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Abstract
Statistical model calibration is a practical tool for computational model development processes. However, in optimization-based
model calibration, the quality of the calibrated model is often unsatisfactory due to inefficiency and/or inaccuracy of calibration
metrics. This paper proposes a new calibration metric, namely, probability residual (PR). PR quantifies the degree of agreement
or disagreement between the computational response and experimental results. The PRmetric is defined as the sum of the product
of a scale factor and the squared residual. First, the scale factor defines the shape of the squared residual to maintain consistent
sensitivity during the optimization process. Thus, the number of function evaluations can be reduced. Second, the mathematical
form of the squared residuals is used to make convex optimization feasible. Therefore, the existence of a global minimum is
guaranteed. To evaluate the performance of the proposed metric, numerical examples are shown in a case study. Various system
functions—including linear, non-linear, and elliptical—are incorporated into the statistical model calibration. A case study that
examines journal bearing rotor systems is presented to demonstrate the application of the proposed calibration metric to a real-
world engineered system.

Keywords Computationalmodel . Statisticalmodel calibration .Calibrationmetric .Validity check . Journal bearing rotor system

1 Introduction

Computational models have been widely adopted for virtual
testing of engineered systems. Virtual testing can reduce the
costs related to physical testing. However, it is often observed
that simulation results do not agree with observations from
actual tests. This is a serious concern for both modelers and
experimenters. To eliminate the disagreement between simu-
lation results and experimental observations, model

calibration (or model updating, parameter estimation) tech-
niques have been considered as a practical and useful tool
for use in the model development process (AIAA 1998;
ASME 2006). Model calibration is defined as the process that
adjusts unknownmodel parameters in the computational mod-
el to enhance the model’s agreement with experimental obser-
vations. Model calibration relies on mathematical means to
match simulation results with experimental observations,
while model refinement changes physical principles in models
or uses other means to improve an invalid model (Oh et al.
2016a). When model calibration is conducted correctly, an
accurate computational model can be built efficiently.

Model calibration can be accomplished in a deterministic
manner (Trucano et al. 2006). For example, an objective func-
tion can be formulated to quantify the disagreement (or agree-
ment) between simulation results and experimental observa-
tions. A set of model parameters can be found by minimizing
(or maximizing) the objective function. Recently, determinis-
tic model calibration has been employed to develop simula-
tion models, such as anisotropic shear deformable plate
models for molecular dynamics. In (Sahmani and Fattahi
2017), individual model parameters were assumed to be a
single value, rather than random variables. However, in
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reality, the assumption that model parameters are a fixed value
is often violated when the inherent randomness or variability
inmaterial properties, product geometries, and/or loading con-
ditions is too large to be neglected.

Uncertainties should be considered in physical systems
and computational models. To address this challenge, a
Bayesian model calibration approach was developed. In
the Bayesian technique by Kennedy and O’Hagan
(Kennedy and O'Hagan 2001), the possible sources of un-
certainty, such as statistical and physical uncertainties,
were incorporated to correct simulations for model adequa-
cy. Recently, the Bayesian approach was adopted for vari-
ous applications, including dynamic simulations of pyro-
technically actuated devices (Kim et al. 2016), standard k-
turbulence models (Guillas et al. 2014), and molecular dy-
namics simulations (Shin et al. 2016). Nonetheless, the
Bayesian approach is limited in that the model parameters
are assumed to remain fixed over the physical experiments.
Initial lack of information regarding the model parameters
is described by prior distributions to them. This assump-
tion is sometimes violated when the model parameters are
associated with inherent randomness or variability in ma-
terial properties and product geometries.

The limitations of the Bayesian calibration approach can
be partially overcome with a statistical model calibration
approach. The concept of the statistical model calibration
approach is identical to that of the deterministic model
calibration approach; both approaches formulate an objec-
tive function and find a set of model parameters. However,
the deterministic approach does not account for uncertainty
in model parameters, whereas the statistical approach does
(Xiong et al. 2009). The model parameters can be in the
form of statistical distributions to incorporate aleatory un-
certainty that exists in the real world. In principle, model
parameters vary randomly over physical experiments.
Several studies attempted to estimate the sample-to-
sample variation in physical systems, such as in free-
standing thin foils (Ageno et al. 2009) and piezoelectric
energy harvesters (Jung et al. 2016). A hierarchical frame-
work for statistical model calibration has also been devel-
oped for designing engineered products (Youn et al. 2011).

Optimization-based statistical model calibration con-
sists of two steps, as shown in Fig. 1. The first step is to
quantify the degree of disagreement (or agreement) be-
tween the two probability distributions. The second step
is to find the hyper parameters of the model parameters
that minimize disagreement between the probability distri-
butions of simulation results and experimental observa-
tions. In optimum design problems, the term objective
function is commonly used to evaluate the merits of a giv-
en design. In this paper, a term calibration metric is used to
explicitly represent the degree of disagreement (or agree-
ment) for the purpose of model calibration. When the value

of a calibration metric reaches its minimum, it is assumed
that the simulation model is calibrated. Otherwise, another
iteration is executed to find a proper set of the hyper pa-
rameters by minimizing the calibration metric.

