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Abstract
Design methodologies of today require the solution of several many-objective optimization problems. The last two decades have
seen a surge in several algorithms capable of solving multi-objective optimization problems. It was only in the past 5 years that
new algorithms capable of coping with a large number of objectives have been introduced. This work presents a new differential
evolution algorithm (NSDE-R) capable of efficiently solving many-objective optimization problems. The algorithmsmake use of
reference points evenly distributed through the objective function space to preserve diversity and aid in multi-criteria-decision-
making. The proposed NSDE-R was applied to test problems from the DTLZ andWFG suite, having three to 15 objectives. Two
mutation donor operators were investigated for their ability to converge to the analytical Pareto front while maintaining diversity.
The ability of NSDE-R to converge to a user-specified region of the Pareto front is also investigated. The proposed NSDE-R
algorithm has shown to have a higher rate of convergence and better convergence to the analytical Pareto front.

Keywords Evolutionarycomputation .Differentialevolution .Many-objectiveoptimization .Non-dominatedsorting .NSDE-R .

Reference points

1 Introduction

Evolutionary and heuristic optimization methods have been
extensively exploited for their ability to explore and exploit
vast design and objective function space. The last two decades
have given rise to several multi-objective optimization algo-
rithms capable of finding a well-converged and well-
diversified Pareto set of a two to three objective optimization
problems. The optimization problems faced today require the
solution of five to 10+ objectives (Chikumbo et al. 2012;
Coello Coello and Lamont 2004) and are typically referred
to as many-objective optimization problems. This leads to a

challenging increase in size or the restriction placed on the
objective functions space. The current algorithms suffer from
solution clustering in certain regions of the objective function
space and are not able to preserve diversity in the Pareto so-
lutions. The need for the solution of these large scale optimi-
zation problems has led to the development of several many-
objective optimization algorithms in the last 5 years.

A typical multi-objective optimization problem can be stated as

min f
!

x!
� �

f
!¼ f 1 x!

� �
;…; f l x!

� �n o

x!¼ x1;…; xmf g
subject to : x∈ ai; bi½ � i ¼ 1;…;m

ð1Þ

subject to a number of inequality and equality constraints. These
optimizers typically use various niching techniques to preserve
diversity and typically use either decomposition based or indicator
based methods. Decomposition based algorithms make use of
reference points or reference directions to guide the search to
scarce areas of the Pareto fronts. Algorithms using decomposition
based approach include Non-dominated Sorting Genetic
Algorithm (NSGA-III) (Deb and Jain 2014), Many-objective
Optimization Evolutionary Algorithm based on Dominance and
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Decomposition (MOEA-DD) (Li et al. 2015), and Strength Pareto
Evolutionary Algorithm (SPEA-R) (Jiang and Yang 2017).
Indicator-based algorithms use certain performance metrics to
quantify the superiority of one solution over another and control
the recombination and selection operators. Some indicator-based
algorithms include Indicator Based Evolutionary Algorithm
(IBEA) (Zitzler and Künzli 2004) and Hypervolume-Based
Estimation Algorithm (HypE) (Bader and Zitzler 2011a). The
indicator-based algorithms are heavily influenced by the accuracy
of the indicators used and by the computational times required to
compute the indicators. Decomposition-based algorithm does not
make use of indicators in the search process, thereby reducing the
number of operations required for each generation.

This work presents a Non-dominated Sorting Differential
Evolution algorithm based on reference points (NSDE-R).
The effects of two different recombination operators on the
performance on the NSDE-R algorithm are also investigated.
The algorithm uses the recombination operator to create a
candidate design, non-dominated sorting to find the non-
dominated front, and a reference point–based niching strategy
for environmental selection.

The performance of NSDE-R algorithm is evaluated
against the performance of NSGA-III and MOEA/DD algo-
rithms. The test problems were taken from the DTLZ and
WFG test suites and feature three to 15 objectives. The per-
formance is quantified utilizing the widely used Inverted
Generalized Distance (IGD) and Hypervolume (HV) mea-
sures. The best, average, and worst IGD and HV metrics are
presented for each algorithm.

2 Related work

There have been significant developments in the area of
genetic evolutionary algorithms when solving many-
objective optimization problems. The previously men-
tioned NSGA-III, MOEA/DD, and SPEA-R all use simu-
lated binary crossover (Deb and Agrawal 1994) and poly-
nomial mutation (Deb and Goyal 1996) to create
offspring/candidate solutions. Therefore, they are closer
to genetic algorithms in their algorithm structure.
Whereas the development in genetic algorithms has
progressed steadily over the decade, there has not been a
differential evolution (DE) algorithm that is able to cope
with large numbers of simultaneous objectives.

The differential evolution algorithmwas first introduced by
Storn and Price (Storn and Price 1997) in 1997 for single-
objective problems. Das and Suganthan (Das and Suganthan
2011) recently performed a comprehensive review of the ad-
vances in differential evolution algorithm. They have shown
that there did not exist a differential evolution algorithm for
many-objective optimization. Robic and Filipic (Robic and
Filipic 2005) presented the most popular differential evolution

algorithm for multi-objective optimization (DEMO) (Robic
and Filipic 2005). This algorithm uses the same Pareto rank-
ing and crowding distance ranking scheme as NSGA-II (Deb
et al. 2002) and, therefore, also underperforms when solving
many-objective optimization problems. Recent work of He
et al. (He et al. 2014) proposed a DE algorithm for many-
objective optimization based on ranking (MODER).
However, the MODER was shown to consistently perform
worse than the NSGA-III algorithm. Denysiuk et al.
(Denysiuk et al. 2013) also presented a many-objective ver-
sion of the DE algorithm, but only compared its performance
to multi-objective optimization algorithms.

To minimize the computing time in many-objective opti-
mization problems, the algorithms should utilize the users’
preferences within their search procedures rather than insisting
on uniform accuracy and details of the search. The proposed
NSDE-R algorithm is able to incorporate the users’ prefer-
ences when performing the search and performs better for
many-objective problems than the aforementioned
algorithms.

3 Proposed NSDE-R algorithm

The basic framework of the proposed algorithm is presented in
Algorithm 1. The NSDE-R starts with an initial population set
Pi, and reference points set, R. The reference points can be
uniformly distributed through objective function space or can
be biased towards particular regions. At each generation, the
NSDE-R algorithm then selects three members and performs
its mutation operator. The parent population and offspring pop-
ulation, O, are then combined and normalized. Each individual
in the combined population is then associated with the closest
reference points. Then, an environmental selection procedure is
applied to select individuals for the next generation that can aid
convergence and preserve diversity. The following sections
present each operation in the NSDE-R algorithm.

Algorithm 1: Framework for NSDE – R
Input: Parent population Pi, reference points R
Output: Pi+1

1: p = Unique selection (Pi)
2: O = Mutation (p)
3: C = p O
4: Normalize (C)
5: Associate (C, R)
6:   St = Non-dominated Sorting (C) such that | St | | Pi |
6: Pi+1 = Niching (C St) St
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3.1 Generation of reference points

The proposed NSDE-R algorithm uses reference points to
guide the search and preserve diversity. The reference points
can be uniformly distributed through the objective function
space or can be biased towards a particular region of interest.
Results from both approaches are presented in this work. Two
approaches can be used to uniformly distribute reference
points through the objective function space. The first approach
uses Das and Dennis’ (Das and Dennis 1998) systematic ap-
proach to place points on a normalized unit hyperplane. This
is shown in Fig. 1a. This method guarantees uniform distribu-
tion of reference points, but suffers from the curse of dimen-
sionality. Using this approach, for d divisions along each ob-
jective axis, the total number of reference points N in M-ob-
jective space is given by (2).

