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Abstract
A novel subdomain structural topology optimization method is proposed for the minimum compliance problem based on the
level sets with the parameterization of radial basis function (RBF). In this method, the level set function evolves on each
subdomain separately and independently according to the requirements of objective functions and additional constraints. This
makes the parameterization in the proposed subdomain method much faster and more cost-effective than that in the classical
global method, as well as the evolution of the level set function since it can be achieved on each subdomain in parallel. In
addition, the microstructures on arbitrary two adjacent subdomains can be connected perfectly, without any mismatch around the
interfaces of the microstructures. Several typical examples are conducted to verify the correctness and effectiveness of the
developed subdomain method. The effects of some factors on the optimized results are also investigated in detail, such as the
RBF types, the connectivity types of microstructures, and the size of subdomain division. Without scale separation assumption,
several layered graded cellular structures are successfully designed by employing the proposed method under the condition of
corresponding repetition constraints. To improve the computational efficiency, a multi-node extended multiscale finite element
method (EMsFEM) is used to solve the structural static equilibrium equation for the three-dimensional layered structure opti-
mization problems. Furthermore, a MATLAB code is also provided in the Appendix for readers to reproduce the results of the
two-dimensional problems in this work.

Keywords Subdomain level setmethod .Topologyoptimization .Layeredgradedstructure .Cellulargradedstructure .Multiscale
finite element method (MsFEM)

1 Introduction

Generally speaking, topology optimization is to achieve rela-
tively optimal performance by changing the connectivity,

shape, and location of solids/voids within a given design do-
main. During the previous three decades, structural topology
optimization approaches have been more widely investigated
and employed in various industry areas to optimize the per-
formances of materials and structures (Deaton and Grandhi
2013). Various structural topology optimization strategies
and algorithms have been developed in the last three decades
(Deaton and Grandhi 2013; Guo and Cheng 2010; Sigmund
and Maute 2013; van Dijk et al. 2013), such as the homoge-
nization approach (Bendsoe and Kikuchi 1988), the solid iso-
tropic material with penalization (SIMP) approach (Bendsøe
and Sigmund 1999; Rozvany et al. 1992; Zhou and Rozvany
1991), the evolutionary structural optimization (ESO) ap-
proach (Xie and Steven 1993; Yang et al. 1999), the moving
morphable components/voids (MMC/V) approach (Guo et al.
2014; Zhang et al. 2018), the level set method (Allaire et al.
2004; Wang et al. 2003), and the phase field method (Bourdin
and Chambolle 2003). In the classical level set method, the
geometries of structures are represented implicitly by the zero
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level sets of a higher dimensional function (level set function),
which evolution is determined by the Hamilton-Jacobi (HJ)
equation. The level set function is usually represented by a
signed distance function. To improve the numerical stability, a
re-initialization is always required to maintain it as a signed
distance function during the iterative optimization process. In
the classical level set method, the re-initialization process will
prevent the nucleation of holes and the time step should satisfy
the Courant-Friedrichs-Lewy (CFL) condition to keep the nu-
merical stability when solving the HJ equation by using the
upwind scheme (Wang et al. 2003). To produce new holes in
the classical level set method, one needs to consider the com-
plicated topological derivative of objective function (Challis
2010). To avoid solving the HJ equation, Choi and co-works
(Choi et al. 2011; Otomori et al. 2014) used a reaction-
diffusion equation to update the level set function.
Alternatively, the piecewise constant level set (PCLS) method
(Luo et al. 2009; Shojaee and Mohammadian 2011; Wei and
Wang 2009; Zhu et al. 2011) is developed by combining the
ideas in the classical level set method and the phase field
method (Wang and Zhou 2004). In the PCLS method, the
structural boundaries are represented by the discontinuous
PCLS functions. Thus, the holes could be generated naturally
since the evolution of structure is not achieved by moving the
boundaries during the iterative procedure. In addition, the pa-
rameterized level set (PLS) method (Luo et al. 2007; Luo et al.
2008; Wang and Wang 2006; Wang et al. 2007; Wei et al.
2018) are also investigated and developed widely by
representing the level set function parametrically. Compared
with the classical level set method, the PLS method has sev-
eral advantages (Luo et al. 2007; Luo et al. 2008; Wei et al.
2018): (a) the solving of the HJ equation is avoid, (b) the re-
initialization procedure could be done approximately resulting
in the nucleation of holes without considering the topological
derivative during the optimization process, and (c) many ma-
ture optimization algorithms, such as the method of moving
asymptote (MMA) (Svanberg 1987) and the optimality
criteria (OC) method (Nocedal and Wright 1999), could be
employed directly.

In the parameterization of the level set function, three types
of base functions could be chosen according to their support
sizes (van Dijk et al. 2013): shape functions (Allaire et al.
2004; Wang et al. 2003) in the finite element method, local
compactly supported radial basis functions (CSRBFs) (Luo
et al. 2008), and global supported radial basis functions
(RBFs) (Wang and Wang 2006). As van Dijk et al. (2013)
reported, larger support sizes may lead to faster movement
of the boundary and faster design evolution in the
sensitivity-based optimization process. While for the global
basis functions, the interpolation matrix of level set function
is a dense matrix which inverse calculation will require mas-
sive computer memory and lots of computation time, especial-
ly for three-dimensional structure optimization problems. To

reduce the computation cost, the CSRBFs (mid-range basis
functions) are employed in the interpolation of the level set
function (Luo et al. 2007; Luo et al. 2008). By using the
CSRBFs, the interpolation matrix becomes sparse which will
save lots of computer memory and computation time in its
inverse calculation. In addition, Li et al. (2015), (2016a) used
a discrete wavelet transform (DWT) approximation approach
to increase the sparseness of the interpolationmatrix by setting
the elements with very small absolute values in the matrix to
zeros. However, additional computations will be introduced
when using the DWT technique and the threshold in the DWT
approximate should be also studied for different physical
problems. Most importantly, the sparse/dense interpolation
matrices are all constructed on the whole design domain re-
gardless of the type of interpolation, which should be the main
reason for the massive computation cost when calculating the
inverse of the global interpolation matrix. To deal with the
large-scale problem by using the RBF-based parameterized
level set method, Ho et al. (2011, 2012) provided a new idea
to divide the global design domain into some overlapping
local subdomains by virtue of the partition of unity method.
However, the computation process was a little bit complex
and some other issues were also raised in their papers, such
as the determination of the size of overlapping area. In this
work, a novel subdomain structural topology optimization
framework is proposed based on the parameterized level set
approach with the RBFs, where the evolution of the parame-
terized level set function is proceeded on each subdomain
separately and independently. Correspondingly, the parame-
terization process of the level set function could be proceeded
efficiently on the subdomain. Furthermore, it can be per-
formed only once if the divided subdomain is same with each
other. The evolution of the parameterized level set function
could be proceeded on each subdomain complete indepen-
dently by using the CPU or GPU paralleling computation.
Therefore, the designs of arbitrary large-scale structures can
be done easily by virtue of the proposed subdomain structural
topology optimization framework. Note that the correspond-
ing microstructures can also be connected perfectly and natu-
rally around the interface of arbitrary two adjacent
subdomains by using the proposed formulation. This indicates
that the proposed subdomain structural topology optimization
framework has great potential to design the cellular, lattice,
and functionally graded materials and structures (Clausen
et al. 2015; Meza et al. 2014; Radman et al. 2012; Zheng
et al. 2014).

Furthermore, to design innovative cellular or multiscale
structures, a number of approaches have been proposed re-
cently, such as the scale separation–based two-scale methods
(Chen et al. 2017; Da et al. 2017; Kato et al. 2018; Sivapuram
et al. 2016; Vicente et al. 2016; Wang et al. 2016; Wang et al.
2017b), the projection or mapping methods (Groen and
Sigmund 2018; Liu et al. 2017; Zhu et al. 2019), and the
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partitioning or substructure methods (Alexandersen and
Lazarov 2015a; Alexandersen and Lazarov 2015b; Lazarov
2013; Zhang and Sun 2006).

