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Abstract
In this paper, a novel direct interval robust optimization approach is proposed so that the robust optimal design vectors for
structures with interval uncertainties can be achieved. A new concept of interval closeness coefficient is proposed to describe the
relative positional relationship between the boundaries of two intervals. Subsequently, the explicit formulae for calculating the
four interval closeness coefficients between the boundaries of an interval constraint mechanical performance index and those of
its corresponding given interval constant are put forward. Consequently, the 3D violation vectors of different interval constraints
can be calculated, and the feasibility of a design vector can be evaluated by its total 3D violation vector of all interval constraints.
Finally, various design vectors are directly ranked according to the preferential guidelines considering the robustness of all the
mechanical performance indices of uncertain structures, which is realized by integrating the Kriging technique and nested genetic
algorithm. Unlike the traditional robust optimization of structures involving interval uncertainties, the proposed method can
avoid the complicated model transformation process and ensure the robustness of all the mechanical performance indices of the
optimal solution. Two examples are thoroughly investigated, the results of which demonstrate the applicability and advantages of
the proposed approach.

Keywords Robust optimization . Uncertain structure . Interval closeness coefficient . 3D violation vector of interval constraint .

Kriging technique . Nested genetic algorithm

1 Introduction

Uncertainties such as variations in material properties,
manufacturing errors, and load fluctuations ubiquitously exist
in engineering structures, which will inevitably lead to the

fluctuations of their mechanical performance indices. To
achieve the robust optimal mechanical performance indices
of engineering structures, it is necessary to develop robust
structural optimization approaches with considerations of var-
ious uncertainties (Muscolino and Sofi 2013; Chen et al.
2016; Peng et al. 2017; Zheng et al. 2018; Yin et al. 2018;
Chu et al. 2018; Zhang et al. 2018).

The traditional robust design optimization was developed
in the probabilistic framework with known statistical informa-
tion of uncertain parameters (Richardson et al. 2015; Peng
et al. 2018a; Sun et al. 2018). For example, Doltsinis et al.
(2005) formulated the robust optimization model of nonlinear
structures and solved it by a gradient-based algorithm. Tang
and Périaux (2012) proposed a robust optimizationmethod for
drag minimization problems in aerodynamics by integrating
the Pareto and Nash game strategies with the adjoint method.
Zhao and Wang (2014) investigated the robust topology opti-
mization under loading uncertainty based on linear elastic the-
ory and orthogonal diagonalization of symmetric matrices.
Martínez-Frutos et al. (2016) realized the robust shape
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optimization of continuous structures via the level set method.
However, it is often quite difficult to achieve the precise prob-
abilistic distributions of uncertain parameters due to the data
insufficiency in realistic engineering applications (Muscolino
et al. 2013; Yang et al. 2015; Santoro et al. 2015; Jiang et al.
2015; Wu et al. 2016; Peng et al. 2018b).

To address the robust optimization problems where the
probabilistic distributions of uncertain parameters are un-
known, a number of scholars have proposed various
nonprobabilistic modeling approaches (Sofi et al. 2015a; Ni
et al. 2016, 2018). Takewaki and Ben-Haim (2005) proposed
an info-gap robust design method for structures with load and
model uncertainties. Kang and Bai (2013) investigated the
robust design optimization of truss structures considering the
variations of the cross-sectional areas, Young’s moduli, and
loads based on nonprobabilistic ellipsoid convex model.
Hanks et al. (2017) investigated the robust goal programming
method on the basis of the norm-based and ellipsoidal uncer-
tainty sets. However, the abovementioned uncertainty model-
ing methods will be very complex when the structural re-
sponses cannot be analytically expressed as the functions of
design variables and uncertain parameters, which significantly
restrict their applications in realistic engineering problems.

Due to the advantages of simple calculation and low require-
ment for uncertain data, robust optimization based on the inter-
val modeling of uncertainties has recently attracted wide atten-
tion from scientific community (Guo and Lu 2015; Sofi et al.
2015b; Sofi and Romeo 2016; Cheng et al. 2017). Hladík
(2016) proposed an approach for locating the robust optimal
solutions to interval linear programming problems. Lievens
et al. (2016) investigated the robust design of tunedmass damp-
er for the vibration serviceability of footbridge based on multi-
interval approach. However, it is obvious that these approaches
cannot address realistic engineering problems. Li et al. (2015)
investigated the actuator placement robust optimization ap-
proach for vibration control system with interval parameters.
Karer and Skrjanc (2016) proposed an interval global optimi-
zation framework for improving the robust stability and perfor-
mance of PID controllers. However, these engineering-oriented
interval robust optimization approaches are indirect ones, which
firstly transformed the interval models into deterministic ones
and then solved the resulting models by deterministic optimi-
zation algorithms. The shortcomings of such indirect robust
optimization approaches are similar to the indirect ones for
solving conventional interval optimization models (Jiang et al.
2007; Li et al. 2013). Specifically, different weighting and nor-
malization factors for the objective functions or different pen-
alty factors for the interval constraints utilized in the model
transformation process will result in different optimal solutions
to an interval optimizationmodel.Moreover, the transformation
of interval models into deterministic ones also deviates from the
original intention of modeling the optimization problems based
on interval theory.

In this paper, a new direct interval robust optimization ap-
proach is proposed to improve the mechanical performance
indices of realistic engineering structures and ensure their
global robustness against uncertainties. Unlike the traditional
indirect robust optimization approaches for uncertain struc-
tures with interval uncertainties, the proposed method can
avoid the complicated transformation process from interval
models to deterministic ones and directly achieve the optimal
designs with globally robust mechanical performance indices.
With the introduction of a novel concept of interval closeness
coefficient for describing the relative positional relationship
between two interval boundaries, the relative position between
an interval constraint performance index and its correspond-
ing given interval constant can be described by four interval
closeness coefficients. Meanwhile, a 3D violation vector com-
posed of three interval closeness coefficients is constructed to
describe the violation degree of an interval constraint. Thus,
the feasibility of a design vector can be determined by the total
3D violation vector of all interval constraints. Subsequently,
the “constraint first objective next” preferential guidelines
considering the global robustness of all the mechanical per-
formance indices in the robust optimization model are pro-
posed for directly ranking various design vectors. And finally,
a direct interval robust optimization algorithm is developed
based on Kriging technique and nested genetic algorithm
(GA) to locate the robust optimal design of complex uncertain
structure. Since the transformation of an interval model into a
deterministic one is avoided and all the mechanical perfor-
mance indices of the uncertain structure are calculated by their
corresponding Kriging models, the proposed algorithm can
efficiently locate the optimal design with robust mechanical
performance indices and it is applicable to various realistic
engineering structures regardless of their geometrical com-
plexities and strong nonlinearities of optimization problems.
Therefore, the applicability of robust design optimization is
further broadened by the improved universality of the pro-
posed direct interval robust optimization approach.

