i(ρ) ≤ 0 i = 1, . . . , ni (1)
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Robust Topology Optimization for Multiphase Continua

Gradient-Based Optimizer:

MMA

Filtering

,

Thresholding

Material

Interpolation

Scheme

Uncertainty Analysis: Quadrature Samples of Elastic Moduli

FEA/SA

FEA/SA

...
...

FEA/SA

Fig. 1 Flowchart for robust multiphase topology optimization. FEA and SA stand for finite element analysis and sensitivity analysis respectively

where g0 is the objective function, gi and g̃i are sets of
equality and inequality constraints, and ρ is the design
parameter, which, in this article, represents the volume
fraction (or relative material density) of each finite element.
The elastic response of the structure is characterized by
governing equation, which is typically obtained and solved
via finite element discretization of the boundary value
problem shown below.

⎧
⎨

⎩

∇.σ (x) + b(x) = 0 ∀x ∈ D

σ (x)n = n(x) ∀x ∈ �N

u(x) = 0 ∀x ∈ �D

(2)

where the physical domain D ⊂ R
d , d = 2, 3 is a bounded

and Lipschitz continuous domain with two sets of Dirichlet
�D and Neumann �N boundary conditions where �N ∩
�D = ∅ (cf. Figure 2). The above governing equations are

ΓN
D

ΓD

Fig. 2 Schematic representation of the spatial domain associated with
the topology optimization problem

presented in the form of a linear elliptic partial differential
equation
{ −∇.(C(x)∇u(x)) = f (x) ∀x ∈ D

u(x) = 0 ∀x ∈ ∂D
(3)

where C is the elasticity matrix. We note that the union of
the spatial domain with the traction boundary {D ∪ DN }
is denoted by D, and ∂D denotes the Dirichlet boundary
condition.

As standard procedures in density-based topology
optimization, we process the design variables throughout
the optimization iterations by filtering the densities to
impose a minimum length scale (Bruns and Tortorelli 2001)
and thresholding them to generate more distinct interfaces
(Guest et al. 2004). The filtered volume fractions are
expressed via the cone Kernel KF as

ρ̂(x) =
∫

RF
KF (x, x′)ρ(x′)dx′

∫

RF
KF (x, x′)dx′ (4)

where RF is the application area of the filter defined by rmin

and KF is denoted by

KF (x, x′) =
{

rmin − |x − x′| if |x − x′| ≤ rmin

0 if |x − x′| > rmin
(5)

The Heaviside step function is used to ideally threshold the
filtered volume fractions to ρmin and 1 where ρmin is the
lower bound for volume fractions i.e.

ρ̄ = H(ρ̂ − ρmin) =
{

1 if ρ̂ ≥ ρmin,

ρmin if ρ̂ = ρmin.
(6)
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However, to facilitate gradient-based optimization, a smooth
approximation of step function is used by Guest et al.
(2004),

ρ̄ = Hβ(ρ̂) = 1 − e−βρ̂ + ρ̂e−β, (7)

where the lower bound ρmin is adjusted for the selected
β such that ρmin = Hβ(ρmin). In this approximation, β

controls the smoothness of transition from zero to one, i.e.
limβ→∞ Hβ(ρ̂) = H(ρ̂ − ρmin).

We finally use the standard solid isotropic material
with penalization (SIMP) method to penalize intermediate
volume fractions (Bendsøe 1989, 1999); i.e., we compute
the global stiffness matrix K by using the processed
(thresholded-filtered) volume fractions ρ̄,

K =
ne∑

i=1

ρ̄i
κK i , (8)

where ne is the number of elements, κ = 3 is the
penalization parameter, and K i is the nominal element i

stiffness matrix.