In the two-scale methods, a so-called inverse homogeniza-
tion approach was usually adopted to design the materials
(microstructures) on the microscopic (unit cell) scale accord-
ing to the requirements of macroscopic equivalent mechanical
properties. Unfortunately, these resulting optimized structures
are always un-manufacturable due to the assumption of the
scale separation. Xia and Breitkopf (2014a, 2014b, 2015,
2016) employed a multiscale FE2 model to design the struc-
tures with spatial varying microstructures. But in the opti-
mized structures, the connectivity between the adjacent micro-
structures cannot be guaranteed, resulting in fabrication diffi-
culties of the designed multiscale structures. A hierarchical
multiscale topology optimization method (Li et al. 2016b;
Nakshatrala et al. 2013) was provided for designing the lay-
ered cellular structures by combining the SIMP approach for
the macroscopic element-densi ty design and the
homogenization-based approach for the microscopic material
topology design. However, the connectivity of the adjacent
microstructures is still hard to be always guaranteed. The un-
connected microstructures are illustrated and shown in Fig. 1a.
To deal with this issue, Li et al. (2018a, 2018b) used some
connectors, which cannot be designed during the whole itera-
tive optimization process along the boundaries of each micro-
structure design domain, to ensure the connectivity of two
adjacent microstructures. In addition, a so-called shape meta-
morphosis technology is proposed (Wang et al. 2017a) to en-
sure the connectivity, in which a prototype microstructure
(PM) is designed by using the homogenization-based level
set method. Then the level set function of the optimized PM
is cut by a series of planes to obtain a family of graded micro-
structures (GMs) which are connectable to each other due to
some of the same geometric features along the boundaries of
the GMs. However, the microstructures are mismatch con-
nected (as shown in Fig. 1b) despite the use of the methods
proposed in the literatures (Li et al. 2018a; Li et al. 2018b;
Wang et al. 2017a). Moreover, the above-mentioned connec-
tivity techniques or constraints may more or less restrict the
solution space, which will compromise the performance of the
optimized design.

Actually, the materials of cellular structures in nature are
spatially varying and gradient distributed, such as the bamboo
stalks and their microstructures shown in Fig. 2, where the
microstructures transition naturally from the dense layer to

the loose layer, without obvious boundaries between the
microstructures. Therefore, to obtain better performance in a
larger solution space, we should not artificially separate the
microscopic material design and the macroscopic structural
design. Groen and Sigmund (2018) presented a projection
method to obtain high-resolution and manufacturable struc-
tures from coarse-scale homogenization-based topology opti-
mization results. Based on the MMC/MMV topology optimi-
zation framework, Liu et al. (2017) proposed a coordinate
perturbation approach to design the graded lattice structures.
With the use of asymptotic analysis, Zhu et al. (2019) present-
ed a homogenization approach to perform a fast design of
devices with quasi-periodic microstructures. By using the sub-
structure method and the convex programming duality solving
techniques, Zhang and Sun (2006) developed an efficient ap-
proach to design the cellular structures without scale separa-
tion. Based on the multiscale finite element method (MsFEM)
(Efendiev and Hou 2009) with a spectral coarse basis
preconditioner, Lazarov (2013) and Alexandersen and
Lazarov (2015a, 2015b) designed the structures with periodic
and layered microstructural details.

In this paper, based on the proposed subdomain level set
method, another novel and effective strategy is provided to
design the graded cellular structures. By using this approach,
arbitrary two adjacent microstructures can be connected per-
fectly (as shown in Fig. 1c) since the objective function is
defined based on the full-scale/macroscale mechanical behav-
ior, as well as the sensitivity information. This is also done in
the work by Zhang and Sun (2006) and Alexandersen and
Lazarov (2015a, 2015b). In addition, the subdomain parame-
terized level set functions are updated independently without
any additional connectivity constrains, and the solid material
can be distributed on the microscopic (microstructural) and
macroscopic (structural) scales freely. Moreover, a multi-
node multiscale finite element method (Liu and Zhang 2013;
Zhang et al. 2013) is employed to improve the computational
efficiency for the designs of three-dimensional layered cellular
structures.

This paper is organized as follows. In next section, the
global level set function in the classical level set–based topol-
ogy optimization method for representing the boundary evo-
lution of the structure is briefly reviewed. In Section 3, the
formulation of the proposed subdomain structural topology
optimization method is given in detail, based on the parame-
terization of level set function with the RBF. In Section 4,
several typical numerical examples are conducted to verify

Fig. 1 Connectivity types of the
microstructures on two adjacent
subdomains: a un-connected, b
mismatch connected, and c
perfect connected
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the correctness and effectiveness of the developed method. In
addition, the impact of some key factors, such as the RBF
types, the connectivity types of initial microstructures on
two adjacent subdomains, and the sizes of subdomain divi-
sions, on the optimized results, is also investigated in detail.
Then, in Section 5, several two- and three-dimensional layered
graded cellular structures are designed by employing the pro-
posed subdomain method in conjunction with a repetition
constraint. Finally, some conclusions are given in Section 6.

2 Representation by global level sets
in classical level set method

In classical level set method, a two-dimensional problem can
be represented by a global level set function as illustrated in
Fig. 3, where the geometrical model of the structure could be
described by

ϕ x; tð Þ > 0 ∀x∈Ω∖∂Ω
ϕ x; tð Þ ¼ 0 ∀x∈∂Ω
ϕ x; tð Þ < 0 ∀x∈D∖Ω

8<
: ð1Þ

where x represents the coordinate vector of arbitrary point
within the subdomain Ds; t denotes the artificial time to de-
scribe the evolution of the level set function; ∂Ω represents the

boundary of structure; Ω and D denote the structure domain
and the design domain, respectively. By using the global level
set function, the evolution of structural boundary is trans-
formed into the updating of the zero curve (for two-
dimensional problem) or surface (for three-dimensional prob-
lem) of the level set function implicitly. In conventional level
set method (Allaire et al. 2004; Wang et al. 2003), the evolu-
tion of level set function is achieved by solving the following
Hamilton-Jacobi partial differential equation (PDE):

∂ϕ
∂t

−ϑn ∇ϕj j ¼ 0; ϑn ¼ ϑ∙ −
∇ϕ
∇ϕj j

� �
ð2Þ

where ϑn = ϑn(x, t) is the normal velocity and depends on the
shape derivative of the objective of an optimization problem.

3 Topology optimization with subdomain
parameterized level sets

In this work, the proposed subdomain structural topology op-
timization framework is implemented based on the parameter-
ized level set functions using the RBFs/CSRBFs. However, it
should be feasible to extend this proposed framework based
on the other topology optimization approaches, such as the
classical level set method (Allaire et al. 2004; Wang et al.

Fig. 2 Cellular structure in
nature: a bamboo stalks and b
their cross-section
microstructures (Silva et al. 2006)
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2003), the reaction-diffusion equation–based level set method
(Choi et al. 2011; Otomori et al. 2014) and the piecewise
constant level set method (Wei and Wang 2009).

3.1 Parameterized subdomain level set function

In this framework, the global design domain D and global
structural domain Ω are partitioned into n subdomains Ds

and microstructures Ωs (s = 1 ~ n), respectively, such that

D ¼ ⋃
n

s¼1
Ds; Ω ¼ ⋃

n

s¼1
Ωs ð3Þ

As shown in Fig. 4, a large global design domain D is
divided into two small subdomains (D1, D2) and the corre-
sponding global structural domain Ω is cut into two micro-
structures (Ω1, Ω2). A level set function ϕs defined on the
subdomain Ds is called as a subdomain level set function,
representing the material distribution of the microstructure
within the subdomain, i.e.

ϕs x; tð Þ > 0 ∀x∈Ωs∖∂Ωs

ϕs x; tð Þ ¼ 0 ∀x∈∂Ωs

ϕs x; tð Þ < 0 ∀x∈Ds∖Ωs

8<
: ð4Þ

where ϕs could be updated by solving the following HJ equa-
tion on each subdomain Ds locally and independently:

∂ϕs x; tð Þ
∂t

−ϑn
s x; tð Þ ∇ϕs x; tð Þj j ¼ 0 ð5Þ

where ϑn
s is a local normal velocity field of the boundary of the

microstructure Ωs on the subdomain Ds and it can be deter-
mined by

ϑn
s ¼ ϑn

g

���Ds ð6Þ

in which ϑn
g is a global normal velocity field of the boundary

of the whole structure Ω represented by the global level set
function ϕ on the global design domain D, as shown in
Fig. 4d. For a practical structural optimization problem, ϑn

g

is obtained by virtue of the sensitivity analyses of the objective

functions and the constraints. The calculation of ϑn
g is carried

out on the global domain, while the evolution of each
subdomain level set function ϕs is performed on each corre-
sponding subdomain Ds. For minimum compliance problem,
ϑn
g is given in next subsection.

As illustrated in Fig. 5, the optimization process is
generally presented. The global design domain is divided
into two subdomains. Correspondingly, the global level
set function ϕ is cut into two subdomain level set func-
tions ϕ1 and ϕ2, representing two different microstruc-
tures. In the initial stage, the connectivity of these two
microstructures is very poor. While during the following
iterative optimization process, it becomes better and better
along with re-distributing the material within these two
subdomains freely. It should be mentioned that H(x) in
Fig. 5 is a Heaviside function defined as

H xð Þ ¼ 1; if x≥0
0; if x < 0

�
ð7Þ

However, many issues (Osher and Fedkiw 2002;
Sethian 1999) will be encountered in solving the HJ eq.
(5) with the traditional finite difference method (FDM),
such as complex numerical implementation, re-initializa-
tion, velocity extension, CFL condition for numerical sta-
bility, and lack of ability to create new holes. To avoid
these issues, the subdomain level set function ϕs is param-
eterized with the RBFs (Luo et al. 2007; Wang and Wang
2006; Wang et al. 2007; Wei et al. 2018) before solving
(5). Thus, the subdomain level set function ϕs could be
represented by a linear combination of a set of RBFs and
their coefficients, i.e.

