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Abstract

The polynomial chaos (PC) method has been widely studied and applied for uncertainty propagation (UP) due to its high efficiency
and mathematical rigor. However, the straightforward application of PC on the computationally expensive and highly complicated
model for UP might be too costly. Therefore, a multi-fidelity PC approach using the Gaussian process modeling theory is
developed in this work, by which the classic multi-level co-kriging multi-fidelity modeling framework in the deterministic domain
is extended to the stochastic one. Meanwhile, taking advantage of the Gaussian process modeling theory, the strategies for response
models with hierarchical and non-hierarchical fidelity are both addressed within the proposed multi-fidelity PC approach. The
effectiveness and relative merit of the proposed method are demonstrated by comparative studies on several numerical examples
for UP. It is noticed that the proposed approach can significantly improve the accuracy and robustness of UP compared to the
commonly used addition correction-based multi-fidelity PC method; compared to co-kriging, the accuracy and robustness are
generally also improved, especially for problems with unsymmetric distributed random input and large variation. An engineering
robust aerodynamic optimization problem further verifies the applicability of the proposed multi-fidelity PC method.
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Nomenclature X Random input vector

GP  Gaussian process Stochastic response value

HF  The high-fidelity model Polynomial coefficient matrix

LF  The low-fidelity model ,  Input sites

PC  Polynomial chaos Unknown covariance matrix between
b; The i™ coefficient of PC model lower-fidelity models

oW

d Response data Correlation function
d Dimension of random inputs Multi-indices for PC
h Exponential of the exponential correlation function Correction function
n; The number of sample points for the i™level fidelity Mean value

model
s The highest level fidelity
t The /™-level fidelity

Hyper-parameters vector

Scaling factor

Standard deviation value

Random vector in standard random space
Orthogonal polynomial

Input space
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like robust design and reliability-based design (Du and Chen
2002; Chen etal. 2015). A wide variety of UP techniques have
been developed (Lee and Chen 2009) among which the poly-
nomial chaos (PC) technique is one of the most popular ap-
proach due to its mathematically rigorous concept, strong the-
oretical basis, and inherent ability to converge to computer
calculation precision (Eldred 2009). With PC, a stochastic
quantity can be represented as a polynomial chaos expansion,
based on which the statistical moments and reliability can be
conveniently obtained. Oftentimes, the analysis models in
practical engineering are highly nonlinear and computational-
ly expensive, such as computational fluid dynamics (CFD) for
aerodynamic analysis, resulting in intensively computational
cost in implementing UP via PC, which becomes more serious
for high-dimensional problems. Therefore, the straightforward
application of PC on the expensive model for UP might be too
costly and infeasible in practical application.

Generally, a complicated physical process can be modeled
using several methods with different levels of fidelity, or a
computer code for a complex problem can be run at different
levels of fidelity. For example, the aircraft aecrodynamic anal-
ysis can be simulated with different reduced physical order
(e.g., Euler model vs. potential flow model) or different nu-
merical solver (e.g., finite difference method vs. finite element
analysis). A high-fidelity (HF) model takes more computa-
tional time but offers higher accuracy, whereas a low-fidelity
(LF) model is faster at the cost of accuracy. The exploitation of
the availability of multiple models within a hierarchy of fidel-
ity is popular in assisting the process of optimization in engi-
neering (Gratiet and Cannamela 2012; Huang et al. 2006;
Gratiet et al. 2014). This scenario has been extended to UP
via PC for improving computational efficiency recently,
which has received considerable interest (Shah et al. 2015;
Ng and Eldred 2012; Zhu et al. 2017; Zhu et al. 2014). The
earliest work about the multi-fidelity PC method was pro-
posed by Ng and Eldred (Ng and Eldred 2012), in which the
stochastic collocation technique was employed to construct
the PC model, and the LF and correction PC expansions are
integrated in the form of addition, multiplication, or a combi-
nation of the two into a single expansion to match the HF
model values. As stated by Ng and Eldred in their work (Ng
and Eldred 2012), for the multiplicative and combinative cor-
rection forms, the calculation of the multi-fidelity polynomial
coefficients is much more complicated and the accuracy is
generally worse or comparable, and thus the additive form is
widely studied and applied. This method with the additive
form has been applied to UP for a vertical axis wind turbine
under extreme gusts (Santiago Padron et al. 2014; Palar et al.
2018). Another similar technique is the multi-fidelity stochas-
tic collocation that relies on Lagrange-polynomial interpola-
tion, in which a greedy procedure based on the information
from the LF model is used to collect “important” sample
points for the HF simulations (Zhu et al. 2014, 2017).
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For the widely studied method proposed by Ng and Eldred,
the roots of the orthogonal polynomials are employed as the
collocation points for the PC expansion. Therefore, the num-
ber and location of collocation points cannot be arbitrary,
resulting in less flexibility in performing UP for the user with
a limited computational budget. To address this issue, based
on the work of Ng and Eldred, the multi-fidelity PC approach
using regression has been developed (Pramudita et al. 2016),
which has been applied to multidisciplinary design optimiza-
tion under uncertainty (West and Gumbert 2017) and aerody-
namic robust optimization (Palar et al. 2015). For all the above
PC based multi-fidelity modeling approaches for UP, it is re-
quired that the HF sample points should be a subset of the LF
ones (i.e., nested sample points). To relax this constraint and
improve the flexibility, Berchier has proposed to calculate the
correction expansion term using the low-fidelity PC model
rather than the LF sample points (Matteo 2016).

In the deterministic case, the most well-known multi-fidel-
ity modeling method is the multi-level co-kriging approach
proposed by Kennedy and O’Hagan (short for KOH in this
work), in which the discrepancy-based autoregressive multi-
fidelity modeling formulation and Gaussian process (GP)
modeling technique are employed (Kennedy and O’Hagan
2000). It has been widely recognized that KOH is more accu-
rate and flexible compared to the classic additive and multi-
plicative correction forms for multi-fidelity modeling
(Laurenceau and Sagaut 2008; Toal et al. 2011; Han et al.
2012; Huang et al. 2013; Toal and Keane 2015). One main
reason is that the KOH framework employs the Gaussian pro-
cess modeling method that can flexibly capture the nonlinear-
ity of the model, and the scaling factor on the LF model that is
more beneficial to improve the accuracy of the correction term
and avoid the bumpy issue (Fernandez-Godino et al. 2016).
This prompts us to think about whether the KOH multi-
fidelity modeling framework can be extended to the stochastic
domain for UP, within which the multi-fidelity PC can be
implemented to improve the performance of UP. As is well
known, the basic theoretical foundation of KOH is the GP
modeling method, and the predicted response in KOH can
be represented as a GP. Recently, the PC method has been
extended to polynomial-chaos-kriging (PC-Kriging) by
adding a GP term to the original PC model to more accurately
capture the local variability of the response model (Schobi
et al. 2015). It has been demonstrated that the PC-Kriging
approach is more accurate than PC as well as kriging in
performing UP (Schobi et al. 2015; Kersaudy et al. 2015).
Clearly, the success that introducing GP into PC for UP lays
a foundation for the extension of KOH framework to multi-
fidelity PC. Therefore, a multi-fidelity PC approach will be
developed and studied using the KOH framework in this
paper.