N ¼ M þ d−1
d

� �
¼ M þ d−1ð Þ!

M−1ð Þ!d! ð2Þ

For example, given eight divisions (d = 8) along each ob-
jective of a 10-objective problem (M = 10), the total number of
points produced by Das and Dennis’ approach is 24,310. This
drastically increases the computational cost when associating
the designs with the reference points. The number of points can
be significantly reduced using a two-step approach where an
outer layer is first created followed by an inner layer as shown
in Fig. 1b. Consider a 3-objective case with two divisions
along the outer layer and one division along the inner layer.
Then, the two-step systematic approach will yield a total of 9
points.

An alternative method for uniformly distributing reference
points in high dimensional space is to utilize a random number
generator. A pseudo-random sequence that uniformly

distributes points in M-dimensional space can be used. One
can utilize Uniform Latin Hypercube Sampling (Wyss and
Jorgensen 1998). Figure 2 shows such distribution of 20
points for a 3-objective problem.

3.2 Selection and recombination

The traditional DE algorithm selects three random, unique
parents and combines them to create an offspring. At the end
of each generation, each individual in the current population is
compared to remaining members of the population to identify
its uniqueness. An individual I is said to be unique, in design
variable space, to a set A of size NA, if

I
!−A!i

��� ���
i∈ 1;…;NAf g

≥ε ð3Þ

This means that the L2 norm between the variables de-

fining individual I
!

and the variables of every individual

in A
!

must be greater than some specified tolerance, ε. All
required parent population that must satisfy uniqueness is
selected from this unique archive, U. A new archive U is
constructed every generation. For each individual i in par-
ent population P, three parents are randomly selected from
the unique archive (Alg. 1: Step 1) to perform mutation
and crossover. Two different mutation operators are inves-
tigated for the NSDE-R algorithm (Alg. 1: Step 2). The
most common used mutation operator in DE algorithms is
the “rand/1/bin” (R1B) (Storn and Price 1997) given by

V
!

i ¼ X
!

r1 þ F X
!

r2−X
!

r3

� �
ð4Þ

where i = 1…, NP, V
!

i = [vi,1,…,vi,N] and {rj}j = 1,..,3∈U ≠ i .
The factor F determines the scaling of the difference
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between two random parents. In the above mutation, par-
ent r3 is taken as a donor parent. The R1B approach selects
the donor vector randomly from the unique archive, U.
Fan et al. (Fan et al. 2010) proposed using a convex sum
of the three parents to create a donor vector. The combi-
nation is given as

donor ¼ ∑
3

k¼1
μk X
!

rk ð5Þ

where μ is a random number. Different distributions of
the parameter μ result in different mutation scheme.
Here, μ is assumed to be a uniformly distributed ran-
dom number μ∈[0,1] which leads to the Donor3 (D3)
scheme given by

donor3 ¼ ∑
3

k¼1

μk X
!

rk

∑3
j¼1μ j

ð6Þ

The complete D3 mutation scheme can then be given by

V
!

i ¼ ∑
3

k¼1

μk X
!

rk

∑3
j¼1μ j

þ F X
!

r2−X
!

r3

� �
ð7Þ

The crossover operation is then performed using the mutated
vector and the ith individual. The offspring o is then given by

o j ¼ v j
xi; j

if rand≤Cr∨ j ¼ k
otherwise

� ����
j¼1;…;N

ð8Þ

where Cr is the crossover probability. An offspring is
created for each individual i in the parent population,
P. The parent population and offspring population are
then combined (Alg. 1: Step 3) to create the combined
population, C, and the NSDE-R algorithm proceeds to
objective normalization. The complete selection and re-
combination procedure is given in Algorithm 2.

3.3 Objective normalization

Normalization of the population members at each generation
allows for diversity preservation and solution of differently
scaled optimization problems. The normalization procedure
is given in Algorithm 3.

The first step is to find the ideal point of the combined
population, C, such that | C | = NP. The approximate ideal
point, zmin = (f1

min,…, fM
min) is calculated by

f min
j ¼ mini∈C f j xið Þ; j ¼ 1;…;M ð9Þ

Each member in C is then translated by zmin as f ’ = f - zmin,
such that the ideal point is now the zero vector. The extreme
solutions from the translated population are then found. A
solution i in C is extreme for axis i if the solution i makes
the achievement scalarizing function (ASF) minimum
(Figueiredo et al. 2016). The extreme solutions are then used
to build a hyperplane, whose intercepts ai are then used to
normalize the population C as

f ni ¼
f
0
i xð Þ
ai

; i ¼ 1;…;M ð10Þ

This normalized objective function is then used to perform
the association procedure.
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3.4 Member association

The association procedure associates each individual in the
set to a single reference point. A member is associated with
the reference point that has the shorted perpendicular dis-
tance between that individual and a line passing through
the reference point and the origin. All distances are com-
puted in the normalized objective space. This can be seen
as a measure of density in the vicinity of the reference
point. That is, the more individuals that are associated with
a reference point, the denser (more crowded) that region
will become. Figure 3 illustrates this association proce-
dure, where the black dots are the reference points, the
red squares are the individuals in the normalized objective
functions’ space, and the blue lines are the rays connecting
the reference points and the origin. It should be noted that a
reference point may have one or more individuals associ-
ated with it or it may have none. The algorithm for associ-
ation is given in Algorithm 4.

3.5 Non-dominated sorting

The combined population C is then sorted into its non-
dominated front levels using the usual non-dominated sorting
approach (Chankong and Haimes 1983). Members of the first
l front levels are added to St such that | St | ≤N. If | St | =N, then
no further operations are needed and the next generation is
started with Pi + 1 = St. If | St | >N, then members from the first
l – 1 fronts are added to Sl. The current population for the next
generation is given by Piþ1 ¼ ∪l−1i−1Fi. The remaining (K=NP

- | St |) population is selected from the lth front, Fl, using the
niching procedure.

3.6 Niching procedure

The niching procedure aims to select a diverse population to
carry into the next generation. Non-dominated sorting and
niching are used together to carefully select a total of |Np|
individuals from a combined population C of size 2|Np|. The
niching procedure is given in Algorithm 5.

As previously stated, a reference point can have one or
more members associated with it or it can have no individuals
associated with it. Let us denote the niche count, ρj, of the jth
reference point as the number of individuals associated with
that reference point. The reference point with the highest niche
count is the most crowded reference point.

The points to carry over into the next generation are selected
as follows. The least used reference point is first identified. This
will be the reference point with the lowest niche count. In the
case of multiple such reference points, one is selected at random.
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If ρj = 0, two scenarios are possible. First, there exists one
or more solutions in Fl associated with reference point j. For
this scenario, the individual in Fl with the shortest perpendic-
ular distance to reference point j is added to Pi + 1. The niche
count for reference point j is then incremented by 1 and the
previously selected individual from Fl is excluded from fur-
ther consideration. The second scenario is that there are no
individuals in Fl associated with reference point j. In this case,
reference point j is excluded from further consideration.