2.3 Robust topology optimization

We formulate the optimization problem with respect to the
statistical moments of compliance and volume in robust
topology optimization,

min
ρ

Q(λ) = μ(ρ) + λσ(ρ)

subject to E[V (ρ)] ≤ V̄

ρmin ≤ ρ ≤ 1, (9)

where μ and σ are the mean and standard deviation of
compliance, E is the expected value operator, and λ is the
weight factor for the standard deviation in robust design.
We note that the compliance is dependent on the medium’s
elasticity. In this paper, we also formulate the optimization
problem with a resource constraint based on the amount of
material that can appear in the structure. We in particular
assume that stiffer materials are more heavy, or more costly
to procure, and therefore they are weighted more heavily
in the resource constraint (cf. Eq. (16)). Therefore, the
randomness in material resource and compliance is due to
the randomness in the uncertain parameters that influence
the elasticity of the medium.

Now, let (�,A,P) be a complete probability space,
where � is the event space, A ⊂ 2� is the σ -algebra,
and P is the probability measure. Considering the spatial
bounded domain D with boundary ∂D, we are interested
in the following problem: find a stochastic function, u ≡
u(y, x) : � × D → R, such that for P-almost everywhere

y ∈ �, the following equation (the parametric counterpart
of (3)) holds:
{ ∇.(C(y, x)∇u(y, x)) = f (x) ∀(y, x) ∈ � × D

u(y, x) = 0 ∀(y, x) ∈ � × ∂D
(10)

where y = {yi}di=1 denotes the vector of parameters
(or random variables), C is again the elasticity matrix
parameterized with the random variables, and d is the
number of random variables. Approximating the stochastic
function via Lagrange polynomials Lk(y) such that

û(y, x) =
M∑

k=1

u(y(k), x)Lk(y) (11)

where M is the number of collocation points and
denoting the left-hand side in (10) (top) as L(u) =
∇.(C(y, x)∇u(y, x)), the stochastic collocation approach
solves the following residuals

R(û(y))|y(k) = 0 ∀k = 1, . . . ,M (12)

where R(û) = L(û) − f (Xiu and Hesthaven 2005). Using
the property of Lagrange polynomials, this approach is
equivalent to solving the deterministic elliptic PDE problem
{ ∇.(C(y(k), x)∇u(y(k), x)) = f (x) ∀x ∈ D

u(y(k), x) = 0 ∀x ∈ ∂D
(13)

on collocation points {y(k)}Mk=1 to find coefficients
u(y(k), x). Once these coefficients are obtained, computing
the statistical moments of the solution (e.g., the expected
value) is straightforward:

E[û(x)] =
M∑

k=1

u(y(k), x)

∫

�

Lk(y)π(y)dy (14)

In this equation, π is the multivariate probability density
function. The evaluation of the above integral is typically
performed via quadrature rules, i.e.

∫

�
f (y)π(y)dy =

∑M
k=1 f (y(k))w(k) where w(k) are quadrature weights.

Using a quadrature rule, (14) reduces to

E[û(x)] =
M∑

k=1

u(y(k), x)w(k) (15)

It is clear that the accuracy of statistical moments depends
on the quadrature rule, and particularly the number
of quadrature points. A common integration rule for
multivariate functions is Sparse Grids, which provides a
requisite accuracy with smaller cost (i.e., a smaller number
of nodes) compared with other integration rules such as the
standard tensor product of Gaussian quadratures. However,
Sparse Grids suffer from negative weights which in some
cases may yield erroneous results. In addition, the number
of points is not optimal since the node coordinations are
dictated by the univariate Gaussian quadrature rule (Heiss
and Winschel 2008, 2007).
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In this work, we adopt a newly introduced quadrature
rule, designed quadrature (Keshavarzzadeh et al. 2018),
which circumvents these challenges. The designed quadra-
ture provides a set of optimized quadrature nodes with
positive weights which are considerably fewer than Sparse
Grids nodes and hence is more efficient for stochastic
collocation computations.

3Multimaterial topology optimization

3.1 Parametrization of the effective elastic modulus

The multiphase design approach selects a particular solid
phase with elastic modulus Ei from multiple solid phases
{Ei}nm

i=1 at each element where nm is the number of
candidate solid materials.1 This formulation allows design
of structures with optimal material properties in local
regions. In its basic form, the multiphase compliance
minimization subject to a mass constraint is expressed as an
integer program.

min
η

C(E(x))

subject to E(x) =
nm+1∑

i=1

Eiηi(x),

nm+1∑

i=1

ηi(x) = 1 ∀x ∈ D,

η(x) ∈ {0, 1}nm+1 ∀x ∈ D,
∫

D

E(x)dx ≤ Ē. (16)

where η = {ηi}nm+1
i=1 is a set of integer numbers taking the

binary values of 0 and 1 which parameterize the effective
elastic modulus E(x), and Ē is the upper limit for total
elastic modulus within the structure (equivalent to the total
mass or volume).