In addition, almost all the works of multi-fidelity UP focus
on model fusion within a hierarchical fidelity of the models.
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However, in many applications, it is not possible to rank
models by their levels of fidelity a priori, exhibiting non-
hierarchical fidelity. For example, the models of climate sys-
tem are developed from different research groups to under-
stand and predict its behavior, based on disparate theories or
mechanisms to incorporate the physics and chemistry of the
atmosphere, ocean, and land surface (Allaire and Willcox
2012). The non-hierarchical multi-fidelity modeling approach
from the deterministic point of view has been developed by
Chen et al. using the spatial random process (Chen et al.
2016), which will be extended to multi-fidelity PC within a
non-hierarchal fidelity in this work.

It is the objective of this work to explore the applicability
and effectiveness of the Gaussian process modeling theory on
multi-fidelity UP via the PC technique. For the hierarchical
fidelities, the well-known KOH framework is extended to
multi-fidelity UP, in which the lowest-fidelity model and all
the correction terms are respectively represented as a PC-
Kriging model. For the non-hierarchical fidelities, the weight-
ed summation method proposed by Chen et al. is extended, in
which all the lower-fidelity models and the correction term are
respectively represented as a PC-Kriging model. Meanwhile,
for high-dimensional problems, the hyperbola truncation
scheme is employed to reduce the number of the orthogonal
polynomials during the construction of PC term in the PC-
Kriging model, and thus to reduce the computational cost.

The remainder of this paper is organized as follows. A brief
review of the PC-Kriging method combining PC and Gaussian
process modeling for UP in given in Section 2. The proposed
multi-fidelity UP method using PC and the Gaussian process
modeling technique is presented, in which multi-fidelity UP
strategies respectively for hierarchical and non-hierarchical fi-
delities are explained in detail. Comparative studies on numer-
ical problems are presented in Section 4, where the commonly
used co-kriging method (Kennedy and O’Hagan 2000) and
multi-fidelity PC method (Ng and Eldred 2012) are also tested
for comparison. In Section 5, the proposed method is applied to
an aerodynamic robust optimization problem to further verify
its effectiveness and applicability in dealing with practical
problems. Conclusions are drawn in Section 6.

2 Review of PC-kriging

The polynomial-chaos-kriging (PC-Kriging) method is a new-
ly developed approach for UP by adding a GP term to the PC
model. As is well known, the PC method formulated as a
weighted sum of a set of orthogonal polynomials can efficient-
ly capture the global behavior of the analysis model. The
introduction of the GP term helps to capture the local variabil-
ity, thus to improve the accuracy of PC for UP. With PC-
Kriging, a stochastic response y = g(x) with a d-dimensional
input vector X =[xy, ..., X7] can be represented as follows:

)/:M(PCK)(X) — ZP:() bi®i(x(€)) + g2z(x) (1)

1

P
where Y b;®;(x(£)) isa PC model with order p describing the
i=0

mean value of the Gaussian process, £ is a standard random
vector generated by mapping the original random vector x to
the standard random space according to the distribution pa-
rameters of X, b; is the coefficient of PC model; o is the prior
standard deviation of the Gaussian process, and Z(x) is a zero-
mean and unit-variance stationary Gaussian process with the
autocorrelation function R.
The commonly used formulation of R in the literature is:

R(x, x/, 0, h) = exp (—Zf:] 9k|xk—x/k |h> (2)

Building a PC-Kriging stochastic metamodel consists of two
parts: (i) the construction of @,(x(€)) in the PC term, and (ii) the
estimation of hyper-parameters (0, h,0) and b=[by,...,b ol
For the first part, the commonly used method is the direct tensor
product technique. For high-dimensional problems, the least
angle regression method (Wang et al. 2016) or the hyperbolic
truncation scheme (Blatman and Sudret 2011) shown in (3) can
be employed to remove some unimportant orthogonal polyno-
mials, and thus to reduce the computational cost of PC:

AZW — {O(ENd : HD(“q - (,Zd:l a?>;§w} (3)

where A is the truncation set of multi-indices « for PC, ¢ is the
sparse factor, w is the highest order of polynomial ®(x(¢)), and
«; 1s the degree of the i™ random variable in P(x(9)).

For the second part, the maximum likelihood estimation
(MLE) method or the cross validation (CV) method can be
employed (Schobi et al. 2015) by maximizing the following
functions, respectively:

Gyi(0,h) = arg min [%(y%Fb)TRfl(er)(detR)ﬂ (4)
0,h
Gey(0,h) = arg min [yTRfldiag(Rfl)szfly} (5)
0,h

where N is the number of sample points, y = [y, ..., yx] is the
response vector at the input sample points,R is the autocorre-
lation matrix with the /™ row and /™ column element as R;;=
R(x;,x;,0,h), and Fis a (P+ 1) x N matrix with
Fij=®,x(§)(i=0,1,..,P;j=1,...,N); the PC coefficient
vector b can be represented as follows:

b(0,h) = (F'R'F) 'FR 'y (6)

Once all the parameters are obtained, the predicted re-
sponse at any new input site x, can be calculated by
(Rasmussen and Williams 2006):
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Yrek) (%) = @ (%,(6)) b+ R(x,,X,0,h)R™ (»-Fb) (7)

where X is the matrix stacking all the collected input sample
points.

Then, Monte Carlo simulation (MCS) can be directly
employed on the PC-Kriging metamodel to obtain the statis-
tical moments and probabilistic distribution of random re-
sponse ).

3 The proposed multi-fidelity UP method
3.1 Multi-fidelity UP for hierarchical fidelity

It is assumed that there exist s analysis models with responses
as y'(X)|,= 1. ..s» and a larger ¢ corresponds to a higher level of
fidelity and larger computational cost. Therefore, y'(x)is the
lowest-fidelity and cheapest model, while y*(x) is the highest
fidelity and most expensive one. X =[x, Xy, ... ,X4] € R rep-
resents a d-dimensional random input vector. A step-by-step
description of the proposed multi-fidelity UP using PC and the
Gaussian process modeling technique for the hierarchical fi-
delity scenario is presented as follows.
Step 1. According to the distribution information of random
input vector X, generate input sample points using
methods such as the Latin Hypercube sampling or
Gaussian quadrature points rule etc., and calculate
the corresponding model responses with different
levels of fidelity.

For the level (¢ = 1,...,s) model, it is supposed that

a set of response observations d; = [y’ (x1), s (x’)} "at

n

T
input sites D, = [(x’l)r, ()" o (x, )T} have been

collected. Letd = [le s ey dST ] " denote all of the col-
lected response data from all models at the input space
I'=[Dy; Dy; ...; Dg]. Generally, the number of sample
points 7, is decreased with the increase of # considering
the computational cost.