ϕs x; tð Þ ¼ ∑
N

k¼1
αk
s tð ÞRk

s xð Þ þ βs x; tð Þ ð8Þ

where N is the number of knots of the RBFs/CSRBFs on
the subdomain, Rs(x) and αs(t) are the RBFs and their
coefficients, respectively, and βs(x, t), which is not

Fig. 3 Description a two-
dimensional problem with a
global level set function
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always necessary, is an additional linear function to ac-
count for the linear and constant parts of ϕs and to en-
sure the positive definiteness of the solution (Morse et al.
2001). The expressions and types of Rs(x) will be

provided and discussed deeply in next section. For
three-dimensional problems, βs(x, t) is given by

βs x; tð Þ ¼ β0
s tð Þ þ β1

s tð Þxþ β2
s tð Þyþ β3

s tð Þz ð9Þ

Fig. 4 Description a two-
dimensional structure with
subdomain level set functions

Fig. 5 Optimization processes of the subdomain level set method for structural topology optimization
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where βi
s tð Þ i ¼ 0∼3ð Þ are undetermined coefficients of βs(x,

t).
To guarantee the uniqueness of the solution, the coeffi-

cients αk
s tð Þ in (8) should also meet the following orthogo-

nality constraints (Kansa et al. 2004; Wang and Wang 2006;
Wei et al. 2018):

∑
N

k¼1
αk
s tð Þ ¼ 0; ∑

N

k¼1
αk
s tð Þxk ¼ 0; ∑

N

k¼1
αk
s tð Þyk

¼ 0; ∑
N

k¼1
αk
s tð Þzk ¼ 0 ð10Þ

With (9) and (10), (8) can be re-written in a uniformmatrix
form as

Rshs tð Þ ¼ φs tð Þ ð11Þ
where

Rs ¼ Rs Bs

BT
s 0s

� �
ð12Þ

Rs ¼
R1
s x1ð Þ ⋯ RN

s x1ð Þ
⋮ ⋱ ⋮

R1
s xNð Þ ⋯ RN

s xNð Þ

2
4

3
5;Bs

¼
1 x1 y1 z1

⋮ ⋮ ⋮ ⋮
1 xN yN zN

2
4

3
5 ð13Þ

hs tð Þ ¼ α1
s tð Þ ⋯ αN

s tð Þ β0
s tð Þ ⋯ β3

s tð Þ
� 	T ð14Þ

φs tð Þ ¼ ϕs x1; tð Þ ⋯ ϕs xN ; tð Þ 0 ⋯ 0½ �T ð15Þ

In this way, the coefficients of the interpolation func-
tions at the moment t could be determined on the
subdomain by (11), where the interpolation matrix Rs

is theoretically invertible (Kansa et al. 2004; Morse
et al. 2001; Wang and Wang 2006). It should be noted
that Eq. (11) is solved only on the subdomain in this
proposed subdomain topology optimization framework
and this will save lots of computational resources and
time. Therefore, this proposed structure design framework
can be directly applied in the ultra-large-scale and/or
three-dimensional problems. While in the previous whole
domain design framework, it is an extremely tricky task to
solve Eq. (11) on the whole structure domain due to the
requirement of huge computer memory and lots of com-
putation time, especially for the large-scale three-dimen-
sional problems (Li et al. 2015; Wang and Wang 2006).

Using the interpolation scheme (8) and (9), the terms ∂ϕs x;tð Þ
∂t

and |∇ϕs(x, t)| in Eq. (5) can be also given by

∂ϕs x; tð Þ
∂t

¼ dβ0
s tð Þ
dt

þ dβ1
s tð Þ
dt

xþ dβ2
s tð Þ
dt

yþ dβ3
s tð Þ
dt

z

þ ∑
N

k¼1

dαk
s tð Þ
dt

Rk
s xð Þ ð16Þ

∇ϕs x; tð Þj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂ϕs x; tð Þ

∂x

� �2

þ ∂ϕs x; tð Þ
∂y

� �2

þ ∂ϕs x; tð Þ
∂z

� �2
s

ð17Þ

where

∂ϕs x; tð Þ
∂x

¼ β1
s tð Þ þ ∑

N

k¼1
αk
s tð Þ dR

k
s xð Þ
dx

∂ϕs x; tð Þ
∂y

¼ β2
s tð Þ þ ∑

N

k¼1
αk
s tð Þ dR

k
s xð Þ
dy

∂ϕs x; tð Þ
∂z

¼ β3
s tð Þ þ ∑

N

k¼1
αk
s tð Þ dR

k
s xð Þ
dz

8>>>>>>><
>>>>>>>:

ð18Þ

Finally, according to the expressions in (16)–(18), the HJ
(5) can be re-written in a matrix-vector form as

Rs
dhs
dt

−ωs hs tð Þ; tð Þ ¼ 0 ð19Þ

where

ωs ¼ vns

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

s;x þR2
s;y þR2

s;z

� �
h2s

r
ð20Þ

vns ¼ diag ϑn
s x1; tð Þ ⋯ ϑn

s xN ; tð Þ 0 0 0 0ð Þ ð21Þ

Rs;x ¼ Rs;x Bs;x

BT
s;x 0s;x

� �
;Rs;y ¼ Rs;y Bs;y

BT
s;y 0s;y

� �
;Rs;z

¼ Rs;z Bs;z

BT
s;z 0s;z

� �
ð22Þ

Rs;x ¼
∂R1

s x1ð Þ
∂x

⋯
∂RN

s x1ð Þ
∂x

⋮ ⋱ ⋮
∂R1

s xNð Þ
∂x

⋯
∂RN

s xNð Þ
∂x

2
6664

3
7775;Bs;x

¼
0 1 0 0

⋮ ⋮ ⋮ ⋮
0 1 0 0

2
4

3
5 ð23Þ

Rs;y ¼

∂R1
s x1ð Þ
∂y

⋯
∂RN

s x1ð Þ
∂y

⋮ ⋱ ⋮
∂R1

s xNð Þ
∂y

⋯
∂RN

s xNð Þ
∂y

2
66664

3
77775;Bs;y

¼
0 0 1 0

⋮ ⋮ ⋮ ⋮
0 0 1 0

2
4

3
5 ð24Þ
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Rs;z ¼

∂R1
s x1ð Þ
∂z

⋯
∂RN

s x1ð Þ
∂z

⋮ ⋱ ⋮
∂R1

s xNð Þ
∂z

⋯
∂RN

s xNð Þ
∂z

2
6664

3
7775;Bs;z

¼
0 0 0 1

⋮ ⋮ ⋮ ⋮
0 0 0 1

2
4

3
5 ð25Þ

In (22), 0s, x, 0s, y, and 0s, z are all 4 × 4 zero matrices. By
using the interpolation scheme, the evolution of the
subdomain level set function in the HJ (5) is finally converted
to the updating of the coefficient vector of the interpolation
function by virtue of (19) on the subdomain, i.e.

Rs
hs tiþ1ð Þ−hs tið Þ

Δt
¼ ωs hs tið Þ; tið Þ ð26Þ

where Δt is the length of time step between the adjacent
moments ti and ti + 1. During the processes, the parallel com-
putation technique could be directly used since each coeffi-
cient vector hs can be updated complete independently on
each subdomain. After this, the global domain level set func-
tion ϕ can be obtained by piecing together all the subdomain
level set functions ϕs calculated by virtue of the interpolation
scheme (8). The values of ϕ on the boundaries of each
subdomain are calculated by the weighted average approach
over the values of all the subdomain level set functions ϕs on
those boundaries. It should be mentioned that this weighted
average strategy is only for calculating the values of global
level set function on the boundaries of subdomains and it has
no effect on the final optimized results.

