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Abstract
Single-loop approach (SLA) exhibits higher efficiency than both double-loop and decoupled approaches for solving reliability-
based design optimization (RBDO) problems. However, SLA sometimes suffers from the non-convergence difficulty during the
most probable point (MPP) search process. In this paper, a hybrid self-adjusted single-loop approach (HS-SLA) with high
stability and efficiency is proposed. Firstly, a new oscillating judgment criterion is firstly proposed to precisely detect the
oscillation of iterative points in standard normal space. Then, a self-adjusted updating strategy is established to dynamically
adjust the control factor of modified chaos control (MCC) method during the iterative process. Moreover, an adaptive modified
chaos control (AMCC) method is developed to search for MPP efficiently by selecting MCC or advanced mean value method
automatically based on the proposed oscillating judgment criterion. Finally, through integrating the developed AMCC into SLA,
the hybrid self-adjusted single-loop approach is proposed to achieve stable convergence and enhance the computational effi-
ciency of SLA for complex RBDO problems. The high efficiency of AMCC is demonstrated by five nonlinear performance
functions for MPP search. Additionally, five representative RBDO examples indicate that the proposed HS-SLA can improve the
efficiency, stability, and accuracy of SLA.

Keywords Reliability-based design optimization . Hybrid self-adjusted single-loop approach . Self-adjusted control factor .

Oscillating judgment criterion . Adaptivemodified chaos control

1 Introduction

There exist various kinds of uncertainties in practical engi-
neering structures, such as material properties, geometric di-
mension, manufacturing process, and external loads.
Reliability-based design optimization (RBDO) provides a
powerful and systematic tool for optimum design of structures
with considering these uncertainties, and the designs of
RBDO are more reliable than those of traditional deterministic
structural optimization. Generally, RBDO methods can be

divided into three categories (Aoues and Chateauneuf 2010;
Valdebenito and Schueller 2010): double-loop approaches,
decoupled approaches, and single-loop approaches.

For double-loop approaches, two different ways can be
applied to evaluate the probability constraints: reliability index
approach (RIA) (Lee et al. 2002) and performance measure
approach (PMA) (Tu et al. 1999). Actually, PMA always ex-
hibits much higher efficiency and stability than RIA to solve
RBDO problems (Lee et al. 2002; Youn and Choi 2004). For
PMA, the inner reliability analysis loop aims to search for the
most probable point (MPP). The advanced mean value
(AMV)method (Wu et al. 1990) is popularly utilized to search
for MPP owing to its simplicity and efficiency. However,
AMV generates numerical instability such as divergence, pe-
riodic oscillation, bifurcation, and even chaos when locating
the MPP for concave or highly nonlinear performance func-
tions (Du et al. 2004; Youn et al. 2003). Later, several im-
proved iterative algorithms were suggested to overcome the
non-convergence of AMV when searching for MPP, such as
conjugate mean value (CMV) method, hybrid mean value
(HMV) method (Youn et al. 2003), enhanced hybrid mean
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value method (Youn et al. 2005b), conjugate gradient analysis
method (Ezzati et al. 2015), and step length adjustment itera-
tive algorithm (Yi and Zhu 2016). From the perspective of
chaotic dynamics, Yang and Yi (2009) proposed the chaos
control (CC) method to address the non-convergence issue
of AMV based on stability transformation method (STM)
(Pingel et al. 2004; Schmelcher and Diakonos 1997). To im-
prove the efficiency of CC, modified chaos control (MCC)
method (Meng et al. 2015) was developed by extending the
iterative point to the target reliability surface in every iterative
step. However, the chaos control factor has a great influence
on the computational efficiency ofMCC (Li et al. 2015; Meng
et al. 2015; Meng et al. 2018), in which the control factor
remains constant. Thereafter, some researches concentrate on
the automatic determination of control factor during the itera-
tive process of MPP search based on MCC. These methods
include adaptive chaos control method (Li et al. 2015), relaxed
mean value approach (Keshtegar and Lee 2016), enhanced
chaos control method (Hao et al. 2017) which is related with
the non-probabilistic RBDO (Meng et al. 2018; Meng and
Zhou 2018; Meng et al. 2019), self-adaptive modified chaos
control method (Keshtegar et al. 2017), hybrid self-adjusted
mean value (HSMV) method (Keshtegar and Hao 2017),
modified mean value method (Keshtegar 2017), hybrid de-
scent mean value (HDMV) method (Keshtegar and Hao
2018c), enriched self-adjusted mean value (ESMV) method
(Keshtegar and Hao 2018b), and dynamical accelerated chaos
control (DCC) method (Keshtegar and Chakraborty 2018).
Although these enhanced versions can enhance the efficiency
of MPP search to a certain extent, the computational cost of
double-loop approaches is still large for RBDO problems with
highly nonlinear performance functions.

To improve the computational efficiency of double-loop
approaches, decoupled approaches convert the original
RBDO problem into a series of deterministic optimization
problems by separating the inner reliability analysis loop from
the external deterministic optimization loop. Representative
decoupled approaches mainly include sequential optimization
and reliability assessment (SORA) (Du and Chen 2004), se-
quential approximate programming approach (Cheng et al.
2006), and direct decoupling approach (Zou and Mahadevan
2006). Later, some improvements were also reported based on
the concept of SORA, such as adaptive decoupling approach
(Chen et al. 2013), approximate sequential optimization and
reliability assessment (Yi et al. 2016), general RBDO
decoupling approach (Torii et al. 2016), and probabilistic fea-
sible region approach (Chen et al. 2018). The computational
efficiency of SORA is also enhanced by using convex linear-
ization (Cho and Lee 2011) and hybrid chaos control (HCC)
method (Meng et al. 2015). In general, SORA is a widely
utilized decoupled approach to solve RBDO problems
(Aoues and Chateauneuf 2010), whereas its efficiency needs
to be improved.

In single-loop approaches, the Karush-Kuhn-Tucker
(KKT) optimality conditions of the inner reliability loops
are employed to approximate probabilistic constraints with
equivalent deterministic constraints, which can avoid the
repeated MPP search process in reliability analysis. Hence,
the efficiency of single-loop approaches is greatly im-
proved than double-loop approaches for solving RBDO
problems. Typically, the single-loop single vector (SLSV)
method (Chen et al. 1997) firstly attempted to convert the
double-loop RBDO problem to a true single-loop problem.
Liang et al. (2008) proposed single-loop approach (SLA)
to improve the efficiency of SLSV. A complete single-loop
approach (Shan and Wang 2008) was developed on the
basis of reliable design space to eliminate the reliability
analysis process and achieve higher efficiency and
accuracy. Jeong and Park (2017) introduced single-loop
single vector method using the conjugate gradient to en-
hance the convergence capability and accuracy of SLSV.
Although SLA is a promising strategy for linear and mod-
erate nonlinear RBDO problems, it yields numerical insta-
bility and non-convergence solutions for highly nonlinear
problems (Aoues and Chateauneuf 2010). To overcome
this problem, Jiang et al. (2017) suggested the adaptive
hybrid single-loop method to adaptively select the approx-
imate MPP or accurate MPP which is located by the devel-
oped iterative control strategy. Keshtegar and Hao (2018a)
developed the enhanced single-loop method based on
single-loop approach and the hybrid enhanced chaos
control method. Meng et al. (2018) proposed chaotic
single-loop approach (CSLA) to realize convergence con-
trol of iterative algorithm of MPP search in SLA based on
chaotic dynamics theory. Moreover, Zhou et al. (2018)
suggested a two-phase approach which is an enhanced ver-
sion of SLA based on sequential approximation. To im-
prove the efficiency and stability of SLA, Meng and
Keshtegar (2019) proposed adaptive conjugate single-
loop approach based on the conjugate gradient vector with
a dynamical conjugate scalar factor.

To combine two of these three different types of RBDO
methods mentioned above is a new tendency to make full
use of respective advantages of different RBDO methods
in recent years. These hybrid methods contain adaptive-
loop method (Youn 2007), adaptive hybrid approach (Li
et al. 2015), semi-single-loop method (Lim and Lee
2016), etc. However, the numerical efficiency and stability
of RBDO algorithms for large reliability index and highly
nonlinear problems are still expected to enhance further.

In this paper, an adaptive modified chaos control
(AMCC) method is firstly developed to search for MPP
efficiently by selecting modified chaos control method or
advanced mean value method automatically, based on the
proposed oscillating judgment criterion of iterative point
and self-adjusted control factor. Then, a hybrid self-
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adjusted single-loop approach (HS-SLA) is proposed by
integrating the developed AMCC into SLA, in order to
achieve stable convergence and enhance the computational
efficiency of SLA for RBDO problems with highly nonlin-
ear performance functions. Finally, five representative ex-
amples are tested and compared for RBDO algorithms to
illustrate the high efficiency and stability of the proposed
HS-SLA.