The problem in this present form is a combinatorial
problem similar to the original topology optimization prob-
lem. To relax these integer constraints, we adopt a similar
approach to SIMP and interpolate the effective elastic mod-
ulus from discrete elastic modulus values via smooth func-
tions. In particular, we follow the shape function approach in
James (2018) for three-phase design which we describe here
briefly.

Similar to standard density-based topology optimization,
which uses a design parameter ρi for each element, we

1The total number of phases is nm + 1, which includes void phase.

consider two design parameters ρi, i = 1, 2 per element
and apply the filtering and thresholding operators on both
variables, i.e. ρi → ρ̂i → ρ̄i , i = 1, 2 (cf. Section 2.2),
to find processed design variables ρ̄1, ρ̄2. We then compute
the activation functions ηi (smooth counterparts of integer
numbers in (16)) via

η1 = ρ̄
p

1 ρ̄
p

2 η2 = ρ̄
p

1 (1 − ρ̄2)
p

η3 = (1 − ρ̄1)
pρ̄

p

2 η4 = (1 − ρ̄1)
p(1 − ρ̄2)

p (17)

where p is a penalization constant used to penalize the
intermediate values of ρi ∈ [0, 1] similar to SIMP. The
number of activation functions is four which includes the
void phase in addition to three material phases. We set
the first elastic modulus value as the void phase such that
E1 = Emin. For instance, parameter values ρ̄1 = ρ̄2 = 1
activate (or model) the void phase, i.e. when η1 = 1.
Note that for p = 1, we recover the standard bilinear
finite element shape functions. For p > 1, these functions
are convex with respect to parameters ρi which ensures
a discrete solution for the optimization problem. Similar
to the standard SIMP method, we set p = 3 in our
numerical examples. Note that in cases where we have
more than three solid material candidates, the formulation
can be extended by adding additional design parameters
for each element. In general, the method can accommodate
up to nm candidate materials with nm = 2np − 1, where
np is the number of design parameters for each finite
element. For example, multiplying each of four ηi in
(17) with two multipliers, ρ̄

p

3 and (1 − ρ̄3)
p, where ρ̄3

denotes the third design parameter, results in eight activation
functions ηi which parameterize seven solid and one void
phases. Now that we have parameterized the design domain
with smooth functions, we solve the relaxed version of
(16) with constraints ρ1, ρ2 ∈ [0, 1] replacing η(x) ∈
{0, 1}nm+1 via the method of moving asymptotes (MMA).
MMA is a general nonlinear programming method which
generates and solves a sequence of convex subproblems
with improved feasible (or almost feasible) solutions of the
subject problem. Due to its generality and flexibility, it has
been widely used in the field of structural optimization
(Svanberg 1987).

3.2 Adjoint sensitivity analysis

In order to use efficient gradient-based optimizers, we need
to compute design sensitivities. The subject of sensitivity
analysis has been discussed extensively in the literature
(Tortorelli and Michaleris 1994); however, we briefly
discuss sensitivity analysis for a particular quantity of
interest, the mechanical advantage which will be used in
one of our numerical examples for designing a compliant
mechanism.
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The finite element equilibrium equations can be parti-
tioned and expressed in terms of free (f) and constrained (c)
degrees of freedom in the residual form

R =
[

Rf

Rc

]

=
[

Kff Kf c

Kcf Kcc

] [
uf

uc

]

−
[

F f

F c

]

=
[
0
0

]

(18)

where in particular Rf and Rc are the residuals of the static
equilibrium equation associated with free and constrained
degrees of freedom. To perform adjoint sensitivity analysis,
we express the quantity of interest Q in the augmented
Lagrangian form