Several calibration metrics have been used for model cali-
bration. Normalized absolute errors were used in the model
updating method that was proposed based on response surface
models and Monte Carlo simulation (Fang et al. 2012). The
weighted sum of the squared error is the predominant metric
used in vibration-based finite element model updating (Bao
and Wang 2015; Mares et al. 2006; Simoen et al. 2015). The
weights are typically determined by trial-and-error and/or en-
gineering judgment. Likelihood functions were also devel-
oped for deterministic model calibration and statistical model
calibration (Xiong et al. 2009). To this end, it is obvious that
there is no universal calibration metric applicable to all engi-
neering problems (Cha 2007).

This paper presents the formulation of a new calibration
metric for the optimization-based calibration approach. In par-
ticular, the calibration metric is proposed to overcome two
potential problems in existing calibration metrics, including
the log-likelihood (log-LK) and the Kullback-Leibler diver-
gence (KLD). The remainder of this paper is organized as
follows. Section 2 overviews existing calibration metrics.
Strength and limitations of the existing calibration metrics
are briefly discussed. Section 3 presents the proposed calibra-
tion metric, which we call probability residual (PR). Sections
4 and 5 demonstrate the effectiveness of the proposed cal-
ibration metric using numerical examples and the rotor
system of a steam turbine in a power plant as case studies.
Finally, conclusions and suggestions for future work are
provided in Section 6.
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Fig. 1 Schematic of the optimization-based statistical model calibration
approach
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2 Existing calibration metrics and limitations

The framework for model calibration can be described as
(Campbell 2006):

ζ xð Þ ¼ z xð Þ þ ε xð Þ ¼ S x; θð Þ þ δ xð Þ ð1Þ
where ζ(x) is the true value at x; x is the controllable input; z(x)
and ε(x) are the experimental observations and measurement
errors at x, respectively; S(x, θ) is the simulation output at x; θ
is the simulation parameter that is the object of interest in the
context of calibration; and δ(x) is the discrepancy between the
simulation output (i.e., S(x, θ)) and the true value at x (i.e.,
ζ(x)). In optimization-based model calibration, the goal is to
find a proper set of θ that minimizes the discrepancy.
Calibration metrics have often been used to quantify the de-
gree of the discrepancy.

2.1 Overview of existing calibration metrics

The choice of calibration metric commonly depends on the
type of physical quantity of interest (i.e., S(x, θ0)) for the
model calibration. The physical quantities consist of scalar
(e.g., speed, pressure, temperature), vector (e.g., velocity,
force, heat flux), and tensor quantities (e.g., stress, strain).
The dimension of the physical quantities can be extended in
both temporal and spatial fields. For example, the change of
hydrodynamic pressure at a particular point of a pipeline can
be described as time-series (i.e., vector instead of scalar) with
respect to time, although pressures are classified as a scalar
quantity. An example of temporal and spatial analysis of an
engineered system (Sarin et al. 2010) is the weighted integrat-
ed factor (WIFac). For statistical model calibration, the study
described in this paper focuses on scalar quantities.
Uncertainties in scalar quantities are described via probability
distributions. Calibration metrics that quantify the distance or

similarity between probability distributions are presented in
this section.

Considerable efforts have been put towards finding the
relevant distance/similarity measure in different fields. Cha
(Cha 2007) conducted a comprehensive survey on distance/
similarity measures between probability density functions. As
shown in Table 1, the author attempted to group a substantial
number of distance/similarity measures in different fields,
such as mathematics, physics, statistics, information theory,
ecology, and biology. It was observed that each measure was
developed to best describe the distance/similarity of the data
collected from the corresponding field of research (Gavin
et al. 2003; Looman and Campbell 1960). For example,
Shannon’s entropy (Shannon 1948) was designed to meet
the key requirements as a measure of information, including
that (1) it is continuous, (2) it exhibits monotonic increase, and
(3) the original value of the measure should be the weighted
sum of the individual values of the measure. In the same
manner, calibration metrics should be designed to meet re-
quirements for statistical model calibration.