If ρj ≥ 1 and there exists one or more solutions in Fl asso-
ciated with reference point j, then one is selected at random
from Fl and added to Pi + 1. The niche count of the reference
point j is incremented by 1. If there are no individuals in Fl
associated with the reference point j, then this reference point
is excluded from further consideration. The procedure is re-
peated until the population set has been filled.

4 Experiments on many-objective
optimization

The ability of NSDE-R to solve many-objective optimization
problems is investigated on a total of 14 test problems with
three, five, eight, 10, and 15 objectives. This section presents
optimization problem formulations and algorithm setup used
to validate the NSDE-R algorithm.

4.1 Test problems

The test problems used to assess the performance of NSDE-R
are taken from the DTLZ (Deb et al. 2005) and WFG (Huband
et al. 2006) test suites. Table 1 gives the properties of each of the
test problems selected. A total of 14 test problems, featuring
three, five, eight, 10, and 15 objectives were used. The total
number of variables for the DTLZ cases are N =M + k – 1,

where M is the number of objectives, and k = 5 for DTLZ1,
while k = 10 for DTLZ2, DTLZ3, and DTLZ4. Then, number
of input variables for theWFG suite wereN = k + l, where l = 20
and k = 2 × (M – 1). The many-objective test functions used in
this paper can be scaled to any number of objectives and any
number of design variables. They provide a diverse set of objec-
tive function topologies that the optimization algorithm can be
validated against. Their analytical Pareto fronts are also known,
which allows for the convergence analysis of the algorithms.

4.2 Indicator of performance

This work utilizes two metrics of accuracy for two different
test suites of problems. The two metrics both measure diver-
sity and convergence of the algorithms.

4.2.1 Inverted generalized distance (Bosman and Thierens
2003)

For each of the previously stated DTLZ test problems, the
analytical Pareto front is known. Because the reference
point–guided algorithms drive the search towards the refer-
ence points, only the analytical Pareto points closest to the
reference points, called targeted Pareto points, should be used
to construct the accuracy measure. Since the analytical Pareto
front is known, one can find the targeted Pareto point, Ztar, by
finding the intersection between the analytical Pareto front
and the reference line connecting the reference points and
the origin. The accuracy measure should then use these
targeted Pareto points and the approximate Pareto point ob-
tained from the optimization algorithms. This work makes use
of the Inverted Generalized Distance (IGD) measure given by

IGD P;Ztarð Þ ¼ 1

jZtarj ∑
jZtar

i¼1
min
Pj

j¼1
d zi; pið Þ ð11Þ

where d (zi, pi) = || zi, pi ||2. The IGDmetric measures both the
convergence to the analytical Pareto front and the diversity of
the Pareto solutions. The smaller the value of the IGD, the
better the approximated Pareto solution.

4.2.2 Hypervolume (Zitzler and Thiele 1999)

For the WFG suite of test cases, the analytical Pareto front is
often difficult to obtain. It is even more difficult to uniformly
distribute the analytical Pareto solution on this analytical
Pareto front. For this reason, a metric that does not require
the analytical Pareto front to be known is used for the WFG
test suite. Hypervolume measures the size of the objective
function space dominated by solutions S and bounded by zr,
where zr is a reference point dominated by all Pareto-optimal
solutions. The hypervolume is computed as

Table 1 Characteristics of DTLZ and WFG test problems

Test problem Properties

DTLZ1 Linear, multi-modal

DTLZ2 Concave

DTLZ3 Concave, multi-modal

DTLZ4 Concave, biased

WFG1 Mixed, biased

WFG2 Convex, disconnected, multi-modal, non-separable

WFG3 Linear, degenerate, non-separable

WFG4 Concave, multi-modal

WFG5 Concave, deceptive

WFG6 Concave, non-separable

WFG7 Concave, biased

WFG8 Concave, biased, non-separable

WFG9 Concave, biased, multi-modal, deceptive, non-separable
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HV Sð Þ ¼ Vol x∈S f 1 xð Þ; zr1
	 
�… f M xð Þ; zrM

	 
� � ð12Þ

where Vol(·) is the Lebesgue measure. A larger value of HV
indicates a better converged and more diversified solution set.

The reference point used for each test problem is given in
Table 2. The HV is normalized to [0,1] by diving by

z ¼ ∏M
i¼1z

r
i . For three to 10-objective test problems, the exact

HVis calculated using theWFG algorithm (While et al. 2012).
For test problems with the number of objectives greater than
10, the HV is approximated using Monte Carlo sampling
(Bader and Zitzler 2011b). The sampling size was held con-
stant, as recommended, at 10,000 (Bader and Zitzler 2011b).

4.3 Compared algorithms

The proposed NSDE-R algorithm is compared to two other
state-of-the-art, popular, and powerful many-objective optimi-
zation algorithms: NSGA-III (Deb and Jain 2014) and the
MOEA/DD (Li et al. 2015). They have been shown to outper-
form several indicator-based and other decomposition-based
many-objective optimization algorithms. The basic principles
of operation for these two algorithms are given below.

NSGA-III (Deb and Jain 2014) It is an upgraded version of the
popular NSGA-II algorithm. NSGA-III uses the same crossover
and mutation operators as NSGA-II, but makes use of reference
points to preserve diversity using niche preservation.

MOEA/DD (Li et al. 2015) It is an extension of the MOEA/D
algorithm. Unlike the original algorithm that only uses decom-
positionmethods, theMOEA/DD algorithm alsomakes use of
domination principle and was shown to converge faster to the
analytical Pareto front for several test functions.

4.4 Parameter settings

The parameters used for each algorithm and each test problem
are presented in this section. Table 3 shows the number of
generations and the population sizes for the test problems.
The number of reference points is equal to the population size.
Each algorithm was run 20 times on each test problem.

The algorithmic parameter settings for each algorithm are
given below.

NSGA-III The crossover probability, pc, and mutation probabil-
ity pm are 1.0 and 1/N respectively. The crossover distribution
indexηc and mutation distribution index ηm are set to 30 and
20 respectively.

MOEA/DD The crossover and mutation parameters are the
same as for the NSGA-III algorithm. The penalty parameter
θ in PBI is set to 5.0. The neighborhood size, T, is set to 20 and
the probability, δ, used to select in the neighborhood is chosen
to be 0.9.

NSDE-R The scaling factor F in (4) is held constant at 0.5 and
the crossover probability Cr is also held constant at 0.5. Both
the “rand/1/bin” and “donor3” mutation operators will be
investigated.

It can be observed that the NSDE-R algorithm requires
significantly fewer parameters to be specified. Since the
choice of mutation donor does not affect the number of pa-
rameter needed, the NSDE-R algorithm requires at most two
parameters, as opposed to four required by NSGA-III and
seven required by MOEA/DD. In the upcoming sections, the
DE algorithm using “rand/1/bin” mutation donor will be re-
ferred to as NSDE-R, while the DE algorithm using the “do-
nor3” mutation operator will be referend to as NSDE-D3.

