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Abstract
The maximum size constraint restricts the amount of material within a test region in each point of the design domain,
leading to a highly constrained problem. In this work, the local constraints are gathered into a single one using aggregation
functions. The challenge of this task is presented in detail, as well as the proposed strategy to address it. The latter is
validated on different test problems as the compliance minimization, the minimum thermal compliance, and the compliant
mechanism design. These are implemented in the MATLAB software for 2D design domains. As final validation, a 3D
compliance minimization problem is also shown. The study includes two well-known aggregation functions, p-mean and
p-norm. The comparison of these functions allows a deeper understanding about their behavior. For example, it is shown
that they are strongly dependent on the distribution and amount of data. In addition, a new test region is proposed for the
maximum size constraint which, in 2D, is a ring instead of a circle around the element under analysis. This slightly change
reduces the introduction of holes in the optimized designs, which can contribute to improve manufacturability of maximum
size–constrained components.

Keywords Length scale · Constraints aggregation · SIMP

1 Introduction

Since the seminal work of Bendsøe and Kikuchi (1988),
a huge amount of contributions have allowed to establish
topology optimization as a practical design tool. The
method looks for the optimal material distribution within
a design space by minimizing an objective function
subject to a set of design constraints. The concept is
developed in many approaches, see, e.g., Sigmund and
Maute (2013) and Deaton and Grandhi (2014), where
density-based stands out due to the easy adaptation to
finite element codes. The process is iterative and illustrates
the metamorphosis of the design space, a gradual change
in each iteration that converts the design space into
an innovative, complex, and high-performance structure.
However, mainly due to technological limitations, the
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optimized structure sometimes is solely a conceptual
design idea since the solution can not be manufactured.
For this reason, manufacturing constraints became one
of the important topics in topology optimization, since
they impose the appearance of manufacturable designs
and reduce the need of postprocessing. Perhaps, the most
important manufacturing constraint is the minimum size
because it is related to the resolution allowed by the
fabrication process. The reader is referred to the work of
Lazarov et al. (2016) for a deeper insight on the subject.

Length scale control could be owed not only to
manufacturing limitations, but also to include indirect
desired properties on the design. For example, the maximum
size of the solid phase could be a tool for designers
to deal with overheating-related problems in additive
manufacturing by restricting the size of bulky parts
Thompson et al. (2016), or to improve the performance
of structures under local damage by diversification of
the load path with the appearance of redundant members
Jansen et al. (2014). In addition, the maximum size could
be required for aesthetic reasons due to its ability to
produce surprising changes in the material distribution, as
exemplified in Fig. 1. Applications of the maximum size
in fluid flows are mentioned in the pioneering work of
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Fig. 1 Christmas tree-like
domain for compliance
minimization. In a solution with
minimum size control. In b the
maximum size of the solid phase
is included. The volume fraction
is set to 0.8 in both cases

(a) (b)

Guest (2009a), where the reader is referred for a more
complete discussion. In his work, the maximum size control
is enforced by local constraints which restrict the amount
of material in the neighborhood of each point in the
design domain. The method proves to be robust in the
context of structural and fluid topology optimization, but
it demands a big computational cost due to the large
number of constraints that are introduced in the optimization
problem. Then Zhang et al. (2014) reduce the amount of
constraints by collecting those that belong to the structural
skeleton. The main drawback is the neglected sensitivity
of the skeleton which makes the solution more likely
to fall into a local optima. Later, Lazarov and Wang
(2017) present two methods to impose maximum size.
The first one applies band-pass filters on the frequency
domain after a Fourier transform. The method produces
manufacturable black and white designs but the maximum
size is loosely controlled. The second method is based on
morphological operators and provides more control over the
geometry. Their method shows a satisfactory performance
for compliance minimization and the compliant mechanism
design. However, Lazarov and Wang (2017) encounter some
geometrical difficulties in the optimized design: a large
number of hollow circles in the structure and a wavy pattern
in the vicinity of the connections between solid structural
elements, which can lead to a lost of manufacturability
and a reduction of performance. More recently. Carstensen
and Guest (2018) propose a projection-based method to
control the maximum length scale. The method is based on
the multiple phase projection strategy (Guest 2009b), but
they reduce the number of design variables using weighting
functions. They report multiple 2D benchmark problems

satisfying the desired length scale. The disadvantage of the
multiple phase projection method is that it uses a series of
weighting and projection functions that make the method
highly non-linear.

Aggregation functions are well known in the field of
stress constraints in topology optimization. They were
initially introduced by Yang and Chen (1996) to reduce
the size of highly constrained problems. Among the
popular functions in topology optimization are the KS
(Kreisselmeier – Steinhauser) function, p-norm, and p-
mean (see for instance, Yang and Chen 1996; Duysinx
and Sigmund 1998). These are smooth and differentiable
approximations of the max(·) function to resort to gradient-
based optimizers. Unfortunately, the smooth approximation
brings numerical issues, e.g., the non-linearity of the method
increases as the function approaches the maximum value,
which is essential to capture the critical constraints. In the
last decade, a large amount of contributions have addressed
this issue. Among others, we can cite the work of Parı́s
et al. (2010). They proposed to aggregate the constraints by
groups; this increases the number of global constraints but
reduces the non-linearity of the problem. Despite the known
drawbacks, the successful idea of the aggregation is still
applied in the field since it is an efficient way to solve large
and highly constrained problems in a reasonable amount of
time.

However, to the best of our knowledge, aggregation
functions have not been successfully applied in the
maximum size field. Among the few works that can be
found in the literature, we can cite Guest (2009a) and
Wu et al. (2017, 2018). In the pioneering work, Guest
(2009a) highlights the need of using aggregation functions
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to reduce the computation time. Motivated by this fact,
Guest mentions that barrier functions were tested but results
were not encouraging enough to be reported. More recently,
Wu et al. (2017, 2018) use p-mean function to aggregate a
local volume constraint and produce sparse structures that
mimic bone-like porous structures. Their method is related
to the length scale problem presented by Guest (2009a) but
differs from an exact formulation of the maximum size. This
will be discussed with more details later.