In prior work, several existing distance/similarity measures
have been employed as calibration metrics in the field of mod-
el development and validation. Xiong et al. (Xiong et al. 2009)
incorporated a likelihood function to infer uncertain calibra-
tion parameters that vary from trial to trial over a physical
experiment. The authors demonstrated the effectiveness of
the likelihood measure through a thermal challenge problem.
Fang et al. (Fang et al. 2012) used normalized absolute errors
between structural frequencies of simulations and experi-
ments. They developed a method to quantify parameter vari-
ability based on response surface models and Monte Carlo
simulation. Bao et al. (Bao andWang 2015) employedweight-
ed squared errors of statistical moments in model calibration.
In Bao’s study, a three-degree-of-freedommass-spring system
and an aircraft structure in a laboratory were used to demon-
strate the effectiveness of the proposed calibration method. In

Table 1 Distance/similarity measures between probability density functions (Cha 2007)

Representative example Some application fields

Minkowsky family Lp
Euclidean L2; dEuc =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
d

i¼1
Pi−Qij j2

s

Normalized L1
Canberra L1; dCan = ∑

d

i¼1

jPi−Qi j
PiþQi

Ecology

Squared L2
Pearson χ2; dP = ∑

d

i¼1

Pi−Qið Þ2
Qi

Intersection family
Intersection; sIS = ∑

d

i¼1
min Pi;Qið Þ

Inner product family
Inner product; sIP = ∑

d

i¼1
Pi � Qi

Information retrieval
Biological taxonomy

Shannon’s entropy family
Kullback-Leibler divergence; dKL = ∑

d

i¼1
Piln

Pi
Qi

Communication
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this section, two representative metrics used for model devel-
opment and validation, log-LK and KLD, are reviewed. The
limitations of the metrics for statistical model calibration are
also discussed.

2.2 Log-likelihood

The likelihood function (L(z; θ)) is a function of parameters
(θ), where z indicates the observed sample values. The func-
tion is presented in the form of joint probability density func-
tions (or probability mass functions). In a mathematical form,
the likelihood function is:

L z; θð Þ ¼ ∏
N

i¼1
p zi; θð Þ ð2Þ

where z = {z1, z2,…, zN}; θ = {θ1, θ2,…, θM}; and N andM are
the number of experimental observations and the number of
distribution parameters, respectively. Likelihood quantifies
the degree of how likely the observed sample is as a function
of the possible parameter values.

Calibration with the likelihood metric is illustrated concep-
tually in Fig. 2. Calibration accuracy can be increased by
maximizing the likelihood value. The values of probability
density functions for given experimental observations are al-
ways between zero and one. If these values are multiplied with
a large number of experimental observations with an invalid
value of the parameters, the likelihood value will theoretically
converge to zero. This can cause a zero convergence problem

in the optimization process of statistical model calibration. To
avoid the unwanted situation of the likelihood function being
negligibly small, the natural logarithm of (2) can be taken (Oh
et al. 2016b). Then, the log-LK is:

logL z; θð Þ ¼ ∑
N

i¼1
logp zi; θð Þ ð3Þ

Logarithm measures, such as log-LK and Shannon’s entro-
py, can be effective for a couple of reasons (Shannon 1948).
First, taking the natural logarithm of the exponential family
distributions makes the logarithm vary in a linear scale.
Second, human intuition is more suitable to linear metrics.
Last, as stated before, this process can avoid the zero conver-
gence problem.

Xiong et al. (2009) modeled the uncertainty of the param-
eters (θ) of the likelihood function in statistical model calibra-
tion. The M parameters were decomposed into hyper param-
eters (i.e., θ = {μθ1, σθ1, μθ2, σθ2,…, μθM, σθM} by assuming a
Gaussian distribution. In a same manner, the error (ε) was also
decomposed into hyper parameters (i.e., ε = {με, σε}).

2.3 Kullback-Leibler divergence

The KLD (D(P; Q)) is the expectation of the information for
discrimination between two probability distributions of P and
Q (i.e., log p(zi) / q(zi)) (Kullback and Leibler 1951). In math-
ematical form, the KLD is:

D P;Qð Þ ¼ ∑
N

i¼1
p zið Þlog p zið Þ

q zið Þ ð4Þ

where p(zi) and q(zi) are the probabilities for observations i =
1,…, N of distributions P and Q, respectively.

The KLD represents a measure of similarity between two
probability distributions. As shown in Fig. 3, the KLD values
decrease as the overlap between the two probability distribu-
tions increases, which is opposite to the case of the likelihood
metric. When two probability distributions from simulations
and experiments overlap perfectly, the KLD value is zero. The
KLD is actively used in research areas of information theory,
such as image and speech recognition (Gao et al. 2017; Kim
et al. 2017).

The KLD is an asymmetric divergence; D(P; Q) is not
equal to D(Q; P). This property leads to directed divergence
when it is used as a calibration metric in model calibration.
When the KLD is employed as an objective function in an
optimization problem, the solution depends on the direction
in which the problem is solved (Abbas et al. 2017). Lee et al.
(2017) conducted a detailed analysis of KLD as a calibration
metric for statistical model calibration.