Q(uf , F c, ρ) = Q(uf , F c, ρ) + λT
f Rf (uf , F c, ρ)

+λT
c Rc(uf , F c, ρ). (19)

Now, differentiating the augmented Lagrangian with respect
to ρ and using the chain rule results in appearance
of implicit derivatives duf /dρ and dF c/dρ which are
annihilated by solving the adjoint equations. The adjoint
solution yields

λc = − ∂Q

∂F c

,

λf = K−1
ff

[

Kcf

∂Q

∂F c

− ∂Q

∂uf

]

. (20)

Using the adjoint solutions in (19), the total sensitivity
reduces to

dQ
dρ

= ∂Q

∂ρ
+ λT

f

∂Rf

∂ρ
+ λT

c

∂Rc

∂ρ
. (21)

For the case where Q is the structural compliance, we can
deduce from (20) that λc = 0 and λf = −Kff F f = −uf ,
which yield ∂C/∂ρ = −uT (dK/dρ)u.

The mechanical advantage is defined as the ratio of the
reaction force (or output force F out) to the input force F in

i.e. QMA = F out/|F in| which can be simply defined with
respect to constrained forces as

QMA = ψT F c (22)

where ψ is an index vector with one nonzero entry
corresponding to the reaction force’s degree of freedom,
with magnitude ‖ψ‖ = 1/|F in|. Using these definitions, the
adjoint solutions are

λc = −ψ

λf = K−1
ff

[
Kf cψ

]
(23)

which subsequently yield the total derivative

∂QMA

∂ρ
=

[

λT
f

∂Kff

∂ρ
− ψT ∂Kcf

∂ρ

]

uf (24)

3.3 Stochastic primal and sensitivity analyses

The randomness is introduced in the elastic modulus of each
candidate solid material as

Ei = E0
i exp (1 + δyi) (25)

where E0
i is the nominal value for material i, δ is

a small number controlling the perturbation around the
nominal value, and yi ∼ N (0, 1) is a standard normal
random variable (Ghanem 1999). In this paper, we have
three phases of solid materials; therefore, we use a three-
dimensional quadrature rule for Gaussian variables y =
(y1, y2, y3). Corresponding to each quadrature value y(j)

which fixes {Ei}3
i=1, we compute a parametric quantity of

interest, e.g. compliance C(y(j)) and compliance sensitivity
∂C(y(j))/∂ρ (cf. Section 3.2).

We note that in this paper, we assume three distinct
materials with uncertain elastic moduli. Evidently, if the
number of material phases increases, the computational cost
grows factorially as more quadrature points are needed.
Using designed quadrature circumvents this issue to some
extent; however, the dependence of computational cost on
the number of variables remains significant. It is noted
that in practice where the realizations of the uncertain
parameter, e.g., a random field for elastic modulus are
available, utilizing dimension reduction techniques such
as principal component analysis is effective. Once the
reduced dimensions are determined, a similar quadrature
strategy can be used to compute the statistical moments
(Keshavarzzadeh et al. 2017).

It is also noted that in this paper, we only consider
the problem of robust design optimization and do not
optimize for failure mitigation. For reliability-based design
optimization, one needs to consider the probability of failure
to ensure the structure’s safety which requires development
of surrogate models. The computation of failure probability
and its sensitivity using polynomial surrogates is detailed in
Keshavarzzadeh et al. (2017).

Fig. 3 Design domain for the modified L-bracket
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Fig. 4 Distribution of candidate materials’ elastic moduli

Now that we have the quadrature samples of the primal
and sensitivity values, we compute their statistical moments
similar to (15). The mean and standard deviation of
compliance are

μ =
M∑

k=1

C(y(k))w(k),

σ =
[

M∑

k=1

C2(y(k))w(k) − μ2

] 1
2

, (26)

where w(k) is the quadrature weight. Similarly, the
sensitivities of statistical moments are obtained as

∂μ

∂ρ
=

M∑

k=1

∂C(y(k))

∂ρ
w(k),

∂σ

∂ρ
= 1

σ

[
M∑

k=1

C(y(k))
∂C(y(k))

∂ρ
w(k) − μ

∂μ

∂ρ

]

. (27)

Algorithm 1 summarizes the steps of robust multiphase
topology optimization for compliance minimization.