2 Reliability-based design optimization
and methods of MPP search

2.1 Basic RBDO formulation

A typical RBDO problem is formulated as follows (Jiang et al.
2017; Youn et al. 2003; Youn et al. 2005b):

find d;μX

min f d;μX;μp

� �
s:t: P gi d;X;Pð Þ≤0ð Þ≥Ri; i ¼ 1; 2; :::; ng

dL≤d≤dU ; μL
X ≤μX≤μU

X

ð1Þ

where d denotes deterministic design variable vector with
lower bound dL and upper bound dU, X, and P represent
random design variable vector and random parameter vector,
respectively.μX and μP indicate the means ofX and P, respec-
tively. μL

X and μU
X are the lower bound and upper bound of

μX.f(d, μX, μP) means the objective function. The perfor-
mance function gi(d,Xi, Pi) ≤ 0 represents the safe region. ng
refers to the number of probabilistic constraints. The probabi-
listic constraintP(gi(d,X, P) ≤ 0) ≥ Ri represents that the prob-
ability of satisfying the i-th performance function should not
be less than the target reliability Ri ¼ Φ βt

i

� �
, where βt

i indi-
cates the target reliability index of the i-th constraint and Φ(·)
is the standard normal cumulative distribution function.

2.2 Performance measure approach

In PMA (Tu et al. 1999; Youn et al. 2003), the performance
measure function is employed to replace the RBDO

probabilistic constraint in (1). The RBDO model based on
PMA can be formulated as:

find d;μX

min f d;μX;μp

� �
s:t: gi d;X;Pð Þ≤0; i ¼ 1; 2; :::; ng

dL≤d≤dU ; μL
X ≤μX≤μU

X

ð2Þ

In the inverse reliability analysis of PMA, the random de-
sign variables are transformed from the original space (X-
apace) into the standard normal space (U-space) through
Rosenblatt transformation or Nataf transformation (U = T
(X), U = T (P)). Then, the performance function is expressed
as gi (d, X, P) = gi (T

−1 (U)) = Gi (U), which can be calculated
by the following optimization problem in U-space (Youn et al.
2003):

min G Uð Þ
s:t: ‖U‖ ¼ βt ð3Þ

The optimal solution in (3) is defined as the most probable
point on the target reliability surface.

2.2.1 Chaos control method

Owing to the simplicity and efficiency, the advanced mean
value method (Wu et al. 1990) is popularly applied to search
for the MPP by solving the optimization problem in (3) as
follows:

ukþ1 ¼ βtnk ; nk ¼ −
∇Ug d; uk

� �
‖∇Ug d; ukð Þ‖

ð4Þ

where ∇U g(uk) is the gradient vector of performance function
at the k-th iterative point uk in U-space, and nk is the normal-
ized steepest descent direction.

Although AMV is efficient for solving convex perfor-
mance functions, it has difficulties in iterative conver-
gence when the MPP is searched for concave or highly
nonlinear performance functions (Du et al. 2004; Youn
et al. 2003). As illustrated in Fig. 1a, AMV generates
period-2 oscillation which constructs a diamond by the

Fig. 1 MPP search for different methods. a Period-2 oscillation of AMV method. b CC method. c MCC method
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four points: the origin u0, two adjacent iterative points uk

and uk + 1 at the round, and the intersecting point of the
two negative gradient direction vectors nk and nk + 1.
Introducing the chaotic dynamics theory, Yang and Yi
(2009) proposed the chaos control method, shown in
Fig. 1b, to control the non-convergence phenomenon of
AMV based on stability transformation method (Pingel
et al. 2004; Schmelcher and Diakonos 1997) with solid
mathematical basis as follows:

ukþ1 ¼ uk þ λC f uk
� �

−uk
� �

f uk
� � ¼ −βt ∇Ug d; uk

� �
‖∇Ug d; ukð Þ‖

ð5Þ

where λ is the control factor ranging from 0 to 1 (i.e.,
λ∈(0,1)), and C is the n × n dimensional involutory matrix
(namely, C2 = I, only one element in each row and each
column in this matrix is 1 or − 1, and the others are 0).

2.2.2 Modified chaos control method

However, the efficiency of CC is limited due to excessively
reducing every step size of the AMV method (Li et al.
2015; Meng et al. 2015). Accordingly, the modified chaos

control method (Meng et al. 2015) indicated in Fig. 1c was
proposed to enhance the convergence speed of CC by ex-
tending the iterative point to the target reliability surface in
every iterative step. The iterative formula of MCC is writ-
ten as:

ukþ1 ¼ βt ~n ukþ1
� �

‖~n ukþ1ð Þ‖
~n ukþ1
� � ¼ uk þ λC f uk

� �
−uk

� �
f uk
� � ¼ −βt ∇Ug d; uk

� �
‖∇Ug d; ukð Þ‖

ð6Þ

As observed in references (Li et al. 2015; Meng et al. 2015;
Meng et al. 2018), the control factor λ has a significant influ-
ence on the computational efficiency of both CC and MCC.

2.3 Single-loop approach

In SLA (Liang et al. 2008), the probabilistic optimization
problem is converted into a deterministic optimization prob-
lem by using KKT optimality conditions, and it avoids the
repeated MPP search process in reliability analysis. The stan-
dard SLA is expressed as:

Fig. 2 Relationship between performance function type and oscillation of iterative points. a Convex type (convergence). b Concave type (oscillation). c
Convex type (divergence)

Fig. 3 Relationship between oscillation amplitude variation and oscillation of iterative points in U-space. a Decreases (convergence). b Increases (non-
convergence). c Decreases (oscillation)
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find d;μX

min f d;μX;μPð Þ
s:t: gi d

k ;Xk
i ;P

k
i

� �
≤0; i ¼ 1; 2; :::; ng

dL≤d≤dU ; μL
X ≤μX≤μU

X
where
Xk

i ¼ μk
X−α

k
XiσXβ

t
i;P

k
i ¼ μP−αk

PiσPβ
t
i

αk
Xi ¼ σX∇Xgi d

k ;Xk−1
i ;Pk−1

i

� �
=‖σX∇Xgi d

k ;Xk−1
i ;Pk−1

i

� �
‖

αk
pi ¼ σp∇pgi d

k ;Xk−1
i ;Pk−1

i

� �
=‖σp∇pgi d

k ;Xk−1
i ;Pk−1

i

� �
‖

ð7Þ

In (7), βt
i indicates the target reliability index of the i-th

constraint. d means the vector of deterministic design vari-

ables with lower bound dL and upper bound dU. Xk
i and Pki

represent the k-th approximate MPPs of random design vari-
able vector X and random parameter vector P in X-space for
the i-th performance function, respectively. During the outer
deterministic optimization process, the random design vari-
able mean μX is updated while the random parameter mean
μP keeps unchanged. αk

Xi and αk
Pi represent the normalized

gradient vector of the i-th constraint gi(·) to X and P, respec-
tively. For non-normally distributed random variables,
Rosenblatt transformation or Nataf transformation can be ap-
plied to transform the original random space into the standard

normal space. Despite the fact that SLA is highly efficient, it
encounters difficulties in converging to accurate results for
highly nonlinear performance functions.

3 Oscillating judgment criteria

Generally, correctly identifying the oscillation of iterative
points during the iterative process exerts a remarkable influ-
ence on the efficiency of MPP search. Two common oscillat-
ing judgment criteria, i.e., criterion 1 and criterion 2, have
been widely used to judge the oscillation of iterative points.
However, both criterion 1 and criterion 2 cannot correctly and
completely identify the oscillation of iterative points. In this
section, a new oscillating judgment criterion 3 is developed to
precisely detect the oscillation of the iterative points during
the iterative process of MPP search.

3.1 Criterion 1

For hybrid mean value method (Youn et al. 2003), the type of
performance function is defined by

Fig. 4 Relationship between the
satisfaction of criterion 3 and
oscillation of iterative points in U-
space. a Satisfy (convergence). b
Dissatisfy (divergence). c
Dissatisfy (divergence). d
Dissatisfy (oscillation)
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ςkþ1 ¼ nkþ1−nk
� � � nk−nk−1

� �
sign ςkþ1

� �
> 0 : convex function
≤0 : concave function

ð8Þ

In (8), ςk + 1is the index for identifying the performance
function type at the k + 1th step, nk stands for the normalized
steepest descent direction for a performance function at uk,
and sign(·) is a symbolic function. Criterion 1 is actually an
angle condition. The basic idea of HMV is to first identify the
performance function type according to criterion 1 in (8), and
then adaptively select advanced mean value method or conju-
gate mean value method to search forMPP: if the performance
function is convex, AMV is used to update the next iterative
point. Otherwise, CMV is adopted for concave performance

function. HMV is suitable for convex and weakly nonlinear
concave performance function. Nevertheless, it converges
slowly or even fails to converge for highly nonlinear concave
function.

To combine respective advantages of different MPP search
methods, some researches (Li et al. 2015; Meng et al. 2015)
adaptively selected appropriate methods to control oscillation
by judging the oscillation of iterative points based on criterion
1. Figure 2a and b exhibit the relationship between perfor-
mance function type and oscillation of iterative points based
on criterion 1. For convex performance function, the corre-
sponding iterative points gradually converge (Fig. 2a); the
iterative points corresponding to concave performance func-
tion appear to oscillate (Fig. 2b). However, for the case of Fig.
2c, the criterion 1 is invalid: although the performance func-
tion is convex, the corresponding iterative points gradually
diverge. Therefore, criterion 1 cannot correctly and complete-
ly judge the oscillation of iterative points.