(a)

(b)

P (z; θ)

z

z

Fig. 2 Concept of log-likelihood in (a) initial condition and (b) calibrated
condition

1174 H. Oh et al.



2.4 Area metric

The area metric d(F, Sn) is defined as the area between two
probability distributions (F and Sn). Mathematically, the area
metric is expressed (Ferson et al. 2008):

d F; Snð Þ ¼ ∫∞−∞jF xð Þ−Sn xð Þjdx ð5Þ

where F(x) and Sn(x) are the cumulative distribution function
predicted by computational models and the empirical distribu-
tion function of experimental data, respectively.

The area metric is a measure of the mismatch between the
two distribution functions. As shown in Fig. 4, the area metric
value at the initial condition decreases when the calibration is
conducted. The gray shaded area illustrates the amount of the
mismatch. The area is minimized after calibration. When the
two functions overlap perfectly, the area metric value should
be zero theoretically. However, in practice, the area metric
shows positive values since experimental observations and/
or simulation responses are sparse. The area metric was used
in the model development and validation such as piezoelectric
energy harvester design (Jung et al. 2016).

2.5 Limitations of the existing calibration metrics

The log-LK and KLD that takes the logarithm can suffer
from the tail-end effect. The tail-end effect is defined as
the phenomenon where the data on the tail of the PDFs
can have a larger impact on the logarithmic value than it
does on the body of the PDFs. The concept of the tail-end
effect is illustrated in Fig. 5. The probability density of a
standard normal distribution in Fig. 5 (a) is used as a
representative example. When the probability density
values converge to zero, as described in Fig. 5 (b), the
natural logarithm of the probability density values de-
creases significantly. For instance, log p(x) is −6.908
when p(x) = 0.001; log p(x) is − 4.605, when p(x) = 0.01;
log p(x) is − 2.303, when p(x) = 0.1. A 10 times difference
in p(x) is equivalent to only a two-fold change in log p(x).
The impact of data points located at the tail of the PDF
has larger impact on the logarithmic value than that of the
data points located in the body of the PDF. Consequently,
in statistical model calibration, the tail-end effect can lead
to better agreement at the tails between simulation and
experimental PDFs, while leading to a poor agreement at
the body. This is particularly true when an assumed prob-
ability distribution of unknown parameters to be calibrat-
ed does not exactly match that of an experimentally ob-
served distribution. In principle, the use of the logarithm
helps relieve the zero convergence problem by modifying
the multiplication operation into the summation operation.
However, it will degrade the accuracy of the statistical
model calibration results by terminating the optimization
process with an inaccurate estimation of design variables
with a given convergence criterion.

The gradient of an objective function often determines
the rate of convergence in an optimization problem. As
the probability density increases, the gradient of the

(a)

(b)

z

F(x)

Sn(x)

z

Fig. 4 Concept of area metric in (a) initial condition and (b) calibrated
condition

(a)

(b)

z

z

P(z) Q(z)

z

z

Fig. 3 Concept of KLD in (a) initial condition and (b) calibrated
condition
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probabilities decreases. The increment is almost negligible
at the end. For example, as shown in Fig. 5 (c), suppose
that there are two sets of probability densities. The first
set is p(x1) = 0.05 and p(x2) = 0.15, while the second set is
p(x1) = 0.25 and p(x2) = 0.35. For the first set, gradient
values at the two probability densities are 20.08 and
6.68; their difference is 13.40. For the second set, gradient
values at the two probability densities are 3.99 and 2.86;
their difference is only 1.13, which is much smaller than
that of the first set. This can degrade the efficiency of the
optimization process for statistical model calibration. As
the log-LK value approaches its maximum (e.g., p(x3) =
4.5 or p(x3) = 5.0 in Fig. 5 (c)), it requires more compu-
tational resources to find an optimal solution, lowering the
efficiency. The same logic applies to KLD, since both are
based on the logarithmic operator.

The area metric has limitations from the perspective of
optimization-based model calibration. First, the existence
of the global minimum is not guaranteed. Thus, the solu-
tion can be local minima. Second, predominant optimiza-
tion algorithms, such as conjugate gradient and/or quasi-
Newton methods, may not be useful to solve the local
minima problem. Evolutionary algorithms such as genetic
algorithms can be effective. However, the computational
cost will be much higher.

3 Proposed calibration metric

This section proposes a new calibration metric to overcome
the limitations of the existing calibration metrics. The key idea
of the proposed calibration metric comes from distance mea-
sures of the squared L2 family and the χ2 family (Cha 2007).
The proposed calibration metric, which we call probability
residual (PR), is explained in Section 3.1. The PR consists
of two components: squared residual (or squared Euclidean
distance) and scale factor; these components are explained in
Sections 3.2 and 3.3, respectively.

3.1 Probability residual

The probability residual (PR) metric is defined as the sum of the
product of the scale factor (S) and the squared residual (SR):

PR P;Qð Þ ¼ S � SR P;Qð Þ ð6Þ

The SR is a metric that quantifies how much two probabil-
ity distributions do not overlap. When the probability distri-
bution of the computational response (P) perfectly overlaps
with that of the experimental results (Q), the PR becomes zero,
like KLD, as illustrated in Fig. 6.