3.2 Sensitivity analysis of the objective function
and the constraints

In this work, the optimized structure design for the minimum
compliance problem is investigated. Based on the level set
description, the mathematical formulation of the structural
minimum compliance optimization problem (Allaire et al.
2004; Wang et al. 2003) could be given by:

Minimize
ϕs

: J u;ϕsð Þ ¼ ∑n
s¼1∫Dsεij uð ÞCijklεkl uð ÞH ϕsð ÞdΩ

Suject to

a u; v;ϕð Þ ¼ l v;ϕð Þ; v∈U
G ϕsð Þ ¼ ∑n

s¼1∫DsH ϕsð ÞdΩ−Vmax≤0
u ¼ u; on ∂Ωu

σn
ij ¼ σ

n

ij; on ∂Ωσ

8>>><
>>>:

ð27Þ

where J(u, ϕs) is the objective function, u the displacement
field, εij the strain field representing by a second-order strain
tensor,Cijkl the fourth-order elastic tensor of the solid material,
and G the volume constraint equation with Vmax representing

the maximum usable volume of the solid material. The static
equilibrium equation is given in its weak variational form in
terms of the energy bilinear form a(u, v, ϕ) and the load linear
form l(v, ϕ), where ϕ is the global level set function obtained
by piecing all the subdomain level set functions ϕs together
and v denotes the virtual displacement field in the admissible
displacement field space U. In the optimization process, the
value of the Heaviside function is equal to 1 for the solid
material which domain is represented by ϕs ≥ 0 and the value
is set as a small value (10−9) for the void material which
domain is denoted by ϕs < 0.

As it is well known in the classical level set–based topolo-
gy optimization method (Allaire et al. 2004; Wang et al.
2003), the global velocity field ϑn

g for the minimum compli-

ance problem is given by

ϑn
g x; tð Þ ¼ H ϕ x; tð Þð Þεij u x; tð Þð ÞCijklεkl u x; tð Þð Þ−λ ð28Þ

in which x is the coordinate of the point in the global domain
D, λ the Lagrangian multiplier to deal with the volume con-
straint equation G(ϕs) in the formulation (27). In this paper, λ
is calculated and updated according to the augmented
Lagrangian scheme (Wei et al. 2018):

λiþ1 ¼ ηGi i≤NR

λi þ γiG i > NR

�
ð29Þ

where η and γi are two parameters in the ith iteration during
the optimization process. γi is updated by

γiþ1 ¼ min γi þΔγ; γmaxð Þ; i > NR ð30Þ

in whichΔγ and γmax are the increment and the upper limit of
the parameter γ. In the first NR iterations, the volume con-
straint is relaxed as

Gi ϕsð Þ ¼ ∑n
s¼1∫DsH ϕsð ÞdΩ− V0− V0−Vmaxð Þ i

NR

� �
; i≤NR

ð31Þ
with V0 representing the initial solid material volume usage.
After obtaining the global velocity field ϑn

g x; tð Þ, the
subdomain velocity field ϑn

s x; tð Þ is determined by (6).
Then, the level set functions ϕs evolve on their respective
subdomains independently.

3.3 Meshes and solvers in the optimization

Generally, the mesh for parameterizing the subdomain level
set function could be different with the one for discretizing the
microstructure in the sensitivity analysis. For simplicity, these
two meshes are set to be identical herein, i.e., the knots of the
RBFs/CSRBFs are identical with the nodes of the finite ele-
ment mesh of the subdomain. As shown in Fig. 6(a), a global
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structure consists of two different microstructures meshed by
two sets of sub grids as presented in Fig. 6(b), and the corre-
sponding full-scale mesh provided in Fig. 6(c) is employed
herein for calculating the global velocity field ϑn

g x; tð Þ. To
perform the program code more efficient, an approximate
stiffness reduction factor ρe is introduced for calculating the
element stiffness matrix: ρe = 1 for the element with solid ma-
terial, ρe = 10−9 for the element with void material to avoid the

numerical singularity, and for the blending element ρe ¼
V solid
e =Ve with Vsolid being the volume of the solid material

within the element and Ve representing the element volume. In
this way, the stiffness matrix of arbitrary element is given by
ke = ρek0 with k0 being the stiffness matrix of solid element.

As it is well known, the solving of the structural equilibri-
um equation, especially for the three-dimensional large-scale
or cellular structures, is extremely time-consuming in each
optimization iteration when using the standard FEM. To im-
prove the computational efficiency, the so-called MsFEM de-
veloped by Efendiev and Hou (2009) has been used for
density-based topology optimization (Alexandersen and
Lazarov 2015a, 2015b; Lazarov 2013). In addition, to im-
prove the calculation accuracy of the MsFEM, a multi-node
extended multiscale finite element method (EMsFEM) (Liu
and Zhang 2013; Zhang et al. 2013) has been developed for
the problems in solid mechanics. This method is employed in
this work for improving the computational efficiency and ac-
curacy (Liu et al. 2018) in the design of the three-dimensional
layered cellular structures. In the multi-node EMsFEM, there
are two sets of mesh as shown in Fig. 7: the coarse-scale mesh
for the global domain and the sub-grid mesh for each
subdomain covered by a corresponding coarse element. The
computation of EMsFEM could be divided into three parts:
(1) microscopic computation in which equivalent quantities

(such as stiffness matrix and external load vector) of each
coarse element are obtained by virtue of a numerical
multiscale base function constructed on the corresponding
sub-grid mesh, (2) macroscopic computation in which global
quantities of the whole structure are calculated by assembling
the related quantities of each coarse elements together and in
which macroscopic displacement field can be obtained by
solving the macroscopic equilibrium equations based on the
coarse-scale mesh, and (3) downscaling computation in which
the microscopic results (such as displacement, strain and stress
fields) could be evaluated by using the constructed numerical
multiscale base function of each coarse element and the cal-
culated macroscopic nodal displacement field on the coarse-
scale mesh. From the above description, one can find that the
constructed numerical multiscale base functions play a key
role as a bridge to connect the microscopic and macroscopic
physic quantities in the multiscale computation. The construc-
tion process of the multiscale base function of the multi-node
coarse element has been elaborated in our previous work (Liu
and Zhang 2013; Zhang et al. 2013). By using the numerical
multiscale base function Nc, the relationship of the displace-
ment field between the coarse-scale and sub-grid meshes can
be built by

us ¼ NcU c ð32Þ
in which us is the displacement vector of the sub-grid mesh
and Uc is the nodal displacement vector of the corresponding
multi-node coarse element. By employing (32), the material
properties on the sub-grid domain are captured and brought to
the corresponding multi-node coarse element. Furthermore,
the original problem can be solved based on the coarse-scale
mesh, which will save lots of computation resources and time.
After obtaining the coarse-scale displacement field, the

Fig. 6 Illustration of the meshes
used in this work
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microscopic results, such as displacement, strain, and stress,
could be also evaluated easily by virtue of (32) again. The
computation accuracy and parallel efficiency of this multiscale
method, as well as the optimized results based on this method,
have been investigated in our newly published work (Liu et al.
2018).

3.4 Optimization process

The flowchart of the proposed subdomain RBF–
parameterized level set–based topology optimization
method is illustrated in Fig. 8 and the corresponding
MATLAB code is provided in the Appendix for two-
dimensional problems. Unlike the traditional level set to-
pology optimization method (Allaire et al. 2004; Wang
et al. 2003; Wang and Wang 2006), the evolution of the
level set function is proceeded on each subdomain sepa-
rately and independently in this proposed subdomain

topology optimization framework. This means that the
parameterization of the level set function can be achieved
only on the subdomain and the inverse of the interpolation
matrix Rs can also be calculated on the subdomain. While
in the traditional parameterized level set method, the in-
verse of the interpolation matrix is always computed on
the whole domain. In addition, for a uniform given type
of interpolation function, such as the RBFs and CSRBFs,
the inverse of the interpolation matrix Rs is only calcu-
lated once during the overall optimization process. This
will save lots of computation resources and time.
Furthermore, the microstructure, which boundaries are
represented by the zero level sets of the subdomain level
set function, evolves on each subdomain independently
under the requirement of the corresponding subdomain
velocity field ϑn

s extracted from the global velocity field
ϑn
g. To illustrate the optimization process, the minimum

and maximum values of the subdomain level set function

Fig. 8 Flowchart of the proposed
subdomain RBF–parameterized
level set–based topology
optimization method

Fig. 7 Illustration of the meshes
in the multi-node EMsFEM
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ϕs are denoted by min(ϕs) and max(ϕs), and those of the
subdomain velocity field ϑn

s are represented by min ϑn
s


 �
and max ϑn

s


 �
, respectively.

In this subsection, an illustration example in Fig. 9 is con-
ducted to show the entire optimization process. In this exam-
ple, the whole design domain is meshed by 12 × 6 cells and
the sub-grid mesh of each cell is 12 × 12. In this example, a
type of RBF named by “MultiQuadric (MQ) spline” (Wang
and Wang 2006; Wei et al. 2018) is applied herein for param-
eterizing the subdomain level set function. The MQ spline can
be given by

Rk
s xð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−xkð Þ2 þ c2

q
; x;xk∈Ds ð33Þ

where xk is the coordinate of knot k in the sub-grid mesh on
the subdomain Ds and c is very small constant number which
is given to prevent the numerical instability.

