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Abstract
In practical engineering applications, random variables may follow multimodal distributions with multiple modes in the prob-
ability density functions, such as the structural fatigue stress of a steel bridge carrying both highway and railway traffic and the
vibratory load of a blade subject to stochastic dynamic excitations, etc. Traditional uncertainty propagation methods are mainly
used to treat random variables with only unimodal probability density functions, which, therefore, tend to result in large
computational errors when multimodal probability density functions are involved. In this paper, an uncertainty propagation
method is developed for problems in which multimodal probability density functions are involved. Firstly, the multimodal
probability density functions of input random variables are established using the Gaussian mixture model. Secondly, the uncer-
tainties of the input random variables are propagated to the response function through an integration of the sparse grid numerical
method andmaximum entropymethod. Finally, the convergencemechanism is developed to improve the uncertainty propagation
accuracy step by step. Two numerical examples and one engineering application are studied to demonstrate the effectiveness of
the proposed method.

Keywords Uncertainty propagation .Multimodal probability density function . Convergencemechanism . Sparse grid numerical
integration .Maximum entropymethod

1 Introduction

Uncertainties associated with heterogeneous materials,
manufacturing imprecision, random loads, and so on widely
exist in practical engineering problems (Melchers 1999;
Schuöllera and Jensen 2008; Stefanou 2009; Papadrakakis
et al. 2010; Pranesh and Ghosh 2018). They are considered

to have significant influence on the performance of an engi-
neering system, such as reliability, safety, and robustness (Du
and Chen 2002; Youn et al. 2004; Doltsinis and Kang 2004;
Keshavarzzadeh et al. 2017; Zhang et al. 2018). Therefore,
quantifying and analyzing the effects of input uncertainties
on the system performance, namely, uncertainty propagation,
have become critical in the practical engineering design.

Generally, the motivation of uncertainty propagation
(MaiTre et al. 2004; Lee and Chen 2009; Ballaben et al.
2017) is to calculate the statistical moments or probability
distribution function of the system response Y = g(X), based
on the distribution information of input random variables
X = [X1, X2, ..., Xn]

T. Until now, many important progresses
have been made for uncertainty propagation, which can be
roughly sorted into three categories. (1) Sampling-based
methods such as direct Monte Carlo simulation (MCS)
(Augusti et al. 1984; Amirinia et al. 2017; Pan and Dias
2017), adaptive sampling (Mori and Kato 2003), and impor-
tance sampling (Bucher 1988). This category of methods uti-
lizes a large amount of samples to propagate uncertainty,
which is commonly considered to be able to achieve high
precision. (2) Most probable point (MPP)-based methods such
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as the first-order reliability method (FORM) (Rackwitz and
Flessler 1978; Low and Tang 2007; Keshtegar and
Chakraborty 2018) and second-order reliability method
(SORM) (Brietung 1984; Zhang and Du 2010). FORM and
SORM approximate the response function with Taylor series
expansion at a point with the largest failure probability density
value, e.g., most probable point, based on which the probabil-
ity distribution function of the response is calculated with a
good balance between computational accuracy and efficiency.
(3) Moment-based methods (Lee and Kwak 2006; Zhao and
Ono 2001; Shi et al. 2018). For this category of methods, the
statistical moments of the response function are first calculat-
ed by some numerical integration techniques, and then its
probability density function is approximated based on the cal-
culated moments.

However, it should be pointed out that most of the existing
uncertainty propagation methods generally consider that the
random variables are unimodally distributed. In other words,
there is only one mode (local maxima) in the probability den-
sity function of each random variable. In practical engineering
problems, nevertheless, the random variable may follow a
multimodal distribution with more than one probability den-
sity mode, which is named as the multimodal random variable
in this paper. For instance, the long-term monitoring data of
the structural fatigue stress on a steel bridge carrying both
highway and railway traffic was demonstrated to obey a bi-
modal distribution (Ni et al. 2011; Ni et al. 2010). In the
complex power grids, the abrupt local change of voltage was
considered to obey a bimodal distribution (Moens et al. 2014).
According to the statistical Weibull plots of experimental data,
the Knoop microhardness of nanostructured partially stabi-
lized zirconia coatings was observed to follow a bimodal dis-
tribution (Lima et al. 2002). The axle load spectrum of a road
site was pronounced to follow multimodal distributions when
various loading situations are considered for the passing
trucks (Haider et al. 2009; Timm et al. 2005). The vibratory
load of a blade subject to stochastic dynamic excitations and
the start and shutdown stresses of turbine generator rotors
were also reported to follow multimodal distributions (He
et al. 2016). The MPP-based methods and moment-based
methods may encounter large computational errors when mul-
timodal random variables are involved. More specifically, it is
required that the multimodal random variables should be
converted to unimodal variables that follow normal distribu-
tions in the MPP-based methods, which generally increases
the nonlinear degree of the response function and hence
makes the uncertainty propagation more complex (Hu and
Du 2017). The existing moment-based methods generally cal-
culate the low order of moments of the response function,
which may fail to capture the multimodal characteristic of
the response probability density function. Though the
sampling-based methods are able to deal with multimodal
random variables, they are widely considered to be extremely

computationally expensive, which hinders the application of
sampling-based methods in practical engineering problems
involving complex simulation models. Therefore, it is neces-
sary to develop high-performance MPP-based or moment-
based uncertainty propagation methods for problems involv-
ing multimodal random variables.

The research on uncertainty propagation involving multi-
modal distributions is still under its preliminary stage. Until
now, only a limited number of exploratory researches have
been conducted, and they tend to be suffering from some
inherent limitations. An uncertainty propagation method inte-
grating the Laplace method and FORM was proposed by
establishing the Laplace approximations of random variables
with multimodal distributions (He et al. 2016). However, it
may encounter large uncertainty propagation errors in the
cases where the probability density function is highly unsym-
metrical at modes or the response function at MPP is highly
nonlinear. A mean value saddlepoint approximation method
for bimodal distributions was proposed, based on which the
structural failure probability can be estimated more accurately
(Hu and Du 2017). The mean value saddlepoint approxima-
tion method linearizes the response function at mean values,
which may fail to provide satisfied computational accuracy
when the response function is highly nonlinear.

A new uncertainty propagation method is proposed in this
paper to well treat problems in which multimodal random
variables are involved. The remainder of this paper is orga-
nized as follows. The input multimodal random variables are
modeled using Gaussian mixture model in Section 2. The
uncertainties of input multimodal random variables are prop-
agated to the response function with a combination of the
sparse grid numerical integration method and maximum en-
tropy method in Section 3. Two numerical examples and an
engineering application are investigated in Section 4 to dem-
onstrate the effectiveness of the proposed method. Some con-
clusions are finally summarized in Section 5.