5 Empirical results and discussions

5.1 Performance comparisons using DTLZ test suite

A comparison of the four algorithms on the four DTLZ test
problems having a different number of objectives is presented.
As previously mentioned, each algorithm was run 20 times on
each test problem. The best, average, and worst case IGD
values from the 20 runs are presented in Table 4. The shaded,
bold cells indicate that the algorithm is superior to others for
that particular test problem.

Table 3 Population size and generations for test problems

Number of generations

M Population size DTLZ {1,2} DTLZ {3,4} WFG

3 92 300 1000 390

5 212 500 1000 650

8 156 800 1000 1040

10 276 1000 1500 1300

15 136 1500 2000 1950

Table 2 Hypervolume reference point used for each problem

Test problem Reference point

DTLZ1 (1.0,…, 1.0)T

DTLZ2 to DTLZ4 (2.0,…, 2.0)T

WFG1 to WFG9 (3.0,…, 2.0 ×M + 1.0)T
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Table 4 shows that the NSDE family of algorithms is con-
sistently on par if not better than the NSGA-III and
MOEA/DD algorithms. For certain test cases, such as lower
dimensional DTLZ1, the IGD values for the NSDE family
differ by an order of magnitude from the NSGA-III and
MOEA/DD. Moreover, Table 4 shows that NSDE-R consis-
tently outperforms NSDE-D3 for DTLZ1 and DTLZ3, where-
as NSDE-D3 outperforms NSDE-R in DTLZ2 and DTLZ4
test cases. This suggests that the “rand/1/bin”mutation is more
robust for a multi-modal test problem and the “donor3” mu-
tation is more robust for a concave test problem. Although
NSDE-D3 outperforms NSDE-R for DTLZ2 and DTLZ4, it
is not by much, as their performance measures are very sim-
ilar. It can also be seen that the NSGA-III consistently per-
forms better than the other three algorithms for the DTLZ4
problems which are of the concave, biased type. For the

DTLZ2 and DTLZ4 problems, the IGD values of all algo-
rithms are of the same order of magnitude.

Table 5 shows the percent of total DTLZ test cases
for which a particular algorithm was able to outperform
the others. It can be seen that the NSDE family per-
forms better than the other algorithms in a larger set
of test cases. In the best case, average, and worst case
scenario, the NSDE family outperforms the other two in
75%, 60%, and 55% of the test cases, respectively. It
can be deduced that for the DTLZ test cases, the “rand/
1/bin” mutation is more robust than the “donor3” muta-
tion. If the “donor3” results are omitted, the “rand/1/bin”
mutation outperforms the others in 62% of the test runs.

Figure 4 a shows the variation of the IGD metrics obtained
using the four algorithms for a random 10-objective DTLZ1
test problem run. It can be seen that at the beginning, the

Table 4 Best, average, and worst IGD values for the DTLZ test problems. Best performance is bold-italic

M NSDE-R NSDE-D3 NSGA-III MOEA/DD M NSDE-R NSDE-D3 NSGA-III MOEA/DD

DTLZ1 3 2.204E−04 7.516E−04 7.876E−03 1.115E−02 DTLZ3 3 1.858E−03 1.023E+00 6.834E−02 3.993E−02
3.044E−04 3.253E−01 2.001E−02 1.292E−02 5.210E−02 7.651E+00 3.889E−01 1.408E−01
4.552E−04 8.697E−01 3.741E−02 2.507E−02 9.995E−01 2.320E+01 1.048E+00 6.774E−01

5 3.904E−05 1.414E−03 8.043E−03 3.287E−02 5 5.664E−03 2.108E−02 2.899E−01 8.287E−02
7.744E−05 6.695E−02 2.081E−02 3.357E−02 6.554E−03 6.829E+00 4.677E−01 1.026E−01
1.529E−04 2.628E−01 5.658E−02 3.456E−02 7.628E−03 2.253E+01 1.113E+00 1.622E−01

8 4.860E−03 7.157E−03 1.154E−02 7.061E−02 8 1.262E−01 2.024E+00 4.585E−01 1.546E−01
1.220E−02 2.890E−01 1.768E−02 7.249E−02 1.318E+00 9.243E+00 1.141E+00 2.724E−01
7.219E−02 1.375E+00 4.207E−02 7.451E−02 5.361E+00 3.495E+01 3.205E+00 1.144E+00

10 5.684E−03 7.599E−03 8.645E−03 9.255E−02 10 6.956E−02 3.594E−02 1.788E−01 8.240E−02
8.938E−03 3.058E−01 1.476E−02 9.379E−02 4.096E−01 3.353E+00 2.705E−01 9.451E−02
6.374E−02 8.825E−01 3.436E−02 9.539E−02 2.388E+00 8.870E+00 3.994E−01 1.071E−01

15 5.456E−03 4.052E−02 9.922E−03 1.559E−01 15 2.242E−02 2.019E+00 1.943E−01 6.121E−02
1.841E−01 4.936E−01 2.640E−02 1.629E−01 2.858E−01 8.114E+00 5.680E−01 8.931E−02
2.850E+00 1.194E+00 1.241E−01 1.698E−01 2.626E+00 1.306E+01 1.430E+00 2.737E−01

DTLZ2 3 2.759E−03 2.202E−03 4.271E−03 3.606E−02 DTLZ4 3 1.360E−03 1.116E−03 8.247E−04 3.578E−02
3.356E−03 2.694E−03 6.223E−03 3.680E−02 1.681E−03 1.323E−03 2.405E−01 3.617E−02
3.865E−03 3.085E−03 1.604E−02 3.729E−02 2.052E−03 1.736E−03 5.332E−01 3.687E−02

5 5.181E−03 6.307E−03 1.360E−02 5.312E−02 5 5.771E−03 4.883E−03 4.740E−03 5.299E−02
6.147E−03 6.898E−03 1.783E−02 5.372E−02 6.512E−03 5.487E−03 6.902E−03 5.358E−02
7.251E−03 7.665E−03 3.731E−02 5.485E−02 7.243E−03 6.088E−03 8.678E−03 5.431E−02

8 2.190E−02 1.735E−02 3.417E−02 3.652E−02 8 4.054E−02 2.670E−02 2.113E−02 3.813E−02
2.470E−02 2.039E−02 4.181E−02 3.775E−02 4.378E−02 3.027E−02 2.446E−02 4.145E−02
2.765E−02 2.213E−02 5.358E−02 3.925E−02 4.800E−02 3.414E−02 2.726E−02 4.438E−02

10 2.622E−02 2.300E−02 4.846E−02 3.543E−02 10 3.890E−02 3.038E−02 2.215E−02 3.834E−02
2.844E−02 2.512E−02 5.452E−02 3.629E−02 4.123E−02 3.176E−02 2.625E−02 4.022E−02
3.038E−02 2.694E−02 6.513E−02 3.722E−02 4.338E−02 3.329E−02 2.880E−02 4.188E−02

15 1.602E−02 1.376E−02 5.761E−02 1.294E−02 15 1.992E−02 1.918E−02 2.056E−02 1.418E−02
1.770E−02 1.490E−02 6.467E−02 1.485E−02 2.143E−02 1.990E−02 2.309E−02 1.653E−02
1.952E−02 1.593E−02 8.157E−02 1.625E−02 2.298E−02 2.103E−02 2.510E−02 1.797E−02
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convergence rate of the NSDE-R is comparable to that of
MOEA/DD. However, the NSDE-R algorithm not only main-
tains its higher convergence rate, but also arrives at a much
lower IGD value than the other three algorithms. The plateau
in IGD metric experienced by the MOEA/DD and the NSDE-
D3 algorithms seen here and also in (Deb and Jain 2014)
indicates convergence to a local Pareto front, whereas the
NSDE-R and NSGA-III algorithms are able to escape this
local Pareto front.

