
RESEARCH PAPER

Reliability measure approach for confidence-based design
optimization under insufficient input data

Yongsu Jung1
& Hyunkyoo Cho2

& Ikjin Lee1

Received: 18 December 2018 /Revised: 1 May 2019 /Accepted: 2 May 2019
# Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
In most of the reliability-based design optimization (RBDO) researches, accurate input statistical model has been assumed to
concentrate on the variability of random variables; however, only a limited number of data are available to quantify the input
statistical model in many practical engineering applications. In other words, irreducible variability and uncertainty due to lack of
knowledge exist simultaneously in random design variables, which may result in uncertainty of reliability. Therefore, the
uncertainty induced by insufficient data has to be accounted for RBDO to guarantee the confidence of reliability. Using the
Bayesian approach, the uncertainty of input distributions is successfully propagated to a cumulative distribution function (CDF)
of reliability under reasonable assumptions, but it requires a number of function evaluations in double-loop Monte Carlo
simulation (MCS). To tackle this challenge, the reliability measure approach (RMA) in confidence-based design optimization
(CBDO) is proposed to handle the uncertainty of reliability following the idea of performance measure approach (PMA) in
RBDO. Input distribution parameters are transformed to random variables following the standard normal distribution for the most
probable point (MPP) search based on the proposed stochastic sensitivity analysis of reliability. Therefore, the reliability is
approximated at MPP with respect to input distribution parameters. The proposed CBDO can treat confidence constraints
employing the reliability value at the target confidence level that is approximated by MPP in standard normal space. In conclu-
sion, CBDO can be performed in a probabilistic space of input distribution parameters corresponding to the conventional U-space
in RBDO to yield the probability (confidence) that reliability is larger than the target reliability. The proposed method can
significantly reduce the number of function evaluations by eliminating outer-loop MCS while maintaining acceptable accuracy.
Numerical examples are used to demonstrate the effectiveness of the developed sensitivity analysis and RMA to estimate the
confidence of reliability in CBDO.

Keywords Reliability-based design optimization (RBDO) . Performance measure approach (PMA) . Epistemic uncertainty .

Kernel density estimation (KDE) . Conservative RBDO (CRBDO)

1 Introduction

Reliability has been utilized to measure the safety of the
system in the presence of various uncertainties that can be
classified as inherent variability (i.e., aleatory uncertainty)
and reducible uncertainty due to a lack of knowledge (i.e.,

epistemic uncertainty). These two uncertainties are propa-
gated to the uncertainty of the system performances that
may lead to unexpected failure of the system, so that ac-
curate reliability analysis with exhaustive representation
and quantification of the uncertainties is indispensable
for design optimization.

There have been numerous researches on reliability-based
design optimization (RBDO) to obtain a reliable optimum
design employing probabilistic quantification of uncertain
performance. It can be typically categorized into sampling
approaches (Dubourg et al. 2011; Lee et al. 2011a; Zhao
et al. 2013; Wang and Wang 2014) and most probable point
(MPP)-based approaches (Tu et al. 1999; Youn et al. 2003; Li
et al. 2015; Choi et al. 2018). These extensive RBDO re-
searches have generally assumed that statistical information
of input random variables is fully accessible. However,
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obtaining true input statistical information from a set of finite
samples is difficult due to the limitation of resource for testing
samples to quantify the variability. Therefore, inaccurate input
model is a much practical condition in real engineering prob-
lems. Epistemic uncertainty in simulation-based design opti-
mization can be comprehensively defined including simula-
tion model uncertainty due to the uncertainty of model param-
eters and model bias (Der Kiureghian and Ditlevsen 2009;
Liang and Mahadevan 2011; Nannapaneni and Mahadevan
2016; Moon et al. 2017; Peng et al. 2017; Bae et al. 2017,
2018); hence, the uncertainty of input statistical models will
be mainly treated in this paper.

There have been a few researches to quantify the un-
certainty of input random variables induced by insufficient
input dataset. In the early stage, possibility-based ap-
proaches (Du et al. 2006a, b; Lee et al. 2013) and interval
uncertainty approaches (Rao and Cao 2002; Sankararaman
and Mahadevan 2011; Yoo and Lee 2014; Muscolino et al.
2016) have been adopted, but the Bayesian approach is a
more direct and intuitive way to use insufficient input data
statistically. Gunawan and Papalambros (2006) assumed
that the variability of reliability could be exhibited as the
beta distribution and performed RBDO while maximizing
the confidence of reliability. Youn and Wang (2008) pro-
posed a similar approach focusing on the extreme case of
the beta distribution to make a sufficiency, in which
Bayesian reliability has to be smaller than exact reliability.
On the other hand, the uncertainty of the input random
variable can be handled by adjusting the standard devia-
tion and correlation coefficient (Noh et al. 2011a, b). In
addition, likelihood-based approaches have been proposed
that the distribution of the parameters can be quantified
through the maximum likelihood estimation (MLE) and
Gaussian process interpolation (Sankararaman and
Mahadevan 2011, 2013a, b). Instead of Bayes’ theorem,
the researches utilizing the bootstrap method without the
assumption that data follow certain distribution have been
proposed (Picheny et al. 2010; Noh et al. 2011b). Ito et al.
(2018) propose a conservative reliability index (CRI)
decomposed into the aleatory part and the epistemic part
for Gaussian input distribution. Meng et al. (2015b) and
Hao et al. (2017) developed non-probabilistic RBDO to
treat lack of input data by employing a convex model to
describe uncertain-but-bounded parameters rather than the
stochastic model. Recently, Cho et al. (2016a) and Moon
et al. (2018) proposed conservative RBDO (CRBDO) to
fully model the probability of reliability in the presence of
the uncertainty of input distribution types and parameters.
Employing Bayes’ theorem and Monte Carlo simulation
(MCS) (Rubinstein and Kroese 2016), accurate confidence
of reliability under given dataset can be obtained.
However, estimating a cumulative distribution function
(CDF) of reliability is very computationally demanding.

Therefore, the motivation of our research is to reduce the
excessive amount of function evaluations to obtain the confi-
dence of reliability. It is noted that the confidence of reliability
has to be assessed for design optimization rather than the
whole CDF of reliability. In this paper, we propose a reliability
measure approach (RMA) and confidence-based design opti-
mization (CBDO) which have constraints for the confidence
of reliability. The reliability will be treated as a function of
input distribution types and parameters. Due to the discrete-
ness of input distribution type, it is divided into two ap-
proaches depending on prior knowledge of input distribution
types, and kernel density estimation (KDE) (Silverman 2018)
is used to quantify the variability of a random variable when
its distribution type is totally unknown. Once the input distri-
bution types are given or identified through any model iden-
tification method (Kang et al. 2016), the probabilistic domain
that consists of input distribution parameters can be defined.
The process has been inspired from performance measure ap-
proach (PMA) (Tu et al. 1999), but random design variables,
performance functions, and reliability are replaced with input
distribution parameters, reliability, and confidence of reliabil-
ity, respectively. In other words, the input distribution param-
eter space is regarded as the upper-level space of input random
variables where RMA is performed. The proposed method
handles the confidence of reliability by searching MPP in
the probabilistic space denoted as P-space transformed from
input distribution parameter space. Consequently, the double-
loop MCS can be reduced to a nested RMA-MCS loop lead-
ing to a significant reduction of function evaluations for MCS.
Moreover, sensitivity analysis in P-space is derived through
the first-order score functions that are an essential concept to
facilitate stochastic sensitivity analysis in sampling-based
RBDO (Lee et al. 2011b) and explicit expression of
uncertainties.