4 Numerical examples

4.1 Modified L-Bracket

In the first example we consider a modified L-bracket used
in Le et al. (2010) (cf. Fig. 3). In all numerical examples,
structures are subjected to plane stress conditions and the
candidate materials have nominal elastic moduli E0

1 =
100MPa,E0

2 = 200MPa,E0
3 = 300MPa, with Poisson’s

ratio ν = 0.3. The elastic modulus for the void phase is
chosen as Evoid = 1Pa. We also add a perturbation δ =
0.05 to the nominal value of the elastic moduli to introduce
uncertainty (cf. (25) and Fig. 4). The optimization starts
with uniform design variables ρ = 0.5, and the applied
force is fy = 100KN on both sides. Taking advantage of
the symmetry, we model only the half of the domain, which
is discretized using 80 × 80 bilinear square isotropic finite
elements.

0.5 1 1.5 2 2.5
108

0.5 1 1.5 2 2.5
108

0.5 1 1.5 2 2.5
108

Fig. 5 Optimized material distribution for the modified L-bracket associated with λ = 0.01 (left), λ = 0.1 (middle), and λ = 1 (right). The
numbers on the color bar indicate the effective nominal elastic modulus E0 (in Pa) at each finite element
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Fig. 6 Designed quadrature
nodes for integration of standard
normal weight function with
d = 3 variables and r = 6 total
polynomial order
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We define a normalized parametric volume

V (y) =

ne∑

e=1

nm+1∑

i=1
ηi(xe)Ei(y)

neEmax
(28)

where Emax = max {E0
i }3

i=1, ne is the number of elements,
and the penalization parameter is set to p = 1 for evaluating
ηi in this case. The expected value of normalized volume
serves as a constraint in the following optimization problem

min
ρ

μ(ρ) + λσ(ρ)

subject to E(V (ρ)) ≤ 0.3,

0 ≤ ρ ≤ 1. (29)

Figure 5 shows robust designs for different choices of
standard deviation weight, i.e., λ = 0.01, λ = 0.1, λ = 1.
Figure 6 shows the designed quadrature nodes that we use
to compute the statistical moments. This quadrature rule
integrates standard normal weight function with d = 3
variables and total polynomial order r = 6. The list of
nodes and weights for this quadrature rule is provided in the
Appendix.

To show the convergence with respect to these points,
we compare the probability density function (PDF) of com-
pliance associated with the first design in Fig. 7 obtained
with these points versus the PDF obtained using sparse
grids quadrature, with almost equal order. We compute
the PDF by developing a polynomial chaos expansion
(PCE) (Ghanem and Spanos 2002; Xiu and Karniadakis
2002) on standard normal variables (for a detailed dis-
cussion on generating PCEs, see Keshavarzzadeh et al.
(2017)). It is evident that the PDFs are in close agree-
ment; however, designed quadrature is comprised of M =
22 points, which is significantly smaller than the num-
ber of points required for sparse grids quadrature where
M = 39. Hence, designed quadrature reduces the compu-
tational cost of the uncertainty analysis by nearly half. We
also note that sparse grid nodes have one negative weight
associated with the center point (y1 = y2 = y3 = 0)

which may cause numerical issues in irregular functions
(Heiss and Winschel 2007).

We compare the robust design (RDO) with a determinis-
tic design (DET) by finding two designs with almost equal
volume. Figure 8 shows two designs which are visually dis-
tinguishable. We note that the RDO design uses more of the
strongest material and both designs converge to a discrete
solution. Their performance metrics are listed in Table 1
which clearly shows that the robust design yields a smaller
objective value. This result demonstrates that the RDO pro-
duces designs whose performance has less mean and less
variance and is therefore more robust to uncertainties asso-
ciated with the manufacturing process. On the other hand,
DET design, which is obtained from a deterministic opti-
mization using a nominal value for elastic moduli, exhibits
larger mean and larger variance when it is subjected to
stochastic simulations (with uncertain elastic moduli).