The rest of the paper is organized as follows. Section 2
introduces the interval robust optimization model of an uncer-
tain structure. Section 3 firstly presents the novel concept of
interval closeness coefficient and then introduces the detailed
formulae for calculating different interval closeness coeffi-
cients between interval boundaries. Section 4 introduces the
method for determining the 3D violation vectors correspond-
ing to different interval constraints. Section 5 firstly puts for-
ward the preferential guidelines considering global robust-
ness, then realizes the direct interval robust optimization algo-
rithm by integrating Kriging technique and nested GA, and
finally demonstrates the validity of the proposed algorithm by
a numerical example. Subsequently, a realistic engineering
example is investigated in Sect. 6 to illustrate the applicability
and versatility of the proposed robust structural optimization
approach. Finally, the conclusions are drawn in Sect. 7.
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2 Interval robust optimization model of an
uncertain structure

When the uncertain parameters are modeled as interval
parameters, the mechanical performance indices of an un-
certain structure are the functions of design variables and
interval parameters. Supposing that the center and width
of the most important mechanical performance index of
the uncertain structure are described as objective func-
tions while the requirements on the other mechanical per-
formance indices are described as constraint functions, the
interval robust optimization model of an uncertain struc-
ture can be described as

min
x

f C xð Þ; f W xð Þ� � ¼ min
x

f R xð Þ þ f L xð Þ� �
=2; f R xð Þ− f L xð Þ� �

s:t: Gi xð Þ ¼ gLi xð Þ; gRi xð Þ� �
≤ ≥ð ÞBi ¼ bLi ; b

R
i

� �
; i ¼ 1; 2;⋯; l;

where f R xð Þ ¼ max
U

f x;Uð Þ; f L xð Þ ¼ min
U

f x;Uð Þ;

gRi xð Þ ¼ max
U

gi x;Uð Þ; gLi xð Þ ¼ min
U

gi x;Uð Þ;

x ¼ x1; x2;⋯; xnð Þ;

U ¼ U1;U 2;⋯;Umð Þ;U j ¼ uLj ; u
R
j

h i
; j ¼ 1; 2;⋯;m:

ð1Þ

where x denotes the n-dimensional design vector; U de-
notes the m-dimensional interval parameter vector; f(x,U)
and gi(x,U) denote the objective and constraint mechani-
cal performance indices of the uncertain structure, which
are usually the implicit functions of x and U; f C(x) and
f W(x) denote the center and width of the objective perfor-
mance index f(x,U) while f L(x) and f R(x) denote its left
and right bounds; and Bi denotes the given interval con-
stant corresponding to the i th interval constraint

performance index gi(x, U). It is worth to mention that
some constraint mechanical performance indices may de-
generate into deterministic ones when they are indepen-
dent of interval parameters and that their corresponding
interval constants may also degenerate into real numbers.

3 Interval closeness coefficients

In the first part of this section, a new concept of interval close-
ness coefficient between two interval boundaries is put for-
ward so that the relative position between an interval con-
straint mechanical performance index and its corresponding
given interval constant can be determined by four interval
closeness coefficients. Then, the detailed formulations for cal-
culating four different interval closeness coefficients are ex-
plicitly introduced in the second part of the section.

3.1 The concept of interval closeness coefficient

There are six relative positional relationships between the ith
interval constraint mechanical performance index gi(x,U) in
(1) and its corresponding given interval constant Bi, see Fig. 1

for illustration. Supposing that gWi xð Þ ¼ gRi xð Þ−gLi xð Þ and bWi
¼ bRi −b

L
i are the interval widths of the ith constraint mechan-

ical performance index gi(x,U) and interval constant Bi re-

spectively, there is gWi xð Þ > bWi for the relative positional re-

lationship shown in Fig. 1(c1) and gWi xð Þ < bWi for that
shown in Fig. 1(c2). According to the frequency that the
boundaries of interval constraint mechanical performance in-
dex gi(x,U) cross over those of interval constant Bi, the rela-
tive positional relationships between gi(x,U) and Bi can be

Fig. 1 Relative positional relationships between interval constraint mechanical performance index gi(x,U) and given interval constant Bi
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classified as follows: (a) no boundary crossing; (b) one bound-

ary crossing, namely, gRi xð Þ crosses over bLi ; (c) two-boundary
crossings, namely, gRi xð Þ crosses over both bLi and bRi as

shown in Fig. 1(c1) or both gRi xð Þ and gLi xð Þ cross over bLi
as shown in Fig. 1(c2); (d) three-boundary crossings, that is,

gRi xð Þ cross over both bLi and bRi while gLi xð Þ crosses over

bLi ; and (e) four boundary crossings, namely, both gRi xð Þ and
gLi xð Þ cross over bLi and bRi .

A new concept of interval closeness coefficient is proposed
to describe the relative positional relationship between the
interval constraint mechanical performance index gi(x,U)
and the given interval constant Bi. Specifically, there are the
following four interval closeness coefficients with regard to
the interval constraint mechanical performance index gi(x,U)
and interval constant Bi: (1) the interval closeness coefficient
cci

RL(x) reflecting the capability of gRi xð Þ approaching and

crossing over bLi , (2) the interval closeness coefficient

cci
LL(x) reflecting the capability of gLi xð Þ approaching and

crossing over bLi , (3) the interval closeness coefficient

cci
RR(x) reflecting the capability of gRi xð Þ approaching and

crossing over bRi , and (4) the interval closeness coefficient

cci
LR(x) reflecting the capability of gLi xð Þ approaching and

crossing over bRi .
The value of every interval closeness coefficient is a real

number, which monotonously increases from 0 to 1 when
the boundary of interval constraint mechanical performance
index gi(x,U) gradually approaches that of the given inter-
val constant Bi and keeps the value of 1 after the boundary

of constraint mechanical performance index gi(x,U) crosses
over that of interval constant Bi. As a result, the relative
positional relationship between the interval constraint me-
chanical performance index gi(x,U) and interval constant Bi
can be precisely determined by the values of four interval
closeness coefficients cci

RL(x), cci
LL(x), cci

RR(x), and
cci

LR(x).

3.2 Calculation of different interval closeness
coefficients

Supposing that the value of interval closeness coefficient
cci

RL(x) continuously increases from 0 to 1 when gRi xð Þ is

approaching bLi under the condition that bLi −gRi xð Þ≤bWi
(namely, gRi xð Þ≥bLi −bWi ) and there is cci

RL(x) ≡ 1 when

gRi xð Þ≥bLi , see Fig. 2 for illustration, the formula for calculat-
ing cci

RL(x) can be constructed as (2). It is obvious that there is
cci

RL(x) ≡ 1 for all the relative positional relationships between
gi(x,U) and Bi except the case shown in Fig. 1(a).

cciRL xð Þ ¼ max 0;
bWi − bLi −gRi xð Þ� �
bWi þ jbLi −gRi xð Þj

 !
¼ max 0;

gRi xð Þ− bLi −b
W
i

� �
bWi þ jbLi −gRi xð Þj

 !
: ð2Þ

Supposing that the value of interval closeness coefficient
cci

LL(x) continuously increases from 0 to 1 when gLi xð Þ is

approaching bLi under the condition that bLi −gLi xð Þ≤gWi xð Þ
(namely, gLi xð Þ≥bLi −gWi xð Þ or gRi xð Þ≥bLi ) and there is

cci
LL(x) ≡ 1 when gLi xð Þ≥bLi (namely, gRi xð Þ≥bLi þ gWi xð Þ ),

see Fig. 3 for illustration, the formula for calculating cci
LL(x)

can be constructed as (3). It is obvious that there is cci
LL(x) ≡ 0

for the relative positional relationship between gi(x,U) and Bi
shown in Fig. 1(a) and cci

LL(x) ≡ 1 for the cases shown in
Fig. 1(c2), (d), (e).

cciLL xð Þ ¼ max 0;
gRi xð Þ−bLi

gRi xð Þ−gLi xð Þ þ jbLi −gLi xð Þj

 !
: ð3Þ

Supposing that the value of interval closeness coefficient
cci

RR(x) continuously increases from 0 to 1 when gRi xð Þ is

approaching bRi under the condition that gRi xð Þ≥bLi and there

Fig. 2 Variation of cci
RL(x) with the right bound of interval constraint

mechanical performance index

Fig. 3 Variation of ccLLi xð Þ with the (a) left and (b) right bounds of interval constraint mechanical performance index
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is cci
RR(x) ≡ 1 when gRi xð Þ≥bRi , see Fig. 4 for illustration, the

formula for calculating cci
RR(x) can be constructed as (4). It is

obvious that there is cci
RR(x) ≡ 0 for the relative positional

relationship between gi(x,U) and Bi shown in Fig. 1(a) and
cci

RR(x) ≡ 1 for the cases shown in Fig. 1(c1), (d), (e).