Figure 4 b shows the IGD convergence for the DTLZ2
test problem. It can be seen that the IGD values of all
four algorithms continually decreases. DTLZ2 is a con-
cave problem with no local Pareto front. Again the IGD
values of NSGA-III and MOEA/DD follow similar pat-
tern as the one presented in (Deb and Jain 2014).
Figure 4 b shows that performances of NSDE-R and
NSDE-D3 are almost indistinguishable from each other
for this test case.

Figure 4 b shows the IGD convergence for a 10-
objective DTLZ4 run. It can be seen that the IGD of all
four algorithms is monotonically decreasing as it did for
the DTLZ2 test problem. It should be noted that both
DTLZ2 and DTLZ4 are concave test problems, and that
DTLZ3 would have similar behavior to DTLZ1 test prob-
lem as they are both multi-modal. It can be seen that the
NSDE family of algorithms consistently leads to similar
IGD values if not lower. They also feature a higher con-
vergence rate than the NSGA-III and MOEA/DD
algorithms.

Having assessed the convergence to the analytical Pareto
front, the diversity of the Pareto solutions obtained using the
four algorithms is now investigated.

Figure 5 shows the parallel value plot obtained using the
four algorithms on a random run of a 10-objective DTLZ1 test
problem. It can be seen that the NSDE-R and NSGA-III are
both able to find the minimum and maximum values of each
objective. The NSDE-D3 and MOEA/DD, however, were not
able to find the limits of each objective function. Comparing
Fig. 5a and Fig. 5b it can be seen that the “donor3” mutation
does not perform well for a multi-modal test function. Similar
conclusion can be made about the MOEA/DD algorithm by
comparing Fig. 5b and Fig. 5d. Figure 5 shows that NSDE-R
and NSGA-III are able to converge well to the analytical
Pareto front while maintaining diversity. This is also evident
in the IGD values given in Table 5.

The parallel value plot obtained for a random run of a 15-
objective DTLZ3 test problem is shown in Fig. 6. The DTZL3
problem combines the multi-modal feature of DTLZ1 and the
concave property of DTLZ2.

Figure 6 a shows that the NSDE-R algorithm is again able
to both converge well and maintain solution diversity for a
high dimensional, multi-modal, concave problem. The
NSDE-D3, NSGA-III, and MOEA/DD all fail to fully con-
verge and preserve diversity for this challenging test problem.
This reaffirms that NSDE-R can outperform the other algo-
rithms in a broad range of test problems that have various
properties, whereas the NSDE-D3 performs well only on con-
cave problems.

Figure 7 shows the parallel value plot obtained using
the four algorithms on a random run of a 10-objective
DTLZ4 test problem. All four algorithms were able to
find the maximum and minimum values of each objec-
tive. It can be seen that both the “donor3” mutation and
MOEA/DD perform well for concave test problems. For
the DTLZ4 problem, all four algorithms produced even-
ly distributed solutions with MOEA/DD having the most
uniformly distributed solutions.
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Fig. 4 Convergence histories: variations of IGD with the four algorithms for a random 10-objective run of a DTLZ1 test problem, b DTLZ2 test
problem, and c DTLZ4 test problems

Table 5 Percent of DTLZ cases that each algorithm outperforms others
(best performance is bold-italic)

NSDE-R NSDE-D3 NSGA-III MOEA/DD

Best 50 25 20 5

Average 35 25 15 25

Worst 25 30 25 20
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5.2 Performance comparisons on the WFG test suite

The WFG test suite combines several properties of ob-
jective function space (non-separability, multi-modality,
biasing) into a single test problem, making it very diffi-
cult for algorithms to obtain well-converged and well-
distributed Pareto solutions.

A comparison of the four algorithms tested on the
nine WFG test problems having a different number of
objectives is presented. As previously mentioned, each
algorithm was run 20 times on each test problem. The
best, average, and worst case HV values from the 20
runs are presented in Table 6. The shaded, bold cells
indicate that the algorithm is superior to others for that
particular test problem.

WFG1 test case investigates the algorithms’ perfor-
mance for biased and mixed Pareto fronts. It can be seen
that for lower dimensional WFG1 problems, the NSGA-III
algorithms, performs best, but for higher dimensional
problems, the NSDE-D3 algorithm performs better. It
should be noted that although NSGA-III performs well
for lower dimensional problems, the performance of the
NSDE-D3 is also just as good. The NSDE-R, however, is
not able to cope with the difficulties of the WFG1 test
function. It should be mentioned however, that the other
algorithms are only slightly better.

WFG2 test case investigates the algorithms’ ability to cope
with convex, disconnected, multi-modal, and non-separable
problems. The two DE algorithms perform best for the
WFG2 problem. For lower dimensional problems, the perfor-
mance of NSDE-R is comparable to that of NSDE-D3, but for
higher dimensional problems, the NSDE-R performs signifi-
cantly better.

WFG3 test case represents a connected version of
WFG2. Its features are linear, degenerate, and non-separa-
ble. For this problem, the NSDE-D3 performs better for
lower dimensional problems, while NSGA-III performs
better for higher dimensional problems. The NSGA-III al-
gorithm is more robust for the WFG3 test problem. The
NSDE-R algorithm is the least robust for the WFG3 test
case. This suggests that the “rand/1/bin” mutation is not
ideal for degenerate type problems.

WFG4 to WFG9 test cases all have a hyperelliptic
Pareto front with radii ri = 2i, where i∈{1…, M}. They
are all concave problems featuring additional properties
given in Table 1. The NSDE-D3 algorithm performs best
on the WFG4 test problem, which features a concave,
multi-modal space. The HV values for most algorithms
are slightly below that of NSDE-D3 algorithm, but are
still comparable.

The WFG5 test problem features a concave, deceptive
landscape. The NSGA-III performs significantly better than
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Fig. 5 Parallel value plots obtained for a random run of a 10-objective DTLZ1 test problem using a NSDE-R, b NSDE-D3, c NSGA-III, and d
MOEA/DD
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Fig. 6 Parallel value plots obtained for a random run of a 15-objective DTLZ3 test problem using a NSDE-R, b NSDE-D3, c NSGA-III, and d
MOEA/DD
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the other three algorithms for theWFG5 test function. The HV
values for the NSGA-III are significantly and consistently
higher.

WFG6 test case investigates the algorithms’ ability to
deal with concave and non-separable problem. The
NSDE-D3 algorithm consistently performs better than
the other three algorithms. The HV values of NSDE-
D3 algorithm are significantly higher than those of the
other three algorithms. The NSDE-R algorithm performs
slightly worse than the NSDE-D3 algorithm. It performs
slightly, but consistently better than the NSGA-III and
MOEA/DD algorithms, especially for higher dimensional
problems. This suggests both DE mutations are able to
cope with non-separable problems.