The optimization results by using the presented method are
provided in Fig. 10, from which we can see that the material
within each cell is distributed reasonably and correctly al-
though each subdomain level set function evolves on the cor-
responding subdomain independently. In the initial design, as
shown in Fig. 10a, all cells have a same microstructure or
material distribution where the subdomain level set function
ϕs is shown in Fig. 9 with the properties min(ϕs) < 0 and
max(ϕs) > 0. During the optimization iterations, the materials
are redistributed according to the requirement of the
subdomain velocity field ϑn

s . As shown in Fig. 10b, some
cells, such as cells A and B, are completely filled with solid
material. This indicates that the minimum values of the
subdomain level set functions in these cells are greater than
zero, i.e., min(ϕs) > 0. For the cells with min(ϕs) > 0, the
subdomain level set functions ϕs will fly very high and it will
be hard to pull them back if we keep updating the their coef-
ficient vectors when min ϑn

s


 �
≥0. So it is necessary to restrict

the bounds of ϕs of the cells with min(ϕs) > 0 for the purpose
of keeping ϕs around the zero level and arranging materials

freely across borders of those cells. To do this, a numerical
treatment is used herein: for the cell with min(ϕs) > 0, the
subdomain level set function ϕs is set as a small positive con-
stant (10−3 in this paper) and the coefficient vector of ϕs is set
as zero if the minimum value of its subdomain velocity field
min ϑn

s


 �
is greater than or equal to zero, i.e., min ϑn

s


 �
≥0 and

the subdomain level set function and its coefficient vector will
be updated according to (11) and (26) in case min ϑn

s


 �
< 0.

On the other hand, a similar numerical treatment is also used
for the cells completely filled with void materials (max(ϕs) <
0), such as cell C in Fig. 10c. The coefficient vector of ϕs of
the completely void cell keeps zero and ϕs is set as a small
negative constant (−10−3) when max ϑn

s


 �
≤0. They evolve by

(11) and (26) until max ϑn
s


 �
> 0. By virtue of these numerical

treatments for the cells with single-phase material (solid or
void), the materials could be arranged across the borders of
cells freely which resulting in that the boundary of the struc-
ture can cross the borders of each subdomain without difficul-
ty, as shown in Fig. 10b–f, when it is needed according to the
sensitivity analysis of the augmented objective function. From
Fig. 10, one can also find that arbitrary two adjacent micro-
structures are connected perfectly, without any mismatch,
around the borders of the corresponding subdomains.

4 Validations and discussions

In this section, several typical examples are conducted to val-
idate the effectiveness and efficiency of the presented
subdomain level set method. In addition, various factors that
may potentially affect the optimized results, such as RBF
types, connectivity types of adjacent cells in the initial design,
and cell sizes, are also investigated and discussed in detail.
The results marked by “Sub LSM-RBF/CSRBF” are obtained
by using the presented subdomain level set method with the
RBF/CSRBF parameterization, while those labeled by
“Classical LSM-RBF/CSRBF” are calculated by employing

Fig. 9 Subdomain divisions,
boundary conditions, and initial
microstructure design of the
illustration example
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the classical level set method with RBF/CSRBF parameteri-
zation on the whole design domain. The computational
models as shown in Fig. 11 and the example in Fig. 9 will
be taken into account in this section.

4.1 Comparison with the classical parameterized level
set method

To verify the correctness and effectiveness of the proposed
subdomain structural topology optimization formulation, sev-
eral typical numerical examples (cantilever beam model in
Fig. 9, half of simply supported beam model in Fig. 11a and
Michell beam model in Fig. 11b are conducted based on both
the proposed subdomain method and the classical level set
method with the parameterization of RBF given in Eq. (33).
The length (L) and weight (W) for these three examples are all
12 and 6, respectively. The material volume fraction is up to
30%. For the sub LSM-RBF computation, the whole structure
is divided by 12 × 6 subdomains as shown in Fig. 12. While
for the classical LSM-RBF computation, the optimization is
proceeded on the whole design domain. As shown in Fig. 12a
and e, the same initial material distributions are set in the sub
LSM-RBF and the classical LSM-RBF optimizations for the
purpose of comparison. The optimized results as shown in
Fig. 12b, c, and d obtained by the sub LSM-RBF are almost
the same with those in Fig. 12f, g, and h obtained by the
classical LSM-RBF, respectively. This indicates that the pro-
posed subdomain method is feasible for the structural topolo-
gy optimization design in comparison with the classical level

set method based on the parameterization of RBF. In addition,
we can also see that the proposed subdomain method has no
significant effect on the convergence speed in comparison
with the classical method. For the cantilever beam model
(Fig. 12b, f ) and the Michell beam model (Fig. 12d, h), the
numbers of the iteration step for the sub LSM-RBF are slight-
ly less than those for the classical LSM-RBF. While for the
half of simply supported beammodel (Fig. 12c, g), a fewmore
iterations are proceeded for the sub LSM-RBF. From this
comparison, we can see that the convergence property of this
proposed method should be same with that of the classical
level set method, which has been verified numerically by a
large number of examples in this work.

4.2 RBF types

The above-mentioned RBF (MQ spline) is a global support-
ed function. For the classical LSM-RBF, the supported do-
main means the whole design domain, i.e., the RBF, covers
the full macroscopic domain and it can be called as a glob-
ally global supported function. While for the sub LSM-
RBF, the supported domain denotes that the subdomain,
i.e., the RBF, covers the full subdomain and it can be called
as a locally global supported function. By using this RBF to
parameterize the level set function, the interpolation matrix
Rs in Eq. (11) will be a full array, resulting in high compu-
tational cost when solving the linear system (11), especially
for the classical level set method. In order to avoid these
limitations, some local supported RBFs, such as the C2

Fig. 10 Optimization results obtained by using the presented method

Fig. 11 Computational models and their boundary conditions
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Wendland compact supported RBF (CSRBF) (Wei et al.
2018), are usually employed to parameterize the level set
function. By using the CSRBFs, the interpolation matrix
will become sparse. Therefore, lots of computer memory
and time will be saved during the solving of the linear sys-
tem (11). In this subsection, the C2 Wendland CSRBF is
introduced in the proposed subdomain method for the pa-
rameterization of the subdomain level set function. The C2

Wendland CSRBF is given by

Rk
s xð Þ ¼ max 0; 1−

1

rs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−xkð Þ2 þ c2

q� �� �4

4

rs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−xkð Þ2 þ c2

q
þ 1

� �
; x;xk∈Ds

ð34Þ

where rs is the support radius of the CSRBF. Both the
global supported RBF (MQ spline) and local supported
RBF (C2 Wendland CSRBF) are illustrated in Fig. 13.
Two different support radii (rs = 1/6 and rs = 1/2) are con-
sidered herein to investigate the effect of the support
radius on the optimized result. For the Classical LSM-
CSRBF, the CSRBF covers the full macroscopic design
domain and can be called as a globally local supported
function. While for the sub LSM-CSRBF, it covers the
full subdomain and can be called as a locally local sup-
ported function.

For different support radii, the comparison of the optimized
results obtained by the developed subdomain level set method
(sub LSM-CSRBF) and the classical level set method
(classical LSM-CSRBF) based on the parameterization of
CSRBF is shown in Fig. 13, from which we can see that the
values of objective function of these examples are almost the
same, as well as the final structural topologies. For the cases
with the support radius rs = 1/6 as shown in Fig. 14a–f, the
hole distributions of the sub and classical LSM-CSRBF opti-
mized results are well consistent, just a little bit different for
theMichell beam problem.While for the cases with rs = 1/2 as
shown in Fig. 14g–l, the sub LSM-CSRBF optimized results
have fewer holes for the cantilever beam problem and the
Michell beam problem. By comparing Figs. 12 and 14, one
can conclude that the RBF has less influence on the optimized
results than the CSRBF. For this reason, only the locally glob-
al supported RBF (MQ spline) is employed to parameterize
the subdomain level set function in the following content.