2 Uncertainty modeling of input multimodal
random variables

The uncertainty modeling of input multimodal random vari-
ables is the prerequisite of an uncertainty propagation prob-
lem. Generally, it involves two aspects: (i) assigning a math-
ematical structure to appropriately describe the uncertain var-
iable and (ii) determining the numerical values of the param-
eters of the mathematical structure.

The Gaussian mixture model (GMM) (Rasmussen 2000;
Zivkovic 2004) is adopted for uncertainty modeling of input
random variables with multimodal distributions. It has been
widely used in the areas of applied statistics such as pattern
recognition, classification, and clustering (Figueiredo and Jian
2002; Ban et al. 2018; Khan et al. 2019) to deal with complex
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data set with multiple subpopulations. The GMM employs a
linear combination of multiple Gaussian components to char-
acterize the multimodal random variable X, the probability
density function of which is expressed as (Zivkovic 2004):

f X jθð Þ ¼ ∑
k

m¼1
αmφ X jθmð Þ ð1Þ

where αm denotes the coefficient of the mth Gaussian compo-

nent, and it satisfies αm ≥ 0 and ∑
k

m¼1
αm ¼ 1. φ(X|θm) denotes

the Gaussian probability density function of the mth compo-

nent, where θm ¼ μm; δ
2
m

� �
denotes the mean and variance. k

denotes the number of component, which can be determined
by the minimization of the Akaike information criterion (AIC)
(Ni et al. 2011; Ni et al. 2010):

AIC ¼ 2k−2ln Lf
� � ð2Þ

where Lf denotes themaximized value of the likelihood function for
the GMM model. θ ¼ α1;μ1; δ

2
1;α2;μ2; δ

2
2;…;αk ;μk ; δ

2
k

� �
denotes the complete set of the distribution parameters.
To make a better illustration, the Gaussian mixture mod-
el of a bimodal distribution is presented in Fig. 1, and
its probability density function is expressed as below:

f X jθð Þ ¼ α1φ X jθ1ð Þ þ α2φ X jθ2ð Þ ¼ α1φ
X−μ1

σ1

� �
þ α2φ

X−μ2

σ2

� �

¼ α1ffiffiffiffiffiffi
2π

p
δ1
exp −

X−μ1ð Þ2
2δ21

( )
þ α2ffiffiffiffiffiffi

2π
p

δ2
exp −

X−μ2ð Þ2
2δ22

( )

ð3Þ

To determine the Gaussian mixture model of a multimodal
random variable, the set of parameters θ is required to be
estimated. The maximum likelihood estimation method is a

common choice for parameter estimation, given a set of h
independent observed samples x = {x(1), x(2), ..., x(h)}.
Moreover, a set of h hidden variables γ = {γ(1), γ(2), ...,γ(h)}
is provided, which indicates that the sample x(i) was produced
by themth component. Each hidden variable is a binary vector

γ ið Þ ¼ γ ið Þ
1 ; γ ið Þ

2 ; :::; γ ið Þ
k

h i
, where γ ið Þ

m ¼ 1 and γ ið Þ
p ¼ 0 p≠mð Þ.

Based on this, the log-likelihood function can be established
as below:

log f X ;γjθð Þ ¼ log ∏
h

i¼1
f x ið Þ;γ ið Þjθ
	 


¼ ∑
h

i¼1
∑
k

m¼1
γ ið Þ
m log αmφ x ið Þj μm;σ

2
m

� �h in o ð4Þ

The set of parameters θ is estimated by maximizing the
log-likelihood function:

θ̂ ¼ argmax
θ

log f X ;γjθð Þf g ð5Þ

The expectation maximization (EM) algorithm
(Dempster et al. 1977; Redner and Walker 1984;
Balakrishnan et al. 2017) is commonly adopted to iterative-
ly search the local maxima of logf(X, γ| θ), owing to its
advantages of reliable convergence, low cost per iteration
and ease of programming. The EM algorithm produces a

sequence of estimates θ̂ tð Þ; t ¼ 0; 1; 2; :::
� �

of the param-
eters θ by alternatingly applying the following two steps
(Figueiredo and Jian 2002):

& E-step: the conditional expectation of the log-likelihood is
computed, given the observed samples x and current esti-

mated parameters θ̂ tð Þ. Since logf(X,γ|θ) is linear with
respect to the hidden variables γ, we simply need to cal-

culate the conditional expectation ϖ ¼ Ê γjX ; θ̂ tð Þ� �
and

plug it into logf(X, γ| θ). The result is the so-called Q-
function:

Q θ; θ̂ tð Þ
	 


¼ Ê logp X ;γjθð ÞjX ; θ̂ tð Þ
h i

¼ logp X ;ϖjθð Þ ð6Þ

Since the elements of γ are binary, their conditional expec-
tations are given by:

ω ið Þ
m ¼ Ê γ ið Þ

m jX ; θ̂ tð Þ
h i

¼ P γ ið Þ
m ¼ 1jx ið Þ; θ̂ tð Þ

h i

¼
α̂m tð Þp x ið Þjθ̂ tð Þ

	 

∑k

j¼1α̂ j tð Þp x ið Þjθ̂ j tð Þ
	 
 ð7Þ

where αm is the priori probability that γ ið Þ
m ¼ 1, while ω ið Þ

m is

the posteriori probability that γ ið Þ
m ¼ 1, after observing x(i).
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Fig. 1 The Gaussian mixture model of a bimodal random variable
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& M-step: the parameters are updated by maximizing the
expected log-likelihood established in E-Step.

θ̂ t þ 1ð Þ ¼ argmax
θ

Q θ; θ̂ tð Þ
	 


ð8Þ

3 Propagating uncertainties to the response
function

In this section, the uncertainties of the input multimodal ran-
dom variables are propagated to the response function with a
combination of the sparse grid numerical integration method
and maximum entropy method. Furthermore, a convergence
mechanism is developed to guarantee the uncertainty propa-
gation accuracy.

3.1 Calculating the raw moments of the response
function

Based on the obtained probability density functions of each
input random variable X, the raw moments of the response
function Y = g(X) can be calculated as follows:

ml ¼ Ê gl Xð Þ� � ¼ ∫ℝN gl Xð Þ f X Xð ÞdX ð9Þ

where ml denotes the lth-order raw moment of Y,
X = (X1, X2,⋯, XN) denotes the vector of N independent
m u l t i m o d a l r a n d o m v a r i a b l e s , f X ( X ) =
f1(X1)f2(X2)⋯fN(XN) denotes the joint multimodal proba-
bility density function of X, ℝN denotes the multi-

dimensional integral domain, Ê is the expectation oper-
ator. Generally speaking, the multi-dimensional integral
in (9) cannot be economically calculated through direct
numerical integrals, since high dimensionality and com-
plicated integral domain are always encountered.