Construct the multi-fidelity PC-Kriging metamodel
in replacement of the highest fidelity model *(x)by
extending the KOH framework to UP.

Step 2.

The KOH formulation in constructing multi-level co-
kriging (Kennedy and O’Hagan 2000) is:

V) = poy (0 + (), =2, s (8)

wherep;_ represents the scaling factor between model re-
sponses 1/(x) andy’~ '(x), and the correction function §'(x) is
a Gaussian process denoting the discrepancy between y'(x)
and p, 1y '(x).

@ Springer

Accordingly, the highest fidelity output response)’(x)can
be expressed as below based on (8):

f@)z(ﬁp)f@w+<ﬁm)#@»an
T (x) 4 (%) )

It is assumed that y'(x), 6%(x), ..., 6°(x) can be respectively
modeled by a GP, which are represented as PC-Kriging
metamodels as below, respectively:

Y (x) = é} b® (x(€)) + 022! (x)~g7>(M1 (x), V! (x, x))
F(x) = 3 B x(E) + B20~0P (1. V: (x X)) (1)

M~

§F(x) = ¥ bi®)(x(€) + aféS(x)~gP<MS(x), v (x,x’))

i=0

where M (x) = § b;®;(x(&)) is the mean function expressed
i=0

as the weighted sum of @(x(£))(i.e., PC term), V(x,
x)=0?R(x, X, 0, h) is the covariance function, representing
the spatial covariance between any two inputs x and x of the
GP.

Then, additively, the highest fidelity model y’(x) can
be further expressed by a GP based on (9) and (10) as
follows:

Step 3. Estimate all the unknown hyper-parameters by the
maximum likelihood estimation method.

The unknown hyper-parameters in (11) are:
A={B,0,0,p,h}, where B=[(0"), ...,®", ..., is
the polynomial coefficient matrix with each element as b’ = [bo,-
br"’ bp]T, and the rest can be expressed as o = [U', ey O’S]T,
o=[0, ... p=[p", ....0" " n=[n", ..., K"

In this work, the method considering the full correlation of
all the response models (Liu et al. 2018) is employed for
parameter estimation. Then, one can obtain that all the collect-
ed data d follow a multivariate normal distribution based on
the assumption of GP, i.e.:

d~N(HB, V,) (12)



Multi-fidelity uncertainty propagation using polynomial chaos and Gaussian process modeling 1587

where H is defined as:

QI(DI(Z)) 0 0
P @' (Dy(E)) ®°(D,(£)) 0 0
no| o DE) D@ e
(n pl-)wD:(a)) (g; p,) ®(D,(€)) ®(D,(£))
(13)

and ®'(D/(&))is a matrix of size m;x (P+1) (j, t=1,2, ....9),
formulated as:

@'(D;(8)) = [#(D;(£)), 21 (D;(£)), ... Pp(D;(§))] (14)

The matrix V, of size (n1+, ..., +ng) X (n1+, ..., +ny) is given

as:

Vie - Vi
V, = P (15)

V&,l Vsts
where the diagonal block (n; % n,) is defined as:
Vie = 0 Ri(Dy) + o7 pl R (Dy) + ..

-1
+o] (q p?)Rl(Dt) (16)

withR(D,) = R(D,, D,, &, i), and the off-diagonal block of
size n; X ny is given by:

/-1 -1
v~ (1) (o000 4 () 0000 )
i=t i=
1<t<i <s
)

The maximum likelihood function is defined as follows:

1

ﬁ(A|d)cx|Vd|1/2|W|1/Zexp{—5 (d-HB)" V! (d—HB)}

(18)

where W = (H” V;lH)_l, and the PC coefficient matrix B in
the PC-Kriging model can be derived using the first order
optimal condition:
B = WHV,'d (19)
The rest parameters o, ©, p and k can be obtained using

genetic algorithm or simulated annealing algorithm by maxi-
mizing (18).

Step 4. MCS is conducted on the constructed multi-fidelity
PC-Kriging metamodel above to obtain the stochas-
tic property of random output y.

Based on the GP modeling theory, all the collected data d
together with the to-be-predicted responses p(x,) =

(x1), o p(x,) ] " follow a multivariate normal distribution:

(L)

Then, the final prediction of y(x,,) can be calculated by:

(20)

¥ (%) = H,B +T,V,! (d¢-HB) (21)
where:
o | (o) o). (o) 260, )
Ps—1 ! (xp(g)) ,®° (xp(g))
T
T, = (005 01) 150D (23)
s—1 ) T
1 (xp, D) = (l_[] Pi)glRl(xval) (24)

(x5, D;) = p,1t(x,,D;) + (ﬁ /),-) o’R, (xp,D,)T,t: 2,..,s (25)
=t

vV, =Vy (vaxp) + p?—lvfzil (va Xp)
+ P?—1P3—2V§2 (va Xp) t

+ (tlj: p,) Vi(xp,%,) (26)

MCS is employed directly on (21) to calculate the mean,
standard deviation and probabilistic distribution, etc., of the
random response .

3.2 Multi-fidelity UP for non-hierarchical fidelity

For the non-hierarchical fidelity case, it is assumed that there
are m lower-fidelity models with responses as y?(X)|, = 1, _» of
which the fidelity cannot be ranked in advance, and one high-
fidelity model y"(x).

Step 1. Similar to the step 1 during hierarchical multi-fidelity

modeling in Section 3.1, collect input data
T
D, = {(x‘f)r, x9)", ..., (qu)T} and output response
T
data d, = {yq (x7),...07 (xzq)] for each lower-

fidelity model. Let d; = [d7,...,d.]" denote the

@ Springer
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collected response data from all lower-fidelity (I’I(I?‘(g)) 0 0
models at the input sites T'; =T[D1;D2; .;D,],and H= . 0 @m(D.m(g)) 5 0 (30)
dy = [yH (xi), .0 (xffHﬂ denote the collected P @ (Du(9)) '@ (Dy()) S (Di(S))
response data from high-fidelity model at input sites
D, — [(X{,)r7 . (XZ)T} T. e[ EeiR(D,. D) e[ EesR(D1,Dy) e EpR(D, D)
Step 2. Construct the multi-fidelity PC-Kriging metamodel ~ Ve = | €4EiR(Dy. 1)+ elEe,R(D,,Dy) €l EpR(D,, Dy)

in replacement oij/H(x).

According to the weighted summation method (Chen et al.
2016), represent y"/(x) as an addition of the weighted summa-
tion of all the lower-fidelity models y?(x)|, =1, .., and a resid-
ual deviation function d(x):

Hx) = 3 p(x) + 6(x) (27)

g=1

where p?denotes the weighting coefficient of model y?(x).

It is assumed that all the lower-fidelity models y/(x)|, 1,
_.mandd(x)are priori independent and can be respectively repre-
sented as a GP to simplify the model fusion process. Construct
the stochastic metamodel for each lower-fidelity model y*(x)|, -
1. ..m using the PC-Kriging method, during which the same
Gaussian correlation function R(x, x', 0, h) is employed consid-
ering that all the lower-fidelity models describe the same phys-
ical process. Similarly, construct the PC-Kriging metamodel for
5(x) with the Gaussian correlation function R'(x, X, 6, h°).