Furthermore, the computational efficiency of the proposed
method is also investigated in comparison with the classical
approach based on the optimization of the example in Fig. 9,
where the whole design domain is divided by 12 × 6
subdomains and each of them is meshed by 24 × 24 fine ele-
ments. By parameterizing the level set function with the RBF
and CSRBF separately, the corresponding total computational
time is listed in Table 1, where Time and Num represent the

Fig. 12 Optimized results obtained by the proposed subdomain method and the classical method

Fig. 13 RBF types: a the RBF; b
the CSRBF
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total time and the number of iterations, respectively. By com-
paring the time spent in a single iteration, we can see that the
computational efficiency of the proposed sub LSM is much
higher than that of the classical LSM for both the RBF and
CSRBF parameterizations, i.e., about 98.5%, 70.4%, and
86.1% of the time spent in a single iteration is saved by using
the proposed sub LSM based on the parameterization of RBF
and CSRBFs with rs = 1/3 and 2/3, respectively, in comparison
with the time consumed by using the classical LSM. The in-
terpolation matrix of CSRBF parameterization is a sparse ma-
trix, while it is a full matrix for the RBF parameterization. For
the proposed sub LSM based on the RBF parameterization, the
full interpolation matrix is defined only on the subdomain
where the locally global RBF covers, while it is defined on

the whole design domain where the globally global RBF
covers for the classical LSM with the RBF parameterization.
In this way, the updating of the subdomain level set functions
can be proceeded on each subdomain efficiently in the pro-
posed framework. Conversely, much more computer memory
will be required and much more computational time will cost
when using the classical LSM with the RBF parameterization.
In addition, for the CSRBF parameterization, enlarging the
support radius of CSRBF will lead to a sharp increase in the
non-zero elements of the sparse interpolation matrix and a
significant increase in the computational cost. Furthermore, it
should be mentioned that the classical LSM with the RBF/
CSRBF parameterization will be unworkable for larger scale
problems due to the limitation of computer memory.

4.3 Connectivity types

Generally, there are three connectivity types of two arbitrary
adjacent microstructures: perfect connected, mismatch con-
nected, and un-connected. In this subsection, the influence
of the connectivity type on the final optimized result is
discussed based on the cantilever beam problem as shown in

Fig. 14 Optimized results for different supported radii in the CSRBFs

Table 1 Comparison of the computational efficiency (Unit: sec)

RBF type Sub LSM (Time/Num) Classical LSM (Time/Num)

RBF 543/250 = 2.17 52,925/364 = 145.40

CSRBF (rs = 1/3) 463/239 = 1.94 2209/338 = 6.56

CSRBF (rs = 2/3) 536/236 = 2.27 4671/287 = 16.28
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Fig. 9. Here, the cantilever beam is divided by only two
subdomains and the material volume fraction is up to 30%.
From Fig. 15, one can see that correct and reasonable design
results can be always obtained by using the proposed
subdomain optimization method regardless of the connectivi-
ty types of adjacent microstructures. The two microstructures
are connected perfectly in the initial design as shown in
Fig. 15a, where the materials around the interface are always
maintaining a perfect connection during the whole optimiza-
tion process. In Fig. 15b, the materials on both sides of the
interface are not matched in the initial design. However, the
mismatched materials are cut off step by step during the opti-
mization process under the requirement of stiffness maximi-
zation and volume constraint. In this way, the materials on
each subdomain are redistributed automatically, which makes
the final optimized result correct and reasonable. For the
completely un-connected microstructures in the initial design
as shown in Fig. 15c, the stress cannot be transmitted between
the two adjacent subdomains and the optimization cannot be
proceeded if the elastic properties of the void material are set
as exactly zeros. To avoid the numerical singularity, Young’s
modulus of the void material is set as 10−9 times of that of the
solid material. This treatment makes the proposed method can
be also feasible for the cases with un-connected microstruc-
tures. From the investigation, we can see that the proposed
subdomain level set–based topology optimization framework
can provide correct and reasonable results regardless of the
connectivity types of the microstructures in the initial design.
The reason behind this is that although the subdomain level set
function evolves independently on its respective subdomain,
the objective function is defined based on the mechanical

behavior of full-scale/macroscale structure and the velocity
field for updating the subdomain level set function is also
obtained based on the full-scale/macroscale mesh, resulting
in the free distribution of material and the perfect connection
between microstructures.

4.4 Size effects of the subdomain division

In this subsection, different subdomain divisions are tak-
en into account for studying the influence of the
subdomain partition sizes on the final optimized results.
Both the two- and three-dimensional problems are con-
ducted herein as shown in Figs. 16, 17, and 18. For the
two-dimensional problems, the design domains are divid-
ed by 6 × 3 and 2 × 1 subdomains. For comparison pur-
poses, one can also see the subdomain divisions and the
optimized results shown in Fig. 12. From these results,
we can conclude that the number of subdomain divisions
has little influence on the final optimized topologies, as
well as the convergence speed. For the three-dimensional
MBB beam problem as shown in Fig. 11c, two
subdomain divisions are considered as shown in
Fig. 17, from which we can also see that the optimized
results are almost completely identical. In addition, sim-
ilar conclusions can also be drawn according to the op-
timized results in Fig. 18 for the three-dimensional prob-
lem shown in Fig. 11d. In short, the number of
subdomain divisions has little influence on the final to-
pology design and the value of objective function, as
well as the convergence speed.

Fig. 15 Optimized results for
different microstructure
connectivity types in the initial
designs
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5 Topology optimization for structures
with high complexity

The structures with high complexity are designed easily
based on the proposed subdomain topology optimization
framework by increasing the number of subdomains. In
this section, two 2D typical examples are studied for ver-
ifying the effectiveness of the developed subdomain level
set method. It should be mentioned that the sensitivity
analyses are calculated on the full-scale mesh by using
the finite element method for two-dimensional problems.
In the following examples of this section, the 88 line

MATLAB code (Andreassen et al. 2010) is used for
obtaining the SIMP optimization results as a comparison.

5.1 Cantilever beam problem

The boundary conditions of the cantilever beam problem and
initial design of microstructure are identical with those of the
model shown in Fig. 9, as well as the properties of materials.
While the dimensions of the design domain herein are L = 24
andW = 12. The whole design domain is divided into 24 × 12
subdomains, each of which is meshed by 16 × 16 uniform

Fig. 17 Optimized results of the
three-dimensional MBB beam
model with different subdomain
divisions

Fig. 16 Optimized results for the two-dimensional computational models with different subdomain divisions

H. Liu et al.2236



rectangular grids. In addition, the volume faction of solid ma-
terial is set as 50%.

Two initial designs of the cantilever beam are shown in
Fig. 19a and b: cellular black-white initial design and homog-
enous initial design, respectively. By employing the sub LSM-
CSRBF (rs = 1/6 ), a cellular cantilever beam is optimized
after 206 iterations and presented in Fig. 19d with the compli-
ance being J = 60.88 from the cellular black-white initial de-
sign. For the purpose of comparison, the same problem is also
calculated by using the SIMP approach based on the same
full-scale mesh (384 × 192). Based on the SIMP approach,
the structure in Fig. 19c, including lots of gray elements, is
optimized without considering the penalty (p = 1) and filtering

from the homogenous initial design. This gray structure can be
seen as an optimal structure within the SIMP-based topology
optimization framework, while it cannot be manufactured due
to the presence of gray elements. Comparing the results in
Fig. 19c and d, it looks like that the cellular materials in
Fig. 19d replace the corresponding gray domain in Fig. 19c
during the proposed subdomain level set topology optimiza-
tion. Furthermore, the same full-scale problem is also opti-
mized by using the SIMP approach with the sensitivity filter
(the penalty parameter and the filter radius are set as p = 3 and
rmin = 1.5, respectively), and the corresponding result as
shown in Fig. 19f is obtained after 313 iterations with the
compliance being J = 62.62 from the homogenous initial

Fig. 18 Optimized results of the
three-dimensional model in
Fig. 8d with different subdomain
divisions
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design. Moreover, to compare the optimized results fairly, the
optimized result as shown in Fig. 19e is also obtained by using
the SIMP approach with the same cellular black-white initial
design as for the subdomain level set method. We can see that
the optimized designs are very dependent on the initial design
for the SIMP approach. In order to achieve small-scale fea-
tures, one must use a very slow continuation approach (Rojas-
Labanda and Stolpe 2015; Sigmund et al. 2016; Stolpe and
Svanberg 2001). From this investigation and the comparison
of the optimized structures in Fig. 19d and Fig. 14a, we can
see that the optimized structure with high complexity, which
may also be called as cellular structure, will be obtained easily
by increasing the number of subdomains, the complexity of
each microstructure, and the number of elements on the full-
scale mesh based on the proposed subdomain level set meth-
od. This will be verified again in the next example.

Again, from the analysis in Section 4.2, we have
known that the subdomain level set method and the clas-
sical parameterized level set method provide almost the
same results, comparing the optimized structures shown in
Fig. 14a and d. Combining the optimized results in this
example, we can conclude that the so-called cellular struc-
ture can be optimized by using the proposed subdomain
level set method or the classical parameterized level set
method, as long as the initial design is complex enough
and the full-scale mesh is fine enough. While for large-
scale problems, the classical parameterized level set meth-
od may be infeasible due to the difficulty of the parame-
terization of the global level set function. Thus, the pro-
posed subdomain level set method may be more suitable
for large-scale problems and this will be investigated in
our sequential work.