cciRR xð Þ ¼ max 0;
gRi xð Þ−bLi

bRi −b
L
i þ jbRi −gRi xð Þj

 !
: ð4Þ

Supposing that the value of interval closeness coefficient
cci

LR(x) continuously increases from 0 to 1 when gLi xð Þ is

approaching bRi under the condition that gRi xð Þ≥bRi (namely,

gLi xð Þ≥bRi −gWi xð Þ ) and there is cci
LR(x) ≡ 1 when gLi xð Þ≥bRi

(namely, gRi xð Þ≥bRi þ gWi xð Þ ), see Fig. 5 for illustration, the
formula for calculating cci

LR(x) can be constructed as (5). It is
obvious that there is cci

LR(x) ≡ 0 for the relative positional
relationships between gi(x,U) and Bi shown in Fig. 1(a), (b),
(c2) and cci

LR(x) ≡ 1 for the case shown in Fig. 1(e).

cciLR xð Þ ¼ max 0;
gRi xð Þ−bRi

gRi xð Þ−gLi xð Þ þ jbRi −gLi xð Þj

 !
: ð5Þ

For the better understanding of interval closeness coeffi-
cients, the variation curves of cci

RL(x), cci
LL(x), cci

RR(x), and
cci

LR(x) with the right bound of interval constraint mechanical
performance index are simultaneously illustrated in Fig. 6,

where Fig. 6a corresponds to the case when gWi xð Þ < bWi while

Fig. 6b corresponds to the case when gWi xð Þ > bWi . It is worth
noting that the variation curves of interval closeness coefficients

Fig. 4 Variation of ccRRi xð Þ with the right bound of interval constraint
mechanical performance index

Fig. 5 Variation of cci
LR(x) with the (a) left and (b) right bounds of interval constraint mechanical performance index

Fig. 6 Variation curves of
different interval closeness
coefficients with gRi xð Þ:
(a) gWi xð Þ < bWi ;
(b) gWi xð Þ > bWi
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cci
LL(x) and cci

RR(x) partially overlap with each other when bLi
≤gRi xð Þ≤bRi for both cases shown in Figs. 6a, b. Actually, the
relative width of the interval constraint mechanical performance
index gi(x,U) with regard to its corresponding given interval
constant Bi is also an important factor reflecting their relative
positional relationship. The overlap ratio between the variation
curves of interval closeness coefficients cci

LL(x) and cci
RR(x)

reflects the closeness of interval widths gWi xð Þ and bWi . The
larger overlap ratio between the variation curves of cci

LL(x)
and cci

RR(x) indicates the closer value of gWi xð Þ with regard to

that of bWi . And it is obvious that the variation curves of cci
LL(x)

and cci
RR(x) will completely overlap when gWi xð Þ ¼ bWi .

4 3D violation vectors of interval constraints

In this section, the concept of 3D violation vector of an inter-
val constraint is proposed, which is constructed based on three
interval closeness coefficients between the interval boundaries
of the constraint mechanical performance index and those of
its corresponding given interval constant. In particular, the
formulae for calculating the 3D violation vectors of interval
constraints in the cases ofGi(x) ≤ Bi andGi(x) ≥ Bi are derived,
including the special cases when Gi(x) and Bi degenerate into
real numbers.

4.1 For interval constraint Gi(x)≤ Bi

As is seen from Figs. 1 and 6, the interval constraintGi(x) ≤ Bi
is fully satisfied when cci

RL(x) < 1 and cci
LL(x) = cci

RR(x) =
cci

LR(x) = 0, and it will be violated only when cci
RL(x) = 1.

Considering that the larger values of interval closeness
coefficients cci

LL(x), cci
RR(x), cci

LR(x) correspond to the great-
er violation degree of constraint Gi(x) ≤ Bi when cci

RL(x) = 1,
the violation degree of interval constraint Gi(x) ≤ Bi can be
measured by the following 3D violation vector:

vi xð Þ ¼ v1i xð Þ; v2i xð Þ; v3i xð Þð Þ;
where v1i xð Þ ¼ cciLL xð Þ ¼ max 0;

gRi xð Þ−bLi
gRi xð Þ−gLi xð Þ þ jbLi −gLi xð Þj

 !
;

v2i xð Þ ¼ cciRR xð Þ ¼ max 0;
gRi xð Þ−bLi

bRi −b
L
i þ jbRi −gRi xð Þj

 !
;

v3i xð Þ ¼ cciLR xð Þ ¼ max 0;
gRi xð Þ−bRi

gRi xð Þ−gLi xð Þ þ jbRi −gLi xð Þj

 !
:

ð6Þ

In engineering practice, the constraint mechanical perfor-
mance index of an uncertain structure may be independent of
uncertain parameters and thus its value may degenerate into a
real number while the interval constantBimay also degenerate
into a real number. In these cases, the 3D violation vector of an
interval constraint cannot be calculated by (6) because some
denominators in the fractional expressions for its vector com-
ponents may be zero.

To avoid the occurrence of zero denominators in the for-
mulation for calculating the 3D violation vector of an interval
constraint, the following rules are proposed:

(a) There is v1i(x) = cci
LL(x) = 0 when gLi xð Þ ¼ gRi xð Þ ¼ bLi .

(b) There is v2i(x) = cci
RR(x) = 0 when bLi ¼ bRi ¼ gRi xð Þ.

(c) There is v3i(x) = cci
LR(x) = 0 when gLi xð Þ ¼ gRi xð Þ ¼ bRi .

Consequently, the 3D violation vector of any constraint in the
form ofGi(x) ≤Bi can be calculated by the unified formula in (7).

vi xð Þ ¼ v1i xð Þ; v2i xð Þ; v3i xð Þð Þ;

where v1i xð Þ ¼ cciLL xð Þ ¼ f0; when sign jgLi xð Þ−gRi xð Þj þ jgLi xð Þ−bLi j
� � ¼ 0;

max 0;
gRi xð Þ−bLi

gRi xð Þ−gLi xð Þ þ jbLi −gLi xð Þj

 !
; otherwise:

v2i xð Þ ¼ cciRR xð Þ ¼ f 0; when sign jbLi −bRi j þ jgRi xð Þ−bRi j
� � ¼ 0;

max 0;
gRi xð Þ−bLi

bRi −b
L
i þ jbRi −gRi xð Þj

 !
; otherwise:

v3i xð Þ ¼ cciLR xð Þ ¼
0;when sign jgLi xð Þ−gRi xð Þj þ jgLi xð Þ−bRi j

� � ¼ 0;

max 0;
gRi xð Þ−bRi

gRi xð Þ−gLi xð Þ þ jbRi −gLi xð Þj

 !
; otherwise:

8><
>:

ð7Þ

4.2 For interval constraint Gi(x)≥ Bi

As is seen from Figs. 1 and 6, the constraint Gi(x) ≥ Bi is
completely violated when cci

RL(x) < 1 and cci
LL(x) = cci

RR(x) =
cci

LR(x) = 0, and the violation degree of constraint Gi(x) ≥ Bi
gradually decreases with the increase of cci

LL(x), cci
RR(x),

cci
LR(x) when cci

RL(x) = 1 until the constraint Gi(x) ≥Bi is fully
satisfied when cci

LR(x) = 1. That is, the values of interval close-
ness coefficients cci

LL(x), cci
RR(x), cci

LR(x) reversely reflect the
violation degree of interval constraint Gi(x) ≥Bi.