In this work, we take over the maximum size formulation
proposed by Guest (2009a) to perform an efficient
aggregation of the local constraints. The challenge of this
task is exposed in detail as well as the proposed strategy
to address it. In addition, we introduce another test region
to limit the amount of material which reduces the hollow
circles introduced by the constraint. The developments are
validated on 2D domains in classical linear problems such
as compliance minimization, heat transfer problem, and the
compliant mechanism design.

The paper is organized as follows. In Section 2, we
describe the formulation of the topology optimization
problems addressed in this work. In Section 3, we recall
the Guest’s formulation to impose the maximum size. Then
we introduce a new test region to count the amount of
material. Section 4 presents the aggregation functions used
in this work, the difficulties of aggregating the maximum
size constraints, and the proposed strategy. Section 5 gathers
the results and discussions, Section 6 the final conclusions
of this work, and Section 7 provides some indications to
facilitate the replication of results.

2 Problem formulation and definition of test
cases

The proposed method to introduce maximum size control
in topology optimization is tested on usual problems of
literature, i.e., the compliance minimization, the minimum
thermal compliance, and the compliant mechanism design.
In each problem, we solve some of the well-known test
cases, i.e., the MBB beam, the squared heat sink, and
the compliant force inverter, which are depicted in Fig. 2.
These domains are discretized using four-node quadrilateral
elements and they are extended on the boundaries to
facilitate the treatment of the filter (Sigmund 2007). The
extension is represented with white squares outside the
design domain in Fig. 2. Here, we define � as the set
of indexes that contains all the element numbers in the
design domain including those on the extended domain,
while � contains only the indexes whose elements belong
to the optimizable design space, thus � ⊂ � as shown in
Fig. 2.

(a)

(b)

(c)

Fig. 2 Design domains included in this work to solve a the compliance
minimization problem, b the heat transfer problem, and c the compliant
mechanism. In this work, L = 1

The methods presented in this work were implemented
in the free PolyTop MATLAB code (Talischi et al. 2012),
which is slightly modified to solve the heat transfer problem
and the compliant mechanism design, as well as to include
the Method of Moving Asymptotes as solver (Svanberg
1987). The MATLAB environment is well known in the
topology optimization community because of the free
access codes that are available, see, e.g., Sigmund (2001),
Andreassen et al. (2011), and Talischi et al. (2012). It is
also known that the best performance is obtained with loop
vectorization and memory preallocation. Thus, throughout
the article, the equations will be presented in such a way
to allow an efficient use of the software. In addition
with this paper, a sample MATLAB implementation of the
maximum size constraint is provided for use with PolyTop
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(Talischi et al. 2012) but it can be adapted to other topology
optimization scripts.

Since the aforementioned problems share a common
basis, we present a generic formulation of the optimization
problem given as:

minρ tᵀ u (1a)

s.t . : K(ρ) u = f (1b)

ρ̄ᵀv ≤ V ∗ (1c)

Gms ≤ 0 (1d)

0 ≤ ρe ≤ 1 , ∀ e ∈ � (1e)

ρi = 0 , ∀ i ∈ � and i /∈ � (1f)

The objective is the linear function tᵀu defined in
(1a). For compliance minimization and heat conduction
problems, t represents the input force/heat flux over the
domain, i.e., is equal to the array f . For the compliant
mechanism, t is an array that contains value 1 at the output
degree of freedom and 0 otherwise. The array u contains the
nodal displacements/temperatures which are obtained after
solving the state equation (1b).

The design variables on the extended design domain are
set to 0 in (1f). For other design variables, we use a three-
field scheme (see Sigmund and Maute 2013) which utilizes
the design field ρ, a filtered field ρ̃, and a physical field ρ̄.
The filtered field ρ̃, used to ensure mesh independency and
checkerboard-free solutions, is computed as:

ρ̃ = DIρ, (2)

where DI is the matrix that contains the linear weights of the
filter. Its components are defined as:

DI(i,j) =

⎧
⎪⎪⎨

⎪⎪⎩

vj wi,j∑

k∈�

vk wi,k
, if i ∈ �

0 , otherwise.

(3)

w(i,j) =

⎧
⎪⎨

⎪⎩

1 − 2 ‖xi − xj‖
dfil

, if 2 ‖xi − xj‖ ≤ dfil

0 , otherwise.

(4)

Here, wi,j represents the linear weight of the variable j

in the filtering of variable i. dfil is the diameter of the
filtering region. xi and xj are the locations at the centroid
of the elements i and j , respectively, where i and j ∈ �.
The condition applied in (3) avoids the computation of the
filter on the passive elements. Without this treatment, the
DI matrix would be identical to the P matrix presented by
Talischi et al. (2012).

The physical field ρ̄ is obtained from the filtered field ρ̃

using a smoothed Heaviside projection defined as:

ρ̄i = tanh(β μ) + tanh(β (ρ̃i − μ))

tanh(β μ) + tanh(β (1 − μ))
, ∀ i ∈ �, (5)

where β and μ control the steepness and the threshold of the
projection, respectively. The projection (5) is suited for the
robust design approach (Wang et al. 2011). However, here,
it is used because it offers smoother convergence than the
classic projection proposed by Guest et al. (2004).

The aim of the projection (5) in this work is to reduce
the amount of gray elements. This in turns promotes the
minimum size of the solid phase. However, as shown by
(Wang et al. 2011), simple projection strategies do not
ensure minimum length scale control since they do not
prevent small local features as the well-known one-node
connected hinges. Therefore, results in this work are not
exempt from small structural details that do not fulfil
minimum size. Knowing this, in this work we call dmin

the theoretical minimum size obtained by the smoothed
Heaviside projection. As shown by Wang et al. (2011), dmin

depends on the filter diameter dfil and on the threshold
parameter μ. In this work, we use μ = 0.25, therefore,
dmin = 0.5 dfil (for further details, see Wang et al. 2011;
Qian and Sigmund 2013).