3.2 Squared residual

Inherent randomness, or variability of the performance of
interest (PoI), in engineered systems is commonly

(a)

(b)

P(z)-Q(z)

z

z

Fig. 6 Concept of PR in (a) initial condition and (b) calibrated condition

Fig. 5 Low sensitivity problem of calibration metrics with logarithm (a) PDF, (b) log-operation plot, and (c) gradient plot
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described with the use of empirical probability distribu-
tions. Suppose Z is a set of N elements whose possible
values are discrete and finite. A histogram q(Z) of a set Z
presents the normalized frequency of the individual values.
The normalized frequency for the ith bin from experiments
is denoted as q(zi). The probability of the corresponding
bin p(zi) from simulations can be defined in the same man-
ner. The SR for ith bin can be described as:

SRi P;Qð Þ ¼ p zið Þ−q zið Þð Þ2 ð7Þ

The SR between simulation results and experimental ob-
servations is the summation of the Ri for possible samples in
set Z. Specifically,

SR P;Qð Þ ¼ ∑
n

i¼1
p zið Þ−q zið Þð Þ2 ð8Þ

where n is the number of discrete bins for set Z. As the quan-
tity in (8) depends on the number of bins, the proper number
of bins should be chosen. If the number of bins is not selected
properly, the features of the experimental observations cannot
be captured sufficiently. Previous studies (Indira et al. 2011;
Wand 1997) discussed how to select an optimal number of
data size and bin size.

In statistical model calibration, simulation results are rep-
resented by parametric or non-parametric probability distribu-
tions. The probability distribution from simulation results can
be estimated by using kernel density estimation methods.
When the parameters of the estimated probability distributions
are θ, (8) becomes:

SR P;Qð Þ ¼ ∫∞−∞ p z; θð Þ−q zð Þð Þ2dz ð9Þ

The SR can be described as SR(P, Q) in either (8) or (9).
When the two probability distributions overlap perfectly, the
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SR equals to zero. From the perspective of optimization, cal-
ibration metrics based on the PR have two advantages. First, a
global minimum (or maximum) exists in the optimization
problem, as the probability residual has a quadratic form,
i.e., convex. Thus, it can avoid local minima. Second, predom-
inant optimization algorithms, such as conjugate gradient and/
or quasi-Newton methods, can be used. The characteristics of
“convexity” make the proposed calibration metric robust.

3.3 Scale factor

For statistical model calibration, the convergence rate and the
function evaluation number are critical issues during the opti-
mization process. It is desirable to have a high convergence
rate, while minimizing the number of function evaluations. To
achieve this goal, a scale factor is devised in conjunction with
the SR, as described in Section 3.1.

The scale factor is defined as C to the power of the loga-
rithm of the largest magnitude of the empirical probability
distribution (max(Q)):

S Pð Þ ¼ 1

C⌊log10ðmax Qð Þ⌋
ð10Þ

where C is the constant that is defined by the user. The bracket
is the floor function (or Gauss notation) that gives the greatest
integer less than or equal to the number in the bracket. When
the value of the “max(Q)” is between one and 10, the scale
factor becomes one with any choice of constant value. This
indicates that there is no need to employ the scale factor since
the SR provides a high convergence rate in the optimization
process. The scale factor is fixed during the optimization pro-
cess once the experimental data are given.

The constant C should be selected considering the maxi-
mum value ofQ. If the C is too small, the calibration accuracy
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different scale factors: (a) C = 1,
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will be degraded, sometimes leading to divergence of the op-
timization. On the other hand, if the C is too large, the cali-
bration speed will be degraded, leading to slow convergence.
To understand the effect of the constant C on the convergence
rate, a parametric study was conducted with mathematical
examples. The parameters of probability distributions from
simulations (e.g., mean and standard deviation of normal dis-
tributions) were calibrated by maximizing the PR. It was as-
sumed that the probability distributions from simulations and
experiments follow normal distributions. The calibration pro-
cess used unconstrained optimization problems. Next, the ef-
fect of the scale factor on the convergence rate was evaluated.
For a narrow probability distribution with max(Q) of 5000, the
use of a small value of C = 1 resulted in divergence, as shown
in Fig. 7 (a). With the use of larger values of C = 10 and C =
100, the calibration converged with 22 and 22 iterations of
function evaluations, respectively, as shown in Fig. 7 (b) and
(c). For a wide probability distribution with max(Q) of 0.005,
a similar result was observed, as shown in Fig. 8. From the
results of the mathematical example, the convergence rate
appears to be the best with C = [10~1000]. Therefore, this
paper uses 100 for C.