WFG7 test case investigates the algorithms’ abilities to
deal with concave and biased problems. NSDE-D3 again per-
formed better for most objectives. For five- and eight-
objective problems, where the NSGA-III was better, the HV
values of NSDE-D3 are on par with those for the NSGA-III
algorithm. This shows that for the WFG7 test functions, the
NSDE-D3 is significantly more robust. The NSDE-R
preformed consistently better than the MOEA/DD algorithm,
but was less robust than NSGA-III for higher dimensional
problems. This suggests that the “rand/1/bin” mutation is not
able to cope with biased problems. This was also seen in the
case of the DTLZ4 test case.

WFG8 test case investigates algorithms’ ability to cope
with concave, biased, non-separable problems. The NSGA-
III algorithm performed consistently better than the other three
algorithms. The HV values of the NSGA-III were also consis-
tently and significantly higher than those of the other algo-
rithms. The HV values of NSDE-D3 algorithm were only
slightly lower than those of the NSGA-III algorithm and con-
sistently higher than those of the MOEA/DD algorithm. The
NSDE-R algorithm was again less robust than NSDE-D3 due
to the biased nature of the test case.

In WFG9 test case, the NSDE-D3 performed consistently
better. However, the HV values of the NSGA-III were also on
par with NSDE-D3 for most objectives cases that were run.
The HV values of the NSDE-R were also comparable to those
of the NSDE-D3, but only for lower dimensional problems.

The NSDE-R algorithm performed consistently better than the
MOEA/DD algorithm, but slightly worse than the NSGA-III
algorithm. This is again due to the biased characteristic of the
WFG9 test case.

Table 7 shows by how many percent of the total WFG test
problems was a particular algorithm able to outperform the
others. For each case, “best-case,” “averaged-case,” and
“worst-cases,” there were a total of 45 test instances (# test
problems × # of objectives). Meaning, for each of the nine
WFG test cases, the percent was calculated over 45 samples. It
can be seen that the “best-case scenario”, the NSDE-D3 algo-
rithm performs best in 56% of the test cases. In the “averaged-
case” scenario, the NSDE-D3 is successful in 56% of the test
cases. In the “best-case” and “averaged-case”, the success rate
of NSDE-D3 is significantly higher than that of the other three
algorithms. In the “worst-case” scenario, the NSDE-D3 is
again the best performing with a success rate of 44%.

It is interesting to note that, unlike in the DTLZ comparison
(Table 5), the NSDE-R algorithm consistently underperforms
for the WFG suite. This is primarily because the “rand/1/bin”
mutation is unable to cope with the biased characteristic pres-
ent in the large number of WFG test cases. The “donor3”
mutation however performs significantly better in a large
number of WFG test cases.

5.3 Performance comparisons of optimization
algorithms on the DTLZ and WFG test suites

In the previous sections, Tables 4 and 6 showcased the perfor-
mance of each algorithm on each test problem. This section
presents amore condensed comparison between algorithms over
all test cases. It presents the success rate of one algorithm over
another over all test suites. This method of comparison provides
a more conclusive result when comparing algorithms.

Table 8 shows the success rate for the four algorithms on
the DTLZ test suite. It shows that the NSDE-R is comparable
to NSDE-D3, with both having a success rate of almost 50%
over each other. The NSDE-R algorithm is better in 72% and
65% of the DTLZ family of test problems over the NSGA-III
and MOEA/DD algorithms, respectively. It can be deduced
that the NSDE-R algorithm is more robust for the DTLZ test
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Fig. 7 Parallel value plots obtained for a random run of a 10-objective DTLZ4 test problem using a NSDE-R, b NSDE-D3, c NSGA-III, and d
MOEA/DD
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suite as it is consistently better in more than 50% of the test
problems over the other algorithms.

Table 9 shows the success rate of the four algorithms
on the WFG test suite. The previously robust NSDE-R
algorithm is the least robust on the WFG suite. The
NSDE-D3 is better than NSDE-R in 80% of the test
functions. The NSDE-D3 performs better in 61% and
79% of the WFG test problems over the NSGA-III
and MOEA/DD algorithms, respectively. For the WFG
family of test problems, NSDE-D3 has shown to be the
most robust algorithm.

5.4 Reference points to aid
multi-criteria-decision-making

Often in multi-criteria-decision-making (MCDM), the
user is interested in finding solutions in a particular
region of the Pareto front. It was previously mentioned
that the reference point based approach can be used to
guide the search to particular regions of interest. This
section presents the results of reference point assisted
MCDM on a three-objective and 15-objective DTLZ1
and DTLZ4 test problems obtained using the NSDE-R
algorithm.

Figure 8 a shows the distribution of the reference
points for three-objective problems. These reference
points are biased towards the extreme values of each
objective. Figure 8 b and c show the converged Pareto
front obtained using these reference points and the
NSDE-R algorithm. It can be seen that the search for
both the multi-modal and concave problem is driven to
the region of the reference points.

Figure 9 shows results of the reference point guided
approach on 15-objective test problems. Figure 9 a shows
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Table 7 Percent of nine WFG test cases that each algorithm performs
best in (best performance is bold-italic)

NSDE-R NSDE-D3 NSGA-III MOEA/DD

Best 7 56 27 11

Average 9 56 29 7

Worst 11 44 40 4

Table 8 Success rate of each algorithm over another for the four DTLZ
test problems

NSDE-R NSDE-D3 NSGA-III MOEA/DD

NSDE-R – 52 72 65

NSDE-D3 48 – 47 53

NSGA-III 28 53 – 48

MOEA/DD 35 47 52 –

Many-objective differential evolution optimization based on reference points: NSDE-R 1467
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the distribution of the reference points on a unit hyper-
plane. The reference points for this problem were biased

towards the 15th objective. Figure 9 b and c show the
distribution obtained on the DTLZ1 and DTLZ4 test prob-
lems. It can be seen that both algorithms were able to find
the minimum and maximum values for each objective. For
the DTLZ1 problem, the NSDE-R algorithm was able to
drive the search in the region of the reference points and
was also able to converge in that particular region. For the
DTLZ4 problem, NSDE-R was again able to drive the
search towards the reference points. It can also be seen
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Fig. 8 Pareto fronts obtained using biased placement of reference points a
for a three-objective test problem: bDTLZ1 problem and cDTLZ4 problem

Table 9 Success rate of each algorithm over another for the nine WFG
test problems

NSDE-R NSDE-D3 NSGA-III MOEA/DD

NSDE-R – 20 23 55

NSDE-D3 80 – 61 79

NSGA-III 77 39 – 85

MOEA/DD 45 21 15 –
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placement of reference points a for 15-objective test problem: b DTLZ1
problem and c DTLZ4 problem



from Fig. 9c that the algorithm was able to converge not
only to the region, but also to the analytical Pareto front.

Table 10 shows the IGD values obtained using NSDE-R
on the two test problems for two different numbers of objec-
tives. As previously stated, the IGD metric measures both
convergence and diversity of a solution. It can be seen that
the IGD values are relatively low, indicating that well-
converged and well-diversified Pareto sets were reached in
these test cases.