The paper is organized as follows. PMA for RBDO and
confidence of reliability in CRBDO are explained in
Section 2. In Section 3, general RMA for CBDO and stochas-
tic sensitivity analysis is formulated, and two approaches de-
pending on the prior knowledge of input distribution types are
given in Section 4. Then, the feasibility and effectiveness of
the developed sensitivity analysis, RMA, and CBDO are ver-
ified in Section 5. The conclusion and future research will be
given in Section 6.

2 Overview of reliability analysis
and confidence of reliability

2.1 Performance measure approach
for reliability-based design optimization

Reliability analysis is to obtain the probability of failure
which is the probability that a performance function is
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larger than zero since G(X) > 0 means failure in this pa-
per. The probability of failure is in general computed
through the multi-dimensional integration as

PF≡Pr G Xð Þ > 0½ � ¼ ∫G Xð Þ>0 f X xð Þdx ð1Þ

where G(X) is the performance function, and X is the
vector of random design variables following the joint
probability density function (PDF) of fX(x).

Reliability-based design optimization (RBDO) with prob-
abilistic constraints is formulated to

minimize
d

cost dð Þ

subject to Pr Gi Xð Þ > 0½ �≤PTarget
Fi

; i ¼ 1; :::; nc

dL≤d≤dU

ð2Þ

where X is the vector of random variables, d is the design

vector defined as the mean of X, PTarget
Fi

is the target probabil-

ity of failure for the ith constraint, and nc is the number of
probabilistic constraints. Exact estimation of the probabilistic
constraints in (2) defined by (1) is very difficult since it re-
quires a large number of simulations. Therefore, performance
measure approach (PMA) using MPP has been proposed (Tu
et al. 1999; Youn et al. 2003, 2005; Yang and Yi 2009; Meng
et al. 2015a; Keshtegar and Lee 2016). In PMA for RBDO, the
MPP has the largest performance function value on the
hypersphere with a radius of the given target reliability index
βt. If the performance function value at MPP is smaller than
zero, the probabilistic constraint of PMA is satisfied. Thus,
MPP in PMA can be obtained by solving the following opti-
mization as

maximize
u

G x uð Þð Þ
subject to ‖u‖ ¼ βt

where u ¼ Φ−1 FX xð Þð Þ

ð3Þ

where u is the random variable vector following the standard
normal distribution transformed from original X-space by the
Rosenblatt transformation (Rosenblatt 1952) where cumulative
distribution function (CDF) ofX isFX(x). MPP, the optimum of
(3), is denoted as u∗. Hence, the probabilistic constraint in (2)
can be rewritten using PMA as

g u*
� �

≤0 ð4Þ

which is identical withG(x(u∗)) ≤ 0 as a function at MPP in the
original domain.

2.2 Confidence of reliability with insufficient input
data

Confidence of reliability is defined as the probability that giv-
en target reliability is satisfied at a design point. Uncertainty of
reliability is originated from input model uncertainty, distin-
guished from input variability, which means that insufficient
input data induce uncertain input statistical models such as
distribution types and parameters. Using Bayes’ theorem,
joint PDF of the reliability under given dataset ∗x can be
obtained as (Cho et al. 2016a; Moon et al. 2018)

f Re; ζ;ψj*xð Þ ¼ f Rejζ;ψ; *xð ÞP ζjψ; *xð Þ f ψj*xð Þ ð5Þ

where ζ and ψ are input distribution types and parameters,
respectively. Since the distribution types are not continuous
variables, the probability mass function (PMF) obtained from
Bayes’ theorem is used in (5). Therefore, the confidence level
of the given target reliability is obtained using CDF of the
reliability as (Cho et al. 2016a)

CL Rej*xð Þ≡1−FRe Rej*xð Þ ¼ 1−∫Re0 ∫Ωζ ∫ΩΨ f ϕ; ζ;ψj*xð Þdψdζdϕ

ð6Þ
where ϕ is a variable for reliability bounded from 0 to 1.

The main difficulty to evaluate (6) is its large computation-
al demands since double-loop MCS with a large number of
samples has to be used: inner-loop MCS for reliability estima-
tion and outer-loop MCS for estimation of confidence of reli-
ability caused by the uncertainty of input distribution types
and parameters. Using the double-loop MCS, CDF of the
reliability in (6) is expressed as (Cho et al. 2016a)

FRe Rej*xð Þ≅ 1

NMCSΖNMCSΨ
∑

NMCSΨ

n¼1
∑

NMCSΖ

m¼1
I 0;Re½ � Re ζ mð Þ;ψ nð Þ

� �� �
ð7Þ

where I[0, Re](ϕ) is an indicator function in which the value is 1
if ϕ is between 0 and Re, and 0 otherwise. It should be noted
that the number of samples for the double-loop MCS is
NMCSRe ×NMCSΖ ×NMCSΨ where NMCSRe, NMCSΖ, and
NMCSΨ are the number of samples for estimation of
Re(ζ(m),ψ(n)), input distribution types, and input distribution
parameters, respectively. Reliability is a function of input dis-
tribution types and parameters using indicator function due to
the insufficient input dataset. So, the reliability is estimated
through the sampling method as (Rubinstein and Kroese 2016)

Re ζ;ψð Þ ¼ ∫ℝN I G xð Þð Þ f X x;ψ; ζð Þdx ð8Þ
where ψ is the input distribution parameter vector, ζ is
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the input distribution types, and I(G(x)) is the indicator
function defined as

I G xð Þð Þ ¼ 1; G xð Þ≤0
0; otherwise

�
ð9Þ

2.3 Conservative reliability-based design optimization

General formulation of CRBDO considering the confidence
of reliability as constraints can be formulated as

given *x

minimize
d

cost dð Þ

subject to Pr Pr Gi Xð Þ≤0½ �≥ReTargeti

h i
≥CLTarget

i for i ¼ 1; 2; :::; nc

ð10Þ
which uses (7) to estimate the confidence of reliability at a
design point under given dataset *x. As can be seen from (10),
CRBDO yields an optimum considering epistemic uncertainty
caused by insufficient input data but requires a huge amount
of function evaluations. Uncertainty quantification of input
distribution parameters and types used to evaluate the confi-
dence of reliability in (10) will be explained in the next
section.

3 Confidence-based design optimization
using a reliability measure approach

In this section, confidence-based design optimization (CBDO)
using a reliability measure approach (RMA) is proposed to
resolve the efficiency issue of CRBDO. Decomposition of
input dataset can be referred to Section 2.2 of the literature
(Cho et al. 2016a). An underlying condition in CBDO is that
there are random variables in which statistical information is
not given and should be estimated using only a few samples.
Accordingly, the confidence of reliability will be mainly treat-
ed as a probabilistic constraint instead of reliability used in
conventional RBDO since the reliability of a system has also
uncertainty propagated from the uncertainty on the input sta-
tistical model.