4 Case study 1: mathematical examples

The performance of the proposed calibration metric (PR) was
compared to that of existing calibration metrics (i.e., log-LK

and KLD). The input variable of the systems was assumed to
follow a normal distribution. When the uncertainty of the in-
put variable was propagated through different system func-
tions, responses could be calculated by Monte Carlo simula-
tion with a sample size of one million. In this case study, four
types of system functions, including linear and nonlinear A,
nonlinear B and elliptical, were used as representative numer-
ical examples. These system functions are shown in (11), (12),
(13), and (14), respectively.

y ¼ 0:75x ð11Þ

y ¼ x2−2xþ 1 ð12Þ

y ¼ exp −
1

1þ 100x2

� �
ð13Þ

y ¼ 10� 16
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− x−2ð Þ2

q
ð14Þ

where x is the input variable and y is the system response. The
system functions generated three types of responses: normal,
skewed, and bimodal distributions. As shown in Fig. 9, the
initial guess of the input variable was calibrated to converge to

X Y
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Calibrated
Y

Histogram of MCS result

PDF of y

Optimize Z

Exact solution

X

Normal

= . x

Uncertainty Propagation by MCS

Linear

Nonlinear
= − +

Elliptical

= ± − −

Y

Y

Y
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Skewed

Bimodal

Initial guess

X

Normal

= exp −

Fig. 9 Process for performance
evaluation of the PR approach
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the exact solution by minimizing (or maximizing) the calibra-
tion metric.

Figure 10 (a), (c), (e), and (g) show system responses
before and after calibration using the PR metric. From

visual inspection, the PDFs after calibration matched the
histograms when the four system functions were evaluat-
ed. Figure 10 (b), (d), (f), and (h) compare errors between
the PDF of the calibrated input variable and the PDF of
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the exact solution. The absolute percentage errors of the
means for the PR metric were less than one percentage
point, regardless of the type of system function. For each

of the four system responses, the proposed PR metric
outperformed or was equivalent to the existing metrics.

Figure 11 (a) compares the number of function evalu-
ations for log-LK, KLD, and PR. With three different
levels of x tolerances in the optimization process, the
number of function evaluations using the PR metric was
smaller than that using the existing metrics. A similar
result was observed when different system functions were
employed, as shown in Fig. 11 (b) and (d). For a highly-
nonlinear system function in Fig. 11 (c), the performance
of the three metrics was comparable each other.
Consequently, the effectiveness of the proposed calibra-
tion metric was demonstrated.

5 Case study 2: journal bearing rotor systems

Journal bearing rotor systems are one of the key systems in
steam turbines of power plants. Journal bearings are used to
support rotating shafts that are subjected to heavy loading and
high-speed conditions. The safety and reliability of journal
bearings must be ensured during their design life, which
may be 25 to 40 years. Unexpected failure of a rotor system
should be avoided by proper maintenance. To address this
challenge, rotor diagnostic techniques have been studied ex-
tensively in research communities.

Rotor diagnostics often employs model-based and data-
driven approaches. The data-driven diagnostic approach re-
quires a sufficient amount of data. Data should be collected
from both healthy and faulty rotor systems under various en-
vironmental and operational conditions. The failure modes of
the rotor systems should also be known. However, while
healthy data are relatively easy to acquire, fault data seldom
exists for real-world power plants. The model-based diagnos-
tic approach has the potential to overcome the problem of
insufficient data. If simulation models can be built to emulate
the dynamic behaviors of the journal bearing rotor systems in
real power plants, theoretically, an unlimited amount of data
can be collected from the simulation models.

Rotor systems have been analyzed using the
Timoshenko beam theory, the transfer matrix method,
and finite element methods. Industrial rotating machines,
such as turbo compressors, vacuum pumps, and induction
motors, were modeled for various reasons, including res-
onance avoidance, stability evaluation, and vibration sup-
pression. Nevertheless, building an accurate simulation
model remains extremely challenging. One of the major
challenges is epistemic uncertainty that arises due to a
lack of available information. In this case study, a simu-
lation model of a journal bearing rotor system with uncer-
tain input variables is calibrated using the proposed sta-
tistical model calibration technique.
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Fig. 11 Comparison of the number of function evaluations for likelihood,
KLD, and PR when (a) linear, (b) nonlinear A, (c) nonlinear B, and (d)
elliptical system functions are used
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5.1 Overview of statistical model calibration

Through expert knowledge and sensitivity analysis, three var-
iables (among many) were found to be unknown. To deter-
mine the unknown variables, a two-step approachwas used, as
shown in Table 2. In the first step, the two unknown variables
(i.e., stiffness and damping coefficient) for the journal bear-
ings were set to be unknown, as shown in Fig. 12. The initial
PDFs of the unknown variables were propagated by meta
modeling and Monte Carlo simulation to calculate the PDF
of the simulation response (1st natural frequency). Then, the
disagreement between the two PDFs (one derived from simu-
lation and the other from experiments) were quantified using
the proposed calibration metric. The unknown variables were
fine-tuned until the calibration metric met a threshold.
Throughout this iterative process, the two unknown variables
were calibrated.