5.2 Michell-type problem with circular support

As shown in Fig. 20, where L = 80 and F = 1, a Michell-
type problem with circular support is studied herein. In

addition, the material properties and initial design of the
microstructure are identical with those in the previous
example. The whole design domain is divided into
20 × 15 subdomains, each of which is meshed by 16 ×
16 uniform rectangular grids. In this example, the vol-
ume faction of solid material is set as 20%.

The initial design for the Sub LSM-CSRBF (rs = 1/6)
approach is shown in Fig. 21a and the optimized result is
presented in Fig. 21d with the compliance being J =
178.42. For the purpose of comparison, the results ob-
tained by the SIMP approach based on the same full-
scale meshes are also provided in Fig. 21c without con-
sidering the penalty and filtering (the penalty parameter
is set as p = 1) from the homogenous initial design and
Fig. 21f with considering the penalty and the sensitivity
filter (the penalty parameter and the filter radius are set
as p = 3 and rmin = 1.5, respectively) based on the ho-
mogenous initial design. As a fairly comparison, the
SIMP approach is also conducted from the cellular
black-white initial design and the corresponding opti-
mized result is shown in Fig. 21e. Similar phenomenon
can be found by comparing Fig. 21e and f, i.e., the
optimized designs are very dependent on the initial de-
sign. In the SIMP framework, the result in Fig. 21c is
called as the optimal structure whose compliance is
about 154.88, while this so-called optimal structure can-
not be fabricated due to the existence of gray elements.
Comparing the results in Fig. 21d and f, we can find that
the structure with more truss-like microstructures, which
may also be called as cellular structure, can be obtained
by using the proposed subdomain level set method. In
addition, in comparison with the SIMP (p = 3, rmin = 1.5)
optimization result, the compliance of the optimized
structure obtained by the subdomain level set method is
reduced by 12.53% from J = 203.97 to J = 178.42.
Therefore, the same conclusion can be drawn as that in
the previous example.

Fig. 19 Optimized results obtained by the Sub LSM-CSRBF and SIMP approaches for the cantilever beam problem
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6 Repetition constraint and layered cellular
structure design

Layered structures, which microstructures are periodic or
repetitive in one or two directions, are very common in
life. The proposed subdomain topology optimization
method can be also employed to design the layered
structure by considering a repetition constraint of micro-
structure. For the repetitive microstructures on each lay-
er, their subdomain level set functions ϕs should be al-
ways identical during the optimization process. To
achieve this, the initial subdomain level set function of
the microstructure on each layer is set as a same function
(ϕs)l firstly, with l representing the serial number of lay-
er. Then the subdomain velocity field of each microstruc-
ture on the same layer is also maintained exactly the
same in the optimization iterations by setting it as the

average velocity filed of the microstructures on that lay-
er, i.e.,

ϑn
s


 �1
l ¼ ϑn

s


 �2
l ¼ ⋯ ¼ ϑn

s


 �nl
l ¼ 1

nl
∑
i¼1

nl

ϑn
s


 �i
l ð35Þ

where nl denotes the number of subdomains on the
layer l of the structure. In this way, the subdomain level
set function of the microstructure on each layer can be
always identical after each optimization iteration. It
should be mentioned that the sensitivity analyses of the
two-dimensional examples in this section are carried out
on the corresponding full-scale meshes by using the fi-
nite element method, while they are calculated by
employing the multi-node EMsFEM to improve the com-
putational efficiency for the three-dimensional problems
in this section.

Fig. 21 Optimized results obtained by the Sub LSM-CSRBF and SIMP approaches for the Michell-type problem

Fig. 20 Michell-type problem
with circular support and initial
design of the microstructure
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6.1 Layered cantilever beam problem with distributed
load on the right-hand boundary

The cantilever beam problem defined in Fig. 22a is investigat-
ed in this subsection to verify the effectiveness of the proposed
method for layered structural design. In this example, the pa-
rameters are set as L = 32,W = 20, q = 100 (force/length), and
a thickness of t = 1. Young’s modulus and Poisson’s ratio of
the material are E = 1000 and μ = 0.3, respectively. In addi-
tion, a volume fraction of 60% is used for the solid material in
the design domain. To avoid the distributed load being applied
directly to the void material during the optimization, an addi-
tional non-designable solid domain with the size of 1 × 20 is
added on the right edge of the model to transfer the applied
load.

Two cases are studied in this example. The first one is to
investigate the size effect of subdomain while keeping the full-
scale mesh unchanged. In this case, the whole design domain
is meshed by 32 × 20 uniform finite elements, which is called
the full-scale mesh. As shown in Fig. 23a and b, the optimized
results are obtained by using the proposed method with 2 × 1
and 4 × 2 subdomains included in the whole design domain,
respectively. For the purpose of comparison, the optimized
results obtained by using the so-called scale-related design

approach (Zhang and Sun 2006) based on the same full-
scale mesh are also presented in Fig. 23c and d, where the
upper and lower surface layers with a thickness of two finite
elements are designed in advance and they are unchanged
during the optimization, i.e., only the inner core domain with
the size of 32 × 16 is designable. For the optimized results in
Fig. 23c and d, the inner core domain is divided into 2 × 1 and
4 × 2 representative volume elements (RVEs) with the com-
pliances being 165,061.1 and 168,025.8, respectively. While
for the results presented in Fig. 23a and b obtained by using
the proposed method, their compliances are 146,348.9 and
145,001.6, respectively, which are reduced by 11.3% and
13.7% in comparison with those provided in the work of
Zhang and Sun (2006). The reason may be that the material
can be distributed completely freely along the vertical direc-
tion by using the proposed method, while it can only be dis-
tributed within the inner core designable domain in the work
of Zhang and Sun (2006).

The second case studied herein is as follows: (I) to refine
the mesh of each subdomain while keeping the subdomain
division unchanged, and (II) to increase the number of
subdomains while keeping the full-scale mesh unchanged.
For investigating the subcase (I), the whole design domain is
divided into 4 × 2 subdomains, each of which is meshed by
16 × 20 and 32 × 40 uniform elements, and the corresponding
optimized results are presented in Fig. 24a and b, respectively,
from which we can see that more holes are generated in the
final designs, resulting in a smaller compliance. Moreover, to
investigate the subcase (II), the whole design domain is re-
divided into 8 × 4 subdomains, each of which is re-meshed by
16 × 20 uniform elements. Correspondingly, the optimized
layered structure is also given in Fig. 24c, from which we
can find that the holes become smaller and the number of them
is increased when reducing the size of subdomain in compar-
ison with the results in Fig. 24b and c obtained based on the
same full-scale mesh.

6.2 Layered cantilever beam problem
with a concentrated load on the bottom right corner

In this subsection, the layered cantilever beam problem in
Fig. 22b is designed with the repetitive or periodic constraints.
For this example, the design domain is divided into 48 × 24
subdomains and each of them includes 40 × 40 uniform finite

Fig. 23 Comparison of the optimized results: a obtained by using the sub
LSM-CSRBF with 2 × 1 subdomains (J = 146348.9), b obtained by using
the Sub LSM-CSRBF with 4 × 2 subdomains (J = 145001.6), c presented
in the work of Zhang and Sun (2006) with 2 × 1 RVEs in the inner core
domain (J = 165061.1), and d provided in the work of Zhang and Sun
(2006) with 4 × 2 RVEs in the inner core domain (J = 168025.8)

Fig. 22 Layered cantilever beam problems
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elements. Thus, totally 24 layers are designed in this example.
In addition, the volume fraction of the solid material is set as
30%. Young’s modulus and Poisson’s ratio are E = 1 and μ =
0.3. The external load F is set as 1 in the negative vertical
direction as shown in Fig. 22b.

The optimized result obtained by using the proposed
subdomain level set method is presented in Fig. 25a,
where most of the solid material is distributed on the
upper and lower layers to increase the bending stiffness
of the structure and the remaining solid material in the
form of a network is placed in the inner core layer of
the structure for resentencing to the shear deformation.
As a comparison, the design result in the work of

Alexandersen and Lazarov (2015b) is also provided in
Fig. 25b, where a fi l ter radius rmin = 6h with h
representing the finite element size is used to eliminate
the checkerboard effect and control the structural mini-
mum size during the optimization. By comparing these
two optimized layered structures, we can found that (1)
their material layouts are consistent in general, i.e., the
solid material is distributed as much as possible on the
upper and lower layers and the cellular material is filled
in the inner core layer of the structure, and (2) compared
with the structure in Fig. 25b, more solid material of the
structure in Fig. 25a is arranged on the surface layers and
the feature size of the cellular material in the inner core

Fig. 24 Optimized results by using the sub LSM-CSRBF with: a J =
142478.1 based on 4 × 2 subdomains, each of which is meshed by 16 ×
20 uniform elements, b J = 141514.6 based on 4 × 2 subdomains, each of

which is meshed by 32 × 40 uniform elements, and c J = 142451.9 based
on 8 × 4 subdomains, each of which is meshed by 16 × 20 uniform
elements

Fig. 25 Comparison of the
optimized results: a obtained by
the proposed subdomain level set
method, and b presented in the
work of Alexandersen and
Lazarov (2015b)
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layer is very small since there is no minimum size control
in the proposed method. In addition, the average compli-
ance of the optimized result in Fig. 25a is 168.2, while
that of the designed structure in Fig. 25b is unclear be-
cause it is not given in the work of Alexandersen and
Lazarov (2015b).