There are two sources of uncertainty in the statistical model
of input random variable: input distribution types and param-
eters. Since the input distribution type is not a continuous
random variable, the proposed method takes variability of
input distribution parameters into consideration in the proba-
bilistic domain to obtain confidence of reliability under two
circumstances: 1) input distribution types are known, but input
distribution parameters are unknown and 2) both input distri-
bution types and parameters are unknown. In this study, un-
certainties of input distribution parameters are quantified

based on the normality condition, and unknown distribution
types are described by kernel density estimation (KDE).

Under the aforementioned configurations, the confidence
of reliability defined as a probability that the reliability of a
performance function is larger than the user-specified target
reliability needs to be computed in CBDO. However, it is very
difficult to be calculated even if a surrogate model is used
because double-loop MCS is necessary for repetitive reliabil-
ity computations with respect to uncertain parameters.
Therefore, RMA is proposed to efficiently estimate the confi-
dence of reliability in parameter space by utilizing the frame-
work of PMA. Reliability and input distribution parameters
correspond to a performance function and random variables in
PMA, respectively. Therefore, RMA finds MPP for the reli-
ability with the target confidence in the input distribution pa-
rameter space and thus requires several MCSs only for
searching MPP, unlike CRBDO. After finding the MPP, the
confidence of reliability is obtained using a linear approxima-
tion of the reliability function in parameter space.
Consequently, RMA can significantly reduce the computa-
tional burden in CRBDO since it estimates the confidence of
reliability in an analytic way rather than sampling methods.

The uncertainty quantification of input distribution model
is presented in Section 3.1. The formulation of the proposed
RMA in P-space and stochastic sensitivity analysis for reli-
ability based on uncertainty quantifications of input distribu-
tion parameters are explained in Section 3.2. Two cases for
known and unknown input distribution types are discussed in
Section 4.

3.1 Uncertainty of input distribution model

Variabilities of input distribution parameters that arise due to
insufficient input data have to be explicitly quantified to de-
fine probabilistic space for reliability estimation. Under the
normality assumption described in the literature (Gelman
et al. 2013; Cho et al. 2016a), variabilities of mean and vari-
ance are expressed as normal and inverse-gamma distribu-
tions, respectively. The normality assumption does not mean
that the true distribution type is a normal distribution, but it is
the intermediate assumption for uncertainty quantifications of
input distribution parameters without causing a significant er-
ror. Uncertainties of variance and mean of the ith random
variable can be described as

σ2i j*xi∼IG
ND−1
2

;
ND−1ð Þs2i

2

� �
ð11Þ

and

μijσi; *xi∼N *�xi;

ffiffiffiffiffiffiffiffi
σ2
i

ND

r !
; ð12Þ
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respectively, where *xi is given input data for the ith random
variable; ND is the number of input data; s2i is the sample
variance of the ith random variable; and *�xi is the sample
mean of the ith random variable. It is noted that the normal
distribution of the mean in (12) is conditional to the variance
in (11). The sample mean in (12) will change during design
optimization since it is used as a design vector d in (10). In
other words, the dataset is used to identify the initial design
and sample variance which is assumed to be constant during
the optimization, and design movement can be achieved by
shifting the data. Obviously, the sample mean of random pa-
rameter is invariant during the optimization

The PDF of reliability under given input distribution
parameters and types becomes a Dirac delta function
expressed by

f Rejψ; ζ; *xð Þ ¼ δ Re−Re ψ; ζð Þð Þ ð13Þ
where ψ is the input distribution parameters, and ζ is the
input distribution types that can be either specific paramet-
ric distribution or nonparametric KDE depending on prior
knowledge as wi l l be exp la ined in Sec t ion 4 .
Consequently, when ψ and ζ are given, the reliability is
considered as a deterministic value obtained from MCS, so
that PDF of reliability has an infinity value only at the
deterministic reliability, Re(ψ, ζ).

3.2 Reliability measure approach

In this section, RMA to explore MPP in the standard normal
parameter space (P-space) transformed from input distribution
parameter space is explained. In RMA, MPP search is per-
formed in P-space to find the smallest reliability on the given
hypersphere with a radius βCL derived from the target confi-
dence level, CLTarget. Note that the smallest reliability should
be explored unlike the maximization problem in (3). Figure 1

illustrates the concept of RMA in P-space and design history
for searchingMPPwhereN is the number of random variables
with insufficient samples. The initial point is set to origin in
the standard normal P-space in general, and optimizer finds
the next MPP candidate point based on the gradient of reli-
ability in P-space which can be obtained from sensitivity anal-
ysis of reliability with respect to each parameter employing
the first-order score functions. Once the MPP is identified as
black filled circle in Fig. 1, the reliability at the MPP calculat-
ed from transformed input distribution parameters denoted as
ψ including mean and variance is used to judge the violation
of the confidence constraint. In Fig. 1, the reliability at the
MPP is estimated as 0.87 that has to be larger than the target
reliability. If the target confidence is set to 0.87, RMA for
CBDO will decide that the current design point satisfies the
confidence constraint even though the yellow region is the
true unconfident region where reliability is less than the target
reliability. Details of formulation and sensitivity analysis will
be explained in Sections 3.2.1, 3.2.2, and 3.2.3.

3.2.1 Formulation of RMA

The optimization to findMPP in P-space can be formulated to

minimize
p

Re G Xð Þjμ;σ2
� �

subject to ‖p‖ ¼ Φ−1 CLTarget

� �
where Re G Xð Þjμ;σ2

� �¼ ∫IΩR G xð Þð Þ f X x;μ;σ2
� �

dx≅
1

NMCS
∑
j¼1

NMCS

IΩR G x jð Þ
� �� �

IΩR G xð Þð Þ ¼
(
1; G xð Þ≤0
0; otherwise

Φ p2i−1ð Þ ¼ Fσ2i
σ2
i j*xi

� �
Φ p2ið Þ ¼ Fμi

μijσ2i ; *xi
� �

for i ¼ 1; 2; :::N

ð14Þ

In Eq. (14) Re(G(X)|μ,σ2) is reliability for the given perfor-
mance function G(X) and realizations of input distribution
parameters. It means that uncertainty of performance function
propagated from a random vector X is conditional to input
distribution parameters. CLTarget is the target confidence level
to be satisfied in CBDO. The indicator function for a reliable

domain, IΩR G x jð Þ� �� �
, is to judge whether the jth sampling

point is in the reliable region or not. NMCS means the number
of samples for reliability estimation, and N is the number of
random variables which are assumed to be independent in this
study. It can be seen that two input distribution parameters for
the ith random variable following Fμi

μijσ2
i ; *xi

� �
and Fσ2i

σ2
i j*xi

� �
are transformed to P-space following the standard

normal distribution. The MPP that has minimal reliability as
a function of input distribution parameters in P-space would
be explored, and the number of random variables in P-space
becomes 2N since a two-parameter distribution is assumed for
the input random variables.Fig. 1 Concept of RMA in P-space
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3.2.2 Stochastic sensitivity analysis in RMA