The sparse grid numerical integration (SGNI) method
(Gerstner and Griebel 1998; Xiong et al. 2010; He et al.
2014) is adopted to calculate the raw moments with k-
level accuracy, through the summation of probability
density values over a certain number of multidimension-
al sampling points. First, the one-dimensional quadrature

points and weights (Ui
1 ¼ ξi1;1; ξ

i
1;2; :::; ξ

i
1;s

n o
and ωi

1 ¼
ωi
1;1;ω

i
1;2; :::;ω

i
1;s

n o
) should be obtained for each input

random variable through some kind of quadrature rules.
To obtain the appropriate one-dimensional quadrature
points and weights for multimodal random variables,
the normal ized moment -based quadra ture rule
(NMBQR) (Echard et al. 2011; Xia et al. 2015) is used.

Then, the multidimensional sampling points Uk
N , hereaf-

ter called collocation points, are defined using a special

tensor product on the one-dimensional quadrature points
(Smolyak 1963; Xiu and Hesthaven 2005):

Uk
N ¼ ∪

kþ1≤ jij≤ kþN
Ui1

1⊗Ui2
1⊗⋯⊗UiN

1 ð10Þ

where ⊗ denotes the operation of the special tensor product
between two vectors, which is defined as follows: If

Ui1
1 ¼ ξi11;1; ξ

i1
1;2

n o
, Ui2

2 ¼ ξi21;1; ξ
i2
1;2

n o
, t h e n Ui1

1⊗Ui2
1 ¼

ξ1 ¼ ξi11;1; ξ
i2
1;1

	 

;ξ2 ¼ ξi11;1; ξ

i2
1;2

	 

;ξ3 ¼ ξi11;2; ξ

i2
1;1

	 
n
;ξ4 ¼ ξi11;2; ξ

i2
1;2

	 

g. ∣i ∣ = i1 + i2 + ... + in denotes the sum-

mation of the multi-indices {i1, i2, ..., iN}, which is intelligent-
ly bounded such that the special tensor product will exclude
collocation points that contribute less to the improvement of
the required integration accuracy. For each obtained colloca-

tion point ξr∈Uk
N , a corresponding weight ωr is assigned:

ωr ¼ −1ð ÞkþN−jij N−1
k þ N−jij

� �
ωi1
1; j1

ωi2
1; j2

⋯ωiN
1; jN

	 

ð11Þ

where ωi
1; j denotes the weight corresponding to the one-

dimensional quadrature point ξi1; j, and ξi1; j denotes the jth

element of the collocation points Ui
1. Based on the obtained

collocation points and corresponding weights, the lth raw mo-
ment of the response function is calculated as follows:

ml ¼ ∫ℝN gl Xð Þ f X Xð ÞdX≈ ∑
P

r¼1
wrg ξrð Þ ð12Þ

where p is the total number of the collocation points, which is
obtained by the combinations of the multi-indices that satisfy
k + 1 ≤ ∣ i ∣ ≤ k +N.

The construction of collocation points based on the special
tensor product is illustrated using a two-dimensional problem,
as shown in Fig. 2. To achieve a 2-level (k = 2) accuracy, five

1 2

1 1U U 1 3

1 1U U

2 1

1 1U U 2 2

1 1U U

3 1

1 1U U

2

2U

2

1U

Sparse grid

1

1U 3

1U

1 23 | | 4.i i
[1 2],  [1 3],  [2 1],  [2 2],  [3 1].

Collocation point constraint:

Multi-indice combination:

Fig. 2 Construction of collocation points based on a special tensor
product (d = 2, k = 2)

Z. Zhang et al.1986



possible combinations of the multi-indices ([i1, i2]) are consid-
ered with the boundary equation 3 ≤ i1 + i2 ≤ 4, namely, ([i1,
i2]) = ([1, 2], [1, 3], [2, 1], [2, 2], [3, 1]). Noting that each pair
[i1, i2] is equal to the number of one-dimensional points in the
first and second dimension, respectively, the total 14 colloca-
tion points are obtained for SGNI through the possible com-
binations over the five sets [i1, i2]. Since the combinations
[1,3] and [1,3] produce a redundant point, therefore, only 13
points are shown in Fig. 2.

3.2 Calculating the probability density function
of the response function

Based on the first l raw moments obtained above, the proba-
bility density function of the response function Y is generally
computed using the maximum entropy method (MEM)
(Jaynes 1957; Xu et al. 2017), by maximizing its Shannon
entropy under the constraints of given raw moments:

max
ρ

S ρð Þ ¼ −∫ρ yð Þlogρ yð Þdy
s:t:∫yiρ yð Þdy ¼ mi; i ¼ 0; 1;⋯; l

ð13Þ

where ρ(y) denotes the probability density function of Y, S(ρ)
denotes the Shannon entropy of ρ(y), and mi denotes the ith-
order raw moment of Y. Generally speaking, the commonly
used unimodal probability density functions can be obtained
with satisfied accuracy directly through (13), for which only
the low-order raw moments are required. However, the calcu-
lation of a multimodal probability density function always
requires a much larger number of raw moments.
Nevertheless, the values between different orders of raw mo-
ments, especially the low-order and high-order moments, gen-
erally behave extremely large variations. It will result in nu-
merical computational difficulty, e.g., ill-conditioned matrix,
when estimating the multimodal probability density functions,
which will make a significant influence on the uncertainty
propagation accuracy of the proposed method.

To deal with the numerical computational difficulty and
hence calculate the multimodal probability density function

of Ymore accurately, a quasi-normalization transformation Y
0

¼ Y−μY
c is adopted in the calculation of moments in the con-

ventional MEM. c is a given scaling factor. When c = σy, the
quasi-normalization transformation becomes a normalization
process. Based on that, the optimization problem in (13) is
reconstructed as below:

max
ρ

S ρð Þ ¼ −∫ρ yð Þlogρ yð Þdy

s:t:∫
y−μY

c

	 
i
ρ yð Þdy ¼ m

0
i; i ¼ 0; 1;⋯; l

ð14Þ

where μY denotes the mean of Y, i.e., μY = m1, m
0
i is

defined as the ith non-standard central moment of Y,

which can be calculated using the raw moments mi

obtained above:

m
0
i ¼

1

ci
∑
iþ1

j¼1
−1ð Þ j−1Bj

i m1ð Þ j−1mi− jþ1

" #
; i ¼ 0; 1;⋯; l ð15Þ

where Bj
i ¼ i

j−1

� �
i s the binomial coeff ic ient ,

m0 = ∫ ρ(y)dy = 1 is the 0th raw moment of Y. The de-

tailed derivation process of m
0
i is presented in the

Appendix.
The constrained optimization problem in (14) is converted

to an unconstained optimization problem through the
Lagrangian multiplier method:

L ¼ −∫ρ yð Þlogρ yð Þdyþ ∑
l

i¼0
λi ∫

y−μY

c

	 
i
ρ yð Þdy−m0

i

 �
ð16Þ

where λk(k = 0, 1,⋯l) denote the Lagrangian multipliers.
Based on the necessary conditions for a stationary point of
(16), the analytical expression of ρ(y) is obtained:

ρ yð Þ ¼ exp − ∑
l

k¼0
λk

y−μY

c

	 
k
 �

ð17Þ

and λk(k = 0, 1,⋯l) can be calculated by solving a group of
nonlinear equations as follows:

Gi λð Þ ¼ ∫
y−μY

c

	 
i
exp − ∑

l

k¼0
λk

y−μY

c

	 
k
 �

dy ¼ m
0
i; i ¼ 0; 1;⋯l

ð18Þ

Here, the method proposed in Ref. (Zellner and Highfield
1988) is employed to calculate λk(k = 0, 1,⋯l), in which the
equations are solved by the standard Newton method.