The global stiffness/conductivity matrix K is assembled
from the local stiffness matrices defined as ki = Eik0.
Here, k0 denotes the element stiffness matrix of base
material. Ei is the material stiffness/conductivity obtained
by using the modified SIMP (Sigmund 2007) given as:

Ei = Emin + ρ̄
η
i (E0 − Emin), (6)

where η is the penalization of the material interpolation
law. For the three problems, the parameters η and β are
defined by a continuation method. This is a common
practice in topology optimization as it is known to help
avoid convergence to undesirable local minima (see for
instance, Sigmund and Maute 2013; Rojas-Labanda and
Stolpe 2015). E0 is the stiffness/conductivity of the solid
phase equal to 1 in all three problems. Emin is a small
number to avoid the numerical singularity issue in the finite
element analysis. For the compliance minimization and
force inverter problems, Emin = 10−6, while for the heat
sink Emin = 10−3.

The volume constraint is in (1c), where V ∗ is the upper
bound of the constraint and v the array that gathers the
volume of all the elements. The maximum size is imposed
through the global constraint Gms in (1d).

3 Local maximum size constraint

The method to restrict the amount of material and impose
a maximum size was originally proposed by Guest (2009a).
As mentioned before, the method showed to be robust in the
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context of structural and fluid topology optimization and,
therefore, it is selected as the fundamental formulation in
this work. The local constraint is defined as:

ge = ε −

∑

k∈Ωe

vk (1 − ρ̄)η

∑

k∈Ωe

vk

≤ 0 , ∀ e ∈ �, (7)

where Ωe is the maximum size region of the element e and
ε is a small positive number used for relaxing the problem.
In this work, we use ε = 0.05. The most usual approach in
literature is to define the test region Ωe as a circle around
the element e. This is shown in Fig. 3a and is defined as:

Ω(c)
e = {xi | 2 ‖xe − xi‖ ≤ dmax, ∀ i ∈ �}, (8)

where dmax represents the maximum size defined by the
user.

The constraint (7) restricts the amount of material around
the element e by imposing, at least, the amount ε of
void in Ωe. Since gray elements contribute to the void
counting, they must be penalized. To this end, we use the
same SIMP exponent η as suggested by Guest (2009a).
Equation (7) must be evaluated at every design point;
therefore, it is convenient to vectorize the computation of
the local constraints as follows:

g = ε − DIIδ ≤ 0, (9)

where DII is the matrix that stores the maximum size
neighborhoods and δ the array containing the measure
of void. These entities are defined in (10) and (12),
respectively. In the Appendix, the DII matrix is assembled
in lines 36–44 and δ is computed in line 26.

DII(e,i) = vi le,i
∑

k∈� vk le,k
, ∀ e ∈ � and i ∈ � (10)

le,i =
⎧
⎨

⎩

1 , if xi ∈ Ωe

0 , otherwise.
(11)

δi = (1 − ρ̄i )
η (12)

3.1 New test region for maximum size

The maximum size constraint splits the bulky material
during the optimization process by introducing void in each
test region Ωi . In 2D, void introduced by the constraint
can form circular or channel-shaped cavities. Designers may
prioritize a cavity type depending on the manufacturing
process. For instance, if the purpose of the constraint is
to produce bar-like structures, then channel-shaped cavities
must be prioritized over circular ones.

We have noticed in 2D that most circular cavities tend
to be placed in the connection of bars. To illustrate this,
consider Fig. 4a which shows the connection of two bars
during the optimization process. The red circle shows the
neighborhood of a potentially violated constraint. There, to
satisfy the constraint and keep the connection at the same
time, two possibilities are presented: either introduce a hole
as in Fig. 4b or remove the edges as in Fig. 4c. Thus,
aiming to reduce the introduction of small circular holes,
we propose to take the internal zone out of the analysis,
as Fig. 4d shows. We consider as inner zone the minimum
size region imposed through the Heaviside projection (see
Fig. 3b). Therefore, the proposed test region is defined
as:

Ω(r)
e = {xi | ‖xe − xi‖ ≤ dmax

2 and

‖xe − xi‖ >
dmin

2 , ∀ e ∈ � and i ∈ �
}

. (13)

Even if a circular hole is introduced in the middle of
the connection when using the annular region, the cavity
is expected to be of size dmin, so that void elements can
pass into the annular zone through the inner diameter of the
ring.

It is important to note that the annular test region does
not affect the maximum size imposed by the user. The only
difference with the circular region is that void elements are
forced to be placed in the outer ring.

Fig. 3 Circular (a) and annular
(b) test regions to count the
amount of material

(a) (b)
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Fig. 4 Representation of a
connection with maximum size
constraints during the
optimization process. In a the
circular test region. In b and c,
two possibilities to satisfy the
maximum size constraint and
keep the material connectivity.
In d, the inner zone is removed
from the circular test region to
avoid the introduction of a hole

(a) (b)

(c) (d)

4 Aggregation of local constraints

4.1 Aggregation functions

Two aggregation functions are tested in the context of
maximum size, p-mean and p-norm. These are defined as
follows:

Pm =
(

1

N

∑

e∈�

(se)
p

) 1
p

, (14)

Pn =
(

∑

e∈�

(se)
p

) 1
p

, (15)

where Pm and Pn are the p-mean and p-norm functions,
respectively. N is the total amount of design variables in
�, p is the exponent that controls the accuracy of the
aggregation, and se is the quantity of interest (QoI) that is
being aggregated.

For positive values of se and large p exponents, it
is known that both aggregation functions converge to
the maximum value of the data set (see for instance,
Duysinx and Sigmund 1998). It is widely known also

that the main difference between these functions is that
p-norm overestimates the maximum value while p-mean
underestimates it. However, within the context of topology
optimization and to the best of our knowledge, it has
not been mentioned that these functions are also highly
dependent on the data distribution. This can be clearly
seen by comparing the aggregation curves of two sets of
data, such as those shown in Fig. 5a. The aggregation of
those sets using p-mean and p-norm is shown in Fig. 5b.
For this particular case, it is interesting to note that p-
norm, with p > 12, provides a better approximation of
the maximum when data is located mostly at low values
(set 1). But the opposite occurs when data is located at
higher values. In this configuration (set 2), p-mean provides
a better approximation of the maximum, even for low p

exponents. This also shows that p-mean is less sensitive to
the exponent p when data is placed at higher values, since
the approximation of p-mean is slightly improved with the
increment of p.