Based on (27), y"(x) can be further expressed as a GP
additively as follows:

1 (x)~g7>(M(x), V(x, x)) (28)

where M(x) = f ®7(x) bt + ®°(x)78°, V(x,x) = p"EpR(x,x )+
g=1
A , 1 T Eii - Eun .
2R (xx), p=[p, ....p" 1 E=| i |, E;;is the un-
Eni 0 Eppm

known covariance between lower-fidelity models '(x) and
y’(x) calculated by E; ; = ¢; ;/E;;E;;, and ¢; ;€[-1,1] is
the unknown correlation coefficient.

Step 3. Estimate the hyper-parameters by the maximum like-
lihood estimation method.

The hyper-parameters to be estimated areA = {b', ..., ",
b E, 0,0, &, h, hé}. Similarly to the step 3 during the hierar-
chical multi-fidelity modeling, all the collected response data
d=[d;;dy| follow a multivariate Gaussian distribution as
shown in (12), and some related matrices are re-defined as
follows:

B=[(6")" .. 6", (bé)rr (29)
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p"EpR(Dy, D)
+02R°(Dy, D)

(31)

pEe;R(Dy,Dy,) pEe,R(Dy,D,,)

where ¢; is an m-dimensional unit column vector, with the ih
element as 1, while the others as zeros.

Then, using the same MLE method in Section 3.1, the
hyper-parameters can be estimated.
Step 4. Predict response value at the sample pointsx,,.
similarly to the step 4 during the hierarchical
multi-fidelity modeling in Section 3.1. Meanwhile,
some matrices are re-defined as follows:

H, = [plq)l (Xp@))v e p R (xp(g))a ‘I)6<Xp(§))] (32)

T, = [p"EeiR(x,,D1), ... p EenR (X, Dy), p EpR(x,, Dyy) + 2R’ (x,, D)
(33)

V), = p"EpR(x,,%,) + 53R’ (%5, %,) (34)

4 Comparative studies

The effectiveness of the proposed two multi-fidelity modeling
approaches is tested by some mathematical examples with
different nonlinearity and random input dimension for UP in
this section.

4.1 Test for hierarchical fidelity

For hierarchical fidelity, the existing multi-fidelity PC method
with the addition form proposed by Ng and Eldred (Ng and
Eldred 2012) (denoted as MF-PC) and co-kriging that has
been commonly employed for metamodeling in the determin-
istic domain (Kennedy and O'Hagan 2000) are also employed
for UP and compared to the proposed method in this work
(denoted as MF-PCK). The tested examples are shown in
Table 1, in which B,U, and N respectively represent beta,
uniform, and normal distribution. Examples 1 and 3-6 are
adopted from the papers about multi-fidelity modeling in
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Table 1 Tested examples with hierarchical fidelity
No. Functions Distributions
1 (Park et al. 2016; Ren et al. 2016) =(6 —2)zsin(12x—4) Casel: x~N\
= 0.5(6x-2)*sin(12x—4) + 8(x—0.5) + 5 (0.5,0.5)
Case2:x~13(5,0.75)
2 y = sin(x) + cos(2x) x~N(2.5,0.83)
y = sin(x) + cos(2x) + 0.1x
3 (Liu et al. 2018) » (x):s n(x) + 0.2x + (x— 05) /16 +0.5 x~N(5,1.33)
b ?(x) = sin(x) + 0.8x + (x~0.5)* /45 + 0.5
! (x) = sin(x) + 0.2x + 0.5
4 (Liu et al. 2018) 3 (1 3;1) 1000 x x7 + 190032 + 2092x; + 60 x1~U(0,1);
= —e2
7 10004 x x3 + 500x7 + 4x; + 20 x~U(0,1)
) (1 5_1) 1000¢f x x3 + 1900x? + 2092x; + 60
= —e
7 100041 % x] + 5002 + 4x; + 20
L (1_6 ) 1000¢f x x3 + 1900x? 4 2092x; + 60
r = 10004 x x3 + 5002 + 4x; + 20
10x7 + 4x3
50x;x; + 10
if =02;th=03;¢/=0.1;
5 (Li et al. 2018) ¥ =25(x1-2)2 4 (2-2)% + (x3—1)* + (x4—4)? x~U(0, 10)
+(X5_1)2+(X5_4)2 l:1a276
= 15(x-2)% 4 0.85(x2-2)% + 0.6(x3—1)* + 1.35(x4—4)*
+0.6(xs—1)* + 0.6(xs—4)*
6 (Park et al. 2016; Ren et al. 2016) y 27T, (H,~H)) See Table 2
log(r/r.) [1 —0—%4— T /T,]
. 57T, (H,—H))

log(r/r.,) [1.5 + it + Tu/n}

literature, and example 2 is created by authors that have a
simple correction term to explore the effect of the scale factor
in MF-PCK. Meanwhile, cases with nested (D; .1 SD;, i=1,

..,s-1)and non-nested (D, ; ¢ D;,i=1, ...,s-1) sample points
are both tested to explore the impact of sample property on the
accuracy of multi-fidelity modeling. The results generated by
conducting MCS on the original high-fidelity response func-
tion (denoted as direct MCS for simplicity) is employed as the
benchmark to validate the effectiveness of the proposed
methods.

Table 2 Random variables and distributions for example 6

Random  Distribution Random  Distribution
variable variable

T 4(0.05,0.15) T; U (63.1, 116)

r U(100,50000) H, U (700,820)

T, U (63700, 115600) L U (1120,1680)
H, U (990,1100) K, U (9855, 12045)

Considering that high-fidelity sample points are often
much fewer than low-fidelity ones, for examples 1, 2, 5,
and 6 with a two-level fidelity, the order of PC terms for
the low-fidelity model yl(x) and the correction term be-
tween two models are set as 5 and 3 (ford*(x)), respective-
ly. For examples 3 and 4 with a three-level fidelity, the
order of PC terms for lower-fidelity model y'(x) and cor-
rection terms between three models are respectively set as
5, 3 (foré*(x)), and 2 (ford*(x)). The number of sample
points employed for each response model during multi-
fidelity modeling for all the examples is listed in Table 3,

Table 3  The number of sample points for each response model

Example 1 2 3 4 5 6
n 15 15 20 30 50 100
ny 6 6 10 25 40 80
n3 \ \ 5 10 \ \
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Fig. 1 Function response curves of example 1 (case 1)

considering the varying nonlinearity and complexity of
each example.

Meanwhile, as it is relatively a high-dimensional problem
(d=6), the sparse index in (3) is set as ¢ =0.5 for example 5
and ¢ =0.25 for example 6 during the construction of all PC
models/terms for both MF-PCK and MF-PC to save compu-
tational cost.