3.3 Convergence mechanism

As introduced above, the first l raw moments of the response
function need to be calculated in Section 3.1 and then utilized
to calculate the probability density function of the response in
Section 3.2. However, how to determine the order of moments
l for a certain uncertainty propagation problem remains as an
unresolved but important issue. First, the uncertainty propa-
gation problem involving multimodal input random variables
is very complex. Different types of probability density func-
tions may be obtained for the response function. If the multi-
modal probability density function is obtained, then the high
order of raw moments should be calculated. If the unimodal
probability density function is obtained, then only the low
order of moments is required. Second, it does not mean that
the order of moments should be as high as possible if the
probability density function of the response is multimodal,
because the calculation of high-order moments is often
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considered to be difficult and time-consuming. More impor-
tantly, small deviations in the calculated moments may result
in large estimation errors of the multimodal probability densi-
ty function.

It is known that as an increasing number of moments are
used, the estimated probability density function will gradually
approach to the actual probability density function, and its
Shannon entropy finally converges to a stable value.
Therefore, a convergence mechanism proposed in our previ-
ous work (Zhang et al. 2019) is used to determine the order of
moments appropriately, through which the probability density
function of the response can be estimated with a gradually
improved accuracy, until the demanded uncertainty propaga-
tion accuracy is satisfied. As shown in Fig. 3, the processes of
moment calculation of the response in Section 3.1 and proba-
bility density function estimation of the response in
Section 3.2 are integrated in a sequence. At the end of each
sequence, the Shannon entropy of the estimated probability
density function is calculated and compared with that obtained
at the last sequence. If the variation of the Shannon entropy
between two sequences is within a given precision, it is be-
lieved that the Shannon entropy has converged and the prob-
ability density function with demanded accuracy is obtained.
The order of moments used at the current sequence is the most
appropriate one to estimate the probability density function of
the response. The detailed procedures are introduced below:

Step 1. Initialize the order of the moments l = 0 and Shannon
entropy E0, and define the convergence precision ε;

Step 2. Let l = l + 2;
Step 3. Calculate the first l raw moments of the response

function mi (i = 1, 2,⋯, l) using (12);
Step 4. Convert the rawmomentsmi (i = 1, 2,⋯, l) into non-

standard central moments m
0
i i ¼ 1; 2;⋯; lð Þ using

(15);
Step 5. Estimate the probability density function ρ(y) of the

response function using (14);
Step 6. Calculate the Shannon entropy El of the estimated

probability density function ρ(y);
Step 7. Check the convergence criterion. If ‖El − El − 2‖/

‖El‖ ≤ ε, go to step 8. Otherwise, repeat step 2 to
step 7;

Step 8. Output the obtained order of moments l and proba-
bility density function ρ(y).

4 Numerical examples

4.1 Mathematical problems

In this section, two mathematical problems with different
complexities are considered. For mathematical problem 1:

Y ¼ X 2
1−X

2
2−X

2
3− X 1X 2 þ X 2X 3 þ X 3X 1ð Þ−10 ð19Þ

For mathematical problem 2:

Y ¼ X 1
3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X 2
2 þ 0:5X 3ð Þ2

q −X 2X 2
3

þ X 2
1−X

2
2−X

2
3−X 1X 2−2X 2X 3−X 3X 1−10 ð20Þ

X1, X2, and X3 are independent random variables with multi-
modal probability density distributions (PDFs).

A set of observed data pair is assumed to be obtained for
each random variable Xi, i = 1, 2, 3, as shown by the histo-
grams in Fig. 4. For each data pair, it contains the value of X
and its occurrence frequency. In total, 46 pairs of data are
provided for X1, X2, and X3, respectively. It is not hard to find
that the observed data of each variable shows two peaks in the
range of variation, therefore, the PDFs of X1, X2, and X3 are
bimodal. Accordingly, the Gaussian mixture model with two
components is utilized to construct the bimodal PDF of each
random variable, and the corresponding parameters are esti-
mated, as presented in Table 1. Then, the PDFs of X1, X2, and
X3 are depicted in Fig. 4, along with the observed data set. It
can be found that the constructed PDFs of X1, X2, and X3 show
a good conformity with the variation of the observed data.
Especially, the bimodal characteristic of the data sets are well
captured by the constructed PDFs, which indicates the

Initialize l=0 and 

E0, and denote

Calculate the first l raw moments of the response 

mi,i=1,2, ,l

Estimate the probability density function 

(y) of the response

||El-El-2||/||El||≤

Yes

No

Calculate the Shannon entropy El of (y)

Output the obtained order of moments l
and probability density function (y) 

Convert the raw moments mi into non-

standard central moments im

Let l=l+2

Fig. 3 The flowchart of the convergence mechanism
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effectiveness of using Gaussian mixture model to construct
multimodal distributions.

& Results of Mathematical problem 1

The raw moments of the response function Yare calculated
using the SGNI method and MCS method, based on the input
bimodal PDFs of X1, X2, and X3. The highest order of raw

moments that are calculated is determined as 10 using the
convergence mechanism, in which the convergence value is
set as ε = 2 × 10−4. For the MCS method, a large number of
samples (1 × 106) are generated using the PDFs of X1, X2, and
X3, and the response function values over each sample are
calculated to obtain the raw moments. Therefore, the results
of MCS are used as the reference to evaluate the computation-
al accuracy of SGNI. Table 2 presents the results obtained by
SGNI and MCS. It can be found that the results of SGNI are
the same as that of MCS under given rounding precision,
which indicates the good accuracy of using SGNI to calculate
the raw moments of the response function in this example.
Furthermore, it is observed that large variations exist between
different orders of raw moments of Y. For example, the value
of m1 is − 39.700 while that of m10 is 3.108e + 16, the varia-
tion between which reaches up to 16 orders of magnitude. The
large variations will result in ill-conditioned matrix in the

(a) Random variable 1X                         (b) Random variable 2X

(c) Random variable 3X

Fig. 4 The multimodal PDFs of X1, X2, and X3 constructed by GMM

Table 1 The distribution parameters of Xi, i = 1, 2, 3

Random variables Distribution parameters

Coefficients Mean values Standard deviations

X1 α1 = (0.5, 0.5) μ1 = (1.5, 2.5) σ1 =(0.4, 0.4)

X2 α2 = (0.6, 0.4) μ2 = (− 1, 0) σ2 = (0.3, 0.3)

X3 α3 = (0.7, 0.3) μ3 = (− 1, 0) σ3 = (0.3, 0.3)
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estimation of the PDF and hence significantly influence the
PDF estimation accuracy. Therefore, the raw moments are
converted to non-standard central moments in this paper,
based on which the numerical computational difficulty can
be significantly alleviated and hence the PDF of the response
function will be obtained with satisfied accuracy.