Another interesting observation is their dependency to
the amount of data. As Fig. 5c shows, the greater the
amount of data, the lower the performance of the p-norm
function. This does not apply for p-mean, since it has
the scaling factor N−1 that places the function around
the arithmetic mean, regardless the quantity of data. The
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(a)

(b)

(c)

(d)

Fig. 5 In a are the histograms of two randomly produced sets of data
with values between 0 and 1. In b are the aggregation curves using p-
mean and p-norm. In c is the aggregation of the set 2 with different
number of variables. In d is the sensitivity information using p-norm
for data set 2. In the latter, sensitivities are incrementally sorted and
normalized

same situation arises when comparing the KS and the
lower bound KS (see for instance Verbart et al. 2017, for
definitions). The latter has the scaling factor N−1 and
therefore it is less sensitive to the amount of aggregated data.

The main attractiveness of these aggregation functions is
that they provide sensitivity information, which is essential
for gradient-based optimizers. Unfortunately, as shown in
Fig. 5d, as p increases the sensitivities of the smooth
aggregation function resemble those of the max(s) function,
for which only one value of the sensitivities is different
from zero. This issue affects the linearization performed
by gradient-based optimizers since sensitivity information
tends to be lost for closer approximations of the max(s)
function. In this situation, few local constraints are being
considered by the optimizer and when updating design
variables, a new set of local constraints will stand out as
critical. A common practice to reduce oscillations, which is
also adopted in this work, is to limit the maximum change of
the design variables (see for instance, Yang and Chen 1996).
Being ml the move limit, the maximum change of the design
variables is controlled as follows:

max(0, ρe − ml) ≤ ρe ≤ min(1, ρe + ml) (16)

4.2 Adopted aggregation strategy

Given that the constraint gi ∈ [ε-1,ε], the QoI is chosen such
that si ∈ [0,1]. Therefore, QoI is defined as follows:

si = gi + 1 − ε. (17)

Considering Pm/n as either p-mean or p-norm, the global
constraint Gms is recovered as follows:

Gms = Pm/n (s) − 1 + ε. (18)

The purpose of the aggregation is to catch the most
critical constraints from the set (9), i.e., the maximum size
constraints with positive values. The main difficulty of this
task is that few constraints are being violated at every
iteration. These ones are located in the narrow band [0, ε]
shown in the histogram of Fig. 6a. This small band is a
difficult target for the aggregation functions. As shown in
Fig. 6b, large p values are required to catch the band [0, ε].

The band [0, ε] is narrow because ε must be small. The
ε parameter acts as a buffer of voids in the maximum size
constraint. It should be big enough to split the bulky material
but small enough to avoid affecting the length scale. As
big value ε reduces the allowable amount of solid material
within the test region, therefore it reduces the maximum size
defined by the user. In addition, in the connection of bars,
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(a)

(b)

(c)

Fig. 6 Information of two iterations of the MBB beam for compliance
minimization with maximum size constraints. In a is the histogram of
local maximum size constraints, in b the aggregation curves, and in c
the sensitivity information

the Heaviside projection and the maximum size constraint
act in opposition. As shown in Fig. 7a, the maximum
size constraint tries to introduce amount ε of void, but
the Heaviside projection tries to introduce material. This
contradiction compromises the convergence of the problem.

The attractiveness of using big ε values, for example
greater than 0.2, is that the aggregation process becomes
easier since the band [0, ε] is no longer narrow. But this
approach works only if the minimum size of the solid phase
is sufficiently small to not contradict the maximum size

(a)

(b)

Fig. 7 Two situations when a large ε is chosen. In a, the maximum
size constraint acts in opposition to the Heaviside projection. In b, the
minimum size of the solid phase does not compromise the material
connectivity

constraint, as shown in Fig. 7b. The previous condition
forms part of the method proposed by Wu et al. (2018) to
produce infill structures. The difference between the later
method and the method that controls the maximum size
can be seen in Fig. 8. There, both solutions have the same
maximum size diameter dmax, but ε in Fig. 8a is 10 times
bigger than in Fig. 8b. The attached code computes the
maximum size constraint with the method proposed in the

(a)

(b)

Fig. 8 Solutions of the MBB beam domain for compliance minimiza-
tion with maximum size constraints. In a solution using ε = 0.4% and
in b using ε = 0.04%. The volume constraint is 60% in both cases.
Black symbols next to each solution represent dmin and Ω
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following section, but it can be easily adapted to obtain the
method that produces infill structures, for which the reader
is referred to Section 7.

The adopted strategy in this paper uses (17) as QoI and
a large p value (greater than 100) to ensure the capturing
of the band [0,ε]. The non-linearity of the constraint is
addressed in the optimizer by restricting the maximum
change of the design variables. However, the slow evolution
of the design variables demands a big number of iterations,
being this the main drawback of the method. Each example
reported in this article is solved using 450 iterations,
with a continuation method defined as follows. In the
three problems, the SIMP exponent η is initialized at 1.0
and is increased in increments of 0.25 to a maximum
of 3.0. The Heaviside parameter β is initialized at 1.5
and is increased by a factor 1.5 to a maximum of 38.
The continuation procedure includes 50 iteration between
parameters increment.

We have noticed that at the beginning of the optimization
process, when η is still smaller than 3, a large ml can be used
without compromising the convergence of the objective
function. This is probably due to the fact that a significantly
larger amount of sensitivities are different from 0 at earlier
stages of the optimization problem, as shown in Fig. 6c
where p = 100. As the optimization progresses and the
values of μ and β rise, smaller ml should be used for
avoiding the divergence of the optimization process. In
practice, we start the optimization with ml = 0.3 and finish
with ml = 0.05. During the optimization process, a linear
interpolation sets ml as follows:

ml = 0.3 − 0.05

3 − 1
(3 − η) + 0.05. (19)

This scheme is preferable than introducing a small ml

from the beginning of the optimization problem because the
slow evolution of the design variables can demand even a
larger amount of iterations or promote the design topology
get locked in the early stages of the optimization. In the
later situation, we have observed designs with disconnected
material, or designs that do not use all the allowed material.
A similar observation is described by Lazarov and Wang
(2017).