Considering that every interval closeness coefficient has a
value between 0 and 1 and that both the interval constraint
mechanical performance index Gi(x) and its corresponding
given interval constant Bi may degenerate into real numbers,
the 3D violation vector of constraint Gi(x) ≥ Bi can be calcu-
lated by the following:

vi xð Þ ¼ v1i xð Þ; v2i xð Þ; v3i xð Þð Þ;

where v1i xð Þ ¼ 1−cciLL xð Þ ¼ f 1; when sign jgLi xð Þ−gRi xð Þj þ jgLi xð Þ−bLi j
� � ¼ 0;

1−max 0;
gRi xð Þ−bLi

gRi xð Þ−gLi xð Þ þ jbLi −gLi xð Þj

 !
; otherwise:

v2i xð Þ ¼ 1−cciRR xð Þ ¼ f 1; when sign jbLi −bRi j þ jgRi xð Þ−bRi j
� � ¼ 0;

1−max 0;
gRi xð Þ−bLi

bRi −b
L
i þ jbRi −gRi xð Þj

 !
; otherwise:

v3i xð Þ ¼ 1−cciLR xð Þ ¼
1;when sign jgLi xð Þ−gRi xð Þj þ jgLi xð Þ−bRi j

� � ¼ 0;

1−max 0;
gRi xð Þ−bRi

gRi xð Þ−gLi xð Þ þ jbRi −gLi xð Þj

 !
; otherwise:

8><
>:

ð8Þ
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The variation curves of v1i(x), v2i(x), v3i(x) for interval con-
straintGi(x) ≥ Biwith the right bound of constraint mechanical
performance index are illustrated in Fig. 7, where Fig. 7(a)

corresponds to the case when gWi xð Þ < bWi while Fig. 7(b)

corresponds to the case when gWi xð Þ > bWi . It is obvious that
the variation curves of v1i(x) and v2i(x) will completely over-

lap when gWi xð Þ ¼ bWi .

5 Direct interval optimization algorithm
considering global robustness

In this section, the proposed direct interval optimization
algorithm with the consideration of global robustness is
presented. In the first part, the preferential guidelines
considering the global robustness of all the mechanical
performance indices in the robust optimization model of
an uncertain structure are put forward. Subsequently, the
direct interval robust optimization algorithm integrating
Kriging technique and nested GA is proposed in the sec-
ond part. And finally, a numerical example is utilized to
demonstrate the validity of the proposed algorithm in the
third part.

5.1 Preferential guidelines considering global
robustness

After the 3D violation vectors of all the interval con-
straints Gi(x) ≤ (≥)Bi(i = 1, 2,⋯, l) in the robust optimi-
zation model in (1) have been calculated by (7) and (8),

the total 3D violation vector of all the interval con-
straints corresponding to design vector x can be obtain-
ed by the following:

vT xð Þ ¼ ∑
l

i¼1
vi xð Þ ¼ ∑

l

i¼1
v1i xð Þ; ∑

l

i¼1
v2i xð Þ; ∑

l

i¼1
v3i xð Þ

� 	
: ð9Þ

Then design vector x is strictly feasible when vT(x) = (0, 0,
0) and it is infeasible when vT(x) > (0, 0, 0). As can be seen
from (7) and (8) for calculating the 3D violation vectors of
interval constraintsGi(x) ≤ Bi andGi(x) ≥ Bi, every component
of vector vT(x) is nonnegative. Thus, the total 3D violation
vectors corresponding to different design vectors can be sim-
ply compared by their norms. The interval constraints in (1)
are completely violated when vT(x) = (l, l, l).

The global robustness of an uncertain structure requires not
only the strict feasibility of its constraint mechanical perfor-
mance indices but also the optimal robustness of its objective
mechanical performance index. Therefore, the following con-
straint first objective next preferential guidelines are proposed
for directly sorting various design vectors of an uncertain
structure.

Firstly, a design vector that is strictly feasible is always
superior to the one that is infeasible. Namely, design vector
x1 is always superior to design vector x2 when vT(x1) = (0, 0,
0) and vT(x2) > (0, 0, 0).

Secondly, the strictly feasible design vectors are sorted ac-
cording to their nominal distances based on average scaling.
The nominal distance based on average scaling corresponding
to design vector x can be calculated by

D xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f C xð Þ= f C xð Þ
� �2

þ f W xð Þ= f W xð Þ
� �2r

; ð10Þ

where f C xð Þ ¼ ∑
i¼1

n1

f C xið Þ=n1 and f W xð Þ ¼ ∑
i¼1

n1

f W xið Þ=n1, n1
is the number of all the strictly feasible design vectors. The
smaller nominal distance D(x) indicates the better strictly fea-
sible design vector x.

Thirdly, the infeasible design vectors are ranked according
to their corresponding norms of the total 3D violation vectors
of all interval constraints, which can be calculated by

jvT xð Þj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
l

i¼1
v1i xð Þ

� 	2

þ ∑
l

i¼1
v2i xð Þ

� 	2

þ ∑
l

i¼1
v3i xð Þ

� 	2
s

: ð11Þ

It is obvious that the larger norm ∣vT(x)∣ indicates the
worse infeasible design vector x.

5.2 Direct optimization algorithm integrating Kriging
technique and nested GA

In order to directly solve the interval robust optimization mod-
el formulated in (1), an integrated optimization algorithm is

Fig. 7 Variation curves of the 3D violation vector’s components with
gRi xð Þ for constraint Gi(x) ≥ Bi : (a) gWi xð Þ < bWi ; (b) g

W
i xð Þ > bWi
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proposed to realize the direct ranking of design vectors ac-
cording to the preferential guidelines proposed in Sect. 5.1
based onKriging technique and nested GA. Kriging technique
is introduced to substitute the finite element analysis (FEA) to
efficiently compute the mechanical performance indices of an
uncertain structure corresponding to the given design vari-
ables and interval parameters. A total of l + 1 Kriging models
are constructed based on the adaptive resample technology
(Cheng et al. 2015) for computing the mechanical perfor-
mance indices in the objective and constraint functions in
(1). For a certain design vector x, a total of 2(l + 1) number
of inner layer GAs are implemented in parallel for calculating
the left and right bounds of the mechanical performance indi-
ces in the objective and constraint functions. The individuals
of every inner layer GA correspond to different interval pa-
rameter vectors. The maximum iteration number acts as the
stop criterion for every inner layer GA. The outer layer GA
realizes the direct ranking of various design vectors according
to the constraint first objective next preferential guidelines

proposed in Sect. 5.1, the individuals of which correspond to
different design vectors. Specifically, the individual corre-
sponding to design vector xi is assigned a rank number
R(xi) ∈ {1, 2, ..., Rmax}, where Rmax is the maximum rank
number of all individuals. The individual corresponding to
the strictly feasible design vector with the smallest nominal
distance calculated by (10) is assigned the rank number 1
while the individual corresponding to the infeasible design
vector with the largest norm of 3D violation vectors calculated
by (11) is assigned the maximum rank number Rmax. As a
result, unlike the penalty-based approaches for constructing
fitness functions of GA (An et al. 2015; Chen et al. 2013;
Chen et al. 2017; Liu et al. 2012), the fitness values of all
the individuals in the outer layer GA can be simply calculated
by Fit(xi) = 1/R(xi).

The flowchart of the proposed direct interval optimization
algorithm considering the global robustness of all the mechan-
ical performance indices of uncertain structures is shown in
Fig. 8, the implementation of which includes five steps.

Fig. 8 Flowchart of the proposed
direct interval optimization
algorithm considering global
robustness
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Algorithm:Direct interval robust optimization for uncertain
structures

Step 1. Construct the interval robust optimization model of
an uncertain structure. With the uncertain factors de-
scribed as interval variables, the mechanical perfor-
mance indices of the uncertain structure are
described as the functions of both the design and
interval variables. The center and width of the most
important mechanical performance index are
described as the objective functions while the re-
quirements of the other mechanical performance in-
dices are described as the constraint functions.