3.2 Criterion 2

Based on the variation of oscillation amplitude of random
variables in U-space, which is also considered as sufficient
descent condition, criterion 2 in (9) is applied to judge the
oscillation of iterative points, and then appropriate
methods are adaptively chosen to search for MPP in refer-
ences (Keshtegar and Hao 2018c; Yi and Zhu 2016):

‖ukþ2−ukþ1‖≤‖ukþ1−uk‖ ð9Þ
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Fig. 5 Iterative histories of chaos control factor λk for different P

Fig. 6 Framework of AMCC to
search for MPP
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If the oscillation amplitude of iterative points in U-space
decreases, the iterative points gradually converge (Fig. 3a),
and the original method is maintained to update the next iter-
ative points. Otherwise, if the oscillation amplitude increases,
divergence or oscillation occurs at the iterative points (Fig.
3b), and a certain strategy is adopted to control the non-
convergence of the random variables in the iterative process.
However, criterion 2 fails to determine the oscillation of iter-
ative points in Fig. 3c. Although the oscillation amplitude
decreases little by little, the corresponding iterative points os-
cillate rather than converge. Therefore, criterion 2 cannot
completely judge the oscillation of iterative points.

3.3 Criterion 3

To overcome the respective disadvantages of criterion 1 and
criterion 2 described above, a new oscillating judgment

criterion 3 is proposed to correctly detect oscillation of itera-
tive points in U-space by combining criterion 1 and criterion
2:

ςkþ1 ¼ nkþ1−nk
� � � nk−nk−1

� �
> 0

‖ukþ2−ukþ1‖≤‖ukþ1−uk‖

(
ð10Þ

Iterative points will gradually converge only if the two
conditions of (10), i.e., angle condition and sufficient descent
condition, are simultaneously satisfied (Fig. 4a). Otherwise,
they fail to converge, and divergence or oscillation will occur
(Fig. 4b–d). On the one hand, the criterion 3 proposed in this
paper can detect the oscillation of iterative points. The con-
vergence in Fig. 4a can be all detected by criterion 1, criterion
2, and criterion 3. For the case of Fig. 4b, all the above three
oscillation criteria can judge the divergence of the iterative
point. On the other hand, the proposed criterion 3 can

Table 1 Iterative results of MPP for different methods

Methods AMV HMV CC HCC AMCC1 AMCC2 AMCC

G1(x) − 0.3579(11) − 0.3579(11) − 0.3579(138) − 0.3579(11) − 0.3579(11) − 0.3579(11) − 0.3579(11)
G2(x) Period-18 − 2.2293(649) − 2.2293(111) Period-11 Period-4 − 2.2293(42) − 2.2293(14)
G3(x) Chaos Chaos − 21.6722(138) Chaos Chaos − 21.6723(19) − 21.6723(14)
G4(x) Chaos − 31.066(165) − 31.066(138) chaos − 31.066(12) − 31.066(30) − 31.066(10)
G5(x) Period-2 0.0753(499) 0.0753(112) Period-4 Period-4 0.0753(39) 0.0753(15)

Fig. 7 Flowchart of the hybrid
self-adjusted single-loop
approach for RBDO problems
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overcome the drawbacks of both criterion 1 and criterion 2.
For Fig. 4c, the iterative point is regarded as convergence with
using criterion 1, while the iterative point is viewed as diver-
gence via criterion 3, which is consistent with the fact that the
iterative point diverges. For Fig. 4d, the iterative point is con-
sidered as convergence with using criterion 2. Nevertheless,
the iterative point actually oscillates which is the same as the
result judged by using criterion 3. Therefore, the proposed
criterion 3 can precisely detect the oscillation of iterative
points in U-space, and provide a better judgment criterion
for selecting appropriate approaches to search for MPP.
Consequently, the efficiency of MPP search is improved.

4 Hybrid self-adjusted single-loop approach

4.1 Self-adjusted updating strategy for chaos control
factor

Chaos control factor λk has a remarkable influence on the
computational efficiency of CC and MCC when searching
for MPP. Therefore, it is of great significance to propose a
proper updating strategy for λk to improve the convergence
rate of MPP search. In this work, a new self-adjusted
updating strategy is proposed to dynamically adjust the
control factor during the iterative process as follows:

λk ¼ λk−1

1þ P 1−λk−1� � ð11Þ

where P is a parameter (0.10 ≤ P ≤ 1.00). Figure 5 shows
the iterative histories of self-adjusted control factor for differ-
ent P. It can be seen that P has a great influence on the change
of λk during the iterative process, and thus affects the conver-
gence rate of MPP search. In order to prevent the slow con-
vergence rate caused by too small control factor, the minimum
value of λk is taken as λmin = 0.25 and P is 0.40 for all the
following RBDO numerical examples. Obviously, the itera-
tive formula of proposed self-adjusted control factor is based
on the previous iterative information and is simpler than those
of methods such as HDMV, ESMV, DCC, and HSMV.
Besides, the self-adjusted control factor is combined with the
oscillating judgment criterion 3 in AMCC to achieve control
of unstable solutions for highly nonlinear performance func-
tions, and can improve the efficiency of MPP search with
stable convergence.

4.2 Adaptive modified chaos control method for MPP
search

Although AMV is efficient to search for MPP for convex
performance functions, it has convergence difficulties for
both concave and highly nonlinear performance functions.
MCC performs well for concave or highly nonlinear per-
formance functions. Nevertheless, the computational effi-
ciency of MCC is greatly influenced by the control factor.
Based on the above developed oscillating judgment crite-
rion 3 in (10) and self-adjusted updating strategy for con-
trol factor in (11), an adaptive modified chaos control

Table 2 RBDO results of Example 1 for β t = 3.0

Approaches Iters F-
evals

Objective Design variables βMCS
1 βMCS

2 βMCS
3

RIA – – – – – – –

PMA 5 2025 6.2903 (3.2799, 3.0104) 3.0568 3.1177 Infinite

SORA 6 1482 6.2903 (3.2799, 3.0104) 3.0568 3.1177 Infinite

SLA 11 252 6.2893 (3.2809, 3.0084) 3.0565 3.1058 Infinite

CSLA 7 132 6.2897 (3.2807, 3.0086) 3.0559 3.1072 Infinite

HS-SLA 5 72 6.2903 (3.2798, 3.0104) 3.0562 3.1177 Infinite

Table 3 RBDO results of Example 1 for β t = 4.0

Approaches Iters F-
evals

Objective Design variables βMCS
1 βMCS

2 βMCS
3

RIA – – – – – – –

PMA 6 2481 6.5038 (3.3442, 3.1596) 4.0538 3.9287 Infinite

SORA 7 1834 6.4412 (3.4147, 3.0265) 4.0501 3.0400 Infinite

SLA 6 147 6.3435 (3.5612, 2.7824) 4.0438 1.6003 Infinite

CSLA 8 108 6.5177 (3.3301, 3.1875) 4.0528 4.1449 Infinite

HS-SLA 7 96 6.5175 (3.3303, 3.1873) 4.0528 4.1422 Infinite
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method is proposed to search for MPP in U-space. The
iterative formula of AMCC is written as:

ukþ1
AMCC ¼ f ukþ1

AMV; criterion 3 is satisfied

ukþ1
MCC; criterion 3 is not satisfied

where ukþ1
MCC ¼ βt ~ukþ1

MCC

‖~ukþ1
MCC‖

~ukþ1
MCC ¼ ukAMCC þ λkC ukþ1

AMV−u
k
AMCC

� �
ð12Þ

The basic idea of AMCC is that modified chaos control
method or advanced mean value method is automatically se-
lected to control the iterative direction of the next MPP in the
light of the oscillation of iterative points. If the current iterative
point does not satisfy the oscillating judgment criterion 3,
which means the current iterative point fails to converge, the
control factor λk of MCC needs to be dynamically updated
based on the proposed self-adjusted updating strategy in (11),
and then MCC is adopted to control the iterative oscillation.
Otherwise, if the iterative point in U-space satisfies the oscil-
lating judgment criterion 3, which means the iterative point
does not oscillate. In other words, the control factor λk needs
not to be updated and remains unchanged, so AMV is used to
update the next iterative point. The framework of proposed
AMCC method to search for MPP is plotted in Fig. 6. The
proposed AMCC method can provide stable results and
achieve global convergence for MPP search. The correspond-
ing proof for C = I is presented as follows:

Firstly, it is assumed that the iterative points hold the angle
condition and sufficient descent condition simultaneously at
each iteration (Fig. 4a), i.e., the criterion 3 is satisfied as

nkAMV−nk−1AMCC

� � � nk−1AMCC−nk−2AMCC

� �
> 0 and ‖ukþ1

AMV−ukAMCC‖

≤‖ukAMCC−uk−1AMCC‖. Therefore, AMV is adopted to update the

new iterative points as ukþ1
AMCC ¼ ukþ1

AMV. Then, we have

‖u2AMCC−u
1
AMCC‖≤‖u

1
AMCC−u

0
AMCC‖ ¼ βt

‖u2AMCC−u
1
AMCC‖ ¼ t1‖u1AMCC−u

0
AMCC‖ ¼ t1 βt; 0≤ t1≤1

⋯
‖ukþ1

AMCC−u
k
AMCC‖ ¼ tk tk−1⋯t1 ‖u1AMCC−u

0
AMCC‖ ¼ βt ∏

k

i¼1
ti; 0≤ t1; t2;⋯tk ≤1

It can be concluded that lim
k→∞

∏
k

i¼1
ti≈0 and lim

k→∞
‖ukþ1

AMCC−

ukAMCC‖≈0. Therefore, u
kþ1
AMCC≈ukAMCC.