6.3 Layered cantilever beam problem with two
concentrated loads on the upper and bottom right
corners

A two-dimensional layered cantilever beam model and its
boundary conditions are shown in Fig. 22c. Two different
aspect ratios are considered herein: L/W = 20/10 and L/
W = 30/10, respectively. Correspondingly, two sets of
subdomain divisions are used: 20 × 10 and 30 × 10. In
addition, each subdomain is meshed by 24 × 24 finite el-
ements and the material volume fraction is up to 50%.
The optimized results are shown in Fig. 26, where the
microstructure is repetitive in the x direction and the blue
dotted grids represent the subdomain divisions. From the
design results, we can see that (I) the solid material is
automatically moved to the upper and lower boundaries
to provide greater bending stiffness during the optimiza-
tion process; (II) a graded cellular network-like structure
is appeared in the middle layers to resist the deformation;
(III) arbitrary two adjacent microstructures are automati-
cally connected perfectly, without any mismatch; (IV) the
optimized result will vary for different aspect ratios of the
cantilever beam. From the optimized graded cellular
beam, one can conclude that graded cellular structures
can be designed by using the proposed method without
scale separation assumption.

6.4 Two-dimensional layered Michell beam problem

A two-dimensional Michell beam problem as shown in
Fig. 11b is taken into account. For the layered structure design,
the microstructures are repetitive in the x direction. Three dif-
ferent subdomain divisions are conducted herein, i.e., 32 × 16,
32 × 12, and 32 × 8, which represent different aspect ratios (L/
W), respectively. Each subdomain is meshed by 24 × 24 finite
elements and the material volume fraction is up to 50%. For
different aspect ratios, the design results are shown and com-
pared in Fig. 27. One can find that (I) graded cellular layered
structures are easily obtained by using the proposed
subdomain topology optimization method with the repetition
constraint, (II) the microstructures are connected perfectly and
automatically without any mismatch around the interfaces of
arbitrary two adjacent microstructures, and (III) the optimized
configurations are also different for different aspect ratios of
the Michell beam. For the case of L/W = 32/16, there is also a
distance between the roof of the design domain and the solid
region on the top of the optimized configuration presented in
Fig. 27a. When increasing this aspect ratio, the distance grad-
ually disappears as shown in Fig. 27b and c.

6.5 Three-dimensional layered cantilever beam
problem

A three-dimensional layered cantilever beam model as shown
in Fig. 28a is also investigated in this paper. The microstruc-
tures are repetitive in the x and y directions. The whole design
domain is divided by 16 × 2 × 4 subdomains and the initial
design of microstructure on each subdomain is plotted in
Fig. 28c. Each subdomain is meshed by 8 × 8 × 8 finite ele-
ments as shown in Fig. 28d. To improve the computational

Fig. 26 Optimized results of two-
dimensional cantilever beam
model shown in Fig. 22 with
different aspect ratios
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efficiency when solving the static equilibrium equation of the
structure, the aforementioned multi-node EMsFEM as illus-
trated in Fig. 7 is employed for the three-dimensional layered
structure design. Corresponding to the sub-grid mesh with a
total of 729 nodes, a 98-node coarse element is used in the
EMsFEM for constructing the multiscale base function and
calculating the equivalent quantities of the microstructure.
Due to the repetition of the microstructures on each layer,
there are a total of four (the same as the number of subdomains
in the z direction) different microstructures. Therefore, the
equivalent quantities of microstructure are required to be cal-
culated only four times within the EMsFEM computation in

each optimization iteration. In addition, the calculation of the
equivalent quantity could be further proceeded in parallel for
saving the computing time. For detailed analysis and discus-
sion about the computational accuracy and efficiency of the
multi-node EMsFEM, please refer to our previous work (Liu
et al. 2018). The optimized layered cantilever beam is obtain-
ed as shown in Fig. 29 by combining the proposed subdomain
topology optimization method and the multi-node EMsFEM.
From the design result, similar findings and conclusions can
be also obtained in comparison with the two-dimensional lay-
ered cantilever beam problem. The materials can be
redistributed freely and automatically on the subdomain for

Fig. 27 Optimized results of two-dimensional Michell beam model shown in Fig. 11b with different aspect ratios

Fig. 28 Three-dimensional layered structures and their boundary conditions
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each optimization iteration. There is no mismatch for the ma-
terial around the interface of arbitrary two subdomains, which
indicates that the proposed method is also feasible for design-
ing the three-dimensional layered structures.

6.6 Design of three-dimensional layered plate

Another three-dimensional plate as shown in Fig. 28b is also
designed by using the proposed method. In this example, the
microstructures are repetitive in the x and y directions. The
plate is layered in the z direction. The initial microstructure,
the sub-grid mesh, and the multi-node coarse element used in
the EMsFEM computation are all the same as those in the
subsection 4.3, i.e., Fig. 28c, d, and e, respectively. The max-
imum available material volume fraction is 40%. For two-
layer and three-layer plates as shown in Figs. 30 and 31, the
plates are divided by 10 × 10 × 2 and 10 × 10 × 3 subdomains,
respectively. From the results, we find it again: the optimized
results vary for the structures with different layers (aspect
ratios). This indicates that the aspect ratio of the structure

has an obvious influence on the final optimized result, which
has been also found in the previous examples.

7 Conclusions

In this paper, a novel subdomain level set method with the
parameterization of RBF is developed for the structural topol-
ogy optimization. Unlike the classical global level set method,
the level set function evolves on each subdomain separately
and independently in the proposed subdomain method. In ad-
dition, the parameterization of RBF can also be proceeded
locally (on each subdomain, not global domain) which makes
this process much more cost-effective than that in the classical
method. In each optimization iteration, the evolution of the
subdomain level set function can also be conducted in parallel.
By splicing all subdomain level set functions together, we can
obtain the global level set function representing the whole
structure. Then the sensitivity analysis can be proceeded on
the global domain. Correspondingly, the structural boundary
evolution velocity field is calculated by using the FEM on the

Fig. 30 Optimized result of three-
dimensional plate with 10 × 10 ×
2 subdomains

Fig. 29 Optimized result of three-
dimensional layered cantilever
beam model
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full-scale mesh for two-dimensional problems and the multi-
node EMsFEM on the macroscale mesh for three-dimensional
problems. In this way, the material on each subdomain will be
redistributed freely in each optimization iteration and the mi-
crostructures on arbitrary two adjacent subdomains will be
connected automatically according to the requirements of the
objection functions and the related constraints.

The validation of the proposed subdomain level set
method is achieved in comparison with the results of sev-
eral two- and three-dimensional numerical examples ob-
tained by the classical global level set method. At the
same time, some key factors that may affect the final
optimized result are also investigated in detail: (I) correct
and reasonable optimization results can also be obtained
regardless of the connectivity types of arbitrary two adja-
cent microstructures; (II) the compact (local) supported
RBFs with different support radii have a little influence
on the final optimized results; (III) the size of subdomain
division has almost no effect on the optimized material
distribution, as well as the convergence speed and the
value of objective function.

Without scale separation assumption, the developed
subdomain level set method has been successfully applied in
the design of layered graded cellular structure by combining
corresponding repetition constraint. From the design results,
we can find that (I) the microstructures on arbitrary two adja-
cent subdomains are connected perfectly and automatically
around their interfaces, without any mismatch; (II) the opti-
mized topologies will be varying for different aspect ratios of
the computational models.

It should be mentioned that the proposed subdomain level
set method can be easily extended to design the structures with
arbitrary geometries based on unstructured meshes. In addi-
tion, the basic idea of the subdomain evolution in this paper
may be also feasible for the classical level set method (Allaire
et al. 2004; Wang et al. 2003) with solving the HJ equation,
the level set method with solving the reaction-diffusion

equation (Choi et al. 2011; Otomori et al. 2014), and even
for the piecewise constant level set method (Wei and Wang
2009).
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Appendix: Replication of results

Two MATLAB scr ip t s named Sub_LSM.m and
Sub_LSM_SPR.m are provided as the supplementary mate-
rials of this paper and they can also be downloaded on the
website (http://ragroup.ust.hk) for readers to reproduce the
results of two-dimensional problems in this work. Sub_
LSM.m is for the structural topology optimization and Sub_
LSM_SPR.m is for the layered graded cellular structure de-
sign with consideration of the repetition constraint.
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