Step 2. Construct the Kriging models for calculating the me-
chanical performance indices of the uncertain struc-
ture based on Latin hypercube sampling (LHS) and
adaptive resample technology. As far as the mechan-
ical performance index influenced by n-dimensional
design vector x and m-dimensional interval vector U
such as f(x,U) and gi(x,U) in (1) is concerned, the
sample points for constructing Kriging model should
be generated by LHS in the (n + m)-dimensional
space determined by n design variables and m inter-
val variables. The construction of every Kriging
model is an iterative process until the achievement
of the desired local and global precision evaluated by
multiple correlation coefficient R2 and relative max-
imum absolute error (RMAE) respectively.

Step 3. Initialize the GA parameters for nested optimization,
including the population sizes, maximum iteration
numbers, crossover and mutation probabilities of
the inner and outer layer GAs, and the convergent
threshold of the outer layer GA. Set the iteration
number of the outer layer GA as 1 and generate the
first population of the outer layer GA.

Step 4. Sort the individuals in the current population of outer
layer GA according to the preferential guidelines
proposed in Sect. 5.1 and calculate their fitness
values, during the process of which the inner layer
GAs integrated with Kriging models constructed in
step 2 are implemented in parallel for computing the
interval bounds of the mechanical performance indi-
ces in the objective and constraint functions.
Specifically, the total 3D violation vectors of all in-
terval constraints corresponding to all the individuals

of the outer layer GA are calculated based on their
interval closeness coefficients cci

LL(x), cci
RR(x),

cci
LR(x) utilizing (7), (8), and (9). Then, all the indi-

viduals of the outer layer GA are classified into the
strictly feasible and infeasible ones. And finally, all
the individuals of the outer layer GA are sorted ac-
cording to the constraint first objective next prefer-
ential guidelines considering global robustness.

Step 5. Output the design vector with the largest fitness value
as the optimal solution once the convergent threshold
or maximum iteration number of the outer layer GA is
reached. Otherwise, increase the iteration number of
the outer layer GA by 1 and return to step 4.

5.3 Verification of the proposed optimization
algorithm by a numerical example

The interval robust optimization model in (12) is utilized as a
numerical example to demonstrate the validity of the proposed
robust optimization algorithm. A detailed comparison analysis
of the results obtained by the proposed algorithm, the algorithm
based on normalized violation degree of interval constraint
(NVDIC) (which is named as the NVDIC-based algorithm here-
inafter for concise sake) (Cheng et al. 2017), and the indirect
algorithm (Li et al. 2013) is presented to demonstrate the capa-
bility and computational efficiency of the proposed algorithm in
achieving the global robustness of all the objective and con-
straint mechanical performance indices at the optimal solution.

min
x

f C xð Þ; f W xð Þ� � ¼ min
x

f R xð Þ þ f L xð Þ� �
=2; f R xð Þ− f L xð Þ� �

s:t: G1 xð Þ ¼ g1 x;Uð Þ ¼ U1 x1−1ð Þ2−U2
2x2 þ U2

3x3≥ 7:0; 8:0½ �;

G2 xð Þ ¼ g2 x;Uð Þ ¼ U2
1x1 þ U2 x2−1ð Þ2 þ U 2

3x3≥ 9:0; 12:0½ �:

where f R xð Þ ¼ max
U

f x;Uð Þ; f L xð Þ ¼ min
U

f x;Uð Þ;

f x;Uð Þ ¼ U 1x21−U2 x2−2ð Þ2 þ U2
3 x3−1ð Þ2;

x1∈ 2:0; 12:0½ �; x2∈ 2:0; 12:0½ �; x3∈ 2:0; 12:0½ �;

U 1 ¼ 0:9; 1:1½ �;U2 ¼ 0:9; 1:1½ �;U3 ¼ 0:9; 1:1½ �:

ð12Þ

The interval robust optimization model in (12) is
solved by different algorithms with the same GA param-
eters listed in Table 1. Besides the maximum iteration

Table 1 GA parameters for the
numerical example in (12) GA Population size Crossover probability Mutation probability Maximum iteration number

Inner layer 100 0.99 0.05 100

Outer layer 150 0.99 0.05 150

Robust optimization of uncertain structures based on interval closeness coefficients 25



number given as the stop criterion, the outer layer GA
evolution is terminated when the absolute difference of
f C(x) between the optimal solution and the average of
the current population is less than 10−3. It is notable that
no Kriging model needs to be constructed here because
all the objective and constraint functions are explicit.
Moreover, the interval robust optimization model in
(12) has to be transformed into a deterministic one at
first so as to be solved by the indirect algorithm.
During the model transformation process for (12), the
weighting factors of f C(x) and f W(x) are prescribed as
0.5 with their corresponding normalization factors settled
as 3.0 and 0.6 respectively while the satisfactory degrees
for both constraints are prescribed as 1 with the same
penalty factor of 200,000.

Table 2 summarizes the optimization results of the numerical
example obtained by the proposed, NVDIC-based, and indirect
algorithms. As is seen from Table 2, the proposed algorithm is
the most efficient since it can locate the optimal solution with
the fewest outer layer GA iterations. The second constraint
function g2(x,U) ≥ [9.0, 12.0] is always satisfied at the optimal
solutions obtained by three algorithms, but the first constraint
function g1(x,U) ≥ [7.0, 8.0] may be violated at the optimal
solution x∗ = (4.51, 6.80, 2.00) obtained by the NVDIC-based
algorithm while it is fully satisfied at the optimal solution
xo = (5.30, 7.46, 2.29) obtained by the proposed algorithm and
xI = (5.60, 10.93, 2.67) obtained by the indirect algorithm.
Specifically, the optimal solution x∗ obtained by the NVDIC-
based algorithm is not strictly feasible because the interval
g1(x

∗,U) = [4.51, 10.50] partially overlaps the given interval
constant [7.0, 8.0] and there is v1(x

∗) > (0, 0, 0) according to
(8), although the first constraint in (12) is regarded as feasible
at x∗ according to the definition of NVDIC based on the “center
first width next” interval order relation in the NVDIC-based
algorithm since there is gC1 x*ð Þ ¼ 7:51 > 7:5. Therefore,
the proposed algorithm can locate a strictly feasible

solution to the numerical example while the NVDIC-
based one cannot. Such an improvement benefits from
the preferential guidelines considering the global robust-
ness of all the objective and constraint mechanical perfor-
mance indices proposed in Sect. 5.1 based on the precise
determination of the violation degree of an interval con-
straint and the precise description of the relative position-
al relationship between an interval constraint mechanical
performance index and its corresponding given interval
constant with the introduction of the new concept of in-
terval closeness coefficient. Both the optimal solutions xo

and xI obtained by the proposed and indirect algorithms
are strictly feasible for all constraints, but f W(xo) is much
smaller than f W(xI), meaning that the proposed algorithm
can achieve the more robust solution than the indirect one.
To sum up, the proposed algorithm is the most efficient
which can locate the most robust optimal solution to the
numerical example in (12) among three algorithms.

6 Engineering example: robust optimization
of the upper beam in a high-speed press

To demonstrate the feasibility and effectiveness of the
proposed interval robust optimization approach in solving
realistic engineering problems, the robust optimization of
the upper beam in a high-speed press is thoroughly inves-
tigated in this section. The interval robust optimization
model of the upper beam is constructed at first according
to its performance requirements. Subsequently, the
Kriging models for calculating the mechanical perfor-
mance indices of the upper beam in the robust optimiza-
tion model are constructed. Then, the robust optimization
model of the upper beam is solved by the proposed,
NVDIC-based, and indirect approaches based on the

Table 2 The optimization results of the numerical example obtained by different algorithms

Algorithm Iterations of the
outer layer GA

Optimal design vector Objective functions Constraint functions

[f L, f R] 〈f C, f W〉 gL1 ; g
R
1

� �
<gC1 ; g

W
1 >

gL2 ; g
R
2

� �
<gC2 ; g

W
2 >

Proposed 6 (5.30, 7.46, 2.29) [− 6.1161, 6.1039]
<− 0.0061, 12.22>

<9.49, 17.07>
<13.28, 7.58>

<43.68, 55.04>
<49.36, 11.36>

NVDIC-based 30 (4.51, 6.80, 2.00) [− 6.2129, 2.8771]
<− 1.6679, 9.09 >

[4.51, 10.50]
<7.51, 5.99>

[35.57, 44.91]
<40.24, 9.34>

Indirect 126 (5.60, 10.93, 2.67) [− 57.2861, − 33.9561]
<− 45.6211, 23.33>

[8.01, 17.61]
<12.81, 9.6>

[95.46, 118.48]
<106.97, 23.02>
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Kriging models and nested GA, the optimization results of
which are compared and analyzed in detail.