Figure 9 shows the evolution of the objective function
tᵀu and of the constraint Gms. The problem corresponds
to the solution shown in Table 2, using p = 100 and
N = 30000. The picks on the objective and on the constraint
come from the abrupt increase of the parameters η and β. It
is worth mentioned that problems shown in this article start

Fig. 9 Convergence plot of the MBB beam design shown in Table 2,
obtained with p = 100 and N = 30000

from an uniform initial guess satisfying both the volume and
the maximum size constraint.

4.3 Sensitivity analysis

Taking into account that we use column arrays, the
sensitivity expression of the global constraint is obtained by
applying the chain rule as follows:

dGms

dρ
= dρ̃

dρ

dρ̄

dρ̃

dδ

dρ̄

dg

dδ

ds

dg

dPm/n

ds

dGms

dPm/n

, (20)

dGms

dρ
= −Dᵀ

I Jρ̄ Jδ D
ᵀ
II Js

sp−1

N

⎛

⎜
⎜
⎝

∑

e∈�

se
p

N

⎞

⎟
⎟
⎠

1
p

−1

. (21)

The sensitivities in (21) consider p-mean as aggregation
function. The expression using p-norm is identical to (21)
but without the term N−1. Here, Jρ̄ , Jδ , and Js respectively
represent the Jacobian matrix of the smoothed Heaviside
projection, the measure of void, and the QoI to aggregate.
These matrices are defined as:

Jρ̄ = diag(ρ̄′
1(ρ̃1), ..., ρ̄′

Nt
(ρ̃N� )),

Jδ = diag(δ′
1(ρ̄1), ..., δ′

Nt
(ρ̄N� )),

Js = diag(s′
1(g1), ..., s′

N(gN)), (22)
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with ρ̄′, δ′, and s′ being the derivatives of (5), (12), and (17),
respectively, and N� being the total number of elements in
�.

5 Numerical examples and discussion

The problems addressed here were introduced in Section 2.
These ones are implemented in the PolyTop code (Talischi
et al. 2012) as well as the proposed developments related to
the maximum size constraint. In the Appendix, it is attached
a sample MATLAB code that includes the formulation of
the constraint and its sensitivities. This code is intended for
integration with PolyTop and as a supporting material of the
theoretical details discussed in this paper.

In this section, the reported objective values Obj are
normalized with respect to the solution that does not
consider the maximum size constraint. In addition, a
measure of discreteness Mnd (Sigmund 2007) is also
provided for each result. The measure is defined as follows:

Mnd =

∑

i∈�

4vi ρ̄i(1 − ρ̄i )

∑

i∈�

vi

× 100. (23)

When two topologies are compared, a topology equality
index is provided which is defined in (24), where VT ot is
the total volume of the design domain. ρ̄(a) and ρ̄(b) are the
two density maps being compared. For two identical maps
Teq = 100, and for two totally different maps, Teq = 0.

Teq = 100 − vᵀ
∣
∣ρ̄(a) − ρ̄(b)

∣
∣

min(2 V
∗
, VT ot )

× 100. (24)

5.1 Comparison of test regions

The three optimization problems introduced in Section 2 are
solved using the circular and annular test regions. For the
MBB beam, V ∗ = 40%, dfil = 0.08L, and dmax = 0.06L.
For the force inverter, V ∗ = 30%, dfil = 0.03L, and
dmax = 0.025L. And for the heat sink, V ∗ = 30%, dfil =
0.025L, and dmax = 0.031L. The maximum size constraint
is formulated using p-mean function with p = 200. Table 1
gathers the results.

Teq, reported in parenthesis, shows that designs obtained
with different test regions share more than 76% of the

Table 1 Optimization problems with maximum size constraint including
the circular and annular test regions

topology. The main difference between them is that the
circular region introduces more hollow circles into the
topology. These are highlighted with red lines in the
Table 1. The annular region introduces more channel-
shaped cavities than circular ones. In addition, circular
cavities in the designs obtained with the annular region are
larger in diameter. These slight changes in the topology
reduce the complexity of the component, which improves
manufacturing. We observed a similar effect of the annular
region, but less noticeable, with the inverse projection
proposed by Almeida et al. (2009), i.e., when weights le,i
decrease as they approach the center of the circular test
region.

The annular test region improved structural performance
in the MBB beam, but in the other test cases it was
detrimental to the mechanical performance. However, the
objective functions were affected by less than 0.7%, which
can be considered negligible compared to the topological
change. Therefore, changing the test region from Ω(c) to
Ω(r) reduces the number of cavities in the design, having
a greater impact on the topology than on the structural
performance.

Another attractiveness of the annular region is that it
makes possible to alleviate the memory load when dealing
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Table 2 Effect of the p-mean function on the mesh dependency

with large-scale topology optimization. There, maximum
size neighborhoods easily come to contain thousands of
elements, so removing the internal zone has a significant
impact on the required memory to store the weights le,i in
DII matrix.

Table 3 Effect of the p-norm function on the mesh dependency

5.2 Mesh dependency

In this example, the compliance minimization and the force
inverter problems are solved using different discretizations.
For the MBB beam, V ∗ = 40%, dmax = 0.06L, dmin =
0.04L, and dfil = 0.08L. For the force inverter, V ∗ = 30%,
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dmax = 0.04L, dmin = 0.02L, and dfil = 0.04L. For both
problems, the annular test region Ω(r) is used to compute
the local maximum size constraint. Solutions using p-mean
and p-norm are summarized in Tables 2 and 3, respectively.
Designs for two different p values are shown in each
Table. The number of elements N is found on top of each
solution, next to the indicator Teq that compares solutions
obtained with different p values but same aggregation
function. Comments about the essential differences between
the chosen aggregation functions are listed below.