Secondly, if the iterative points only satisfy the sufficient
descent condition but not angle condition (Fig. 4d), i.e.,
nkAMV−nk−1AMCC

� � � nk−1AMCC−nk−2AMCC

� �
≤0 and

‖ukþ1
AMV−ukAMCC‖≤‖ukAMCC−uk−1AMCC‖, MCC is applied to up-

date the new iterative points. From (12), we have

~ukþ1
MCC−u

k
AMCC ¼ λk ukþ1

AMV−u
k
AMCC

� �
Since 0 < λk < 1, then ‖~ukþ1

MCC−ukAMCC‖ < ‖ukþ1
AMV−ukAMCC‖.

Thus,

‖ukþ1
AMCC−u

k
AMCC‖ < ‖ukþ1

AMV−u
k
AMCC‖≤‖u

k
AMCC−u

k−1
AMCC‖

Table 4 RBDO results of Example 2 for d0 = [1, 1]

Approaches Iters F-
evals

Objective Design variables βMCS
1 βMCS

2 βMCS
3

RIA – – – – – – –

PMA 16 9009 − 1.7247 (4.5581, 1.9645) 2.9522 3.2035 Infinite

SORA 17 1208 − 1.7247 (4.5581, 1.9645) 2.9522 3.2035 Infinite

SLA Period-2 – – – – – –

CSLA 30 556 − 1.7247 (4.5581, 1.9645) 2.9522 3.2035 Infinite

HS-SLA 17 216 − 1.7250 (4.5577, 1.9639) 2.9500 3.2035 Infinite

Table 5 RBDO results of Example 2 for d0 = [5, 5]

Approaches Iters F-
evals

Objective Design variables βMCS
1 βMCS

2 βMCS
3

RIA – – – – – – –

PMA 5 2160 − 1.7247 (4.5581, 1.9645) 2.9522 3.2035 Infinite

SORA 6 853 − 1.7247 (4.5581, 1.9645) 2.9522 3.2035 Infinite

SLA Period-2 – – – – – –

CSLA 14 262 − 1.7247 (4.5581, 1.9645) 2.9522 3.2035 Infinite

HS-SLA 9 120 − 1.7247 (4.5581, 1.9645) 2.9522 3.2035 Infinite
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‖ukþ1
AMV−u

k
AMCC‖ ¼ pkpk−1⋯p1 ‖u

1
AMCC−u

0
AMCC‖

¼ βt ∏
k

i¼1
pi; 0≤p1; p2;⋯pk ≤1

‖ukþ1
AMCC−u

k
AMCC‖ ¼ qkqk−1⋯q1 ‖u

1
AMCC−u

0
AMCC‖

¼ βt ∏
k

i¼1
qi; 0 < q1; q2;⋯qk < 1

where 0 < qi < pi≤1; i ¼ 1; 2;⋯; k

Clearly, ∏
k

i¼1
qi→0 is attained more quickly than ∏

k

i¼1
pi→0

for k→∞, then, we have ukþ1
AMCC≈ukAMCC. Therefore, AMCC

can converge more quickly than AMVused only in Fig. 4d by
reducing the oscillating amplitude of iterative points.

Finally, if the iterative points do not satisfy the suf-
ficient descent condition, the new iterative points are
computed by MCC in (12) no matter whether the angle
condition is satisfied or not (Fig. 4b, c). We can obtain

~ukþ1
MCC−ukAMCC ¼ λk ukþ1

AMV−ukAMCC

� �
. Since ~ukþ1

MCC−ukAMCC

� �T
~ukþ1
MCC−ukAMCC

� � ¼ λk ~ukþ1
MCC−ukAMCC

� �T
ukþ1
AMV−u

k
AMCC

� �
, the

following formulas are derived

~ukþ1
MCC−u

k
AMCC

��� ���2≤λk‖~ukþ1
MCC−u

k
AMCC‖ � ‖ukþ1

AMV−u
k
AMCC‖

‖~ukþ1
MCC−ukAMCC‖

‖ukþ1
AMV−ukAMCC‖

≤λk

The proposed control factor is λk ≈ 0 when k→∞ as illus-

trated by Fig. 5 and (11), which means that ‖~ukþ1
MCC−ukAMCC‖≈0

when k→ ∞. Thus, ukþ1
MCC≈ukAMCC. Consequently, a fixed

point is captured as ukþ1
AMCC≈ukAMCC for k→∞. To sum up,

AMCC can achieve stable iterative solutions and realize glob-
al convergence.

To verify the efficiency of AMCC, the oscillating judgment
criterion 3 is replaced with criterion 1 and criterion 2 to obtain
algorithms of AMCC1 and AMCC2, respectively. Four math-
ematical examples and a high dimensional engineering reli-
ability problem (i.e., the velocity problem of the door in a
vehicle side impact for Example 5) for reliability analysis
are selected to demonstrate the efficiency of AMCC compared
with AMV, HMV, CC, HCC, AMCC1, and AMCC2. For the
CC and HCC, C = I and λ = 0.10 are adopted. The conver-
gence criterion is set as || xk + 1 – xk || / || xk + 1 || ≤ 10−6 and the
initial value is u0 = (0, 0) for all those methods.

Example 1 (Youn et al. 2003)
G1 xð Þ ¼ −exp x1−7ð Þ−x2 þ 10; xi∼N 6:0; 0:82

� �
; i

¼ 1; 2; βt ¼ 3:0

Example 2 (Yang and Yi 2009)

G2 xð Þ ¼ 0:3x21x2−x2 þ 0:8x1

þ 1; x1∼N 1:2; 0:422
� �

; x2∼N 1:0; 0:422
� �

; βt

¼ 6:0

Table 6 RBDO results of Example 2 for d0 = [15, 15]

Approaches Iters F-
evals

Objective Design variables βMCS
1 βMCS

2 βMCS
3

RIA – – – – – – –

PMA 14 8364 − 1.7247 (4.5581, 1.9645) 2.9522 3.2035 Infinite

SORA 18 3139 − 1.7247 (4.5581, 1.9645) 2.9522 3.2035 Infinite

SLA Period-2 – – – – – –

CSLA 36 625 − 1.7247 (4.5581, 1.9645) 2.9522 3.2035 Infinite

HS-SLA 23 288 − 1.7248 (4.5581, 1.9645) 2.9522 3.2035 Infinite
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Fig. 8 Iterative histories of objective function for CSLA and HS-SLA with three different initial points for Example 2. a d0 = [1, 1]. b d0 = [5, 5]. c
d0 = [15, 15]
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Example 3 (Yang and Yi 2009)

G3 xð Þ ¼ x31 þ x21x2

þ x32−18; x1∼N 10; 52
� �

; x2∼N 9:9; 52
� �

; βt

¼ 3:0

Example 4 (Yang and Yi 2009)

G4 xð Þ ¼ x31 þ x32−18; x1∼N 10; 52
� �

; x2∼N 9:9; 52
� �

; βt

¼ 3:0

Example 5 (Yang and Yi 2009; Youn et al. 2005a)

G5 xð Þ ¼ −0:75þ 0:489x3x7 þ 0:843x5x6−0:0432x9x10
þ 0:0556x9x11 þ 0:000786x211

xi∼N 1:0; 0:052
� �

; i ¼ 1∼7;
xi∼N 0:3; 0:0062

� �
; i ¼ 8; 9;

xi∼N 0:0; 10:02
� �

; i ¼ 10; 11; βt ¼ 3:0

The iterative results of performance function values at the
MPP and required iterative numbers in the parentheses for dif-
ferent methods are listed in Table 1. It is observed that there is
no oscillation for convex performance function G1(x) in the
iterative process of MPP search. As a result, AMV, HMV,
HCC, AMCC1, AMCC2, and AMCC only utilize the AMV
to search for MPP, and same iterative numbers are obtained for
all these methods, while the iterative number of CC is the most.
Additionally, AMV fails to converge for the remaining four
performance functions. The AMV iterations searching for
MPP for G2(x) and G5(x) generate period-18 and period-2 so-
lutions, respectively, while the iterative solutions for G3(x) and
G4(x) are in chaos with intrinsic randomness. Although HMV
and CC can control the non-convergence of G2(x), G4(x), and
G5(x), they exhibit lower efficiency compared to AMCC. For
concave and highly nonlinear performance functionsG2(x) and
G3(x) and the high dimensional performance function G5(x),
AMCC1 based on criterion 1 has difficulty in converging to the
correspondingMPPs. For concave performance functionG4(x),