To further investigate the accuracy of the quadrature
approximate, we compute the mean and standard deviation

0 0.2 0.4 0.6 0.8 1 1.2
Compliance 10-5
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Fig. 7 Comparison of PDFs obtained with designed quadrature and
sparse grids using M = 22 and M = 39 simulations respectively
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Fig. 8 Topology designs for the
modified L-bracket: DET (left),
RDO (right) 0.5 1 1.5 2 2.5

108

0.5 1 1.5 2 2.5
108

of the compliance associated with robust optimal design
using the standard Monte Carlo analysis with 104 samples.
Table 2 lists the mean and standard deviation which shows
close agreement between two approaches.

4.2 Mechanical inverter

We consider the design of a mechanical inverter, whose
boundary conditions are given in Fig. 9 to demonstrate
the capability of the multiphase approach in designing a
structure that combines stiff regions that withstand and
transfer the load, with compliant regions for facilitation of
motion.

In this problem, we maximize mechanical advantage
subject to compliance and volume constraints. We impose
compliance constraints to prevent overly compliant designs.
The optimization problem is stated as

min
ρ

μ(QMA)

subject to E(V (ρ)) ≤ 0.2,

μ(F T
inu) + λσ(F T

inu) ≤ C̄1,

μ(F T
outu) + λσ(F T

outu) ≤ C̄2,

0 ≤ ρ ≤ 1. (30)

where μ and σ are the mean and standard deviation of
the mechanical advantage QMA = Fout/|Fin|, and the
compliance upperbounds are set to C̄1 = 7.5 × 104N · m

and C̄2 = 1.91 × 105N · m. The half domain is discretized
with 48 × 96 quadrilateral isotropic finite elements.

Figure 10 shows the optimized design for lambda values
λ = 0.1, λ = 0.5, and λ = 1. Similar to previous examples,

Table 1 Performance comparison between robust and deterministic
designs with λ = 0.01 for modified L-bracket

μ(N · m) σ(N · m) μ + λσ(N · m) E(V )

DET 1.48 × 103 1.30 × 103 1.49 × 103 0.3117

RDO 1.39 × 103 8.54 × 102 1.40 × 103 0.2962

we generate a deterministic design (DET) which has a
volume and compliance that is almost equal to that of the
robust design (RDO) with λ = 0.1. These designs are
shown in Fig. 11. Table 3 compares the performance of
the two designs, again showing the superiority of the RDO.
More precisely, the objective in this compliant mechanism
example was to maximize the mean of mechanical
advantage subject to constraining the mean and variance
of compliance to ensure enough stiffness in the structure.
Again, the RDO exhibits larger mean for the mechanical
advantage and smaller robust criteria, i.e. μ + λσ for
the compliance. This result indicates that the RDO design
has higher capability in motion transfer yet is more stiff
in the presence of uncertainty compared with the DET
design which does not consider the scatter in the elastic
moduli.

To better investigate the behavior of the optimiza-
tion procedure in these designs, we show the conver-
gence history of the stochastic quantities i.e. μ(F T

inu) +
λσ(F T

inu), μ(F T
outu) + λσ(F T

ouru),E(V ) and μ(QMA)

evaluated for design iterates of the RDO and DET designs
in Fig. 12. It is observed that while both designs exhibit con-
vergence, the DET iterations result in a less optimal value
for the mechanical advantage.

4.3 Heat sink design

The objective in this example is to design a robust
heat sink which minimizes the thermal compliance, i.e.
maximizes the heat transfer within the domain shown in

Table 2 Mean and standard deviation of compliance associated with
the robust optimal design using designed quadrature and Monte Carlo
samples

μ(N · m) σ(N · m)

Designed quadrature 1.39 × 103 8.54 × 102

Monte Carlo 1.37 × 103 8.66 × 102
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Fin

Fout

L

L

Fig. 9 Design domain for the mechanical inverter

Fig. 13. The governing equation and boundary conditions
for a steady-state heat conduction problem are
{ ∇.q(x) + b(x) = 0 ∀x ∈ D