6.1 Mathematical modeling of the interval robust
optimization problem

High-speed press is widely applied in instrument, auto-
motive, aerospace industries due to its capability of con-
tinuously and automatically punching precision parts
such as motor cores at a high speed, see Fig. 9a for
illustration. The upper beam in Figs. 9b, c is one of the
most important components of the high-speed press, the
mechanical performance indices of which greatly influ-
ence the punching precision of the machine. Meanwhile,
the variations of material properties are inevitable for the
upper beam, which will lead to the fluctuations of its

mechanical performance indices. Therefore, it is neces-
sary to optimize the geometrical parameters of the upper
beam to improve its mechanical performance indices and
robustness against uncertainties.

The geometrical parameters h1, h2, l1, l2, l3 in the
cross section of the upper beam in Fig. 9c are chosen
as the design variables for improving the mechanical
performance indices of the upper beam. The uncertain
material density ρ and Poisson’s ratio ν of the upper
beam are described as interval variables due to the in-
sufficient information of uncertainties. The center and
width of the maximum deformation are described as
the objective functions considering that the stiffness re-
versely reflected by the maximum deformation is the
most important mechanical performance index of the
upper beam. The maximum allowable weight and

(a) The high-speed press in workplace

(b) 1/2 solid model of the upper beam (c) Cross section of the upper beam

Fig. 9 The upper beam of a high-
speed press. a The high-speed
press in workplace. b One-half
solid model of the upper beam. c
Cross section of the upper beam
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maximum equivalent stress of the upper beam are de-
scribed as the constraint functions to avoid the ponder-
ous and risky design. Therefore, the interval robust op-
timization model of the upper beam can be constructed
as

min
x

dC xð Þ; dW xð Þ� � ¼ min
x

dR xð Þ þ dL xð Þ� �
=2; dR xð Þ−dL xð Þ� �

;

s:t: w x;U1ð Þ ¼ wL xð Þ;wR xð Þ� �
≤ 5170; 5230½ �kg;

δ x;Uð Þ ¼ δL xð Þ; δR xð Þ� �
≤ 40; 45½ �MPa:

where dR xð Þ ¼ max
U

d x;Uð Þ; dL xð Þ ¼ min
U

d x;Uð Þ;

wR xð Þ ¼ max
U1

w x;U1ð Þ;wL xð Þ ¼ min
U1

w x;U 1ð Þ;

δR xð Þ ¼ max
U

δ x;Uð Þ; δL xð Þ ¼ min
U

δ x;Uð Þ:

x ¼ h1; h2; l1; l2; l3ð Þ;U ¼ U 1;U 2ð Þ ¼ ρ; υð Þ;

210mm≤h1≤250mm; 250mm≤h2≤300mm;

80mm≤ l1≤120mm; 25mm≤ l2≤55mm; 330mm≤ l3≤390mm;

U1 ¼ ρ ¼ 7200; 7400½ �kg⋅m−3;U2 ¼ υ ¼ 0:27; 0:33½ �:

ð13Þ

where x is the design vector while U is the interval
uncertain vector; d(x,U) is the maximum deformation
of the upper beam; dC(x) and dW(x) are the center and
width of d(x,U) while dL(x) and dR(x) are the left and
right bounds of d(x, U); w(x, U1) and δ(x, U) are the
weight and maximum equivalent stress of the upper
beam while wL(x), wR(x), δL(x), and δR(x) are their left
and right bounds respectively.

6.2 Construction of Kriging models for computing
mechanical performance indices

In order to efficiently solve the interval robust optimiza-
tion model of the upper beam in (13), the Kriging
models for computing the maximum deformation d(x,
U), weight w(x, U1), and maximum equivalent stress
δ(x,U) are constructed based on the adaptive resample
technology (Cheng et al. 2015). All the sample points
involved in the construction of Kriging models are gen-
erated by LHS. The maximum deformation, weight, and
maximum equivalent stress of the upper beam at the
sample points are computed by FEA. Figure 10 illus-
trates the loads and constraints of the one-half upper
beam, the mesh model of which comprises 5066
Solid187 elements and 9908 nodes.

The desired global and local precision of all Kriging
models are prescribed as 0.95 and 0.05 respectively. The
initial Kriging models are constructed by 28 sample
points. Ten test points are utilized to verify the global
precision of Krigings, among which those relatively far
away from the previous sample points are added into the
sample point set for generating new Krigings when mul-
tiple correlation coefficient R2 ≤ 0.95. Three resample
points within the maximum hypercube centered by the
sample point with maximum RMAE are added into the
sample point set for generating new Krigings when
RMAE ≥ 0.05. Table 3 lists the statistics of the Kriging
models for calculating d(x, U), w(x, U1), and δ(x, U),
which demonstrate that the desirable global and local
precision can be achieved with 60 sample points.

Fig. 10 Loads and constraints of
the one-half upper beam
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6.3 Optimization results obtained by the proposed
approach

Based on the Kriging models constructed in Sect. 6.2, the
interval robust optimization model in (13) is solved by the
proposed approach with the nested GA parameters listed in
Table 4. In addition to the stop criterion of maximum iteration
number, the outer layer GA evolution is terminated when the
absolute difference of the objective function dC(x) between
the optimal solution and the average of the current population
is less than 10−4 mm.

The convergent curves at the optimal solution to (13) ob-
tained by the proposed approach are shown in Fig. 11.
Specifically, the outer layer GA reaches the convergent thresh-
old after 25 iterations and the optimal design vector is obtain-
ed as xo = (213.74, 250.00, 80.61, 27.90, 370.16), the corre-
sponding objective and constraint performance indices at
which are dC(xo) = 0.1190, dW(xo) = 0.0040, w(xo,
U1) = [4999.34, 5170.00], and δ(xo,U) = [17.93, 40.00] re-
spectively. It is obvious that both constraints in (13) are fully
satisfied at xo.

To analyze the computational performance of the proposed
algorithm, 50 independent runs are conducted by varying the
population sizes and maximum iteration numbers of the inner
and outer layer GAs. The experimental results demonstrate
that the maximum iteration numbers of both inner and outer
layer GAs have few influences on the optimization results
when they are greater than 100. Moreover, the larger

population sizes of the inner and outer layer GAs usually
produce the smaller fluctuations of the objective value at the
optimal point. The fluctuation of the objective value at the
optimal point is less than 1% when the population sizes of
both inner and outer layer GAs are larger than 150.
Therefore, it is suggested to apply the large population sizes
as listed in Table 4 for the engineering example of the upper
beam.

6.4 Comparison with other approaches

With the same GA parameters and convergent threshold as those
utilized in the proposed approach, the interval robust optimiza-
tion model in (13) is also solved by the NVDIC-based method.
As can be observed from the convergent curves of the mechan-
ical performance indices in Fig. 12, the objective values of the
optimal solution converge at the 50th generation of the outer
layer GA and the optimal solution is obtained as x∗ = (255.01,
250.36, 107.14, 49.41, 349.97), the corresponding objective
values at which are dC(x∗) = 0.1144, dW(x∗) = 0.0040.