Table 7 Iterative processes of MPPs and control factors of HS-SLA for Example 2 with d0 = [5, 5]

Iteration g1 g2 g3

Uk
1 λk

1 Uk
2 λk

2 Uk
3 λk

3

0 (− 2.6833, − 1.3416) 0.5000 (2.9963, − 0.1490) 0.5000 (2.3426, 1.8740) 0.5000

1 (− 0.9750, − 2.8372) 0.5000 (2.9999, − 0.0262) 0.5000 (2.5696, 1.5482) 0.5000

2 (− 0.6672, − 2.9249) 0.5000 (2.2140, − 2.0244) 0.5000 (2.4989, 1.6600) 0.5000

3 (− 0.7994, − 2.8915) 0.4167 (0.5899, − 2.9414) 0.5000 (2.4719, 1.6999) 0.5000

4 (− 1.0568, − 2.8077) 0.3378 (2.2906, − 1.9373) 0.4167 (2.4175, 1.7764) 0.4167

5 (− 1.2868, − 2.7100) 0.3378 (2.2497, − 1.9846) 0.3378 (2.4099, 1.7868) 0.4167

6 (− 1.4492, − 2.6267) 0.3378 (2.3992, − 1.8011) 0.2671 (2.4029, 1.7962) 0.3378

7 (− 1.4811, − 2.6089) 0.3378 (2.3694, − 1.8401) 0.2500 (2.3999, 1.8001) 0.2671

8 (− 1.4943, − 2.6014) 0.3378 (2.3717, − 1.8371) 0.2500 (2.3977, 1.8031) 0.2500

9 (− 1.4978, − 2.5993) 0.3378 (2.3728, − 1.8358) 0.2500 (2.3960, 1.8053) 0.2500

Table 8 RBDO results of Example 2 for CSLAwith ten random initial values

Random initial values Iters F-
evals

Objective Design variables βMCS
1 βMCS

2 βMCS
3

(13.1148, 14.1209) 36 640 − 1.7257 (4.5564, 1.9623) 2.9429 3.2035 Infinite

(0.7142, 0.6367) 31 576 −1.7257 (4.5565, 1.9624) 2.9433 3.2034 Infinite

(16.9826, 5.5385) 35 604 − 1.7258 (4.5563, 1.9622) 2.9424 3.2036 Infinite

(18.6799, 0.9234) 37 636 − 1.7258 (4.5563, 1.9622) 2.9424 3.2036 Infinite

(13.5747, 1.9426) 34 616 − 1.7258 (4.5563, 1.9622) 2.9424 3.2036 Infinite

(15.1548, 16.4692) 23 381 − 1.7251 (4.5577, 1.9637) 2.9495 3.2030 Infinite

(14.8626, 13.8966) 37 634 − 1.7257 (4.5564, 1.9623) 2.9429 3.2035 Infinite

(7.8445, 6.3420) 29 534 − 1.7258 (4.5564, 1.9623) 2.9429 3.2035 Infinite

(13.1096, 19.0044) 36 631 − 1.7257 (4.5565, 1.9623) 2.9430 3.2031 Infinite

(3.4237, 0.6889) 14 222 − 1.7248 (4.5583, 1.9644) 2.9522 3.2031 Infinite
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AMCC2 based on criterion 2 needs more iterative numbers
than AMCC1 and AMCC. However, AMCC converges more
efficiently than both AMCC1 and AMCC2 for the four perfor-
mance functions G2(x), G3(x), G4(x), and G5(x).

It should be pointed out that, for the adaptive modified
chaos control method, other involutory matrices except
C = I can also be taken to control the non-convergence of
inverse reliability computation such as periodic solution
and chaos. For example, the MPP of G2(x) is captured after
22 iterations by AMCC when C = C1 = [1 0; 0–1]. For
G3(x), the MPP is obtained after 14 iterations by AMCC
when C =C2 = [0–1; − 1 0] with the same results as C = I.
For simplicity, however, the involutory matrix C is usually
taken as identity matrix (i.e., C = I) for various modified
MPP search methods based on chaos feedback control.

4.3 Flowchart and procedure of HS-SLA

Combine the developed adaptive modified chaos control
method in subsection 4.2 with single-loop approach, an
efficient hybrid self-adjusted single-loop approach is pro-
posed to achieve stable convergence and enhance the
computational efficiency of SLA for complex RBDO
problems. The optimization formulation of HS-SLA is
written as follows:

findd;μX

min f d;μX;μPð Þ
s:t: gi d

k ; T−1 ukXi
� �

; T−1 ukPi
� �� �

≤0; i ¼ 1; 2; :::; ng
dL≤d≤dU ;μL

X≤μX≤μU
X

where
for AMV : ukXi ¼ ~ukXi; u

k
Pi ¼ ~ukPi

for MCC : ukXi ¼ βt
i

uk−1Xi þ λk−1
i C ~u

k

Xi−uk−1Xi

� �

‖uk−1Xi þ λk−1
i C ~u

k

Xi−uk−1Xi

� �
‖

; ukPi

¼ βt
i

uk−1Pi þ λk−1
i C ~u

k

Pi−uk−1Pi

� �

‖uk−1Pi þ λk−1
i C ~u

k

Pi−uk−1Pi

� �
‖

~u
k

Xi ¼ T Xk
i

� �
; ~ukPi ¼ T Pk

i

� �
Xk

i ¼ μk
X−α

k
XiσXβ

t
i;α

k
Xi

¼ σX∇Xgi d
k ;Xk−1

i ;Pk−1
i

� �
=‖σX∇Xgi d

k ;Xk−1
i ;Pk−1

i

� �
‖

Pk
i ¼ μP−αk

PiσPβ
t
i;α

k
pi

¼ σp∇pgi d
k ;Xk−1

i ;Pk−1
i

� �
=‖σp∇pgi d

k ;Xk−1
i ;Pk−1

i

� �
‖

ð13Þ

where ukXi and ukPi are the k-th approximate MPPs of ran-
dom design variable vector X and random parameter vec-
tor P in U-space for the i-th performance function, respec-
tively. The chaos control factor is updated by the self-

adjusted updating strategy in (11) and the initial value is

set as 0.50 for each performance function, i.e.,λ0
i ¼ 0:5.

The new self-adjusted updating strategy in (11) provides
an appropriate control factor, and the iterative search di-
rection vectors are dynamically adjusted based on the pro-
posed oscillating judgment criterion 3 in AMCC for MPP
search. These measures contribute to the proposed HS-
SLA achieving high computational accuracy for solving
RBDO problems.

Figure 7 shows the flowchart of HS-SLA, and its procedure
is summarized as follows:

(1) Initialize X0
i ¼ μ0

X and P0
i ¼ μP.

(2) Utilize AMCC to adaptively select AMV or MCC to
update the next MPP: when the iterative point in U-
space satisfies the oscillating judgment criterion 3 or k
< 3, AMV is used to update the next iterative point

(ukþ1
Xi ,ukþ1

Pi ). Otherwise, if the current iterative point
does not satisfy the oscillating judgment criterion 3 and
k ≥ 3, the control factors are dynamically updated based
on the proposed self-adjusted updating strategy in (11),
and MCC is then adopted to control the oscillation and

calculate the next MPP (ukþ1
Xi ,ukþ1

Pi ).
(3) Perform the deterministic optimization to update the ran-

dom design variable means μkþ1
X using optimization al-

gorithm such as the method of moving asymptotes.
(4) Check if the convergence criterion ‖μkþ1

X −μk
X‖=‖μ

kþ1
X ‖

≤ε ¼ 10−4 is satisfied. If it is satisfied, then stop.
Otherwise, set k = k + 1, and go to step (2) to continue
iterative calculation until convergence.

5 Numerical examples for RBDO problems

In this section, the efficiency and stability of the proposed HS-
SLA are compared with the other approaches such as RIA,
PMA, SORA, SLA, and CSLA by five nonlinear RBDO
problems. The convergence criterion of these RBDO ap-
proaches is ||dk + 1 – dk||/||dk + 1|| ≤ ε = 10−4.

5.1 Weakly nonlinear mathematical Example 1

This RBDO problem (Cho and Lee 2011; Youn and Choi
2004) contains three weakly nonlinear performance func-
tions and two random variables which obey the Gumbel
distribution. The standard deviations of the two random
variables are both 0.3, and their mean values are selected
as design variables. The initial values of the design vari-
ables are d0 = [5.0, 5.0]. Two different target reliability
indexes, i.e., β t = 3.0 and β t = 4.0, are considered to
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investigate their effect on the efficiency and stability of the
proposed HS-SLA. This RBDO example is formulated as

find d ¼ d1; d2½ �
min f dð Þ ¼ d1 þ d2
s:t: P g j Xð Þ≤0

h i
≥Φ βt

� �
; j ¼ 1; 2; 3

where g1 Xð Þ ¼ 1−
X 2

1X 2

20
;

g2 Xð Þ ¼ 1−
X 1 þ X 2−5ð Þ2

30
−

X 1−X 2−12ð Þ2
120

;

g3 Xð Þ ¼ 1−
80

X 2
1 þ 8X 2 þ 5

� � ;
0≤di≤10; for i ¼ 1; 2;
d0 ¼ 5:0; 5:0½ �

The optimal results of different approaches are tabulated in
Table 2 for β t = 3.0 and Table 3 for β t = 4.0. In these two
Tables and the following Tables, Iters denote the number of
outer optimal iterations, and F-evals represent the sum of the
number of performance function and objective function eval-
uations and the number of their gradient function evaluations.
F-evals are used to measure the computational efficiency of

different RBDO approaches. The optimal results of RIA,
PMA, SORA, SLA, and CSLA for β t = 3.0 and β t = 4.0 are
extracted from the reference (Meng et al. 2018).