T (x) = 0 ∀x ∈ �D,
(31)

where q is the thermal flux and T is the temperature. Similar
to (3), the elliptic PDE associated with (31) is expressed
as
{ −∇.(K(x)∇T (x)) = f (x) ∀x ∈ D

T (x) = 0 ∀x ∈ ∂D,
(32)

where K is the thermal conductivity matrix and f (x) is
the force function. After finite element discretization, the
temperature T ≡ T (x) is obtained from KT = F where

K =
∫

D

BT
KBdD

F =
∫

D

NT f dD (33)

0.5 1 1.5 2 2.5
108

0.5 1 1.5 2 2.5
108

Fig. 11 Topology designs for the mechanical inverter: DET (left),
RDO (right)

are thermal stiffness matrix and thermal load vector, with N

and B shape function matrix and its corresponding deriva-
tive matrix respectively. The thermal conductivity matrix K

in this case is given by

K = K(ρ)I 2, (34)

where I 2 is a 2 × 2 identity matrix and K(ρ) is the effective
thermal conductance parameterized with respect to ρ1 and
ρ2 at each element similar to effective elastic modulus as
described in Section 3.1.

We now solve a similar optimization problem to the first
numerical example (cf. (29)) where we use C(ρ) = T T F

as the thermal compliance. We use the same numerical
values for nominal thermal conductance as the previous
examples, i.e. K0

1 = 100W/(m · K),K0
2 = 200W/(m ·

K),K0
3 = 300W/(m · K),Kvoid = 10−6W/(m · K) where

W/(m · K) denotes watts per meter-Kelvin, with a per-
turbation of δ = 0.05 to introduce uncertainty. We use
a finite element mesh containing 80 × 80 quadrilat-
eral isotropic elements to discretize the design domain.
Figure 14 shows the robust heat sink designs for different λ

values. It is again observed that the most conductive mate-
rial is placed in the regions with concentrated thermal load.

Similar to previous examples, we compare DET and
RDO (with λ = 1) designs. Figures 15 and 16 show

Fig. 10 Optimized material
distribution for the mechanical
inverter associated with λ = 0.1
(left), λ = 0.5 (middle), and
λ = 1 (right)
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108
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Table 3 Performance comparison between robust and deterministic
designs with λ = 0.1 for mechanical inverter

μ(F T
inu) μ(F T

outu) E(V ) μ(QMA)

+λσ(F T
inu) +λσ(F T

outu)

DET 6.11 × 104 5.94 × 104 0.2012 0.473

RDO 7.49 × 104 4.46 × 104 0.2000 0.644

the optimized design and temperature field for DET and
RDO designs. We use the nominal heat conduction values
to compute temperature in the RDO case. Similar to
the structural topologies, the temperature distributions are
visually distinguishable between RDO and DETcases.

The performance metrics for the two designs are listed
in Table 4. The results show that the RDO design achieves
a smaller thermal compliance which is in accordance with
findings from previous examples.

5 Conclusion

We have presented a systematic approach for multiphase
topology optimization under uncertainty. The uncertainty in
the design is motivated by the scatter in the material prop-
erties of candidate materials that are used in additive man-
ufacturing processes. The optimization problem determines
the optimal material at each spatial point in the domain. The
robust design formulation ensures the optimal performance
of the design in the presence of uncertainty. We have per-
formed uncertainty analysis based on the well-established
stochastic collocation approach, which involves simulations

Fig. 13 Design domain for the heat sink. A zero temperature is
imposed at the boundary �D

on collocation points in the domain of uncertain parameters.
We used a novel quadrature strategy to alleviate the costly
uncertainty analysis. We demonstrated our approach via
numerical examples on linear elastic structures and a heat
conduction problem. It is shown that robust designs which
consider the scatter in material properties have improved
performance when compared with designs obtained using
standard deterministic methods.

The uncertainty in the local material properties reflects the
inherent variability of the additive manufacturing process, in
which multiple parameters can impact the effective proper-
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Fig. 12 Convergences histories of the stochastic quantities for the mechanical inverter optimization: DET (left), RDO (right)
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Fig. 14 Optimized material
distributions for the heat sink
design associated with λ = 0.1
(left), λ = 0.5 (middle), and
λ = 1 (right). The numbers on
the color bar indicate the
effective nominal thermal
conductivity K0 (in W/(m · K))
at each finite element

50 100 150 200 250 50 100 150 200 250 50 100 150 200 250

Fig. 15 Topology designs for
the optimized heat sink: DET
(left), RDO (right).