5.5 Randomly varying algorithm properties

All evolutionary algorithms are heavily influenced by the
parameters used by them. Some of these properties are given
in Section 4,D. It is very well known that the values of F and
Cr greatly impact the search process of differential evolution
algorithms. Often, users of the algorithm select these param-
eters either based on their experience or by trial-and-error
(Storn and Price 1997). Others (Pedersen 2012) have pro-
posed using meta-optimization to determine the values for
these parameters. Some works (Das et al. 2008; Konar et al.
n.d.) have proposed randomly varying the algorithm param-
eters within a specified bound. It was previously shown
(Inclan and Dulikravich 2017) that for single-objective opti-
mization, randomly varying these parameters significantly
improves convergence. The effects of this adaption on the
NSDE-R and NSDE-D3 for many-objective problems are
investigated here.

The scaling factor F and crossover probability Crwill both
vary uniformly within [0.3, 0.7] and [0.3, 0.7], respectively.
The effects of random variation of the DE parameters were
investigated on both the “rand/1/bin” and “donor3” mutation
schemes. The algorithms were again run on the DTLZ test
suite. The algorithms’ number of runs, number of generations,

population size, and number of reference points were kept the
same as for the previous DTLZ runs.

Table 11 shows the best, average, and worst case IGD
values for the DE algorithms with randomly varying algo-
rithm properties. The IGD values of NSDE-R and NSDE-
D3 refer to the previous case where F and Cr were both set
at 0.5, while the NSDE-R* and NSDE-D3* are runs with
randomly varying parameters. It can be seen that the
NSDE-R and NSDE-D3 outperform their stochastic counter-
parts for the DTLZ1 and DTLZ3 problems, suggesting that
the chaotic search pattern caused by random values of the
parameter should be avoided for multi-modal problems. The
values of NSDE-D3* performs well for the concave problems
such as DTLZ2 and DTLZ4. That being said, the original
NSDE-R and NSDE-D3 both produce similar results to their
stochastic versions for concave problems.

It can again be seen that the NSDE-R algorithm is more
robust than the other three algorithms since its performance
is on par, if not better, for all test problems studied here. It
is recommended that for many-objective problems, the DE
parameters not be varied randomly each generation, espe-
cially for multi-modal functions, as this leads to an overly
chaotic search. The cases with static values of algorithm
parameters produce well-converged results in average and
in worst case scenarios.

5.6 Performance of NSDE-R on problems with more
objectives

It was previously shown that the NSDE-R algorithm is able to
converge and preserve diversity in most of the test problems
analyzed. The ability of NSDE-R to converge for problems
with more objectives was then investigated on a 20-objective
DTLZ1, DTLZ2, DTLZ3, and WFG4 test problems. These
problems feature linearity, concavity, and multi-modality in
their objective functions. The NSDE-R algorithm was run
for 1500 generation of each of these test problems with a
population size and reference point set size of 230.

The obtained Pareto front in parallel value plot format is
shown in Fig. 10. It should be noted that the Pareto points
plotted are not normalized and that they represent the actual
value of the objective functions. It can be seen in Fig. 10a that
for the linear, multi-modal DTLZ1 test case, the Pareto set
obtained using NSDE-R are not only diverse, but are also well
converged. The convergence is seen in the value of the objec-
tive functions, as the Pareto front of the DTLZ1 is a half-unit
hyperplane.

The NSDE-R algorithm was also able to preserve diversity
and converge well for the concave DTLZ2 test problem. The
Pareto set of the DTLZ2 problem is a unit hypersphere.
Figure 10 b shows that the NSDE-R algorithm is able to find
the minimum and maximum values of each objective.

Table 10 Best, average, and worst IGD values obtained using biased
reference points

M Max. gen NSDE-R

DTLZ1 3 800 1.350E−03
1.490E−03
6.700E−02

15 1500 1.883E−01
2.420E−01
4.060E−01

DTLZ4 3 300 1.850E−03
1.890E−03
4.080E−03

15 1500 4.850E−01
5.110E−01
5.590E−01

Many-objective differential evolution optimization based on reference points: NSDE-R 1469



Figure 10 c shows the Pareto front obtained for the con-
cave, multi-modal DTLZ3 test problem. The Pareto sets for
the DTLZ2 and DTLZ3 test cases were the same.

It can be seen that even in this difficult test problem, the
NSDE-R is not only able to converge to the analytical Pareto
front but also preserved population diversity. The proposed
algorithm was able to find minimum and maximum values
of each objective for all three test problems and therefore
can be used for the estimation of the ideal point and the
Nadir point.

The WFG4 test case also has the same properties as the
DTLZ3 test function. The Pareto set of this problem is a
hyperellipse. Figure 10 d shows that the NSDE-R algorithm
was again able to converge while preserving diversity for this
challenging problem, and that it performed well for 20 simul-
taneous objectives over a range of problem types. It can be
seen that the maximum and minimum values of the Pareto

front found by NSDE-R define the hyperelliptic Pareto front
of the WFG4 problem.

6 Crashworthiness design of vehicles
for complete trade-off front

The crashworthiness problem was first described in (Liao
and Li 2008) and aims at the optimization of the frontal
structure of a vehicle. The design variables are the rein-
forced members around the frontal structure and the mass
of the vehicle, deceleration during frontal crash, and toe-
board intrusion in the offset-frontal crash were the three
objective functions, all of which were to be minimized.
The deceleration is directly proportional to biomechanical
injuries cause to the occupants, while the toe-board intru-
sion accounts for the structural integrity of the vehicle. In

Table 11 Best, average, and worst IGD values for the DTLZ test problems. Best performance is bold-italic

M NSDE-R NSDE-D3 NSDE-R* NSDE-D3* M NSDE-R NSDE-D3 NSDE-R* NSDE-D3*

DTLZ1 3 2.204E−04 7.516E−04 7.605E−04 7.758E−04 DTLZ3 3 1.858E−03 1.023E+00 3.069E−02 1.999E+00

3.044E−04 3.253E−01 1.731E−01 3.206E−01 5.210E−02 7.651E+00 2.728E+00 8.088E+00

4.552E−04 8.697E−01 5.810E−01 8.698E−01 9.995E−01 2.320E+01 6.749E+00 1.751E+01

5 3.904E−05 1.414E−03 5.926E−04 1.565E−03 5 5.664E−03 2.108E−02 7.385E−03 1.999E+00

7.744E−05 6.695E−02 1.389E−02 1.376E−01 6.554E−03 6.829E+00 1.113E−01 3.376E+00

1.529E−04 2.628E−01 2.634E−01 4.728E−01 7.628E−03 2.253E+01 1.001E+00 6.275E+00

8 4.860E−03 7.157E−03 5.124E−03 6.036E−03 8 1.262E−01 2.024E+00 1.506E−01 3.160E+00

1.220E−02 2.890E−01 1.747E−02 3.991E−01 1.318E+00 9.243E+00 1.191E+01 1.289E+01

7.219E−02 1.375E+00 2.389E−01 1.419E+00 5.361E+00 3.495E+01 2.673E+01 3.931E+01

10 5.684E−03 7.599E−03 5.799E−03 6.823E−03 10 6.956E−02 3.594E−02 1.050E+00 8.475E−02
8.938E−03 3.058E−01 1.495E−02 2.522E−01 4.096E−01 3.353E+00 8.661E+00 3.695E+00