To demonstrate the effectiveness of the proposed method,
the uncertainty propagation results of MCS and the proposed
method are presented in Fig. 5, which include the probability
density function and cumulative distribution function (CDF)
of Y. It can be intuitively observed that the PDF and CDF
results obtained by the proposed method are almost the same
with that of MCS in the variation range of Y. To make a better
illustration, the CDF values and relative errors of the proposed
method are listed in Table 3, where five cases (y = − 60, − 50,
− 40, − 30, − 20) are considered. It can be found that for each
case, the proposed method obtains the CDF result with a good
precision. Under four cases, the relative error of the proposed
method is smaller than 2%. The largest relative error of the
five cases is only 6.936% when y = − 60.

To illustrate the role of the convergence mechanism acted
in the proposed uncertainty propagation method, the evolution
processes of the calculated PDF and its Shannon entropy are

shown in Fig. 6, in which the order of calculated moments of
the response function l increases from 2 to 10. From Fig. 6a, it
can be observed that the calculated PDF of the response func-
tion approaches to the referenced PDF obtained by MCS little
by little, until l = 10 the PDF obtained by the proposedmethod
is almost consistent with the referenced PDF. From Fig. 6b, it
can be found that the Shannon entropy of the calculated PDF
varies from 3.406 to 3.392 when l increases from 2 to 10.
Furthermore, the variation between the Shannon entropy at
two sequential steps is becoming smaller and smaller, until
l = 10 the variation is under the given convergence value.
Therefore, with the help of the proposed convergence mech-
anism, the PDF of the response function can be calculated
with a gradually improved accuracy with the increase of the
order of moments, until the most appropriate order of mo-
ments is determined for the demanded uncertainty propaga-
tion accuracy.

The number of evaluation of the response function Y is used
to assess the computational cost of the proposed method.
From the discussions above, we can find that the evaluation
of the response function Y is only involved in the calculation
of the response moment ml using SGNI. Therefore, the com-
putational cost of the proposed method is determined by the
level of accuracy k and the dimensionality of the problem N.
In this example, k is defined as 6 andN is 3, thus, 410 response

Table 2 The calculated raw moments of Y (mathematical problem 1)

Raw moments Reference results SGNI Relative error (%)

m1 − 39.700 − 39.700 0

m2 1.629e + 03 1.629e + 03 0

m3 − 6.889e + 04 − 6.889e + 04 0

m4 2.992e + 06 2.992e + 06 0

m5 − 1.331e + 08 − 1.331e + 08 0

m6 6.051e + 09 6.051e + 09 0

m7 − 2.806e + 11 − 2.806e + 11 0

m8 1.325e + 13 1.325e + 13 0

m9 − 6.367e + 14 − 6.367e + 14 0

m10 3.108e + 16 3.108e + 16 0

y

(a) PDF results                                 (b) CDF results 

Fig. 5 The uncertainty
propagation results obtained by
MCS and the proposed method
(mathematical problem 1)

Table 3 Comparison between the CDF results obtained by MCS and
the proposed method (mathematical problem 1)

y MCS Proposed method

Result Relative error (%) Result Relative error (%)

− 60 1.31e − 03 – 1.40e − 03 6.936

− 50 7.66e − 02 – 7.80e − 02 1.856

− 40 0.50178 – 0.50517 0.6751

− 30 0.88527 – 0.88633 0.1199

− 20 0.99973 – 0.99968 4.45e − 03

Z. Zhang et al.1990



function evaluations are required. For the MCS method, 1 ×
106 samples are generated and the response function values
over each sample are calculated. It is observed that the number
of function evaluations of the proposed method is much more
smaller than that of MCS.

& Results of Mathematical problem 2

The first 12 orders of raw moments of Y are calculated
using the SGNI method and MCS method, as presented in
Table 4. Several phenomena can be observed from Table 4.
(1) All the moments calculated by SGNI are very close to that
of MCS. The smallest relative error is as tiny as −4.77E-04%
and the largest relative error is only 1.486%. The high preci-
sion of the calculated raw moments will lay an important
foundation for the estimation of the PDF of Y. (2) Large var-
iations exist between different orders of raw moments of Y.
The values of the moment become larger and larger with the
increase of the order. For each consecutive pair of moments,
namely mi and mi + 1, the variation is 1 to 2 orders of

magnitude. The largest variation reaches up to 19 orders of
magnitude, which exists between m1 and m12. Therefore, the
raw moments are converted to non-standard central moments
to mitigate the numerical computational difficulty.

The uncertainty propagation results of MCS and the pro-
posed method are presented in Fig. 7, including the PDF and
CDF of Y. From Fig. 7a, it is intuitively observed that the PDF
results of Y obtained by MCS behaves as a bimodal distribu-
tion, with two modes at y ≈ − 40 and y ≈ 0. The PDF results
obtained by the proposed method coincide well with that of
MCS, and the bimodal characteristic of the referenced PDF
results is well captured. From Fig. 7b, it is found that the CDF
results of Y obtained by the proposed method are almost con-
sistent with that obtained byMCS. For a better illustration, the
CDF values and relative errors of the proposed method are
listed in Table 5, where five cases (y = − 80, − 50, − 30, 0, 30)
are considered. It is found that the relative errors of CDF
results obtained by the proposed method are very small, with
the largest one − 4.056% and the smallest one 1.680e − 02%,
which demonstrates a high uncertainty propagation accuracy
of the proposed method. Furthermore, the uncertainty propa-
gation results of widely-used AK-MCS (Echard et al. 2011)
by combining Kriging metamodel and Monte Carlo
Simulation are presented in Table 5, in which the active learn-
ing method is used to gradually improve the accuracy of
Kriging model. It can be observed that high-precision uncer-
tainty propagation results are obtained by AK-MCS for cases
y = − 30, 0, 30. However, when y = − 80 and y = − 50, the
relative errors reach up to − 90.123% and − 20.692%,
respectively.