As presented in Table 2, all RBDO approaches except RIA
can successfully converge, and the results are consistent with
those of the reference (Aoues and Chateauneuf 2010) for β t =
3.0. The number of function evaluations of SORA is less than
that of PMA in that SORA decouples the reliability analysis loop
from the optimization loop. By converting the probabilistic opti-
mization problem into a deterministic optimization problem,
SLA exhibits much higher efficiency compared to PMA and
SORA. CSLA improves the efficiency of SLA, because it can
control the oscillation of iterative points in U-space and improve
the iterative convergence by adopting the chaos control theory.
Additionally, the proposed HS-SLA is capable of precisely judg-
ing the oscillation of iterative points in U-space through a more
reasonable oscillating judgment criterion. As a result, less com-
putational effort for HS-SLA is required to converge to the opti-
mum compared to both SLA and CSLA.

The optimal results of different approaches for β t = 4.0 are
summarized in Table 3. Similar results of RBDO approaches
except SORA and SLA for β t = 4.0 can be obtained as those
for β t = 3.0. RIA fails to converge for the two target reliability
indexes. For large reliability index, more computational efforts of
PMA and SORA are needed and a lack of accuracy for SORA is

Fig. 9 Awelded beam structure

Table 9 RBDO results of Example 2 for HS-SLAwith ten random initial values

Random initial values Iters F-
evals

Objective Design variables βMCS
1 βMCS

2 βMCS
3

(13.1148, 14.1209) 20 252 − 1.7248 (4.5582, 1.9644) 2.9520 3.2033 Infinite

(0.7142, 0.6367) 18 228 − 1.7250 (4.5577, 1.9639) 2.9500 3.2035 Infinite

(16.9826, 5.5385) 21 264 − 1.7248 (4.5580, 1.9644) 2.9518 3.2035 Infinite

(18.6799, 0.9234) 33 408 − 1.7248 (4.5580, 1.9643) 2.9515 3.2034 Infinite

(13.5747, 1.9426) 23 288 − 1.7247 (4.5581, 1.9645) 2.9522 3.2035 Infinite

(15.1548, 16.4692) 21 264 − 1.7248 (4.5583, 1.9643) 2.9520 3.2028 Infinite

(14.8626, 13.8966) 30 372 − 1.7250 (4.5577, 1.9640) 2.9504 3.2036 Infinite

(7.8445, 6.3420) 18 228 − 1.7250 (4.5576, 1.9638) 2.9496 3.2034 Infinite

(13.1096, 19.0044) 28 348 − 1.7250 (4.5577, 1.9640) 2.9504 3.2036 Infinite

(3.4237, 0.6889) 8 108 − 1.7248 (4.5582, 1.9644) 2.9520 3.2033 Infinite

Table 10 System
parameters for the
welded beam structure

z1 2.6688 × 104 (N)

z2 3.556 × 102 (mm)

z3 2.0685 × 105 (MPa)

z4 8.274 × 104 (MPa)

z5 6.35 (mm)

z6 9.377 × 10 (MPa)

z7 2.0685 × 102 (MPa)

c1 6.74135 × 10−5 ($/mm3)

c2 2.93585 × 10−6 ($/mm3)
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also simultaneously observed. Despite the high efficiency, SLA
has difficulties in converging to the correct optimum for large
target reliability index. However, large reliability index has less
effect on CSLA and HS-SLA. Both CSLA and HS-SLA can
converge to the correct optimum, and the number of function
evaluations of HS-SLA is less than CSLA. Therefore, SLA ex-
hibits some weakness in terms of stability, while the stability of
HS-SLA remains unchangedwith the increase of target reliability
index. Moreover, HS-SLA can also improve the accuracy of
SLA for both β t = 3.0 and β t = 4.0.

To test whether the target reliability of the probabilistic
constraints is satisfied, Monte Carlo simulation (MCS) with
ten million samples is applied to evaluate the reliability index
of the probabilistic constraints at the optimum. In Table 2,

βMCS
j stands for the reliability index of the j-th probabilistic

constraint at the optimum. As shown in Table 2 for β t = 3.0,
the first and second probabilistic constraints (g1 and g2) are
active, while the third one (g3) is inactive and the correspond-
ing reliability index is infinite. All the RBDO approaches can
satisfy the target reliability index at the optimum.

For β t = 4.0, all the probabilistic constraints of RBDO
approaches except SORA and SLA satisfy the target reliability
at the optimum listed in Table 3. RIA cannot converge to the
optimum. Although SORA can obtain an optimized design,
the reliability index of the second probability constraint g2 is
smaller than the target reliability index, which means g2 is
violated. The reliability index of SLA for the second proba-
bility constraint g2 at the optimum is only 1.6003 which is
much smaller than the target reliability index. Therefore, the
optimized solution of SLA cannot satisfy the target reliability
index of the second probability constraint.

5.2 Highly nonlinear mathematical Example 2

This mathematical problem (Meng et al. 2018; Youn et al.
2005b) contains three highly nonlinear performance func-
tions. There are two random variables which are statistically
independent and follow the normal distribution Xi ~ N (di,
0.32), i = 1, 2. The design variables are the means of the two
random variables. Three different initial points, i.e., d0 = [1,
1], d0 = [5, 5], and d0 = [15, 15], are chosen to verify the
stability of the proposed HS-SLA. The target reliability index
is β t = 3.0. The RBDO example is formulated as

find d ¼ d1; d2½ �
min f dð Þ ¼ −

d1 þ d2−10ð Þ2
30

−
d1−d2 þ 10ð Þ2

120
s:t: P g j Xð Þ≤0

h i
≥Φ βt

j

� �
; j ¼ 1; 2; 3

where g1 Xð Þ ¼ 1−
X 2

1X 2

20
;

g2 Xð Þ ¼ Y−6ð Þ2 þ Y−6ð Þ3−0:6 Y−6ð Þ4 þ Z−1;

g3 Xð Þ ¼ 1−
80

X 2
1 þ 8X 2 þ 5

� � ;
Y ¼ 0:9063X 1 þ 0:4226X 2;

Z ¼ 0:4226X 1−0:9063X 2;
βt
1 ¼ βt

2 ¼ βt
3 ¼ βt ¼ 3:0;

0≤di≤20; X i∼N di; 0:32
� �

; for i ¼ 1; 2

The RBDO results of three different initial points are
listed in Tables 4, 5, and 6, respectively. All RBDO ap-
proaches can converge to the optimum except RIA and
SLA, which are consistent with the reference (Meng et al.
2018). As observed in these tables, SORA is considerably

Table 11 RBDO results of the
welded beam structure Approaches Iters F-

evals
Objective Design variables

RIA – – – –

PMA 6 595 2.5913 (5.7300, 200.8982, 210.5977, 6.2389)

SORA 6 521 2.5913 (5.7300, 200.8982, 210.5977, 6.2389)

SLA 6 385 2.5913 (5.7300, 200.8982, 210.5977, 6.2389)

CSLA 7 290 2.5913 (5.7300, 200.8982, 210.5977, 6.2389)

HS-SLA 7 240 2.5913 (5.7300, 200.8982, 210.5977, 6.2389)

Table 12 Evaluation of probabilistic constraints at the optimum for the welded beam structure by MCS

Approaches βMCS
1 βMCS

2 βMCS
3 βMCS

4 βMCS
5

RIA – – – – –

PMA 2.9985 2.9983 3.0050 Infinite 2.9986

SORA 2.9985 2.9983 3.0050 Infinite 2.9986

SLA 2.9985 2.9983 3.0050 Infinite 2.9986

CSLA 2.9985 2.9983 3.0050 Infinite 2.9986

HS-SLA 2.9985 2.9983 3.0050 Infinite 2.9986
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more efficient than PMA for all the three different initial
points. SLA generates period-2 solution during the itera-
tive process due to the second highly nonlinear perfor-
mance function g2. CSLA converges to the correct opti-
mum by controlling the oscillation and the corresponding
numbers of function evaluations are much less than those
of SORA. Based on the developed reasonable oscillating
judgment criterion 3 and self-adjusted control factor, the
proposed HS-SLA can control the periodic oscillation of
SLA. Consequently, HS-SLA improves the efficiency and
stability of SLA. Furthermore, HS-SLA shows higher con-
vergence rate than CSLA for all the three different initial
points.