• p-mean promotes mesh independence: When compar-
ing topologies obtained with different discretizations
but same p, it can be seen that the position and length
of the larger bars are practically the same when using p-
mean. For instance, taking into account the bar labelling
shown in the MBB beam design with p-mean, p = 100
and N = 7500, it can be seen that bars 1 to 8 are easily
recognizable in all discretizations. In the force inverter,
the number of bars that compose the right diagonal
structure is 3 in all discretizations. The main difference
is in the central bar which tends to shrink as the number
of elements in the discretization increases. However, in
the designs obtained with p-norm, it is difficult to rec-
ognize a common topology. The internal number of bars
in the MBB beam is different in all topologies, and in
the force inverter, the right diagonal structure does not
have the same number of bars in all discretizations.

Figures 10 and 11 were obtained from the MBB beam
designs shown in Table 2, using p-mean with p = 100.
These Figures display the constraints information of two
different iterations, an early one and the last one. It
can be seen that the local formulation of the maximum
size constraint allows nearly the same data distribution,
regardless of the discretization. It is precisely this property
of the maximum size constraint that allows p-mean to
promote mesh independence, because, as discussed in
Section 4.1, for the same data distribution, the amount of
data does not affect the p-mean function. Since histograms
of different discretizations are not exactly the same,
small differences between aggregation curves are expected.
This probably justifies the subtle differences between the
topologies obtained with p-mean, for instance, the absence
of bar 7 in the MBB beam design obtained with p-mean,
p = 300 and N = 120000.

• p-mean underestimates: Because p-mean underesti-
mates the most critical restriction, it introduces a lower
penalization in the design. This is why the designs
obtained with p-mean have a better structural perfor-

(a)

(b)

Fig. 10 Information of an early iteration of the MBB beam with
maximum size constraints using p-mean. In a are the histograms and
constraints map. In b are the aggregation curves

mance than those obtained with p-norm. Increasing
p when using p-mean increases the penalization and
reduces structural performance, as can be seen in the
objective values in Table 2 for designs obtained with
different p. Although p-mean with p = 100 underes-
timates a significant fraction of critical restrictions, as
can be seen in Fig. 11, it also divides the bulky material.
There, the violated restrictions are mainly found in the
union of bars, as can be seen in Fig. 11a. This is inter-
esting since the restriction limits the maximum size of
the bars but allows a rigid bond between them.
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(a)

(b)

Fig. 11 MBB design with maximum size constraint using p-mean. In
a are the histograms and constraints map for different discretizations.
In b are the aggregation curves. Iterations obtained from a maximum
size–constrained problem using p-mean function

• p-norm overestimates: Overestimating the local con-
straint (7) is equivalent to increasing ε. For this reason,
p-norm places more voids in the test region Ω resulting
in designs with larger cavities, with greater number of
structural elements and thinner too. Having more par-
titioned material increases the perimeter of the design,
this is why most of the results using p-norm have a
greater Mnd.

• p-mean is less parameter dependent: The disadvantage
of the aggregation strategy is that it adds additional
parameters to the optimization problem, which must
be tuned by the user. In the context of maximum

size constraints, we have observed that when p-mean
is used, the parameters that most influence the final
topology are the move limits ml and the chosen
continuation procedure. Compared to these, the value
of p has a smaller effect. As can be seen in Table 2, the
results obtained with different p are very similar. These
share about 80% of the topology. This is consistent with
Section 4.1, which shows that the p-mean function is
less sensitive to p than the p-norm.

• Minimum length scale: As mentioned in Section 2,
the adopted projection strategy does not guarantee
complete control of the minimum size, i.e., local
mesh convergence is not reached, especially in the
areas where bulky material is divided by a thin layer
composed of void and gray elements. As can be seen
in Tables 2 and 3, small hinges are introduced as the
number of elements in the discretization increases. This
undesirable feature could be avoided by adding the
geometric constraints proposed by Zhou et al. (2015) to
impose the minimum size of the solid and void phases,
or, as shown in the following example, by using the
robust design approach (Wang et al. 2011).

5.3 Maximum andminimum length scale controls

This example is simply to analyze the performance of the
maximum size constraint on a problem with minimum size
control. The three problems are solved using the robust
design approach. To this end, three designs are obtained
in the projection stage, named as eroded ρ̄ero, intermediate
ρ̄int, and dilated ρ̄dil. The objective function considers the
design that offers the worst performance (for further details
see Wang et al. 2011). The volume constraint is evaluated
on the dilated design only since the projection strategy adds
more material in ρ̄dil than in the other two fields. Given
that ρ̄int is the design intended for manufacturing, the upper
bound of the volume constraint V ∗

dil is updated according
to the desired volume constraint V ∗

int of the intermediate
design. For the latter, we use the strategy adopted by Amir
and Lazarov (2018). The maximum size is imposed in the
dilated design only, i.e., Gms(ρ̄dil). For the sake of brevity,
the effect on the length scale from restricting the dilated
field is omitted.

In this example, we use μero = 0.75, μint = 0.50 and
μdil = 0.25 to obtain ρ̄ero, ρ̄int, and ρ̄dil, respectively. Here,
differently from the previous examples, the length scale is
linearly changed within the design domain. This is just to
highlight the fact that it is not necessary to introduce extra
constraints to impose, simultaneously, different maximum
and minimum sizes. This task just requires assembling the
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(a)

(b)

(c)

Fig. 12 Topology optimization problems with different length scale.
In a V ∗ = 40%, Obj = 1.551, and Mnd = 2.7. In b V ∗ = 50%,
Obj = 2.931 and Mnd = 3.7. In c V ∗ = 30%, O−1

bj = 1.277 and
Mnd = 1.7

DI and DII matrices with the desired neighborhoods. The
minimum and maximum sizes, dmin and dmax, are given
next to each solution, which are shown in Fig. 12. Since the
thresholds μero and μdil are symmetric with respect to μint,
the theoretical minimum size of the solid and void phases
are equal. The p-mean function with p = 300 is used to
aggregate the constraints and the remaining optimization
parameters are kept as in the previous examples.