The first four order statistical moments (mean, variance,
skewness, and kurtosis) of the function response for the three
multi-fidelity UP methods (MF-PCK, co-kriging, and MF-
PC) are calculated through conducting MCS on the construct-
ed multi-fidelity metamodel, which are then compared to
those obtained by direct MCS. Considering that the sample
points for each model are generated randomly during the tests,
the results of UP may vary each time. Therefore, simulation is
repeatedly conducted on each example for 20 times to avoid
the impact of sample randomness on UP. Taking one of the 20
simulations for illustration, the curves/surfaces of the function
responses produced by the three methods for examples 1-4
(one- or two-dimensional problems) are respectively shown in
Figs. 1,3,5,7,and 9, in which HF, MF-PCK, Co-kri, and MF-
PC respectively denote the curve generated by the high-
fidelity model, the proposed MF-PCK method, co-kriging,
and the existing MF-PC method. The errors of the first four
order statistical moments relative to those of direct MCS are

Table 4 Relative errors of statistical moments for example 1 (case 1)
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(b) Non-nested sample points

calculated as well, of which the mean values of the 20 simu-
lations for all the examples are shown in Tables 4, 5, 6, 7, 8, 9,
and 10, respectively.

During our tests, it is found that the proposed MF-PCK
method can produce results that are very close to those of
direct MCS, exhibiting high accuracy. However, with the
same sample points as the three methods, the errors of the
existing MF-PC method are evidently much larger than those
of the other two approaches (MF-PCK and co-kriging) for
most examples. Therefore, another UP test is conducted on
MF-PC by increasing the number of high-fidelity sample
points, during which only examples 1 and 2 are tested consid-
ering the space limit of this paper and the number of high-
fidelity sample points are increased to 10 and 12, respectively.
Correspondingly, the orders of PC for low-fidelity model and
correction term are increased to 10 and 8, respectively. The
results of this test are shown in Tables 4, 5, and 6, in which
“A,” “B,” “C,” and “CI” respectively denote the results pro-
duced by MF-PCK, co-kriging, MF-PC, and MF-PC with
increased high-fidelity sample points; “1”” and “2” respective-
ly denote the case with nested and non-nested sample points
for simplicity; e, e,, e, and ¢, respectively denote the rela-
tive error of mean, variance, skewness, and kurtosis of the
output response with respect to MCS.

Methods A-1 B-1 C-1 Cl- A2 B2 C2 CI-2

Table 5 Relative errors of statistical moments for example 1 (case 2)
Methods A-1 B-1  C-1 CI-1 A2 B2 C=2 CI-2
Errors

Errors 1

e, (%) 021 047 142,12 133 130 130 4254 232
e, (%) 0.32 032 1293 0.01 0.17 047 1795 0.79
e, (%) 0.08 0.65 40.88 328 050 090 4258 9.79
e (%) 0.16 134 4540 6.64 0.68 1.68 47.60 1227

e, (%) 0.14 058 738 051 024 1.09 759 297
e, (%) 0.11  1.88 1.40 242 058 275 0.13 548
es (%) 1.88 1229 21190 2593 192 1748 226.86 3836
e (%) 0.07 046 942 152 013 0.64 1058 0.84
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Table 6 Relative errors of statistical moments for example 2

Table 8 Relative errors of statistical moments for example 4

Methods A-1 B-1 C-1 Cl- A2 B2 C=2 CI- Methods A-1 B-1 C-1 A-2 B-2 C-2
Errors 1 2 Errors

e, (%) 2.23e-7 0.01 0.04 0.02 0.01 005 0.10 0.04 e, (%) 0.02 0.24 0.01 0.06 0.35 1.50
e, (%) 0.07 0.13 023 025 002 0.18 694 0.12 e, (%) 0.13 0.40 1.45 0.45 0.65 6.97
e, (%) 0.03 0.03 1624 033 024 0.18 1676 0.07 e, (%) 1.43 4.79 1.94 2.74 7.42 58.14
ey (%) 0.11 0.07 1873 023 041 023 1939 0.05 e (%) 0.49 0.96 1.48 1.76 2.32 13.95

To more clearly show the robustness of the three multi-
fidelity UP methods, the calculated statistical moments for
all the examples are shown as boxplots in Figs. 2, 4, 6, 8,
10, 11, and 12. In the boxplots, the results of direct MCS
are marked as MCS, and the black dot represents the
mean value of the obtained data from the repeated 20
times UP and the red star represents the abnormal value
(Figs. 6, 8, and 12). The top and bottom edges of the box
are the upper and lower quartile of the data from the 20
simulations, respectively. And the line within the box rep-
resents the median. Generally, the smaller the distance
between the top and bottom edges of the box is, the more
concentrated the data is, and the more robust this method
exhibits. From these tables (relative errors of statistical
moments) and figures (function response curves/surfaces
and boxplots of statistical moments), some noteworthy
observations can be made.

Firstly, it is noticed that for both nested and non-nested
sample points with the same computational cost, the proposed
MF-PCK method is generally the most accurate, followed by
co-kriging and then MF-PC, and MF-PC produces relatively
large errors compared to the other two approaches.

MF-PCK vs. co-kriging MF-PCK is generally more accurate
than co-kriging. Especially for examples 1, 4, 5, and 6,
MF-PCK is evidently much more accurate. The interpre-
tation is that although both approaches employ the GP
modeling theory within the KOH framework to construct
metamodel for UP, a PC model and a constant number are
respectively adopted to capture the global trend of the
stochastic output response for MF-PCK and co-kriging.
As is well known, the PC model can deal with various

random input distribution types including symmetric and
unsymmetric ones and high nonlinearity of output re-
sponse. Therefore, the conjunction of PC and GP in MF-
PCK is more accurate in doing UP. Specially, for example
1 (case 2), as beta distribution (unsymmetric) is consid-
ered that is difficult to be handled by co-kriging, the re-
sults of the proposed MF-PCK method are much more
accurate. For example 6, it is a high-dimensional problem
and the variation of output response is large, which is
very difficult to be approximated accurately by co-
kriging. Therefore, co-kriging produces very large errors
(see e,, e, and ¢;). However, it is observed that for exam-
ple 2, although both approaches can produce accurate re-
sults that are very close to those of direct MCS, some
errors (e; and e;) of co-kriging are slightly smaller than
MF-PCK (see the bold numbers with underline in
Table 6). The reason is that for example 2, normal distri-
bution (symmetrical) is considered and the variation of
output response is relatively small, and thus it is easier
for co-kriging to describe the output response function
with high accuracy. Meanwhile, for MF-PCK, as PC is
included, more parameters should be estimated, which
may induce certain numerical error during parameter
estimation.