50 100 150 200 250 50 100 150 200 250

Fig. 16 Temperature
distribution for optimized heat
sink designs: DET (left), RDO
(right). The numbers on the color
bar indicate the temperature T

(in Kelvin) evaluated at the
centroid of each element

0.002 0.008 0.014 0.02 0.002 0.008 0.014 0.02

Table 4 Performance
comparison between the robust
and deterministic designs with
λ = 1 for heat sink

μ(W · m · K) σ(W · m · K) μ + λσ(W · m · K) E(V )

DET 6.64 × 10−3 5.88 × 10−3 1.25 × 10−2 0.30

RDO 6.32 × 10−3 5.09 × 10−3 1.14 × 10−2 0.30
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ties of the printed parts. These parameters include, for exam-
ple fluctuations in the velocity of the laser scan, variations
in the radii of the powder particles (in powder-based AM
technologies), and variability in the material’s diffusion and
absorption coefficients, each of which can introduce uncer-
tainty in the manufacturing process (Hu and Mahadevan
2017). The multimaterial robust design method presented
in this paper addresses this uncertainty in a systematic and
mathematically rigorous way, thereby reducing variance in
the performance of the optimized designs.

6 Replication of results

For readers seeking to replicate the results presented
in this paper, the MATLAB scripts for computing the

quantities of interest, namely compliance, volume, and
mechanical advantage, as well as statistical moments
and their associated sensitivities corresponding to three
numerical examples are provided in the public repository
linked to in reference (Keshavarzzadeh and James 2018).
The data associated with the new quadrature rule, which
is used for computation of statistical moments and their
sensitivities, are also provided in this repository.
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Appendix

The quadrature rule given in Table 5 is used throughout the
numerical simulations for computing the statistical moments
and their sensitivities.

Table 5 Designed nodes and weights for standard normal weight function associated with d = 3, r = 6

y1 y2 y3 w

0.171641741458233 0.689957250028694 −2.48133797897723 0.0195652215835242

−1.69315430845321 1.61708863138105 0.298045083369213 0.0300476893679597

3.92694274376759 −0.933214604741811 0.562757367213504 0.00145335874538015

1.34410141989722 0.381970662016496 2.91820733703388 0.00590909009609407

−2.31996570653233 −1.62281735871546 −1.25858957276265 0.00651299744901662

−0.630213024184360 3.05972970814128 −1.39953690170700 0.00319568555246638

−0.739813154711971 −2.20948987153464 0.282366525038571 0.0321695273195095

−0.768638770177116 −1.01481585040187 1.98744088127226 0.0300476893664722

2.70348703623727 2.54971069685634 −1.67290103514329 0.00145335874524301

−0.421120916190286 −0.344301814355217 −0.305929882386066 0.267761767987068

1.28213840842346 −2.38433920975212 2.09496193629465 0.00319568555398788

−2.21217043808382 −0.353010684943172 0.660647754050324 0.0333400972163237

−1.71481025764031 0.566125181577248 −1.49927579511206 0.0321695273198626

−0.371357624149492 0.773077117006202 1.40759851883070 0.102793002755931

−4.39569861562540 2.62707460199759 6.49824103052430 1.94327102374642e-05

1.58701997262256 −0.206417759980910 −1.19006833946956 0.0642371018551073

0.966978796119146 −0.721732490252721 0.769074015073605 0.129575133876131

1.18852859905139 −2.20490926878007 −0.623149216331885 0.0195652215841040

1.69943159998911 0.987820543619816 0.608914972296741 0.0524740241189448

0.255442476607422 1.30386421492425 −0.531138278217719 0.129575133874885

0.445753032850931 2.93938267731708 1.27662758285290 0.00590909009647187

−0.193161917553007 −1.33369752229607 −1.97205610209462 0.0290301628252801
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