In the second step, the calibration shown in Fig. 12 was
repeated for another unknown variable (i.e., penalty stiffness).
It should be noted that the two variables calibrated in the 1st

step were incorporated as known variables in the 2nd step.
The crest factor was used for comparison, instead of the 1st
natural frequency. The three unknown variables were deter-
mined by the two-step approach.When a calibrated simulation
model was obtained, the validity of the simulation model was
evaluated with another set of experimental data.

5.2 Experiments and finite element analysis

Figure 13 (a) presents the General Electric (GE) Bently-
Nevada RK4 rotor kit that consists of short and long shafts,
a flexible coupling, and three journal bearings. The long,
10 mm diameter shaft supports a disk of 0.8 kg. A small
amount of unbalance typically exists at the normal state even
though balancing of the rotor systems is conducted periodi-
cally. As shown in Fig. 13 (b), a mass of 0.45 g was pinned to
the disk to emulate the normal state. Rubbing is one of the
major failure modes in journal bearing rotor systems. A spe-
cially designed jig was used to emulate the rubbing. As
depicted in Fig. 13 (c), the severity of rubbing can be precisely

Experimental data
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Unknown input variables

Input PDF
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Response

Response PDF
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1st natural 

frequency

Uncertainty propagation: 

Monte Carlo Simulation

Statistical calibration

Known input variables

Input PDF
X

Initial
Y

Calibrated
Y

Calibration metric: 

Probability Residual

Bearing stiffness

Bearing damping

Bearing stiffness

Bearing damping

1st natural 

frequency

Fig. 12 Statistical model
calibration process: 1st step

Table 2 Statistical model
calibration with two-step
approach

1st step 2nd step

System condition Normal Rubbing fault

Employed test Impact hammer test Rotor operational test

Simulation Modal analysis Rotor steady state analysis

Unknown variable to be calibrated Journal bearing stiffness, journal
bearing damping coefficient

Penalty stiffness
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controlled by regulating the rubbing screw with which the
shaft was rubbed. The rotor kit operated at a rotating speed
of 3600 rpm, the normal speed of steam turbines in thermal
power plants. A pair of proximity sensors (Bently-Nevada
3300) were mounted between the 2nd and 3rd journal bear-
ings to measure vibration. The sampling rate was 8500 Hz.
For more details, refer to Jung et al. (2017).

Figure 14 describes a representative plot for impact
hammer testing of the RK4 rotor kit. The test was repeat-
ed 15 times. The first natural frequency could be de-
scribed as a normal distribution, N(45.69, 0.19). This var-
iable was used to calibrate the stiffness and damping co-
efficient of the journal bearings.

When the rotor kit was operated in the rubbing state, it was
expected that multiple harmonics, as well as 1x frequencies
would exist in the frequency domain analysis. As expected,
the FFT results confirmed this, as shown in Fig. 15. The se-
verity of the rubbing can be quantified using several features,
such as root mean square (RMS), crest factor, and kurtosis.
The crest factor is known to be appropriate for capturing the
random vibration shock produced by the rubbing. The crest
factor in the rubbing state could be described as a normal
distribution, N(1.73, 0.14). This variable was used to calibrate
the penalty stiffness. As a validity check, another set of

(a)

(b)

(c)

Fig. 13 GE Bently-Nevada RK4:
(a) rotor kit, (b) normal state and
(c) rubbing state

Fig. 14 Impact hammer test result of RK4 rotor kit (Kwon et al. 2018)
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experimental data was collected at the rubbing state with an
additional unbalance mass of 0.5 g (0.95 g in total).

Rotor dynamics can be expressed by a 2nd order ordinary
differential equation in a matrix form. Here,

M€x tð Þ þ C þ Gð Þx˙ tð Þ þ K þ Bð Þx tð Þ ¼ f tð Þ ð15Þ

where x(t) and f(t) are the displacement and force vector, re-
spectively;M,C, andK are the mass, damping coefficient, and
spring constant, respectively. G and B are the gyroscopic mo-
ment matrix and rotating damping matrix, respectively.
Figure 16 (Kwon et al. 2018) shows a simulation model that
was built using a commercial software package, ANSYS
APDL. The simulation model contains mechanical

components, as explained in Fig. 13 (a). Short and long shafts,
three journal bearings, and a disk were modeled with three-
dimensional beam elements (BEAM188), two-dimensional
spring elements (COMBI214), and concentrated mass ele-
ments (MASS21), respectively. The flexible coupling was
modeled by combining one-dimensional spring elements
(COMBIN14) with concentrated mass elements (MASS21).
The rubbing was emulated by employing penalty stiffness
(CONTA178) that prevents a particular node from penetrating
neighboring nodes.