As illustrated in Tables 4, 5, and 6, PMA and SORA are
sensitive to the initial point. PMA and SORA require less
computational effort when the initial point lies in the vi-
cinity of the optimum. In contrast, when the initial point is
far from the optimum, the numbers of function evaluations
required by PMA and SORA substantially increase.
However, different initial points have less influence on

the computational efficiency and stability of CSLA and
HS-SLA, and thus less computational cost for CSLA and
HS-SLA is needed.

In Tables 4, 5, and 6, the reliability indexes for three dif-
ferent initial points at the optimum are evaluated byMCSwith
ten million samples. Same conclusions can be drawn for all
three different initial points. The first and second probability
constraints (g1 and g2) are active, while the third one is inac-
tive. The probabilistic constraints except RIA and SLA can
meet the target reliability at the optimum. Moreover, iterative
histories of objective function for CSLA and HS-SLA with
three initial points for Example 2 are presented in Fig. 8.
Overall, HS-SLA converges to the correct objective function
more quickly than CSLA. Moreover, the iterative processes of
MPPs and control factors of three performance functions by
HS-SLAwith d0 = [5, 5] are listed in Table 7. Only the itera-
tive point in U-space cannot meet the oscillating judgment
criterion 3 in (10) and presents non-convergence, the corre-
sponding control factor λk is automatically updated by (11).
As the iterative number increases, the oscillation amplitude of
every iterative step decreases and the control factor gradually
decreases.

To further verify the efficiency and stability of HS-SLA,
ten initial values of design variables are randomly generated in
the interval [0, 20], and the RBDO results of CSLA and HS-
SLA are listed in Tables 8 and 9. It is indicated that both
CSLA and HS-SLA can converge to the optimum when
choosing the random initial points, and HS-SLA is more effi-
cient and accurate than CSLA. Moreover, the MCS results of
CSLA and HS-SLA are similar: the first and second probabil-
ity constraints are active while the third one is inactive, and all
the probability constraints of CSLA and HS-SLA satisfy the
target reliability.

5.3 Welded beam structure

A welded beam structure (Lee and Lee 2005) in Fig. 9 is
considered. There are four random design variables and five
probability constraints. The objective of this RBDO problem
is to minimize the welding cost with the target reliability index
β t = 3.0. The design variables are depth and length of
welding, and height and thickness of the beam. Each design

Fig. 10 A speed reducer

Table 13 RBDO results of the
speed reducer in Example 4 Approaches Iters F-

evals
Objective Design variables

RIA 3 1288 3038.86 (3.5772, 0.7, 17, 7.3, 7.7541, 3.3652, 5.3016)

PMA 3 1088 3038.86 (3.5772, 0.7, 17, 7.3, 7.7541, 3.3652, 5.3016)

SORA 3 862 3038.86 (3.5772, 0.7, 17, 7.3, 7.7541, 3.3652, 5.3016)

SLA 3 736 3038.86 (3.5772, 0.7, 17, 7.3, 7.7541, 3.3652, 5.3016)

CSLA 4 524 3038.86 (3.5772, 0.7, 17, 7.3, 7.7541, 3.3652, 5.3016)

HS-SLA 4 480 3038.86 (3.5772, 0.7, 17, 7.3, 7.7541, 3.3652, 5.3016)
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variable follows a statistically independent normal distribu-
tion. The probabilistic constraints are related to shear stress,
bending stress, bucking, and displacement behaviors. The sys-
tem parameters are listed in Table 10. The RBDOmodel of the
welded beam is expressed as:

find d ¼ d1; d2; d3; d4½ �
min f d; zð Þ ¼ c1d21d2 þ c2d3d4 z2 þ d2ð Þ
s:t: P g j X; zð Þ≤0

h i
≥Φ βt

j

� �
; j ¼ 1; 2;⋯; 5

where g1 X; zð Þ ¼ τ X; zð Þ=z6−1; g2 X; zð Þ ¼ σ X; zð Þ=z7−1;
g3 X; zð Þ ¼ X 1=X 4−1; g4 X; zð Þ ¼ δ X; zð Þ=z5−1;

g5 X; zð Þ ¼ 1−Pc X; zð Þ=z1;
τ X; zð Þ ¼ t X; zð Þ2 þ 2t X; zð Þtt X; zð ÞX 2= 2R Xð Þð Þ þ tt X; zð Þ2

n o1=2
;

t X; zð Þ ¼ z1=
ffiffiffi
2

p
X 1X 2

� �
; tt X; zð Þ ¼ M X; zð ÞR Xð Þ=J Xð Þ;

M X; zð Þ ¼ z1 z2 þ X 2=2ð Þ;R Xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2

2 þ X 1 þ X 3ð Þ2
q

=2;

J Xð Þ ¼
ffiffiffi
2

p
X 1X 2 X 2

2=12þ X 1 þ X 3ð Þ2=4
n o

;

σ X; zð Þ ¼ 6z1z2
X 2

3X 4
; δ X; zð Þ ¼ 4z1z32

z3X 3
3X 4

;

Pc X; zð Þ ¼ 4:013X 3X 3
4

ffiffiffiffiffiffiffiffi
z3z4

p
6z22

1−
X 3

4z2

ffiffiffiffiffi
z3
z4

r� �
;

βt
1 ¼ βt

2 ¼ ⋯ ¼ βt
5 ¼ βt ¼ 3:0;

3:175≤d1≤50:8; 0≤d2≤254; 0≤d3≤254; 0≤d4≤50:8;
X i∼N di; 0:16932

� �
for i ¼ 1; 2;

X i∼N di; 0:01072
� �

for i ¼ 3; 4;
d0 ¼ 6:208; 157:82; 210:62; 6:208½ �

The result of deterministic optimization is set as the initial
design point, i.e., d0 = [6.208, 157.82, 210.62, 6.208]. The
optimal results of different RBDO approaches for the welded
beam structure are given in Table 11. As illustrated from

Table 11, the optimized results of these RBDO approaches
except RIA are in agreement with those in reference (Li
et al. 2015). SLA improves the efficiency of PMA and
SORA. HS-SLA is more efficient than SLA and CSLA.
Table 12 gives the evaluation of probabilistic constraints for
welded beam structure by MCS with ten million samples at
the optimum. For all RBDO approaches except RIA, g1, g2,
g3, and g5 are active constraints while g4 is inactive constraint.
All the probability constraints of different RBDO approaches
except RIA satisfy the target reliability at the optimum.

5.4 A speed reducer

Figure 10 is a speed reducer (Lee and Lee 2005; Meng et al.
2018) which is used to rotate the engine and propeller with
efficient velocity in light plane. There are seven random var-
iables and 11 probability constraints. To minimize the weight
is the objective function of this RBDO problem. The proba-
bility constraints are related to bending and contact stress,
longitudinal displacement, stress of the shaft, and geometry.
Seven design variables are gear width (X1), teeth module (X2),
number of teeth in the pinion (X3), distance between bearings
(X4, X5), and axis diameter (X6, X7). All random design vari-
ables are statistically independent and obey lognormal distri-
bution with a standard deviation of 0.005. The RBDO model
of the speed reducer is formulated as follows:

find d ¼ d1; d2; d3; d4; d5; d6; d7½ �
min f dð Þ ¼ 0:7854d1d22 3:3333d23 þ 14:9334d3−43:0934

� �
−1:508d1 d26 þ d27

� �
þ 7:477 d36 þ d37

� �þ 0:7854 d4d26 þ d5d27
� �

s:t: P g j Xð Þ≤0
h i

≥Φ βt
j

� �
; j ¼ 1; 2;⋯; 11

Table 14 Evaluation of probabilistic constraints at the optimum for the speed reducer by MCS

Approaches βMCS
1 βMCS

2 βMCS
3 βMCS

4 βMCS
5 βMCS

6 βMCS
7 βMCS

8 βMCS
9 βMCS

10 βMCS
11

RIA Infinite Infinite Infinite Infinite 3.0043 2.9871 Infinite 2.9970 Infinite Infinite 3.0078

PMA Infinite Infinite Infinite Infinite 3.0043 2.9871 Infinite 2.9970 Infinite Infinite 3.0078

SORA Infinite Infinite Infinite Infinite 3.0043 2.9871 Infinite 2.9970 Infinite Infinite 3.0078

SLA Infinite Infinite Infinite Infinite 3.0043 2.9871 Infinite 2.9970 Infinite Infinite 3.0078

CSLA Infinite Infinite Infinite Infinite 3.0043 2.9871 Infinite 2.9970 Infinite Infinite 3.0078

HS-SLA Infinite Infinite Infinite Infinite 3.0043 2.9871 Infinite 2.9970 Infinite Infinite 3.0078

Table 15 RBDO results of the Hock and Schittkowski problem no.113 in Example 5

Approaches Iters F-
evals

Objective Design variables

RIA 23 9086 27.7468 (2.1328, 2.3361, 8.7102, 5.1022, 0.9238, 1.4456, 1.3844, 9.8060, 8.1514, 8.4787)

PMA 19 6842 27.7466 (2.1351, 2.3306, 8.7093, 5.1021, 0.9225, 1.4453, 1.3887, 9.8096, 8.1554, 8.4742)