MF-PCK vs. MF-PC The proposed MF-PCK method is clear-
ly more accurate than the existing MF-PC method. With
the fusion of some lower-fidelity data, the accuracy of
predicted response curves/surfaces as well as UP can be
evidently improved with only a few HF data within the
proposed MF-PCK multi-fidelity framework. Although

Table 7  Relative errors of statistical moments for example 3 Table 9  Relative errors of statistical moments for example 5

Methods A-1 B-1 C-1 A-2 B-2 C-2 Methods A-1 B-1 C-1 A2 B-2 C-2
Errors Errors

en (%) 0.03 0.10 0.03 0.07 0.10 8.46 e (%) 0.07 1.18 422 0.19 0.41 20.21
e, (%) 0.09 0.24 0.34 0.09 0.25 36.16 e, (%) 0.14 7.15 7.29 0.44 1.43 58.14
e; (%) 0.12 0.42 2.03 0.26 0.66 20.24 e, (%) 0.09 5.71 10.60 0.65 6.73 8.64
e (%) 0.08 0.59 6.08 0.26 1.02 34.21 e (%) 0.27 6.55 8.01 0.23 7.98 6.12
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Table 10  Relative errors of statistical moments for example 6

Methods A-1 B-1 C-1 A-2 B-2 C-2
Errors

e, (%) 0.08 0.17 9.83 0.10 0.19 9.95
e, (%) 0.65 99.97 4224 0.73 96.65 42.34
e, (%) 7.57 2007.57 21.88 9.86 1.40e4 21.94
e (%) 3.64 1.83¢6 1.51 5.28 4.15¢6 1.61

MF-PC can be expected to produce comparable results
(see the errors of CI-1 and CI-2 with increased HF sample
points in Tables 4, 5, and 6) to MF-PCK, the number of
HF sample points should be clearly increased. The inter-
pretation is that the highly efficient KOH framework is
employed for model fusion for MF-PCK, in which a scale
factor p can be optimized. The introduction of p can clear-
ly reduce the nonlinearity and bumpy issue of the correc-
tion term &'(x) (Park et al. 2016; Ren et al. 2016), which
can certainly improve the accuracy of multi-fidelity
metamodel. However, for MF-PC, pis actually set as a
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Fig. 2 Boxplots of statistical moments for example 1 (case 1)
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constant p=1. Taking examples 1 and 2 for illustration
here, as pcalculated by MF-PCK is p=2 for example 1,
the correction term §'(x)is completely linear, which is easy
to be approximated by PC-Kriging. However, for MF-PC,
asp=1, a nonlinear correction term §'(x) is produced,
which would evidently increase the difficulty in approxi-
mation. For example 2, aspemployed by MF-PCK and
MF-PC are both p=1, the correction terms ¢'(x) approx-
imated by the two approaches are close to each other.
Therefore, the accuracy of MF-PC is clearly improved
compared to that of example 1. In addition, a GP term is
added to the PC model to enhance the local approxima-
tion ability of PC for the proposed MF-PCK method,
which can also improve the accuracy compared to MF-
PC.

Secondly, from the boxplots shown in Figs. 2, 4, 6, 8§,
10, and 11, it is observed that for MF-PCK and co-kriging
with nested and non-nested sample points, the top and
bottom edges of the box generally are very close to each
other, and some even seem overlapped (Figs. 6 and 8),
and the distances between the two edges are much smaller
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Fig. 3 Function response curves of example 1 (case 2)

than those of MF-PC with the same sample points. This indi-
cates that MF-PCK and co-kriging are more robust and stable
than MF-PC for UP as the data from the 20 simulations for the
two approaches are more concentrated, which is attributed to
the employment of the KOH framework in the two ap-
proaches. Although, MF-PC can also produce concentrated
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and comparable results, the order of PC and number of high-
fidelity sample points are required to be increased greatly (see
the boxplots of CI-1 and CI-2 for examples 1 and 2).
Meanwhile, it is also observed that the distances between the
two edges for MF-PCK are basically smaller than those of co-
kriging, indicating that MF-PCK is more robust and stable
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Fig. 5 Function response curves for example 2

than co-kriging. However, for example 2, such distance for co-
kriging is smaller than MF-PCK (see Fig. 6). As has been
stated above that this example is relatively easier to be approx-
imated, the impact of instability existing in parameter estima-
tion for MF-PCK that is weak in common cases becomes
more evident.
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Fig. 6 Boxplots of statistical moments for example 2
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Thirdly, compared to the results with non-nested sampling
points, the accuracy with nested ones is generally slightly
better for MF-PCK and co-kriging; while it is much better
for MF-PC. The interpretation lies in two aspects. For MF-
PC, the direct addition framework is employed, in which the
PC model in the correction term (x) is directly constructed
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Fig. 7 Function response curves of example 3

based on the high-fidelity input sample points x"’and the cor-
responding response difference values y”(x') — y*(x*). For
the nested case, y“(x)is the exact response from the low-
fidelity model, while for the non-nested one, y*(x'?) is predict-
ed by PC at x”, which inevitably would induce error. Such
error may be large when PC for the low-fidelity model is
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inaccurate. However, for the other two approaches, the KOH
framework is employed, in which the PC-Kriging/Kriging
model for the correction term §(x)is not directly and explicitly
constructed based on the response difference values as that of
MF-PC, but estimated using MLE based on all the collected
response data from the whole simulation models. Therefore,
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Fig. 9 Function response curves of example 4

the prediction error is avoided, which is helpful for ensuring
the accuracy. In addition, the covariance among data with
different fidelities is fully considered during the hyper-
parameter estimation for MF-PCK and co-kriging (Liu et al.
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2018), which can reduce the adverse impact of the non-nested
sample points to some extent. However, for MF-PC, the PC
coefficients for the LF model and additive correction terms are
directly calculated by regression, based on which the PC
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Fig. 11 Boxplots of statistical moments for example 5

model for the HF model is constructed. It is also noticed that
the results of MF-PC with nested sample points are much
more accurate than those with non-nested ones for examples
3 and 4. The reason is that there are three multi-fidelity models
to fuse, involving two correction terms, which would amplify
the impact of prediction error on UP for MF-PC.

Fourthly, it is found from Figs. 1, 5, and 7 that the
response curves generated by MF-PC is so far from the
HF response at the first and last HF point. The explana-
tion is as follows. The weighted stochastic response sur-
face method (WSRSM) (Xiong et al. 2011) is employed to
construct the PC model for MF-PC, in which the Latin
Hypercube sampling method is employed to generate
sample points and values of the joint probability density
function at the sample points are employed as the weights.
It has been demonstrated that WSRSM considering sam-
ple weight is more accurate than the stochastic response
surface method (SRSM) for UP. For example 1 (case I,
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Fig. 1), example 2 (Fig. 5), and example 3 (Fig. 7), the
random input follows normal distribution, and thus the
smallest weights are assigned to the first and last sample
points as they are furthest from the mean point. Therefore,
the improvement in accuracy of the stochastic response
surface at the first and last sample points is relatively
smaller than the points in the middle region.