6.374E−02 8.825E−01 7.095E−02 8.456E−01 2.388E+00 8.870E+00 1.782E+01 1.623E+01

15 5.456E−03 4.052E−02 5.625E−03 5.426E−03 15 2.242E−02 2.019E+00 2.157E+00 3.401E+00

1.841E−01 4.936E−01 6.346E−02 3.918E−01 2.858E−01 8.114E+00 1.046E+01 1.025E+01

2.850E+00 1.194E+00 3.317E−01 8.395E−01 2.626E+00 1.306E+01 3.519E+01 2.015E+01

DTLZ2 3 2.759E−03 2.202E−03 3.008E−03 2.447E−03 DTLZ4 3 1.360E−03 1.116E−03 1.498E−03 1.138E−03
3.356E−03 2.694E−03 3.343E−03 2.805E−03 1.681E−03 1.323E−03 1.707E−03 1.394E-03

3.865E−03 3.085E−03 3.899E−03 3.278E−03 2.052E−03 1.736E−03 2.098E−03 1.547E−03
5 5.181E−03 6.307E−03 5.809E−03 6.694E−03 5 5.771E−03 4.883E−03 5.506E−03 5.179E−03

6.147E−03 6.898E−03 6.722E−03 7.075E−03 6.512E−03 5.487E−03 6.828E−03 5.730E−03
7.251E−03 7.665E−03 7.430E−03 7.813E−03 7.243E−03 6.088E−03 7.832E−03 6.469E−03

8 2.190E−02 1.735E−02 2.029E−02 1.756E−02 8 4.054E−02 2.670E−02 3.809E−02 2.548E−02
2.470E−02 2.039E−02 2.207E−02 1.963E−02 4.378E−02 3.027E−02 4.176E−02 2.862E−02
2.765E−02 2.213E−02 2.407E−02 2.207E−02 4.800E−02 3.414E−02 4.514E−02 3.103E−02

10 2.622E−02 2.300E−02 2.375E−02 2.214E−02 10 3.890E−02 3.038E−02 3.717E−02 2.866E−02
2.844E−02 2.512E−02 2.566E−02 2.334E−02 4.123E−02 3.176E−02 3.910E−02 2.967E−02
3.038E−02 2.694E−02 2.778E−02 2.479E−02 4.338E−02 3.329E−02 4.044E−02 3.077E−02

15 1.602E−02 1.376E−02 1.562E−02 1.215E−02 15 1.992E−02 1.918E−02 1.948E−02 1.801E−02
1.770E−02 1.490E−02 1.763E−02 1.365E−02 2.143E−02 1.990E−02 2.056E−02 1.926E−02
1.952E−02 1.593E−02 1.964E−02 1.508E−02 2.298E−02 2.103E−02 2.217E−02 2.050E−02
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(Liao and Li 2008), a design of experiments using Latin
Hypercube and a full non-linear FEA analysis was per-
formed and a stepwise regression model was fitted to the
data. The optimization in this work and in (Deb and Jain
2014) was performed using this stepwise regression surro-
gate model. For this three-objective test problem, the same
algorithm settings were used as for other three-objective
problems. The total number of generations was set at 1000.

Figure 11 shows the Pareto front obtained using the four
algorithms after 1000 generations. It can be seen that the
NSDE-R and NSDE-D3 algorithms both produce uniform-
ly distributed Pareto fronts, while the MOEA/DD produces
the least diverse Pareto set. Comparing NSDE algorithms
and the NSGA-III, it can be seen that both NSDE algo-
rithms outperform the NSGA-III, since in Fig. 11c, a re-
gion of the Pareto front is shared by more than one design.

7 Conclusion

This work introduced two differential evolution algo-
rithms for many-objective optimization. The proposed
DE algorithms have been tested on problems from the
DTLZ and WFG test suites with the number of simul-
taneous objectives ranging from three to 20. Both dif-
ferential evolution algorithms use reference point based
niching to preserve diversity among Pareto solutions.
The proposed algorithms were compared against two
state-of-the-art algorithms, NSGA-III and MOEA/DD.
The following conclusions can be drawn from the per-
formances on each test suite.

DTLZ It was seen that the differential evolution using “rand/1/
bin” mutation performed best on the DTLZ test suite. The
NSDE-R has shown to have a higher convergence rate than
the other algorithms, converged well to the analytical Pareto
front and was able to maintain diversity in the Pareto solution.
The NSDE-D3 algorithm was able to converge well for con-
cave, uni-modal problems, but failed for multi-modal test
functions. The NSDE-R, however, performed well for both
uni-modal and multi-modal problems. The NSDE-R algo-
rithm performed better than NSGA-III in 72% of the test
problems and better than MOEA/DD in 65% of the test prob-
lems. The NSDE-R algorithm was shown to be more robust
when applied to the DTLZ suite of test problems.

WFG For this set of test problems, NSDE-D3 was shown to be
more robust. It was shown that the NSDE-D3 algorithm per-
forms better for higher dimensional problems, while its perfor-
mance for lower dimensional problems is on par with the other
three algorithms. It was again observed that the NSDE-D3 per-
formed well for the concave, non-separable problems, but did
not work well on the concave, biased, non-separableWFG8 test
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Fig. 10 Parallel value plots of Pareto fronts obtained using NSDE-R on a
random run of a 20-objective problems: a DTLZ1, b DTLZ2, c DTLZ3,
and d WFG4



problem. The NSDE-R algorithm was only able to solve the
WFG2 test problem and lower dimensional WFG5 problem. It
was observed that for the WFG test suite, the NSDE-R is the
least robust algorithm. The NSDE-D3 outperformed NSDE-R
in 80% of the WFG test cases. The NSDE-D3 algorithm also
outperformed the NSGA-III and MOEA/DD algorithms in
61% and 79% of the test cases respectively.

It was shown that the DE algorithms can aid in multi-
criteria-decision-making. The ability of the proposed
NSDE-R algorithms to find a preferred part of the Pareto
front was demonstrated. It was shown that the NSDE-R is
able to guide the search towards the reference point even
for high dimensional problems. This ability was showcased
on both uni-modal and multi-modal, linear and concave test
problems.

The effects of randomly varying algorithm parameters on
the performance of the DE algorithms were also investigated.
It was shown that the performance of the DE algorithm dete-
riorates for multi-modal problems when the parameters are

randomly varied. It was also noticed that the solution of the
concave DTLZ2 and DTLZ4 problems are less sensitive to the
variation in the algorithm parameters.

Finally, the performance of NSDE-R was investigated for
high dimensional problems. Its performance on multi-modal,
uni-modal, biased and concave test problemswere investigated.
Results showed that the NSDE-R algorithm is not only able to
converge well for 20-objective problems but was also able to
preserve diversity. The NSDR-R algorithm was also tested on a
practical design problem for vehicle crashworthiness.

The two proposed DE algorithms have shown to be robust
for a variety of test problems. They consistently perform better
than the state-of-the-art NSGA-III and MOEA/DD algorithms.
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