Sensitivity analysis of reliability with respect to mean and
variance is essential for efficient and accurate gradient-based
optimization. The stochastic sensitivity analysis has been
discussed in the previous studies to develop the sampling-
based RBDO (Lee et al. 2011a, b; Cho et al. 2016b). The
sensitivity analysis with respect to the ith mean can be de-
scribed using the first-order score function and chain rule as

∂Re
∂Pμi

¼ ∂Re
∂μi

∂μi

∂Pμi

¼ ∫IΩR G xð Þð Þ ∂ln f x x;μi;σ
2
i

� �
∂μi

f x x;μi;σ
2
i

� �
dx� ∂μi

∂Pμi

ð15Þ
where the PDF of mean is given in (12). The derivative of
mean with respect to a corresponding Pμi

can be obtained
through the following relationship as

∂μi

∂Pμi

¼ ∂Φ Pμi

� �
∂Pμi

=
∂Fμi

μið Þ
∂μi

¼ ϕ Pμi

� �
f μi

μið Þ ð16Þ

where Fμi
μið Þ ¼ Φ Pμi

� �
and Pμi

is a random variable follow-
ing the standard normal distribution transformed from the
mean of i-th random variable denoted as μi. ϕ and Φ are
PDF and CDF of the standard normal distribution, respective-
ly. On the other hand, the sensitivity analysis with respect to
the variance of i-th random variable, which seems to be more
complicated since the mean is conditional to the variance, is
derived as

∂Re
∂Pσ2i

¼ ∂Re
∂σ2

i

∂σ2i
∂Pσ2i

¼ ∫IΩR G xð Þð Þ dln f x x;μi;σ
2
i

� �
dσ2i

f x x;μi; σ
2
i

� �
dx� ∂σ2i

∂Pσ2i

¼ ∫IΩR G xð Þð Þ ∂ln f x x;μi; σ
2
i

� �
∂σ2

i
þ ∂ln f x x;μi;σ

2
i

� �
∂μi

dμi

dσ2
i

� �

f x x;μi; σ
2
i

� �
dx�

ϕ Pσ2i

� �
f σ2i σ2ið Þ

ð17Þ

where Pσ2i
is a random variable following the standard normal

distribution corresponding to σ2
i . The PDF of variance is given

in (11). The derivatives of the random variable with respect to
distribution parameters can be shown in the literature using
the relationship of the Rosenblatt transformation written as
(Cho et al. 2017)

dxi
dpi

¼ −
1

f X i
xi; ai; bið Þ

∂
∂pi

FX i xi; ai; bið Þ ð18Þ

where pi corresponds to either mean or variance of i-th ran-
dom variable, and ai and bi are general distribution parameters

as functions ofmean and variance. Therefore, the derivative of
mean with respect to variance in (17) can be derived as

dμi

dσ2i
¼ −

1

f μi
μi;

∗�xi;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
i =ND

p� � � − μi−∗�xi
� �

2σ3
i =

ffiffiffiffiffiffiffi
ND

p � ϕ
μi−

∗�xiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2i =ND

p
 !

¼ μi−
∗�xi

2σ2i

ð19Þ

where ∗xi is the sample mean of data which equivalent to
design point of ith random variable. In addition, the first-
order score functions of various parametric distribution,
∂ln f x x;μi;σ

2
ið Þ

∂μi
and

∂ln f x x;μi;σ
2
ið Þ

∂σ2i
used in (15–17), are derived an-

alytically in the literature (Lee et al. 2011a, b; Cho et al.
2016b).

Searching MPP with any algorithms of PMA demands the
gradient vector at the current point, and thus the gradient vec-
tor of reliability with respect to input distribution parameters is
necessary. Employing developed sensitivity analysis in this
section, searching MPP in P-space can be performed without
any additional MCSs to obtain the gradient vector. Therefore,
only one MCS can provide the gradient vector to any optimiz-
er in searching MPP.

3.2.3 Sensitivity analysis in CBDO

Like conventional PMA, sensitivity analysis with respect to a
design variable vector—mean vector of random variables—in
CBDO can be described as (Lee et al. 2010)

∂Re
∂di p¼p*

¼ ∂Re
∂μi











p¼p*

¼ ∫IΩR G xð Þð Þ ∂ln f x x;μi;σ
2
i

� �
∂μi

f x x;μi;σ
2
i

� �
dx

ð20Þ

Equation (20) can be easily obtained since ∂ln f x x;ψð Þ
∂μi

is al-

ready used in (15) and (17). Unlike sensitivity analysis in
searching MPP described in Section 3.2.2, sensitivity analysis
of reliability with respect to mean vector is used to find the
optimal design point rather than MPP. In other words, CBDO
has a double-loop algorithm composed of MPP search as an
inner loop and optimal design search as an outer loop.
Sensitivity analyses in Sections 3.2.2 and 3.2.3 are for the
inner loop and outer loop, respectively. Note that (20) is equiv-
alent to (15), except that the probabilistic space has to be
transformed to P-space.

Using RMA, MPP in P-space is obtained, and reliability at
the MPP is used as an index of violation under the given
confidence of a reliability constraint. Since the function ap-
proximation method is the same as the conventional MPP-
based reliability analysis, the second-order reliability method
(SORM) (Lee et al. 2012; Park and Lee 2018), and MPP-

Y. Jung et al.1972



based dimension reduction method (DRM) (Rahman and Xu
2004; Jung et al. 2019) can be utilized for more accurate
confidence estimation.

4 Two approaches for input distribution type
uncertainty

As mentioned earlier, there are two sources of uncertainties in
input statistical models: input distribution parameters and dis-
tribution types. In Section 3, only uncertainties of input distri-
bution parameters are treated for RMA and their sensitivity
analysis. In this section, two approaches for input distribution
type uncertainties—known input distribution type and un-
known input distribution type—are explained for estimation
of reliability and its sensitivity for CBDO.

4.1 Known input distribution type

Knowing input distribution types means that a designer has set
the distribution types based on any prior knowledge or has
figured out the most likely distribution type. For instance,
model selection methods can determine the best distribution
for the given data among multiple candidate distributions, and
acceptance or rejection of the hypothesis with respect to the
adequacy of given distribution type can be determined
through goodness-of-fit (GOF) tests. Thus, the designer is able
to use the model identification methods before the proposed
CBDO as a preprocessing if there is no particular clue about
the distribution type. Since the identification of a distribution
type is beyond the purpose of this research, readers can refer to
recent research on distribution type identification (Kang et al.
2016). The reason for separating uncertainty of a distribution
type and its parameters is that it is difficult to include discrete
variables for MPP-based approaches, and even if it is possible,
it requires additional assumption and can become too compli-
cated since two uncertainties are correlated.