It can be seen in the MBB beam that there are two
portions of material disconnected from the structure. These

(b)

)c()a(

Fig. 13 In a the cantilever beam domain with a maximum size test
region that exceeds the design space. In b the portion of the test region
that remains inside, and c the portion that exceeds the design space

are pointed with two arrows in Fig. 12a. We have observed
that this issue can be avoided by increasing the total number
of iterations, or by changing the move limit ml to be less
conservative.

As expected, by imposing the minimum size, it is
possible to avoid the small hinges. For this reason,
compared to previous examples, designs obtained with
the robust design approach have approximately 1.5%
less gray elements, which contributes to improve the
manufacturability of the optimized design.

Unlike the examples in previous sections, the designs
in Fig. 12 have a considerably lower performance than the
reference solution. This is associated with the additional
penalization introduced by the minimum size control, which
avoids gray elements and increases the separation distance
between the bars.

It is worth mentioning that after the work of Yan
et al. (2018), it is known that needle-like structures in
thermal compliance offer a better performance that tree-
like structures. This was also observed in the context
of maximum size by Carstensen and Guest (2018).
However, in the thermal compliance designs shown in this
work, the maximum size restriction did not improve the
performance of the component despite of promoting needle-
like structures, as shown in Fig. 12b. The reason is that a
large portion of the material is removed from the area near
the heat sink, interrupting the heat conduction towards the
cold zone.

5.4 3D cantilever beam

The MATLAB code in the Appendix is transcribed into
the free access code TopOpt (Aage et al. 2015), to solve
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the 3D cantilever beam for compliance minimization with
maximum size constraints. The design domain is shown in
Fig. 13a and the parameters are in the notes of Table 4. Most
of these are defined by default in the TopOpt code. The
maximum size constraint is formulated with the annular test
region, which in 3D takes the form of a spherical shell of
thickness (dmax − dmin)/2. The p-mean function is used to
aggregate the local constraints with p = 300.

Differently from the 2D case, the treatment of the filter
is performed numerically since an extension of the design
domain is computationally expensive when it comes to
large-scale topology optimization. With a regular mesh, it
is possible to redefine the filter and the maximum size
matrices as:

DI(i,j) = vj wi,j

cI
, i, j ∈ �, (25a)

cI = max(w v), (25b)

DII(i,j) = vj li,j

cII
, i, j ∈ �, (26a)

cII = max(l v), (26b)

where w and l are matrices containing the weights. These
are defined in (4) and (11), respectively. Then, the local
maximum size constraint considering a numerical extension
of the design domain is computed as:

g = ε − (DIIδ + cg) ≤ 0, (27a)

cg = 1 − DII1, (27b)

where 1 is an all-one array. cg contains the fraction of the
test regions that remains outside the design domain. For

Table 4 3D cantilever beam
for compliance minimizationa.
Solutions include 2 views, one
removes a portion of the
component and the other one
shows multiple sections. The
displayed elements meet
ρ̄i ≥ 0.1

aThe parameters are as follows: Rectangle size 2×1×1; Elements 256×128×128; E0 = 1; Emin = 1×10−9;
η = 1:0.25:3; β = 2.5η − 1.5; Iter/step= 40; dmin = 10 elements; dmax = 16 elements; ε = 0.05
bTotal time required to solve the problem. Computation distributed on 10 nodes of two 12-core Intel SkyLake
5118, processors at 2.3 GHz with 3970 MB/core
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instance, the test region of an element located at the edge
of the design domain (see Fig. 13a) has a cgi = 0.75 which
represents the portion shown in Fig. 13c.

Table 4 summarizes the results. The first column shows
the reference solution and the second column shows the
solution with maximum size control. It can be observed that
in this example, differently from the 2D case, the constraint
promotes plate-like structures rather than bar-like structures.
Where plates bond, a long-narrow-closed circular cavity
is present, which hinders manufacturing if, for example,
additive manufacturing technologies are considered. This
suggests that the maximum size constraint may demand
other methods to reduce the geometric complexity of the
design.

In the 3D example, the computation time is increased
by 7%, which can be considered negligible. However, the
additional computation time and memory required to store
the DII matrix could be considerably high if larger test
regions Ω are used.

6 Conclusion

This article presents the aggregation of maximum size
constraints. In particular, it is used the formulation that
limits the amount of material within a test region of
each element in the design domain. A detailed analysis
of this constraint and a comparison between the studied
aggregation functions lead to the following conclusions:

– For large p-exponents, the sensitivity information of
the aggregation function resembles that of the max(·)
function, for which only one value of the sensitivities
is different from zero. In this situation, oscillations are
expected since few local constraint are being considered
by the optimizer. Here, more conservative updating
strategies are necessary to guaranty the convergence of
the problem.

– The aggregation of the maximum size constraints can
be eased by increasing the amount of void within the
test regions, since smaller p-exponents can be used
to catch the critical constraints. However, this strategy
limits the minimum size of the solid phase because
of a contradiction between the smoothed Heaviside
projection and the maximum size constraint.

– Some aggregation functions, such as p-norm, are
sensitive to the amount of aggregated data. Therefore,
they are sensitive to different discretizations of the same
optimization problem.

– The aggregation functions are sensitive to the data
distribution. This suggests that it is advisable to check

the distribution of the constraints for a proper selection
of the aggregation function.

In addition, it is observed that by removing the inner zone
of the circular test region, less holes are introduced in the
topology. This can contribute to improve manufacturability
of maximum size–constrained components.

7 Replication of results

The attached code can be easily integrated into the PolyTop
MATLAB code (Talischi et al. 2012). To facilitate its
implementation and make it easy to read, some strategies
have been simplified. For example, the PolyTop code by
default does not include any treatment for the filter with
respect to the boundaries, and the smoothed Heaviside
projection is not threshold commanded. By default, it is
solved the compliance minimization problem subject to
volume and maximum size constraints, and the design is
discretized using polygonal elements.

Some indications are given below to ease the replication
of results.