In the proposed method, the convergence mechanism is
utilized to gradually improve the uncertainty propagation ac-
curacy. For a better illustration, the evolution processes of the
calculated PDF and its Shannon entropy are shown in Fig. 8,
in which the order of calculated moments of the response
function l increases from 2 to 12. From Fig. 8a, it is observed

Table 4 The calculated raw moments of Y (Mathematical problem 2)

Raw moments Reference results SGNI Relative error (%)

m1 − 16.2952 − 16.2952 − 4.77E-04

m2 7.8675e + 02 7.8675e + 02 − 0.057

m3 − 3.4694e + 04 − 3.4694e + 04 − 0.084

m4 1.8649e + 06 1.8649e + 06 − 0.097

m5 − 1.0380e + 08 − 1.0380e + 08 − 0.075

m6 6.2621e + 09 6.2621e + 09 − 0.013

m7 − 3.9525e + 11 − 3.9525e + 11 0.107

m8 2.6290e + 13 2.6290e + 13 0.302

m9 − 1.8223e + 15 − 1.8223e + 15 0.593

m10 1.3153e + 17 1.3153e + 17 0.979

m11 − 9.8310e + 18 − 9.6994e + 18 1.358

m12 7.5798e + 20 7.4688e + 20 1.486
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Fig. 6 Convergence of the calculated PDF and its Shannon entropy with the variation of l (mathematical problem 1). a PDF and b Shannon entropy
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that the calculated PDF of the proposed methods approaches
to the referenced PDF little by little. When l ≤ 6, only a
unimodal PDF is obtained, and it shows a great deviation from
the referenced PDF. When 8 ≤ l ≤ 10, a bimodal PDF is al-
ready calculated, however, it still demonstrates a relatively
large degree of deviation from the reference results, especially

in the neighborhood of the modes. When l = 12, the obtained
bimodal PDF is almost consistent with that obtained byMCS,
which indicates a high-precision uncertainty propagation re-
sult is obtained by the proposed method. From Fig. 8b, it is
observed that the Shannon entropy of the calculated PDF
gradually decreases from 4.546 to 3.392 when l increases
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(a) PDF results                                 (b) CDF results

Fig. 7 The uncertainty propagation results obtained by MCS and the proposed method (mathematical problem 2). a PDF results and b CDF results

Table 5 Comparison between the
CDF results obtained by MCS
and the proposed method
(mathematical problem 2)

y MCS Proposed method AK-MCS

Result Relative error
(%)

Result Relative error
(%)

Result Relative error
(%)

− 80 1.782e − 03 – 1.710e − 03 − 4.056 1.760e − 04 − 90.123

− 50 8.999e − 02 – 8.844e − 02 − 1.753 7.137e − 2 − 20.692

− 30 0.2990 – 0.2998 0.2790 0.2924 − 2.1940
0 0.7177 – 0.7140 − 0.5160 0.7177 2.787e − 4
30 0.9967 – 0.9968 1.680e − 02 0.9975 8.167e − 2
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Fig. 8 Convergence of the calculated PDF and its Shannon entropy with the variation of l (mathematical problem 2). a PDF and b Shannon entropy
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from 2 to 12. More importantly, the variation between the
Shannon entropy at two sequential steps is becoming smaller
and smaller, until l = 12 the variation is under the given con-
vergence value. In other words, the searching process has
converged when l = 12 and a satisfied uncertainty propagation
accuracy can be obtained for the proposed method.

The computational cost of the proposed method is domi-
nated by the number of response function evaluations in-
volved in the calculation of ml using SGNI. For this example,
the level of accuracy is defined as 6 and the dimensionality of
the problem is 3; therefore, the number of response function
evaluations of the proposed method is 410. For MCS, 1 × 106

response function values are calculated to obtain uncertainty
propagation results. For AK-MCS, the computational cost is
determined by the number of response function evaluations
involved in the establishment of the Kriging metamodel. First,
the response function values on 15 sampling points are calcu-
lated to establish the preliminary Kriging metamodel. Then,
the response function values on 80 added sampling points are
calculated one by one to update the Kriging metamodel. In
total, 95 response function evaluations are calculated in AK-
MCS. Therefore, the proposed method is much more efficient
than MCS, while it is less efficient than AK-MCS.

4.2 Speed reducer shaft

As shown in Fig. 9, a speed reducer shaft (Hu and Du 2017) is
subjected to a random force P and a random torque T. d and l

are the diameter and length of the shaft, respectively. The
response function of the speed reducer shaft is defined as the
difference between the strength Sy and the maximum equiva-
lent stress σmax:

g Xð Þ ¼ Sy−σmax ¼ Sy−
16

πd3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4P2l2 þ 3T2

p
ð21Þ

where X = (Sy, d, l, P, T) denotes the vector of random vari-
ables. Sy, d, and l follow unimodal normal probability density
functions while P and T followmultimodal probability density
functions, the detailed distribution information of which is
presented in Table 6. The multimodal probability density
functions of P and T are constructed using a set of observed
data based on Gaussian mixture model, which are shown in
Fig. 10.

The raw moments of the response function are calculated
using the distributions of P, T, Sy, d and l by SGNI and MCS,
as shown in Table 7. The highest order of calculated raw
moments is determined as 6 by the convergence mechanism.
First, it is observed that the results of SGNI are very close to
that of MCS, the largest relative error between which is only
0.1091%. It indicates that SGNI is able to calculate the raw
moments of the response function with a high computational
accuracy. Second, large variations exist between different or-
ders of raw moments. For instance, the value of m1 is
1.210e + 02 while that of m6 is 8.676e + 12, the variation be-
tween which reaches up to 10 order of magnitudes. The large
variations will result in ill-conditioned matrix in the calcula-
tion of the PDF of g and hence they are transformed into non-
standard central moments.

The PDF results of g are calculated by the proposedmethod
and MCS, which are shown in Fig. 11a, respectively. First, it
can be observed that the obtained PDF of the response func-
tion g is unimodal in this example, even though the input
random variables P and T follow multimodal probability den-
sity functions. Second, the PDF curve obtained by the pro-
posed method coincides well with the PDF results of MCS.
The CDF results of g calculated by the proposed method and
MCS are shown in Fig. 11b. It is found that the CDF results of
the proposed method agree very well with that of MCS within
the variation range of g. Table 8 presents the specific values at
four cases (g ¼ 0; 60; 120; 180 ). It can be observed that the
relative errors of the proposed method are always kept in a

P

T
d

l

Fig. 9 A speed reducer shaft (Hu and Du 2017)

Table 6 The distributions and
parameters of P, T, Sy, d and l Random variables Distribution types Distribution parameters

P(N) Multimodal α1 = (0.6, 0.4), μ1 = (1500, 2200), σ1 = (150, 50)

T(N ⋅m) Multimodal α2 = (0.7, 0.3), μ2 = (400, 500), σ2 = (100, 50)

Sy(Mpa) Normal μ1 = 250, σ1 = 30

d(mm) Normal μ2 = 40, σ2 = 0.1

l(mm) Normal μ3 = 400, σ3 = 0.1
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very low level. The largest relative error reaches only 6.94e −
02%, which can be neglected in most practical situations.
Therefore, the proposed method is considered to be able to
achieve satisfied uncertainty propagation accuracy for this
example.