When input distribution types are known as parametric
distributions, the input joint PDF can be expressed as

f X x;ψð Þ ¼ ∏
N

i¼1
f X i

xi;ψð Þ ð21Þ

Since input random variables are assumed to be independent
in this study. The PDF of the ith random variable can be
described as (Cho et al. 2016b)

f X i
xi;ψð Þ ¼ f X i

xi;μi;σ
2
i

� � ð22Þ

Assuming that the PDF is a two-parameter distribution with
parameters ofμi(ai, bi) andσi(ai, bi) as a functionof twogeneral
distribution parameters.Under this configuration,RMAand its
sensitivityanalysiscanshare thesampling-basedRBDOframe-
work, and the relationship between mean and variance and

general distribution parameters can be found in the literature
(Lee et al. 2011a, b; Cho et al. 2016b). Note that any two-
distribution parameters need to be expressed asmean and vari-
ance and vice versa to utilize the framework of RMA.
Furthermore,thefirst-orderscorefunctionswithrespect tomean
and variance for various parametric distributions can be found.

Once input distribution types are decided, epistemic uncer-
tainty induced by an insufficient number of data is merely
quantified as uncertainties of input distribution parameters.
The reliability of target performance is a function of input
distribution parameters so that the proposed MPP-search in
P-space is available. The sensitivity analysis of reliability in
(15) and (17) can be performed since f X x;μi;σ

2
i

� �
is given as

an explicit function of mean and variance. However, when
input distribution types are still unknown, PDFs should be
defined using KDE prior to RMA, which will be presented
in the next section.

4.2 Unknown input distribution type

4.2.1 Uncertainty quantification using kernel density
estimation

When input distribution types are unknown, it is necessary to
describe fX(x;ψ) without using any parametric distribution. In
this research, kernel density estimation (KDE) is implemented
for the purpose. KDE under given input data is described as
(Silverman 2018)

f̂ xð Þ ¼ 1

nh
∑
n

i¼1
k

X i−x
h

� �
ð23Þ

where n is the number of samples; X1, X2, ..., Xn are indepen-
dent and identically distributed random samples; k(u) is a ker-

nel function satisfying ∫∞−∞k uð Þdu ¼ 1; h is a smoothing pa-
rameter of KDE. In this paper, the standard normal density
function is employed for the kernel function.

It should be noted that the shape of the KDE expression in
(23) does not change during design optimization. Only mean,
which is the samplemean initially, changes in the optimization
process. Thus, during the design optimization, a shifted KDE
of the independent jth random design variable with n samples
is used as an input distribution given by

f̂ X j
x; ∗x j;μ j

� �
¼ 1

nhj
∑
n

i¼1
k

si ∗x j;μ j

� �
−x

hj

0
@

1
A ð24Þ

where si ∗x j;μ j

� �
¼ ∗x j;i−∗x j þ μ j is the ith shifted sample

of the jth random variable, and μj is the given mean of the jth
random variable. On the other hand, the uncertainty of
variance cannot be directly reflected in (24) since the var-
iance of KDE is always larger than the sample variance
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(Hansen 2009). Therefore, using the same normality con-
dition used in Section 3.1, the bandwidth in (24) can be
determined using the normal reference rule as (Silverman
2018)

hj ¼ 4σ j
5

3n

� �1
5

≈1:06σ jn−
1
5 ð25Þ

where σ2
j is the given variance of the jth random variable.

The bandwidth of normal reference rule is to choose the
optimal bandwidth that minimizes the mean integrated
squared error when underlying density function is a normal
distribution. Despite the normality assumption, (24) can
express a plausible PDF for any input distribution.
Through (24) and (25), KDE can reflect the given mean
and variance to compute the reliability in P-space. Note
that given mean and variance as μj and σ2

j indicate the

input distribution parameters to specify the uncertain input
distribution since mean and variance are changed during
MPP search in P-space, and KDE has to reflect to differ-
ence mean and variance following the current MPP
candidate.

4.2.2 Stochastic sensitivity analysis for kernel density
estimation

To utilize the stochastic sensitivity analysis in Section 3.2.2
for unknown input distribution cases, the first-order score
function for KDE needs to be obtained. Using (24) and (25),
the first-order score function with respect to mean for KDE of
the jth independent random variable is derived as

∂ln f̂ X j
x; hð Þ

∂μ j
¼ ∂ln f̂ X j

∂*x j;1
∂*x j;1
∂μ j

þ :::þ ∂ln f̂ X j

∂*x j;n
∂*x j;n
∂μ j

¼ ∑
n

i¼1

x−� j;iffiffiffiffiffiffi
2π

p
nh3j f̂ X j

xð Þ e
−1
2

x−∗x j;i
h j

� �2 ð26Þ

where ∗xj, i is ith sample of jth random variable,

f̂ X j
xð Þ ¼ 1

nh j
∑
n

i¼1
ϕ x−*x j;i

h j

� �
, and ϕ zð Þ ¼ 1ffiffiffiffi

2π
p e−

z2
2 which is the

standard normal density function. Similarly, the first-order
score function with respect to the variance for KDE of the
jth independent random variable is derived as

∂ln f̂ X j
x; hð Þ

∂σ2j
¼ ∂ln f̂ X j

∂hj

∂hj

∂σ2j

¼ −
1

h j
þ

∑
n

i¼1
x−∗x j;i
� �2

ϕ
x−∗x j;i

h j

� �

h3j ∑
n

i¼1
ϕ

x−∗x j;i
h j

� � 1:06n−1=5
� �2

2h j

ð27Þ

Hence, (26) and (27) are substituted in (15–17) and (20) for
the stochastic sensitivity analysis for CBDO when there is no
prior knowledge on input distribution types.

4.3 Flowchart and practical issues

Figure 2 shows the flowchart of the proposed CBDO with
RMA. Starting at the initial design point, variabilities of mean
and variance are quantified as a normal and inverse-gamma
distribution using the given input dataset. Before MPP search,
input distribution types have to be specified according to
which method is used. If the distribution types are parametri-
cally identified, the parametric distributions are directly used
for random sampling with respect to realizations of mean
and variance. Otherwise, KDE is used to describe input
distributions based on the given input dataset. To check
violation of confidence constraints, uncertain input distri-
bution parameters are transformed to P-space to find
MPP using the stochastic sensitivity analysis for

Fig. 2 Flowchart for the proposed CBDO with RMA
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reliability. After finding the MPP, the current design
point is moved to the next point using any nonlinear
optimizer (e.g., sequential quadratic programming).

There are two remarks compared to common MPP
searches used in PMA. Firstly, since reliability is always
bounded between 0 and 1, sensitivity may become zero in
case of totally violated or safe constraints. Therefore, it is
recommended to check reliability values before MPP
search in P-space to prevent numerical instability due to
zero sensitivity. Secondly, characteristics of reliability
with respect to mean and variance may result in multiple
MPPs. This happens when a performance function has
multiple failure regions in the probabilistic domain. It
can occur in conventional reliability analysis as well, but
may be more frequent in RMA since reliability is a much
more complex function with respect to input distribution
parameters. The issue in the second remark will be
discussed in further works.