As can be seen from Fig. 7, this phenomenon is more
obvious for example 3. The reason is that three multi-fidelity
models with random inputs of normal distribution and three
weighted stochastic response surfaces (two for the correction
terms and one for the lowest-fidelity model) are involved for
example 3, which would amplify the impact of above predic-
tion errors. For problem with uniform distributed random in-
put, this phenomenon is not very obvious. For the proposed
MF-PCK method, as the PC coefficients are calculated by the
maximum likelihood estimation method rather than WSRSM,
this phenomenon does not exist.
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4.2 Test for non-hierarchical fidelity
For models with non-hierarchical fidelity, cases with nested

(DycD;, i=1, ...,m) and non-nested (D¢ D;, i=1, ...,m)
sample points are also tested to explore the impact of sample
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(d) Kaurtosis

property on the accuracy of multi-fidelity modeling. The test-
ed examples are displayed in Table 11. The MF-PC method
can only be used in the case that the accuracy of the multi-
fidelity models can be ranked (it is named as the hierarchical
fidelity). However, for the case of non-hierarchical fidelity

Table 11 Tested examples with non-hierarchical fidelity
No. Functions Distributions
1 W1 = 095 os(0.5x) x~U (-8,12)
Y= 64)‘05"‘2cos(0.5)6)—0,55370“02()‘75>Z
V= e_O‘OS"Zcos(O.Sx) +0.5¢0-02(75)°
2 N <] {-‘) 1000¢f x x3 + 1900x% + 2092x; + 60 x12~U (0,1)
= —e™
1000¢ x x? + SOOx% +4x; + 20
S5e7t x>
10004 x x3 + 50037 + 4x; + 20 1

. ( 1—6%) (IOOOtf X X3 + 1900x3 +2092x; + 60)
5 (1 f) 10004/ x x3 + 1900x2 + 2092x; + 60\ 5e ¥ x/"?
— (1-o _
d 1000 % x + 50083 +4x; +20 ) 227 41
tf =02;th=0.3;¢=0.1;
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Fig. 13 Function response curves of example 1

that the accuracy of the multi-fidelity models cannot be
ranked, MF-PC is no longer applicable, as it constructs the
metamodel based on the fidelity level and the higher-fidelity
model is represented as the sum of the adjacent lower-fidelity
PC model and the PC correction model of the difference be-
tween them. Therefore, only the proposed MF-PCK method is
tested.

Similar to the cases with hierarchical fidelity, 20 simula-
tions are repeatedly done. For all the examples, the order of
PC for lower-fidelity models and correction term are set as 5
and 3, respectively. For example 1, the input sample points for
the three models yl(x), yz(x), and y3 (x) are setasn; =15, n, =
15, and n3 =8, and for example 2, n; =20, n, =20, and ny =
10. The existing MF-PC method is not tested here, as it cannot
deal with models with non-hierarchical fidelity. Therefore,
only the MF-PCK method is tested.

The response function curves, errors of the first four
order statistical moments relative to those of MCS, and
boxplots of the statistical moments are respectively shown
in Figs. 13 and 15, Tables 12 and 13, and Figs. 14 and 16.
From these results, it is observed that for the non-
hierarchical case, the proposed non-hierarchical MF-PCK
approach can also produce accurate enough and robust
results. The approximated response function curves by
MEF-PCK are very close to those of the high-fidelity one.
Meanwhile, the statistical moments produced by MF-PCK
show great agreements to those of MCS, and exhibit high

Table 12 Relative errors

of statistical moments for Methods A-1 A2
example 1 Errors
e,, (%) 2.49 3.60
e, (%) 0.56 1.25
e, (%) 1.66 1.96
e (%) 1.83 1.99

1.5

—HF

®e - - MF-PCK

® LF1 points
LF2 points

= HF points

-10 -5 0 5 10 15

(b) Non-nested sample points

robustness. However, the existing MF-PC method cannot
work in these cases.

In this work, the sample sizes for the multi-fidelity
response models {n, n,, ...} in each example are deter-
mined by testing the accuracy of UP corresponding to
different combinations of sample sizes. The combination
that yields accurate UP results for MF-PCK and the min-
imum amount of computational cost is selected. The other
approaches (co-kriging and MF-PC) just use the same
sample points to do UP for comparison. As the tested
examples are simple mathematical problems, it is relative-
ly easy to obtain a good combination of sample sizes.
However, it is impossible to employ this way in practice
especially for black-box-type problems. This paper tries to
develop a new multi-fidelity modeling approach for UP to
reduce the computational cost, and the focus lies in how
to fusion models with different fidelities. How to effi-
ciently determine the sample size for each response model
is another research topic and is out of the scope of this
work. In literature, many works related to this topic have
been done. Some works aims to develop a sequential sam-
pling strategy that can obtain an optimal combination of
the sample sizes for a given computational budget and
improve the accuracy of a multi-fidelity metamodel as
far as possible (Guo et al. 2018; Zhang et al. 2018).
Some works propose the scenario of resource allocation
to determine such combination, so as to reduce the

Table 13 Relative errors

of statistical moments for Methods A-l A-2
example 2 Errors
e, (%) 0.01 0.73
e, (%) 1.42 291
e, (%) 553 225
e (%) 3.02 6.00
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Fig. 16 Boxplots of statistical moments for example 2

epistemic uncertainty of model as far as possible (Jiang
et al. 2016; Hu and Mahadevan 2018).

5 Application to airfoil optimization

The proposed MF-PCK method is applied to a benchmark
aerodynamic design problem involving inviscid and vis-
cous transonic past airfoil shapes, developed by the AIAA
aerodynamic design optimization discussion group (Farin
1993). It aims at maximizing the lift-to-drag ratio of the
modified NACA 0012 airfoil section at a free-stream
Mach number of M,=0.7 and an angle of attackav=3",
subject to the thickness constraint.

@ Springer

(c) Skewness (d) Kurtosis

In this work, the B-spline curve (Guo et al. 2018) with 10
control points is employed for the shape parameterization of
the airfoil, where the horizontal locations of the 10 control
points are fixed as x=[0.1 0.3 0.5 0.7 0.9 0.9 0.7 0.5 0.3
0.1] and the vertical locations y are free to move, as shown
in Fig. 17.

The determinate optimization (DO) is formulated as:
myaxsz(y)/D(y) St fmax(7)>0.1043 (35)
where y is the vector of design variables; L(y)andD(y)are lift
and drag, respectively; and #,,. is the airfoil maximum thick-
ness and equals 0.1043 for the original baseline airfoil.
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Robust optimization (RO) is performed on this problem
considering uncertainties from the flight condition, i.e., the
Mach number M,, and the attack angle«.. M,, and care assumed
to follow uniform distribution with variations +0.1 and +1°
around their nominal values, respectively. The robust airfoil
optimization is formulated as follows:

max F = p;~koy s.t.

; fmax () >0.1043 (36)

where pandojare the mean and standard deviation of
the lift-to-drag ratio of airfoil, and the weighting factor
k is set as k=3.

During the optimization, the computational fluid dy-
namics (CFD) flow field solver using Fluentl17.0 is
employed to obtain the aerodynamic data, and the turbu-
lence model employed is the k-omega two-path turbulence
model. The steady-state density solver with Roe-FDS is
employed. Two multi-fidelity models are considered ac-
cording to the number of nodes of grid employed during
the CFD analysis. Table 14 shows the convergence condi-
tion with different grid density for the NACA0012 airfoil,
from which it is found that the density of the mesh signif-
icantly impacts the simulation time cost and the accuracy
of CFD analysis result. When the density of mesh is in-
creased largely enough, the lift-drag ratio basically remains
unchanged (please see the results in the last two rows of
Table 14). Therefore, in this work, the CFD analysis with
150 nodes in the remote field of the grid, and 300 in the
airfoil boundary is considered as the HF model, while the
CFD analysis with 100 nodes in the remote field, and 200
in the airfoil boundary is employed as the LF model.