SORA 25 5072 27.7466 (2.1349, 2.3308, 8.7088, 5.0996, 0.9225, 1.4451, 1.3885, 9.8095, 8.1547, 8.4734)

SLA 19 3740 27.7466 (2.1351, 2.3306, 8.7093, 5.1021, 0.9225, 1.4453, 1.3887, 9.8096, 8.1554, 8.4742)

CSLA 17 2026 27.7466 (2.1349, 2.3310, 8.7093, 5.1019, 0.9225, 1.4451, 1.3884, 9.8093, 8.1553, 8.4750)

HS-SLA 17 1782 27.7466 (2.1349, 2.3310, 8.7093, 5.1019, 0.9225, 1.4451, 1.3884, 9.8093, 8.1553, 8.4750)
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where g1 Xð Þ ¼ 27

X 1X 2
2X 3

−1; g2 Xð Þ ¼ 397:5

X 1X 2
2X

2
3

−1;

g3 Xð Þ ¼ 1:93X 3
4

X 2X 3X 4
6

−1; g4 Xð Þ ¼ 1:93X 3
5

X 2X 3X 4
7

−1;

g5 Xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
745X 4= X 2X 3ð Þð Þ2 þ 16:9� 106

q
= 0:1X 3

6

� �
−1100;

g6 Xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
745X 5= X 2X 3ð Þð Þ2 þ 157:5� 106

q
= 0:1X 3

7

� �
−850;

g7 Xð Þ ¼ X 2X 3−40; g8 Xð Þ ¼ 5−X 1=X 2; g9 Xð Þ ¼ X 1=X 2−12;
g10 Xð Þ ¼ 1:5X 6 þ 1:9ð Þ=X 4−1; g11 Xð Þ ¼ 1:1X 7 þ 1:9ð Þ=X 5−1;
βt
1 ¼ βt

2 ¼ ⋯ ¼ βt
11 ¼ βt ¼ 3:0;

2:6≤d1≤3:6; 0:7≤d2≤0:8; 17≤d3≤28; 7:3≤d4≤8:3;
7:3≤d5≤8:3; 2:9≤d6≤3:9; 5:0≤d7≤5:5
X i∼LN di; 0:0052

� �
; for i ¼ 1; 2;⋯; 7;

d0 ¼ 3:50; 0:70; 17:0; 7:30; 7:72; 3:35; 5:29½ �

The optimal results of different approaches for the speed
reducer are listed in Table 13. As observed in Table 13, all
these RBDO approaches converge to the same optimum as
shown in the literature (Meng et al. 2018). Compared to the
double-loop approaches (i.e., RIA and PMA) and the
decoupled approach (i.e., SORA), SLA, CSLA, and HS-
SLA can improve the RBDO efficiency for this problem ow-
ing to the single-loop strategy. The proposedHS-SLA requires
less computational effort than both SLA and CSLA for this
example. Table 14 exhibits the reliability indexes of each
probabilistic constraint calculated by MCS with ten million
samples at the optimum. Same conclusions can be drawn for
all different approaches. The four probability constraints of g5,
g6, g8, and g11 are active, while the remaining seven are inac-
tive. All the probabilistic constraints satisfy the target reliabil-
ity at the optimum.

5.5 High dimensional RBDO problem

To verify the applicability of HS-SLA to high dimensional
RBDO problem, the last mathematical example is the Hock
and Schittkowski problem no.113 (Lee and Lee 2005), which
has ten random design variables and eight probability con-
straints. All design variables follow independent normal dis-
tribution with a standard deviation of 0.02. The description of
this example is formulated as follows:

find d ¼ d1; d2; d3; d4; d5; d6; d7; d8; d9; d10½ �
min f dð Þ ¼ d21 þ d22 þ d1d2−14d1−16d2 þ d3−10ð Þ2 þ 4 d4−5ð Þ2 þ d5−3ð Þ2

þ 2 d6−1ð Þ2 þ 5d27 þ 7 d8−11ð Þ2 þ 2 d9−10ð Þ2 þ d10−7ð Þ2 þ 45

s:t: P g j Xð Þ≤0
h i

≥Φ βt
j

� �
; j ¼ 1; 2;⋯; 8

where

g1 Xð Þ ¼ 4X 1 þ 5X 2−3X 7 þ 9X 8

105
−1;

g2 Xð Þ ¼ 10X 1−8X 2−17X 7 þ 2X 8;

g3 Xð Þ ¼ −8X 1 þ 2X 2 þ 5X 9−2X 10

12
−1;

g4 Xð Þ ¼ 3 X 1−2ð Þ2 þ 4 X 2−3ð Þ2 þ 2X 2
3−7X 4

120
−1;

g5 Xð Þ ¼ 5X 2
1 þ 8X 2 þ X 3−6ð Þ2−2X 4

40
−1;

g6 Xð Þ ¼ 0:5 X 1−8ð Þ2 þ 2 X 2−4ð Þ2 þ 3X 2
5−X 6

30
−1;

g7 Xð Þ ¼ X 2
1 þ 2 X 2−2ð Þ2−2X 1X 2 þ 14X 5−6X 6;

g8 Xð Þ ¼ −3X 1 þ 6X 2 þ 12 X 9−8ð Þ2−7X 10;
βt
1 ¼ βt

2 ¼ ⋯ ¼ βt
8 ¼ βt ¼ 3:0;

0≤di≤10; xi∼N di; 0:022
� �

; for i ¼ 1; 2;⋯; 10
d0 ¼ 2:17; 2:36; 8:77; 5:10; 0:99; 1:43; 1:32; 9:83; 8:28; 8:38½ �

The optimal result obtained from deterministic optimiza-
tion (Lee and Lee 2005) is taken as the initial design point, i.e.,
d0 = [2.17, 2.36, 8.77, 5.10, 0.99, 1.43, 1.32, 9.83, 8.28, 8.38].
The optimal results of different RBDO approaches tabulated
in Table 15 are close to those from the reference (Cho and Lee
2011). As seen in Table 15, the number of function evalua-
tions of SLA is less than RIA, PMA, and SORA, and CSLA
improves the efficiency of SLA. Furthermore, less computa-
tional effort for HS-SLA is required to converge to the opti-
mum compared to both SLA and CSLA. Therefore, the com-
putational efficiency of HS-SLA is the highest. The reliability
indexes of each probabilistic constraint calculated by MCS
with 10 million samples at the optimum are given in
Table 16. Same conclusions can be made for all different ap-
proaches. Two probability constraints (g6 and g8) are inactive,
while the remaining six are active. All the probabilistic con-
straints satisfy the target reliability at the optimum. HS-SLA is
more efficient and stable for this high dimensional RBDO
problem.

6 Conclusions

Despite the high efficiency of single-loop approach, SLA has
difficulties to find the correct optimum for RBDO problem
with large target reliability index and highly nonlinear perfor-
mance functions. In this paper, a new oscillating judgment
criterion of iterative point and self-adjusted updating strategy

Table 16 Evaluation of probabilistic constraints at the optimum by MCS in Example 5

Approaches βMCS
1 βMCS

2 βMCS
3 βMCS

4 βMCS
5 βMCS

6 βMCS
7 βMCS

8

RIA 3.0048 3.0064 2.9984 2.9985 3.0000 Infinite 2.9959 Infinite

PMA 2.9993 3.0039 3.0005 2.9976 2.9963 Infinite 2.9991 Infinite

SORA 2.9998 3.0049 2.9999 2.9993 2.9974 Infinite 2.9965 Infinite

SLA 2.9993 3.0039 3.0005 2.9976 2.9963 Infinite 2.9991 Infinite

CSLA 3.0020 3.0055 2.9988 2.9987 2.9979 Infinite 2.9986 Infinite

HS-SLA 3.0020 3.0055 2.9988 2.9987 2.9979 Infinite 2.9986 Infinite
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for control factor are investigated firstly. Then, an adaptive
modified chaos control method is suggested to automatically
select the MPP search formulas between MCC method and
AMV method based on the oscillation of the iterative points.
Moreover, an efficient hybrid self-adjusted single-loop ap-
proach is proposed by integrating the developed AMCC into
SLA. Five mathematical examples for reliability analysis are
presented to demonstrate the high efficiency of AMCC to
search for MPP. Finally, five representative RBDO examples
are tested to demonstrate the high efficiency and stability of
the proposed HS-SLA. Some conclusions can be drawn as
follows.

(1) For RBDO problems with large reliability index and
highly nonlinear performance functions, SLA has diffi-
culties in terms of iterative convergence. However, the
stability of HS-SLA remains unchanged and HS-SLA
are more efficient than other RBDO approaches.

(2) Both PMA and SORA are very sensitive to the initial
point, while CSLA and HS-SLA are insensitive to the
choice of initial point.

(3) HS-SLA is more efficient and stable for high dimension-
al RBDO problems. Consequently, HS-SLA can im-
prove the efficiency, accuracy, and stability of SLA.
Moreover, HS-SLA is more efficient and stable than oth-
er approaches for RBDO problems with highly nonlinear
performance function. In the future, the research will
focus on the application of the proposed HS-SLA for
large-scale structural design.

7 Replication of results

Data will be made available on request.
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