5.3 Results

Figure 17 presents the first natural frequency before and
after calibration. With the use of the proposed calibration
metric, PR, the disagreement of the first natural

Fig. 16 GE Bently-Nevada RK4
simulation model (Kwon et al.
2018)

Fig. 15 x- and y-axes proximity
sensor signals at the rubbing state
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frequencies between the simulation result and the experi-
mental result was minimized, as shown in Table 3. The
errors of the mean and standard deviation were only
0.02% and 0.88%, respectively, which are negligible. The
initial values of the stiffness and damping coefficient were
266 kN/m2 and 10.55 Ns/m, respectively. The coefficient
of variation of 10% was used, and normal distributions
were assumed. After calibration, they were determined to
be N(266.50, 15.99) kN/m2 and N(15.89, 0.64) Ns/m,
respectively.

Figure 18 shows the crest factor before and after calibra-
tion. As expected, the disagreement of the crest factor was
minimized. The errors of the mean and standard deviation
were almost zero (0.0001%); this amount of error can be ig-
nored. The initial value of the penalty stiffness was 400 GN/
m2. The coefficient of variation of 10% was used, and a nor-
mal distribution was assumed. After calibration, it was deter-
mined to be N(362.3, 67.3) GN/m2.

Figure 19 describes the validity check of the calibrated
simulation model. The histogram for the crest factor in the
rubbing state is shown in Fig. 19 (a). The empirical CDF plot
shown in Fig. 19 (b) was used to calculate the u metric. The
blue and red lines indicate the ideal and experimental CDFs,
respectively. The discrepancy between the two CDFs was the
magnitude of the area metric. For a validity check, hypothesis
testing was employed. The null hypothesis was that the

simulation responses were not statistically different from the
experimental results. Since the area metric (i.e., 0.0364) was
smaller than the threshold (i.e., 0.1051)—with a sample size
of 20 and a significance level of 5%, as shown in Fig. 19 (c)—
the null hypothesis could not be rejected. Therefore, it was
confirmed that the calibrated model is valid for future use.

6 Conclusions

Statistical model calibration can be made practical for
computat ional model development processes by
employing relevant calibration metrics since the calibra-
t ion metr ic serves as the object ive funct ion in
optimization-based calibration. This study presented the
limitations of existing calibration metrics, including log-
likelihood (log-LK) and Kullback-Leibler divergence
(KLD), in terms of calibration accuracy and efficiency.
The log-LK and KLD that takes the logarithm metrics
suffer from the tail-end effect. In principle, the use of
the logarithm helps relieve the zero convergence problem.
However, it was shown that the accuracy of the statistical
model calibration results was degraded by terminating the
optimization process with an inaccurate estimation of de-
sign variables with a given convergence criterion.

To address these limitations, a new calibration metric,
called probability residual (PR), was proposed in this pa-
per. There are three primary merits of the proposed met-
ric. First, the characteristic of “convexity” makes the PR
metric robust. A global minimum (or maximum) exists in
the optimization problem, as the probability residual has a
quadratic form. Predominant optimization algorithms,
such as conjugate gradient and/or quasi-Newton methods,
can be used. Second, the PR metric is efficient due to the
scale factor that controls shape of the probability density
function (PDF). The PR metric was designed to have a
high convergence rate, while minimizing the number of
function evaluations, by adjusting the proper value of the

Table 3 Comparison of experimental result and simulation response
after calibration: 1st natural frequency

1st natural frequency

Mean Standard deviation

Experiment (Hz) 45.6935 0.1925

Simulation (Hz) 45.6855 0.1908

Error (%) 0.017 0.883

Crest factor

F
D

P

Fig. 18 Calibration result: crest factor in the rubbing state

1st natural frequency

F
D

P

Fig. 17 Calibration result: 1st natural frequency in the normal state
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scale factor. Finally, the PR metric outperformed the
existing calibration metrics for the given system func-
tions, including linear, nonlinear, and elliptical.

A case study of a journal bearing rotor system was used to
demonstrate the applicability of the PR metric to statistical
model calibration of real systems. Three unknown variables
(stiffness and damping coefficient of journal bearings, and
penalty stiffness of node contacts) in the simulation model
were calibrated using the two-step calibration approach. The
validity of the calibrated model was confirmed by hypothesis
testing. The performance predicted by the calibrated model
was not significantly different from that found from the

additional set of experimental data. With a significance level
of 5%, the null hypothesis could not be rejected. The case
study showed that the proposed PR metric is a promising
method for building an accurate computational model.

In future work, the root causes of inaccurate calibrated
results that arise from using existing calibrationmetrics should
be examined. As discussed earlier in this paper, in
optimization-based model calibration, it was empirically ob-
served that the existing calibration metrics often suffer from
inaccurate calibrated results or divergence of the results. This
needs to be investigated in detail in future studies.

7 Replication of results

MATLAB codes are disclosed for the proposed calibration
metric (i.e., Probability Residual; PR) as well as widely-
accepted ones (likelihood and Kullbalk-Leiblier divergence).
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