For the MF-PCK model, 5 HF sample points and 10 LF
sample points are generated using the Latin hypercube
sampling technique to construct the MF-PCK model for
uncertainty propagation. Meanwhile, the order of the PC

0.1 . v
—NACA0012
® Control points
0.05r 1
=~ 0
-0.05 1
-0.1

0 0.2 0.4 0.6 0.8
X
Fig. 17 B-spine parameterization for the airfoil

—_—

term for the LF model and correction term are set as 2
equally. To test the accuracy of the MF-PCK method for
UP using these sample points, the MF-PC model based on
8 HF sample points and 10 LF sample points generated by
the Latin hypercube sampling method is also constructed
for comparison and the order of PC term is set as 3. The
results of MCS are used as the reference values. Table 15
shows the mean and standard deviation of the lift-drag ratio
produced by the proposed MF-PCK method, MF-PC and
MCS at the original NACAO0012 airfoil considering uncer-
tainties from M, and «. It is observed that the results of
MF-PCK are very close to those of MCS, demonstrating its
accuracy and effectiveness. Moreover, MF-PCK is basical-
ly as accurate as MF-PC, while the function calls of the HF
model are clearly reduced. Therefore, during the following
robust optimization, MF-PCK constructed with 5 HF and
10 LF sample points is employed for UP during each op-
timization iteration.

The robust optimization (RO) with MF-PCK and MF-PC,
and deterministic optimization (DO) without considering any
uncertainties are conducted for comparison, of which the re-
sults are shown in Figs. 18 and 19 and Table 16. For the sake
of simplicity, the results of RO using the proposed MF-PCK
and the existing MF-PC are denoted as RO-P and RO-E,
respectively.

Figure 18 shows the airfoils obtained by the two ROs and
DO, as well as that of the baseline. It is observed that the two
ROs using the proposed MF-PCK UP and the MF-PC UP
methods can produce very similar airfoils. The leading edges

Table 14  Convergence condition with different grid density for the
NACAO0012 airfoil

Grid size L/D Simulation time (s)
Remote field Airfoil boundary

80 160 26.7997 148.8601

100 200 30.6793 186.2760

120 240 32.8425 236.0699

150 300 33.2187 291.0449

180 360 33.2362 351.9661

Table 15  Uncertainty propagation results of the NACA0012 airfoil
Method Number of samples LD oD

HF LF
MF-PCK 5 10 27.5105 12.5738
MF-PC 8 10 28.1315 12.5072
MCS 100 0 27.7369 13.4137
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Fig. 18 Comparison of three optimized and baseline airfoils

produced by the two ROs are almost overlapped. Meanwhile,
the thickness of the leading edge of optimization design is
obviously reduced than the original baseline airfoil, which
can improve the critical Mach number and weaken the shock
wave area, thus reduce the drag coefficient of the airfoil. These
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Fig. 19 Comparison of static pressure clouds
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results indicate that through optimization, the drag coefficient
is reduced. In addition, it is noticed that the rear trailing edge
produced by DO bends downwards exhibiting evident char-
acteristics of supercritical airfoil, which can increase the lift
coefficient. Therefore, compared to the two ROs, the obtained
lift-drag ratio is larger for DO, which will be verified in the
following analysis.

Figure 19 illustrates the static pressure nephograms ob-
tained by the two ROs and DO, as well as the baseline. It
is observed that there is a strong shock wave area (i.e., the
junction of dark blue triangle area and light blue area on
its right) on the upper surface for the baseline airfoil. The
intensity of shock wave is proportional to the pressure
difference between both sides of this junction. The stron-
ger of the shock, the larger of the wave drag, and the
smaller of the lift-drag ratio. Clearly, it is noticed that
the pressure differences between both sides of the junc-
tion of the airfoils obtained by all the optimization de-
signs are smaller than that of the baseline, especially for
the RO. Therefore, the drag coefficient is clearly reduced
through optimization, and it is reduced more for RO com-
pared to that of DO. From the results of Figs. 18 and 19,
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Table 16 Optimal results

different methods Hy oy Imax Number of function call Total time (h)
HF LF
RO-P 31.2091 10.0673 0.1043 2540 5080 415.29
RO-E 31.0689 10.1629 0.1043 3696 4620 489.72
DO 38.0623 13.9853 0.1046 470 0 38.00
Baseline 27.8256 13.0642 0.1043 / / /

it is concluded that the increase in the lift-drag ratio for
DO is mainly caused by the increase in lift, while it is
mainly caused by the decrease in drag for RO.

The optimal results and computational cost of the op-
timized airfoils by different methods are shown in
Table 16, from which it is found that after optimization,
the lift-drag ratio can be increased compared to that of the
baseline airfoil. Compared to the results of DO, RO can
clearly improve the robustness of design (smalleroy) that
is less sensitive to uncertainties, while at a sacrifice of the
performance (smallery). RO with the proposed MF-PCK
method can produce very close results to those from RO
with the existing MF-PC approach, while it clearly re-
duces the computational time (415.29 vs. 489.72). These
results show great agreement to what have been observed
above, and demonstrate the effectiveness and advantages
of the proposed multi-fidelity UP method.

6 Conclusions

In this paper, a multi-fidelity PC approach using the
Gaussian process modeling theory is developed to make
the PC method more efficient and applicable to practical
problems. With the proposed approach, the classic multi-
level co-kriging modeling framework is extended from
the deterministic domain to the stochastic one for UP,
which can deal with analysis models with both hierarchi-
cal and non-hierarchical fidelities. Through comparative
studies on several numerical examples for UP with the
same computational cost, it is noticed that compared to
the commonly used addition correction based multi-
fidelity PC method, the proposed approach can consistent-
ly reduce the error to at least 5%. Compared to co-kriging,
it generally can be reduced to about 50 to 12%, and it can
be reduced to 10 to 0.1% for problems with unsymmetric
distributed random input or large variation. Meanwhile,
compared to both existing methods, the proposed ap-
proach can evidently enhance the robustness of UP.
These results demonstrate the effectiveness and advantage
of the proposed multi-fidelity PCK method. The applica-
tion of the proposed multi-fidelity PCK approach to an

engineering robust aerodynamic optimization problem
further verifies its effectiveness and applicability.

7 Replication of results

The results shown in the manuscript can be re-produced.
Considering the size limit of the uploaded supplementary ma-
terial, the codes for one of the mathematical example
(Example 1) is uploaded as supplementary material. For the
rest of the examples, it is very easy to implement by changing
the response functions and sample points based on the codes
provided to obtain the results shown in the manuscript.
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