5 Numerical examples

Two mathematical examples and one engineering example
are introduced in this section for demonstration of the
proposed CBDO with RMA. The proposed sensitivity
analysis with respect to each input distribution parameter
is validated, and MPP search in P-space is visualized to
show its feasibility by checking contours of reliability
functions for the 1-D mathematical function. In the 2-D
mathematical example, the results of proposed CBDO un-
der various circumstances and its effectiveness have been
analyzed. Finally, the 11-D side impact example is used to
test the applicability of the proposed CBDO to practical
and complex engineering problems.

5.1 One-dimensional mathematical function for RMA

To demonstrate the proposed RMA and its sensitivity analysis,
1-D mathematical performance function given by

G Xð Þ ¼ −0:35þ X sin Xð Þ−0:5X 2 ð28Þ
is introduced. Even though the performance function has only
one random design variable, its probabilistic space of input
distribution parameters is expressed in 2-D space since a two-
parameter distribution will be used for the random variable X.
There are 10 input data for X randomly drawn from normal,
lognormal, Weibull, and Gumbel distributions where the true
variance is set to 0.52, respectively.

5.1.1 Verification of sensitivity analysis in RMA

The proposed stochastic sensitivity analysis with respect to
mean and variance in P-space is verified in this section by
comparing with the finite difference method (FDM).
Although FDM could be used for sensitivity analysis, it re-
quires additional function evaluations, and proper perturba-
tion is unknown in general due to truncation and round-off
error in computation. Therefore, analytical sensitivity analysis
is critical in design optimization in terms of both efficiency
and accuracy. The FDM results are merely used as a reference
to validate the derivation on analytical sensitivity analysis. For
the test, a design point of p∗ = {1.1897, 1.1357}Twhich is the
MPP in P-space with given dataset drawn from the normal
distribution is utilized. Sensitivities of reliability with respect
to distribution parameters for parametric distributions and
nonparametric distribution given in (15) and (17) and FDM
sensitivities with 0.5% perturbation are listed in Tables 1 and
2. Agreements between the proposed and FDM sensitivities
are shown in the parenthesis. From the tables, it is shown that

Table 1 Sensitivity analysis
results using known parametric
distribution

Normal Lognormal Weibull Gumbel

FDM - mean 0.0649 0.0313 0.0663 0.0289

Proposed - mean 0.0655 (99.09%) 0.0315 (99.37%) 0.0659 (99.40%) 0.0277 (95.85%)

FDM - variance 0.0723 0.0240 0.0248 0.0128

Proposed - variance 0.0731 (98.90%) 0.0238 (99.17%) 0.0250 (99.20%) 0.0118 (92.19%)

Table 2 Sensitivity analysis
results using KDE Normal Lognormal Weibull Gumbel

FDM - mean 0.0621 0.0368 0.0327 0.0152

Proposed - mean 0.0605 (97.43%) 0.0359 (97.56%) 0.0314 (96.03%) 0.0149 (98.03%)

FDM - variance 0.0954 0.0353 0.0222 0.0103

Proposed - variance 0.0937 (98.22%) 0.0355 (99.44%) 0.0225 (98.67%) 0.0106 (98.06%)
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accurate sensitivities in P-space are obtained even when a
distribution of a random variable is expressed using KDE.

5.1.2 Results of RMA

In this section, the proposed RMA is explained using the same
1-D performance function. Figure 3 shows the contours of
reliability and hyperspheres for 95% target confidence in P-
space assuming input distributions are known. Figure 3 also
shows MPP search history which is obtained by hybrid mean
value method (HMV) (Youn et al. 2003), and all the reliability
values at converged points are the smallest on the target con-
fidence circle. Hence, it can be seen that the MPP search has
been successfully performed based on accurate sensitivity in-
formation. Each axis in Fig. 3 represents input distribution
parameters transformed to P-space.

In case of no prior knowledge on input distribution types,
contours of reliability are shown in Fig. 4 where the dataset of
the previous case is reused for KDE. Even though the same
dataset is used, the variability of random design variables
changes resulting in different reliability contours. This is be-
cause only 10 samples are used for input statistical modeling.

Results of the proposed RMA for 95% target confi-
dence level are listed in Table 3. For validation, MCS
using original parametric distributions is performed at
MPP obtained using RMA and agreements between two
results are written in the parentheses. Table 3 shows that
RMA is more accurate when input distributions are
known and KDE shows slightly higher error especially
in non-normal cases. It can be seen from Fig. 3 that
limit-state reliability functions near MPP seem to be lin-
ear so that the RMA results using parametric distribu-
tions are accurate. On the other hand, in case of un-
known distribution as shown in Fig. 4, it should be ad-
dressed that KDE cannot accurately approximate the
original input distribution of the random variable with
10 samples only. Therefore, the larger errors in KDE
are mainly caused by inexact estimations of the original
PDF.

Table 4 shows RMA results when the number of input data
is 30. Accuracy is generally improved using more data in two
ways. First, increasing the number of data will reduce the
variability of each input distribution parameter. Therefore,
the limit-state reliability function near MPP in P-space be-
comes more linear, thereby reducing error due to the

Fig. 3 Contour of reliability and MPP-search history in P-space with samples drawn from normal (a), lognormal (b), Weibull (c), and Gumbel
distribution (d)

Fig. 4 Contour of reliability and MPP-search history using KDE in P-space with samples drawn from normal (a), lognormal (b), Weibull (c), and
Gumbel distribution (d)
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linearization. Second, when input distribution types are un-
known, increasing the number of data can reduce error due
to inaccurate estimation of input distributions by KDE as well.
Therefore, increasing the number of data improves the accu-
racy of RMAwith KDE more as shown in Table 4.

5.2 Two-dimensional confidence-based design
optimization

Efficiency and accuracy of the proposed CBDO with
RMA are verified through a 2-D mathematical example
formulated as

min −
d1 þ d2−10ð Þ2

30
−

d1−d2 þ 10ð Þ2
120

s:t Pr Pr Gj X dð Þð Þ≤0� �
≥0:9772

� �
≥0:9000; j ¼ 1; 2; 3

0≤di≤10; i ¼ 1; 2

where G1 Xð Þ ¼ 1−
X 2

1X 2

20
;

G2 Xð Þ ¼ −1þ 0:9063X 1 þ 0:4226X 2−6ð Þ2

þ 0:9063X 1 þ 0:4226X 2−6ð Þ3

−0:6 0:9063X 1 þ 0:4226X 2−6ð Þ4

− −0:4226X 1 þ 0:9063X 2ð Þ;
G3 Xð Þ ¼ 1−

80

X 2
1 þ 8X 2 þ 5

ð29Þ

where the target reliability and target confidence of re-
liability are set to 97.72% and 90.00%, respectively. In
other words, the optimization in Eq. (29) explores a

conservative optimum satisfying the confidence con-
straints with 90.00 % target confidence and 97.79 %
target reliability. The number of MCS samples for reli-
ability computation is 106, and the number of MCS
samples for input distribution parameters in double-
loop CRBDO is 104.

The design history of CBDO is illustrated in Fig. 5
when 10 input data are given. For efficiency, the
sampling-based RBDO is performed from the initial
point, and then CBDO is carried out from the RBDO
optimum which is supposed to be near the CBDO opti-
mum compared to arbitrary initial points. It is reasonable
that the CBDO optimum is farther from each limit-state
function than the RBDO optimum to compensate the
input uncertainties. Note that the sampling-based RBDO
is performed only with the inherent randomness of input
variables using sample mean and variance.