– The proposed strategy: The attached code includes by
default the proposed aggregation strategy that uses (17)
as QoI and (21) to obtain sensitivities. A big p exponent
is set line 21, therefore a small move limit ml must be
used.

– Infill structures: As explained in Section 4.1, the
maximum size constraint is related to the method that
produces infill structures. To obtain a result similar to
Fig. 8a, the attached code must be changed as described
in lines 20, 21, 22, and 39.

– Comparison of test regions: By default, the code in the
Appendix assembles the DII matrix using the annular
test region, but it is possible to recover the circular one
by commenting the line 40.

– p-mean and p-norm: By default the attached code uses
p-mean as aggregation function, but it is possible to get
p-norm simply by defining N = 1 in line 23.
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Research Fund of Belgium (F.R.S.-FNRS).

Compliance with Ethical Standards

Conflict of Interest The authors declare that they have no conflict of
interest.

2128



An aggregation strategy of maximum size constraints in density-based topology optimization

Appendix: MATLAB code of themaximum
size constraint

1 %------------------- Example of implementation in PolyTop. --------------------%
2 % In PolyScript.m, replace the line:                                           %
3 %  9  by :  [Node,Element,Supp,Load] = PolyMesher(@MbbDomain,8000,30);         %
4 %  35 by :  'MaxIter',30,...                                                   %
5 %  41 by :  for penal=1:0.25:3; MS.q=penal;                                    %
6 %  43 by :  opt.MatIntFnc = @(y)MatIntFnc(y,'SIMP-H',[penal,2.4^penal-1.4]);   %
7 %  44 by :  [opt.zIni,V,fem,MS] = PolyTop(fem,opt,MS);                         %
8 % In PolyTop.m:                                                                %
9 %  replace L.7 by: function [z,V,fem,MS] = PolyTop(fem,opt,MS)                 %

10 %  after L.18 add: [g,dgdz,MS]= MaxSize(V,dVdy,g,dgdz,P,MS,fem);               %
11 %  in Line 20    : Use MMA                                                     %
12 %------------------------------------------------------------------------------%
13 function [g,dgdz,MS] = MaxSize(h,dhdy,g,dgdz,DI,MS,fem)
14
15 %% ================= PARAMETERS & COMPUTATION OF DII MATRIX ====================
16 if ~isfield(MS,'DII')
17 Rmax = 0.06; Rmin = 0.04; % Max and Min size radius
18 [A,ECtrd] = Elem_Geometry (fem); % Areas and Centroids
19 MS.DII = MSregions(ECtrd,A,Rmin,Rmax,fem.NElem); % Saving DII matrix
20 end % in PolyScript.m ------> For Infill: R=0.02;
21 p = 200; epsi = 0.05; % p-exponent & epsilon  % For Infill: p=10; epsi=0.4;
22 q = MS.q; % penalization of voids % For Infill: q=1;
23 N = fem.NElem; % Number of data        % For p-norm: N=1;
24
25 %% ===================== Maximum Size Constraint using p-mean ==================
26 v = (1-h).^q; dvdh = -q*(1-h).^(q-1); % voids vector with penalization
27 gms= epsi-MS.DII*v; dgmsdv = -MS.DII'; % Amount of voids
28 s = gms+1-epsi; % QoI % For Infill: s3=s1;
29 Pm = (sum(s.^p)/N)^(1/p); % Aggregation using p-mean
30 dPmds= Pm^(1-p)*(s.^(p-1))/N; % Derivative of p-mean
31 Gms = Pm-1+epsi; % For Infill: Gms=Pm-1+epsi;
32 dGdz = DI'*(dhdy.*dvdh.*(dgmsdv*dPmds)); % Derivatives of Gms
33 g = [ g ; Gms ]; dgdz = [dgdz,dGdz]; % Final arrays for MMA
34
35 %% ======================== FUNCTION: DII Matrix  ==============================
36 function [DII] = MSregions(Ec,A,Rin,Rmax,NElem); d1 = cell(NElem,1);
37 for el = 1:NElem
38 dist = sqrt((Ec(el,1)-Ec(:,1)).^2 + (Ec(el,2)-Ec(:,2)).^2);
39 [I,~] = find(dist<=Rmax); % For Infill: Comment next line
40 [Iin,~]= find(dist(I)<=Rin); Iin=I(Iin,1); I=setdiff(I,Iin);
41 d1{el} = [I,zeros(size(I))+el,A(I)];
42 end
43 dII = cell2mat(d1); DII = sparse(dII(:,1),dII(:,2),dII(:,3));
44 DII = spdiags(1./sum(DII,2),0,NElem,NElem)*DII;
45 function [A,ElemCtrd] = Elem_Geometry (fem) %--------------- Centroids and Areas
46 for el = 1:fem.NElem
47 vx=fem.Node(fem.Element{el},1); vy=fem.Node(fem.Element{el},2);
48 temp = vx.*vy([2:end 1])-vy.*vx([2:end 1]); A(el,1) = 0.5*sum(temp);
49 ElemCtrd(el,1) = 1/(6*A(el,1))*sum((vx+vx([2:end 1])).*temp);
50 ElemCtrd(el,2) = 1/(6*A(el,1))*sum((vy+vy([2:end 1])).*temp);
51 end
52 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
53 % This Matlab code was written by Fernandez E, Collet M, Alarcon P, Bauduin S, %
54 % Duysinx P. Department of Aerospace and Mechanical Engineering, University of %
55 % Liege, Belgium. Please send your comments to: efsanchez@uliege.be            %
56 % This code is intended for integration with PolyTop from: Talischi C, Paulino %
57 % GH, Pereira A, Menezes IF (2012). Polytop: a matlab implementation of a      %
58 % general topology optimization framework using unstructured polygonal finite  %
59 % element meshes. Struct Multidisc Optim 45(3):329-357.                        %
60 % Disclaimer: The authors reserve all rights but does not guarantee that the   %
61 % code is free from errors. Furthermore, the author shall not be liable in any %
62 % event caused by the use of the program.                                      %
63 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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