To solve the interval robust optimization model in (13) by
the indirect approach, the interval model is firstly transformed
into a deterministic one with the model transformation param-
eters prescribed as follows: both the weighting factors of f C(x)
and f W(x) are 0.5 while their normalization factors are 0.1 and
0.001 respectively; the satisfactory degrees for both con-
straints are 1 while the penalty factors of both constraints are
200,000. With the GA parameters and convergent threshold

Table 4 Nested GA parameters
for solving the interval robust
optimization model of the upper
beam

GA Maximum iteration
number

Population
size

Crossover
probability

Mutation
probability

Inner layer 100 150 0.99 0.05

Outer layer 150 200 0.99 0.05

Table 3 Statistics of the Kriging
models for calculating the upper
beam’s mechanical performance
indices

Number of
sample points

Maximum deformation
d (x, U)

Weight
w(x, U1)

Maximum equivalent stress
δ(x, U)

RMAE R2 RMAE R2 RMAE R2

28 0.2339 0.9366 0.3033 0.9073 0.4143 0.7983

40 0.1945 0.9551 0.2548 0.9348 0.3217 0.8931

50 0.0829 0.9711 0.1488 0.9745 0.1849 0.9479

55 0.0535 0.9858 0.0758 0.9866 0.0934 0.9645

58 0.0343 0.9949 0.0424 0.9986 0.0655 0.9735

60 0.0262 0.9953 0.0308 0.9994 0.0486 0.9832
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prescribed as those utilized in the proposed approach, the ob-
jective values of the optimal solution converge at the 32nd
generation of the outer layer GA, see Fig. 13 for illustration.
The optimal solution is obtained as xI = (210.00, 250.36,
107.14, 49.41, 349.97), the corresponding objective values at
which are dC(xI) = 0.1160 and dW(xI) = 0.0060.

Table 5 provides a comparison of the optimization
results obtained by the proposed, NVDIC-based, and
indirect approaches, the second column of which dem-
onstrates that the proposed approach can locate the op-
timal design vector most efficiently. As evidently illus-
trated in Table 5, the interval widths of the maximum
deformations corresponding to the optimal solutions ob-
tained by both the proposed and NVDIC-based ap-
proaches are 0.0040, which are smaller than that of
the optimal solution obtained by the indirect approach.
That is, the proposed and NVDIC-based approaches can
locate the optimal solutions of more robust objective
performance index than the indirect one. However, the
constraints on the weight and maximum equivalent
stress at the optimal solution obtained by the NVDIC-
based approach may be violated since their varying in-
tervals under uncertain material properties are [5111.58,
5288.37] kg and [28.58, 50.62] MPa respectively, which
partially overlap with their corresponding interval con-
stants (namely, [5170, 5230] kg and [40, 45] MPa) pre-
scribed in constraints. Although the optimal solution
x∗ = (255.01, 250.36, 107.14, 49.41, 349.97) is regarded
as feasible according to the center first width next in-
terval order relation in the NVDIC-based approach since
there are wC

1 x*ð Þ ¼ 5199:98kg≤5200kg and

δC1 x*ð Þ ¼ 39:6MPa≤42:5MPa, it is not strictly feasible
according to the preferential guidelines in Sect. 5.1
since the 3D violation vectors corresponding to both
constraints in (13) are nonzero. That is, the proposed
approach can achieve the robust optimal solution with
strictly feasible constraint mechanical performance indi-
ces while the NVDIC-based approach cannot ensure the
strict feasibility of interval constraints at the optimal
solution. Consequently, the optimal solution obtained
by the proposed approach is the most robust considering
both the objective and constraint mechanical perfor-
mance indices of the upper beam, demonstrating the
validity and applicability of the proposed interval robust
optimization approach in engineering.

7 Conclusions

A direct interval robust optimization approach was pro-
posed in this paper to achieve the robust optimal design
vectors for engineer ing st ructures with interval

(a) Convergent curves of maximum deformation.

(b) Convergent curves of weight.

Fig. 11 Convergent curves of the mechanical performance indices
obtained by the proposed approach. a Convergent curves of maximum
deformation. b Convergent curves of weight. c Convergent curves of
maximum equivalent stress
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(a) Convergent curves of maximum deformation.

(b) Convergent curves of weight.

Fig. 13 Convergent curves of mechanical performance indices obtained
by the indirect approach. a Convergent curves of maximum deformation.
b Convergent curves of weight. c Convergent curves of maximum
equivalent stress

(a) Convergent curves of maximum deformation.

(b) Convergent curves of weight.

(c) Convergent curves of maximum equivalent stress.

Fig. 12 Convergent curves of the mechanical performance indices
obtained by the NVDIC-based approach. a Convergent curves of
maximum deformation. b Convergent curves of weight. c Convergent
curves of maximum equivalent stress.
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uncertainties. The new concept of interval closeness coef-
ficient was proposed to describe the relative positional
relationship between the interval boundaries of interval
constraint mechanical performance index and its corre-
sponding given interval constant. Explicit formulas for
calculating the four interval closeness coefficients be-
tween the boundaries of an interval constraint mechanical
performance index and its corresponding given interval
constant were presented, and subsequently, the 3D viola-
tion vectors of different interval constraints in the robust
optimization model could be calculated for evaluating the
feasibility robustness of a design vector. The preferential
guidelines considering the global robustness of all the
mechanical performance indices were proposed for di-
rectly ranking various design vectors of an uncertain
structure, which was realized by an algorithm integrat-
ing Kriging technique and nested GA.

The optimization results of the numerical example demon-
strated that the proposed direct interval robust optimization
approach performed better than the NVDIC-based one in en-
suring the strict feasibility of the optimal solution and that it
could achieve the optimal solution with more robust objective
performance than the indirect approach besides the advantage
of avoiding the complicated model transformation process.
The engineering example of the upper beam in a high-speed
press with interval material density and Poisson’s ratio dem-
onstrated the applicability and effectiveness of the proposed
approach in the robust optimization of practically motivated
engineering structures.

Funding information This work was supported by the National Natural
Science Foundation of China (No. 51775491), the Science Fund for
Creative Research Groups of National Natural Science Foundation of
China (No. 51821093), the Key Laboratory of Micro-systems and
Micro-structures Manufacturing of Ministry of Education, Harbin
Institute of Technology (No. 2015KM001), and the Fundamental
Research Funds for the Central Universities.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

References

An HC, Chen SY, Huang H (2015) Laminate stacking sequence optimi-
zation with strength constraints using two-level approximations and
adaptive genetic algorithm. Struct Multidiscip Optim 51:903–918

Chen N, Yu DJ, Xia BZ, Ma ZD (2016) Topology optimization of struc-
tures with interval random parameters. Comput Methods Appl
Mech Eng 307:300–315

Chen SY, Lin ZW, An HC, Huang H, Kong C (2013) Stacking sequence
optimization with genetic algorithm using a two-level approxima-
tion. Struct Multidiscip Optim 48:795–805

Chen SY, Shui XF, Huang H (2017) Improved genetic algorithm with
two-level approximation using shape sensitivities for truss layout
optimization. Struct Multidiscip Optim 55:1365–1382

Cheng J, Liu ZY, Tang MY, Tan JR (2017) Robust optimization of un-
certain structures based on normalized violation degree of interval
constraint. Comput Struct 182:41–54

Cheng J, Liu ZY, Wu ZY, Li XG, Tan JR (2015) Robust optimization of
structural dynamic characteristics based on kriging model and
CNSGA. Struct Multidiscip Optim 51:423–437

Chu S, Gao L, Xiao M, Luo Z, Li H, Gui X (2018) A new method based on
adaptive volume constraint and stress penalty for stress-constrained to-
pology optimization. Struct Multidiscip Optim 57(3):1163–1185

Doltsinis I, Kang Z, Cheng GD (2005) Robust design of non-linear struc-
tures using optimization methods. Comput Methods Appl Mech
Eng 194:1779–1795

Guo SX, Lu ZZ (2015) A non-probabilistic robust reliability method for
analysis and design optimization of structures with uncertain-but-
bounded parameters. Appl Math Model 39:1985–2002