Tables 5, 6, and 7 show design optimization results
obtained using the proposed CBDO for known and un-
known input distribution cases and conventional double-
loop CRBDO. The confidence in each table means exact
confidence for each constraint obtained using MCS with
true input distributions. When input distribution types are
known, the CBDO optimum gradually approaches the
double-loop CRBDO optimum as the number of data in-
creases. On the other hand, in case of unknown input
distribution type, the CBDO optimum becomes conserva-
tive especially for the second constraint as the number of
data increases. This is because the reliability for the sec-
ond constraint obtained using KDE is overestimated due
to its nonlinearity and inaccurate density estimation. The
number of MCSs in the last columns of Tables 5, 6, and
7 means the number of reliability calculations using
MCS. Since the third constraint is perfectly safe during
the design optimization, only one MCS is required to
check feasibility in each iteration of CBDO. However,
in the case of CRBDO, MCS with 104 samples for input
distribution parameters is performed for a constraint in
each iteration. Thus, the total number of MCSs in
CRBDO becomes the number of design iterations × the
number of constraints × the number of MCS samples for
input distribution parameters. As a result, the total num-
ber of MCSs is reduced from 180,000 in CRBDO to 44
and 36 in CBDO for a case of 100 input samples mean-
ing that efficiency of CBDO is significantly improved
maintaining the acceptable level of accuracy compared
to CRBDO. Notably, confidence at the optimum is slight-
ly overestimated or underestimated because the proposed
method is an MPP-based approximation method inducing
approximation error. In this paper, we cannot estimate
nonlinearity of reliability with respect to input distribu-
tion parameters, but the accuracy will be definitely

Table 3 MCS results at MPP obtained using RMA with a 95%
confidence level using 10 data

True distribution Known distribution type (%) KDE (%)

Normal 95.19 (0.20) 96.01 (0.96)

Lognormal 95.60 (0.63) 93.52 (1.55)

Weibull 95.25 (0.24) 85.96 (9.51)

Gumbel 95.05 (0.05) 72.64 (21.24)

*Values in parenthesis are discrepancy error with target confidence as
95%

Table 4 MCS results at MPP obtained using RMA with a 95%
confidence level using 30 data

True distribution Known distribution type (%) KDE (%)

Normal 94.74 (0.27) 92.88 (2.23)

Lognormal 94.98 (0.02) 98.28 (3.45)

Weibull 95.12 (0.13) 95.24 (0.25)

Gumbel 94.95 (0.05) 85.91 (9.51)

*Values in parenthesis are discrepancy error with target confidence as
95%

Reliability measure approach for confidence-based design optimization under insufficient input data 1977



improved using higher-order MPP-based approximation
methods.

On the other hand, true reliability, reliability at mean
value (i.e., sample variance), and reliability at the target
confidence level can be compared to see how much

uncertainty should be allowed in Table 8. The differences
between reliabilities can be indices to quantify the impact
of epistemic uncertainty. In Table 8, all results are taken
from the CBDO optimum when distribution types are
known. Certainly, reliability at MPP has to be the same

Fig. 5 Design history of the
proposed CBDO with 10 input
data

Table 5 Results of CBDO when input distribution types are known

ND Optimum Objective Confidence(1) (%) Confidence(2) (%) Confidence(3) (%) # of MCSs

10 {4.5871, 2.6353}T − 1.447 84.25 87.60 99.70 46(1) + 38(2) + 17(3)

30 {4.6461, 2.2038}T − 1.621 87.32 89.72 100.00 19(1) + 15(2) + 4(3)

50 {4.6516, 2.2416}T − 1.605 87.77 89.86 100.00 20(1) + 19(2) + 5(3)

100 {4.6607, 2.1605}T − 1.638 88.69 90.01 100.00 20(1) + 19(2) + 5(3)

*(1), (2), and (3) mean the first, second, and third constraint, respectively

Table 6 Results of CBDO when input distribution types are KDE

ND Optimum Objective Confidence(1) (%) Confidence(2) (%) Confidence(3) (%) # of MCSs

10 {4.5804, 2.5786}T − 1.469 81.54 86.95 99.82 40(1) + 43(2) + 5(3)

30 {4.5938, 2.2273}T − 1.611 85.95 94.27 100.00 21(1) + 20(2) + 4(3)

50 {4.6187, 2.2539}T − 1.600 86.90 93.70 100.00 18(1) + 19(2) + 4(3)

100 {4.6255, 2.1857}T − 1.629 88.97 96.45 100.00 16(1) + 16(2) + 4(3)

*(1), (2), and (3) mean the first, second, and third constraint, respectively

Table 7 Results of double-loop CRBDO

ND Optimum Objective Confidence(1) (%) Confidence(2) (%) Confidence(3) (%) # of MCSs

10 {4.5840, 2.8009}T − 1.384 90.00 90.00 100.00 4 × 3 × 104

30 {4.6578, 2.2283}T − 1.610 90.00 90.00 100.00 5 × 3 × 104

50 {4.6590, 2.2599}T − 1.599 90.00 90.00 100.00 6 × 3 × 104

100 {4.6659, 2.1667}T − 1.636 90.00 90.00 100.00 6 × 3 × 104
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with the target reliability of 97.72% for the first and sec-
ond constraints which are active. Reliability at mean value
indicates the reliability when variances of random vari-
ables are set to sample variances. It should be gradually
closer to the true reliability in which the exact variances
of random variables are known. Unlike overall tendency
of results, it seems that the reliability at mean value is
very similar to the true reliability when the number of
input data is 10 since the sample variance of drawn data
from a population is coincidently very close to the true
variance.

Table 8 Reliability under various input distribution parameters with known distribution types

Reliability at MPP Reliability at the mean value True reliability

10 data 0.9772(1) 0.9772(2) 1.0000(3) 0.9982(1) 0.9982(2) 1.0000(3) 0.9976(1) 0.9979(2) 1.0000(3)

30 data 0.9772(1) 0.9772(2) 1.0000(3) 0.9925(1) 0.9915(2) 1.0000(3) 0.9868(1) 0.9880(2) 1.0000(3)

50 data 0.9772(1) 0.9772(2) 1.0000(3) 0.9898(1) 0.9888(2) 1.0000(3) 0.9890(1) 0.9892(2) 1.0000(3)

100 data 0.9772(1) 0.9772(2) 1.0000(3) 0.9870(1) 0.9855(2) 1.0000(3) 0.9845(1) 0.9855(2) 1.0000(3)

*(1), (2), and (3) mean the first, second, and third constraint, respectively

Table 9 Properties of random
input (9 variables and 2
parameters) for side impact
crashworthiness problem