The convergence processes of the calculated PDF and its
Shannon entropy are shown in Fig. 12, in which the order of
calculated moments increases from 2 to 6. It can be found that
the calculated PDF of the response function gradually ap-
proaches to the referenced results and the variation of
Shannon entropy gradually reduces, until l = 6, the PDF
obtained by the proposed method is almost consistent with
the referenced PDF and the variation of Shannon entropy is
reduced to a given small value. Therefore, the PDF of the
response function is calculated with a gradually improved
accuracy through the convergence mechanism.

The computational cost of the proposed method can be
quantified by the number of response function evaluations
involved in the calculation of ml using SGNI. For this exam-
ple, the level of accuracy is defined as 6 and the dimension-
ality of the problem is 5; therefore, the number of response
function evaluations of the proposed method is 2502. For the
MCS method, 1 × 106 response function values are calculated
to obtain the response moments.

4.3 Vehicle disc brake system

Consider a vehicle disc brake system (Xia et al. 2015)
consisting of a brake disc and a pair of brake pads made of
friction materials and back plates, as shown in Fig. 13a. To
avoid strong vibrations and loud noises in harsh working en-
vironment, the damping ratio of the vehicle disc brake system
is constrained to be less than − 0.01. Therefore, the response
function of this problem is defined:

ζ ¼ g p;ω; h1; h2ð Þ þ 0:01 ð22Þ
where p,ω, h1, and h2 are four random variables, which denote
the brake pressure, friction coefficient, friction material thick-
ness, and disc thickness, respectively. The detailed distribu-
tion information of p, ω, h1, and h2 are presented in Table 9.

To conduct the uncertainty propagation of this problem, a
continuum 3D finite element analysis model including 26,125
elements and 37,043 nodes is established for the vehicle disc
brake system, as shown in Fig. 13b. Based on 35 finite ele-
ment analysis of the vehicle disc brake system, a quadratic
polynomial response surface approximation model is
established as follows:

~g p;ω; h1; h2ð Þ ¼ 0:38181−0:042423ω−0:10119p−0:0071046h1
−0:015364h2 þ 0:24308ωp−0:0037884ωh1
þ 0:0023358ωh2 þ 0:029287ph1−0:015872ph2
þ 0:0007175h1h2−0:39076ω2−0:015968p2

−0:0011936h21 þ 0:00026900h22
ð23Þ

With the approximationmodel, the uncertainty propagation
can be completed with a much higher computational
efficiency.

The first 12 raw moments of the damping ratio of the ve-
hicle disc brake system are calculated using SGNI and MC.
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Fig. 10 The multimodal PDFs of P and T constructed by GMM

Table 7 The calculated raw moments of g

Raw moments MCS SGNI Relative error (%)

m1 1.210e + 02 1.211e + 02 4.354e − 02

m2 1.601e + 04 1.602e + 04 7.632e − 02

m3 2.265e + 06 2.267e + 06 9.839e − 02

m4 3.389e + 08 3.392e + 08 0.1091

m5 5.313e + 10 5.319e + 10 0.1086

m6 8.676e + 12 8.684e + 12 9.754e − 02

Z. Zhang et al.1994



The results and their relative errors are compared, as shown in
Table 10. It can be observed that the rawmoments obtained by
SGNI are very close to that of MCS. The smallest relative
error between the results is 5.731e − 02% and the largest one
is only 0.2492%. It indicates the good accuracy of using SGNI
to calculate the raw moments of the response function involv-
ing multimodal random variables. Besides, it is found that

there exist large variations between different orders of raw
moments of the damping ratio. Each time the order of moment
l increases, the variation increases by at least one order of
magnitude. When l = 12, the variation between m1 and m10

reaches up the largest value, 17 orders of magnitude. The
variation is too large that it will cause significant computation-
al errors when used to calculate the PDF of the damping ratio.

MCS
Proposed method 
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F
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Fig. 11 The uncertainty propagation results obtained by MCS and the proposed method. a PDF results and b CDF results

Table 8 Comparison between the CDF results obtained by MCS and the proposed method

g MCS Proposed method

Result Relative error (%) Result Relative error (%)

0 3.08e − 04 – 3.08e − 04 2.75e − 02

60 4.90e − 02 – 4.90e − 02 3.72e − 02
120 0.48769 – 0.48735 6.94e − 02
180 0.94598 – 0.94574 2.50e − 02
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Fig. 12 Convergence of the calculated PDF and its Shannon entropy with the variation of l
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Therefore, the raw moments are converted to non-standard
central moments to alleviate this issue.

The uncertainty propagation results are obtained by MCS
and the proposed method, as shown in Fig. 14. From Fig. 14a,
it can be found that the PDF results obtained by the proposed
method agree with that of MCS very well. From Fig. 14b, it
can be found that the CDF curve of the proposed method also
coincides well with that of MCS.

For this example, the order of moments to estimate the
PDF of the response function is determined as l = 12 by the
convergence mechanism. The convergence process of the
calculated PDF and its Shannon entropy under different
order of moments are shown in Fig. 15. It is found that
when l increases from 2 to 12, the PDF of the response
function calculated using the proposed method gradually
approaches to the reference PDF obtained by MCS. When
l = 12, the estimated PDF is of the highest precision.
Furthermore, the Shannon entropy of the response PDF
gradually converges to a steady value when l increases
from 2 to 12. Therefore, through the convergence mecha-
nism, the PDF of the response function is calculated with a
gradually improved accuracy with the increase of l, until
the most appropriate order of moments is determined for
the demanded uncertainty propagation accuracy.

The computational cost of the proposed method is assessed
by the number of response function evaluations involved in
the uncertainty propagation process. Since the dimensionality
of this problem is 4 and the level of accuracy is 8, therefore,
4900 times of response functions are computed by the

proposed method in this example. On the other hand, 1 ×
106 response function values are calculated by MCS.