Hanks RW, Weir JD, Lunday BJ (2017) Robust goal programming using
different robustness echelons via norm-based and ellipsoidal uncer-
tainty sets. Eur J Oper Res 262:636–646

HladíkM (2016) Robust optimal solutions in interval linear programming
with forall-exists quantifiers. Eur J Oper Res 254:705–714

Jiang C, Han X, Liu GR (2007) Optimization of structures with uncertain
constraints based on convex model and satisfaction degree of inter-
val. Comput Methods Appl Mech Eng 196:4791–4800

Jiang C, Zhang QF, Han X, Liu J, Hu DA (2015) Multidimensional parallel-
epiped model–a new type of non-probabilistic convex model for struc-
tural uncertainty analysis. Int J Numer Methods Eng 103:31–59

Kang Z, Bai S (2013) On robust design optimization of truss structures
with bounded uncertainties. Struct Multidiscip Optim 47:699–714

Karer G, Skrjanc I (2016) Interval-model-based global optimization
framework for robust stability and performance of PID controllers.
Appl Soft Comput 40:526–543

Li FY, Luo Z, Sun GY, Rong JH, ZhangN (2013) Interval multi-objective
optimization using kriging model: interval multi-objective optimisa-
tion of structures using adaptive kriging approximations. Comput
Struct 119:68–84

Table 5 Comparison of the optimization results of the upper beam obtained by different approaches

Approach Iterations of outer
layer GA

Mechanical performance indices of the upper beam

Maximum deformation (mm)
[dL, dR],〈dC, dW〉

Weight (kg)
[wL,wR],〈wC,wW〉

Maximum equivalent stress (MPa)
[δL, δR],〈δC, δW〉

Proposed 25 [0.1170, 0.1210]
<0.1190, 0.0040>

[4999.34, 5170.00]
<5084.67, 170.66>

[17.93, 40.00]
<29.97, 22.07>

NVDIC-based 50 [0.1124, 0.1164]
<0.1144, 0.0040>

[5111.58, 5288.37]
<5199.98, 176.79>

[28.58, 50.62]
<39.6, 22.04>

Indirect 32 [0.1130, 0.1190]
<0.1160, 0.0060>

[5010.16, 5100.07]
<5055.12, 89.91>

[13.04, 35.12]
<24.08, 22.08>

32 J. Cheng et al.



Li YL, Wang XJ, Huang R, Qiu ZP (2015) Actuator placement robust
optimization for vibration control system with interval parameters.
Aerosp Sci Technol 45:88–98

Lievens K, Lombaert G, Roeck GD, Broeck PVD (2016) Robust design
of a TMD for the vibration serviceability of a footbridge. Eng Struct
123:408–418

Liu XF, Cheng GD, Yan J, Jiang L (2012) Singular optimum topology of
skeletal structures with frequency constraints by AGGA. Struct
Multidiscip Optim 45:451–466

Martínez-Frutos J, Herrero-Pérez D, Kessler M, Periago F (2016) Robust
shape optimization of continuous structures via the level set method.
Comput Methods Appl Mech Eng 305:271–291

MuscolinoG, Sofi A (2013) Bounds for the stationary stochastic response
of truss structures with uncertain-but-bounded parameters. Mech
Syst Signal Process 37(1–2):163–181

Muscolino G, Sofi A, Zingales M (2013) One-dimensional heteroge-
neous solids with uncertain elastic modulus in presence of long-
range interactions: interval versus stochastic analysis. Comput
Struct 122:217–229

Ni BY, Elishakoff I, Jiang C, Fu CM, Han X (2016) Generalization of the
super ellipsoid concept and its application in mechanics. Appl Math
Model 40:9427–9244

Ni BY, Jiang C, Huang ZL (2018) Discussions on non-probabilistic con-
vex modelling for uncertain problems. Appl Math Model 59:54–85

Peng X, Li JQ, Jiang SF (2017) Unified uncertainty representation and
quantification based on insufficient input data. Struct Multidiscip
Optim 56(6):1305–1317

Peng X, Li JQ, Jiang SF, Liu ZY (2018a) Robust topology optimization
of continuum structures with loading uncertainty using perturbation
method. Eng Optim 50:584–598

Peng X, Wu TJ, Li JQ, Jiang SF, Qiu C, Yi B (2018b) Hybrid reliability
analysis with uncertain statistical variables, sparse variables and
interval variables. Eng Optim 50:1347–1363

Richardson JN, Coelho RF, Adriaenssens S (2015) Robust topology op-
timization of truss structures with random loading andmaterial prop-
erties: a multiobjective perspective. Comput Struct 154:41–47

Santoro R, Muscolino G, Elishakoff I (2015) Optimization and anti-
optimization solution of combined parameterized and improved inter-
val analyses for structures with uncertainties. Comput Struct 49:31–42

Sofi A, Muscolino G, Elishakoff I (2015a) Static response bounds of
Timoshenko beams with spatially varying interval uncertainties.
Acta Mech 226(11):1–12

Sofi A, Muscolino G, Elishakoff I (2015b) Natural frequencies of struc-
tures with interval parameters. J Sound Vib 347:79–95

Sofi A, Romeo E (2016) A novel interval finite element method based on
the improved interval analysis. Comput Methods Appl Mech Eng
311:671–697

Sun GY, Zhang HL, Fang JG, Li GY, Li Q (2018) A new multi-objective
discrete robust optimization algorithm for engineering design. Appl
Math Model 53:602–621

Takewaki I, Ben-Haim Y (2005) Info-gap robust design with load and
model uncertainties. J Sound Vib 288:551–570

Tang ZL, Périaux J (2012) Uncertainty based robust optimization method
for drag minimization problems in aerodynamics. Comput Methods
Appl Mech Eng 217–220:12–24

Wu JL, Gao J, Luo Z, Brown T (2016) Robust topology optimization for
structures under interval uncertainty. Adv Eng Softw 99:36–48

Yang CW, Tangaramvong S, Gao W, Tin-Loi F (2015) Interval
elastoplastic analysis of structures. Comput Struct 151:1–10

Yin SW, Yu DJ, Luo Z, Xia BZ (2018) Unified polynomial expansion for
interval and random response analysis of uncertain structure–
acoustic system with arbitrary probability distribution. Comput
Methods Appl Mech Eng 336:260–285

Zhang Z, Ruan XX, Duan MF, Jiang C (2018) An efficient epistemic
uncertainty analysis method using evidence theory. Comput
Methods Appl Mech Eng 339:443–466

Zhao JP, Wang CJ (2014) Robust topology optimization under loading un-
certainty based on linear elastic theory and orthogonal diagonalization
of symmetric matrices. Comput Methods Appl Mech Eng:204–218

Zheng J, Luo Z, Li H, Jiang C (2018) Robust topology optimization for
cellular composites with hybrid uncertainties. Int J Numer Methods
Eng 115(6):695–713

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

Robust optimization of uncertain structures based on interval closeness coefficients 33


	Robust...
	Abstract
	Introduction
	Interval robust optimization model of an uncertain structure
	Interval closeness coefficients
	The concept of interval closeness coefficient
	Calculation of different interval closeness coefficients

	3D violation vectors of interval constraints
	For interval constraint Gi(x)&thinsp;≤&thinsp;Bi
	For interval constraint Gi(x)&thinsp;≥&thinsp;Bi

	Direct interval optimization algorithm considering global robustness
	Preferential guidelines considering global robustness
	Direct optimization algorithm integrating Kriging technique and nested GA
	Verification of the proposed optimization algorithm by a numerical example

	Engineering example: robust optimization of the upper beam in a high-speed press
	Mathematical modeling of the interval robust optimization problem
	Construction of Kriging models for computing mechanical performance indices
	Optimization results obtained by the proposed approach
	Comparison with other approaches

	Conclusions
	References