Random input Type STD* Lower bound Initial design Upper bound

X1: B-pillar inner Normal 0.05 0.500 1.000 1.500

X2: B-pillar reinforce Normal 0.05 0.450 1.000 1.350

X3: Floor side inner Normal 0.05 0.500 1.000 1.500

X4: Cross member Normal 0.05 0.500 1.000 1.500

X5: Door beam Normal 0.05 0.875 2.000 2.625

X6: Door belt line Normal 0.05 0.400 1.000 1.200

X7: Roof rail Normal 0.05 0.400 0.300 1.200

X8: Mat. B-pillar inner Normal 0.006 0.192 0.300 0.345

X9: Mat. Floor side inner Normal 0.006 0.192 0.300 0.345

X10: Barrier height Normal 10.00 (true) – 0.000 –

X11: Barrier hitting Normal 10.00 (true) – 0.000 –

*STD stands for standard deviation

Table 10 Optima under various
numbers of data when input
distribution types are known

ND Optimum Objective

10 {1.3289, 1.3500, 1.0428, 1.5000, 1.4765, 1.2000, 0.4000, 0.3450, 0.1920}T 33.45

30 {0.8396, 1.3500, 0.6658, 1.5000, 1.5087, 1.2000, 0.4000, 0.3450, 0.1920}T 31.82

50 {0.6057, 1.3500, 0.5867, 1.5000, 1.4418, 1.2000, 0.4000, 0.3450, 0.1920}T 30.97

100 {0.6082, 1.3500, 0.6100, 1.5000, 1.4239, 1.2000, 0.4000, 0.3450, 0.1920}T 30.96

RBDO {0.5110, 1.3500, 0.5000, 1.4710, 1.4270, 1.2000, 0.4000, 0.3450, 0.1920}T 30.25

Table 11 Confidences at optima when input distribution types are
known

ND Confidence(1)

(%)
Confidence(2)

(%)
Confidence(3)

(%)

10 95.25 90.43 95.26

30 94.91 92.90 95.20

50 94.76 93.90 95.31

100 94.50 93.39 93.96

*(1), (2), and (3) mean the first, second, and third constraint, respectively
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5.3 Eleven-dimensional side impact problem

In this section, the proposed CBDO is applied to the vehicle
side impact crashworthiness problem with nine random vari-
ables and two random parameters (Youn et al. 2004). It is
assumed that statistical information of nine random variables
is fully known and two random parameters have uncertainty
induced by insufficient input with various numbers of data.
Design optimization for the vehicle side impact problem is
formulated as

min cost dð Þ ¼ 1:98þ 4:9d1 þ 6:67d2 þ 6:98d3 þ 4:01d4
þ 1:78d5 þ 2:73d7

s:t Pr Pr Gj X dð Þð Þ≤0� �
≥0:95

� �
≥0:95; j ¼ 1; 2; 3

dL≤d≤dU

where G1 Xð Þ ¼ 14:36−9:9X 2−12:9X 1X 8 þ 0:1107X 3X 10

G2 Xð Þ ¼ 0:72−0:5X 4−0:19X 2X 3−0:0122X 4X 10

þ 0:009325X 6X 10 þ 0:000191X 2
11

G3 Xð Þ ¼ 1:35−0:489X 3X 7−0:843X 5X 6 þ 0:0432X 9X 10

−0:0556X 9X 11−0:000786X 2
11

ð30Þ

where the objective is the vehicle weight, both the target confi-
dence of reliability and target reliability are set to 95%, and the
statistical information of random variables is listed in Table 9.
The original side impact problem contains 10 constraints
among which only three are active, and they are included in
(30). Note that X10 and X11 are random parameters which are
invariant during the optimization, and samples are randomly
drawn from the normal distribution as shown in Table 9.

CBDO results with various numbers of input data are listed
in Tables 10 and 11. In addition, CBDO results using KDE are
listed in Tables 12 and 13. Overall results show that as the

number of data increases, the CBDO optimum gradually ap-
proaches the RBDO optimum where true input distributions
of two parameters are used. It is natural that an insufficient
number of samples may provide large uncertainty in distribu-
tion parameters, and thus the optima become more conserva-
tive to compensate for the lack of knowledge on input statis-
tical models. As discussed in the previous example, the accu-
racy of KDE is slightly worse than known distribution cases
due to inaccurate input distribution estimation and propaga-
tion of variance to the smoothing parameter in KDE.

6 Conclusion

This paper proposes RMA of CBDO that can be defined as an
MPP-based approximation method in P-space to eliminate
outer-loop MCS of CRBDO to efficiently obtain the confi-
dence of reliability. RMA to deal with the uncertainty of input
distributions searches MPP in P-space and approximates the
reliability based onMPP, resulting in significant improvement
in efficiency with an acceptable level of accuracy. For the
MPP search in P-space, two approaches using input distribu-
tion parameters quantified through the normality assumption
are proposed according to the uncertainty of input distribution
types. In addition, stochastic sensitivity analysis for reliability
with respect to input distribution parameters is derived
employing the first-order score function to reduce the number
ofMCSs and provides accurate search direction to an optimiz-
er. Finally, CBDOwith RMA accounting for the confidence of
reliability is proposed adopting the framework of RBDO
using PMA when the uncertainty of input statistical models
exists. As a result, a conservative optimum in the presence of
the uncertainty of input statistical models can be obtained
using much-reduced computations compared to the previous
CRBDO.Moreover, other existingMPP-based approximation
methods can be directly combined with the proposed CBDO
for more accurate results.

In future work, reweighting samples of MCS to estimate
the reliability will be investigated to further reduce the number
of MCSs. Samples to compute the reliability at a design point
in P-space can be reused in the next point during MPP search
using the scheme of the importance sampling. It can be effec-
tive in RMA in CBDO because input distribution parameters

Table 12 Optima under various
numbers of data when input
distribution types are KDE

ND Optimum Objective

10 {1.1494, 1.3500, 0.9113, 1.5000, 1.4842, 1.2000, 0.4000, 0.3450, 0.1920}T 32.58

30 {0.8730, 1.3500, 0.6880, 1.5000, 1.5028, 1.2000, 0.4000, 0.3450, 0.1920}T 31.89

50 {0.6167, 1.3500, 0.5974, 1.5000, 1.4391, 1.2000, 0.4000, 0.3450, 0.1920}T 31.00

100 {0.6278, 1.3500, 0.6430, 1.5000, 1.4124, 1.2000, 0.4000, 0.3450, 0.1920}T 31.04

RBDO {0.5110, 1.3500, 0.5000, 1.4710, 1.4270, 1.2000, 0.4000, 0.3450, 0.1920}T 30.25

Table 13 Confidences at optima when input distribution types are KDE

ND Confidence(1)

(%)
Confidence(2)

(%)
Confidence(3)

(%)

10 92.89 84.92 93.37

30 96.82 94.55 94.83

50 96.19 95.19 94.99

100 96.02 97.94 90.00

*(1), (2), and (3) mean the first, second, and third constraint, respectively
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vary locally in P-space. In addition, the cost to add input
samples will be treated as development cost to find the bal-
anced optimum between system cost and development cost
satisfying confidence constraints.

7 Replication of Results

Matlab codes for the mathematical examples in Section 5 are
uploaded on https://github.com/Yongsu-Jung/SMO_CBDO.
git. Overall concepts and algorithms can be validated
through the mathematical example.
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