5 Conclusions

In this paper, an uncertainty propagation method is developed
for problems in which multimodal probability density functions
are involved. First, themultimodal probability density functions
of input random variables are established using the Gaussian
mixture model. Second, the uncertainties of the input random
variables are propagated to the response function through an
integration of the sparse grid numerical integration and maxi-
mum entropy estimation. At last, the convergence mechanism
is developed to improve the uncertainty propagation accuracy.
Several numerical examples are used to demonstrate the effec-
tiveness of the proposed method, and some conclusions can be
obtained. (i) The proposed method is of high computational
accuracy for uncertainty propagation problems involving mul-
timodal probability density functions. From the results of nu-
merical examples, we find that the PDF and CDF results
obtained by the proposed method agree with the reference re-
sults very well. (ii) The proposed method is able to calculate the
probability density function of the response with a gradually
improved accuracywith the proposed convergencemechanism,
until the demanded uncertainty propagation accuracy is satis-
fied. (iii) The uncertainty propagation results can be either mul-
timodal or unimodal. If multimodal probability density function

(a)

Brake Disc

Friction material

Back plate

(b)

Fig. 13 Vehicle brake disc system. a CADmodel and b FEMmodel (Xia
et al. 2015)

Table 9 The distributions and
parameters of P, ω, h1 and h2 Random variables Distribution types Distribution parameters

P(Mpa) Multimodal α = (0.8, 0.2), μ1 = (0.5, 0.75), σ1 = (0.02, 0.01)

ω Normal μ = 0.35, σ = 0.01

h1(mm) Uniform a1 = 14.5, b1 = 15.5

h1(mm) Uniform a2 = 19.5, b2 = 20.5

Table 10 The calculated raw moments of ζ

Raw moments MCS SGNI Relative error (%)

m1 1.740e − 02 1.739e − 02 5.731e − 02
m2 3.545e − 04 3.542e − 04 9.445e − 02
m3 8.097e − 06 8.087e − 06 0.1160

m4 2.013e − 07 2.010e − 07 0.1276

m5 5.331e − 09 5.324e − 09 0.1355

m6 1.482e − 10 1.480e − 10 0.1439

m7 4.275e − 12 4.268e − 12 0.1546

m8 1.269e − 13 1.267e − 13 0.1682

m9 3.856e − 15 3.849e − 15 0.1847

m10 1.193e − 16 1.191e − 16 0.2038

m11 3.748e − 18 3.740e − 18 0.2254

m12 1.193e − 19 1.190e − 19 0.2492
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Fig. 14 The uncertainty propagation results obtained by MCS and the proposed method. a PDF results and b CDF results
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Fig. 15 Convergence of the calculated PDF and its Shannon entropy with the variation of l

Table 11 Matlab code files in the supplementary material

Filenames Hierarchical relationships Descriptions

Iteration_E5.m Main program Perform the proposed method by integrating the SGNI and MEM in the
convergence mechanism

SGNI.m Subprogram of “Iteration_E5.m” Calculate the raw moments of the response function by SGNI

MEM.m Subprogram of “Iteration_E5.m” Calculate the PDF of the response function by MEM

gplot.m Subprogram of “Iteration_E5.m” Plot the uncertainty propagation results

Hankel.m Subprogram of “Iteration_E5.m” Calculate the Hankel det to check the existence of solution to MEM

nwspgr.m Subprogram of “SGNI.m” Calculate the multi-dimensional integration points and weights for SGNI

gfun.m Subprogram of “SGNI.m” Define the performance function

me_dens2.m Subprogram of “MEM.m” Calculate the parameters of the response PDF in MEM

NMBQR.m Subprogram of “nwspgr.m” Calculate the one-dimensional integration points and weights for SGNI

get_seq.m Subprogram of “nwspgr.m” Generate the multi-indice combinations for SGNI

tensor_product.m Subprogram of “nwspgr.m” Generate the special tensor product quadrature rule for SGNI
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is obtained for the response function, then high order of mo-
ments are generally required to be calculated. The highest order
of moments to be calculated can be well determined by the
convergence mechanism in this paper. If the unimodal proba-
bility density function is obtained, then we commonly calculate
the first 4 or at most 6 orders of moments to estimate the re-
sponse PDF. (iv) The computational cost of the proposed meth-
od is dominated by the number of response function evaluations
involved in the calculation of the response moments using
SGNI, which is generally determined by the dimensionality of
the problem and the level of accuracy utilized in SGNI. From
the results of numerical examples, it can be found that the
computational efficiency of the proposed method is much
higher than MCS, while lower than AK-MCS.

6 Replication of results

In order to facilitate the replication of results presented in this
paper, the MATLAB code files of the vehicle disc brake sys-
tem in Section 4.3 are provided as the supplementary material,
and brief descriptions are given to the function of each file, as
shown in Table 11. The results of the speed reducer shaft and
mathematical problem can also be reproduced conveniently,
by modifying the characteristics of the problems such as di-
mensionality, initial conditions, and performance function.

In total, 11 Matlab code files are provided to perform the
proposed method effectively. “Iteration_E5.m” is the main pro-
gram, which conducts the uncertainty propagation by integrat-
ing the SGNI and MEM in the convergence mechanism pro-
posed in Section 3.3. The main program consists of four sub-
programs, namely, “SGNI.m,” “MEM.m,” “gplot.m,” and
“Hankel.m”. “SGNI.m” calculates the raw moments of the re-
sponse function by SGNI and “MEM.m” calculate the PDF of
the response function by MEM, as introduced in Sections 3.1
and 3.2, respectively. “gplot.m” is used to plot the uncertainty
propagation results. “Hankel.m” is used to calculate the Hankel
det, through which the existence of solution to MEM can be
checked. The other files are subprograms of “SGNI.m” or
“MEM.m,” which include “nwspgr.m,” “gfun.m,”
“me_dens2.m,” “me_dens2.m,” “NMBQR.m,” “get_seq.m,”
and “tensor_product.m.” The function of each subprogram is
illustrated in Table 11.
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Appendix

Deduction of the ith non-standard central moment m
0
i:

m
0
i ¼ ∫

y−μY

c

	 
i
ρ yð Þdy; i ¼ 0; 1; :::; l ð24Þ

where

μY ¼ ∫yρ yð Þdy ¼ m1 ð25Þ

Therefore, m
0
i is rewritten as:

m
0
i ¼ ∫

y−m1

c

	 
i
ρ yð Þdy; i ¼ 0; 1; :::; l ð26Þ

According to the rules of integral operation:

m
0
i ¼

1

ci
∫ y−m1ð Þiρ yð Þdy

¼ 1

ci
∫ ∑

i

j¼0
Bjþ1
i yi− j −m1ð Þ j

" #
ρ yð Þdy

¼ 1

ci
∑
i

j¼0
Bjþ1
i −m1ð Þ j∫yi− jρ yð Þdy

¼ 1

ci
∑
i

j¼0
Bjþ1
i −m1ð Þ jmi− j

ð27Þ

Bjþ1
i ¼ i

j

� �
is the binomial coefficient. Let j = j + 1, then,

we obtain:

m
0
i ¼

1

ci
∑
iþ1

j¼1
Bj
i −1ð Þ j−1m1

j−1mi− jþ1 ð28Þ

where Bj
i ¼ i

j−1

� �
.
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