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Abstract
The time-dependent failure probability function (TDFPF) is defined as a function of the time-dependent failure probability
(TDFP) varying with the design parameters and the service time, and it is useful in the reliability-based design optimization
for the time-dependent problem. For the lack of method estimating TDFPF, the direct Monte Carlo simulation (DMCS) and an
adaptive Kriging-MCS based on Bayes formula (shorten as AK-MCS-Bay) are developed to estimate TDFPF. The DMCS is
time-consuming, but its convergent solution can be used as reference to validate other methods. In the AK-MCS-Bay, the TDFPF
is primarily transformed into the estimation of the augmented TDFP and the conditional probability density function (PDF) of
design parameters on the time-dependent failure event. Then, a single AK model is constructed to efficiently identify the failure
samples in the MCS sample pool at different service times. By using these identified failure samples, the TDFPs under different
service times can be estimated by the double-loop MCS without any extra model evaluations, and the conditional PDF of design
parameters can be also acquired by the kernel density estimation method. The numerical and engineering examples indicate the
efficiency and accuracy of the proposed method.
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1 Introduction

In many engineering fields, uncertainties widely exist in the
manufacturing process, assembling process, and service envi-
ronment, which will lead to the failure of structure or system
to be random (Hu and Du 2012; Feng et al. 2019a; Fan et al.
2019). In order to quantitatively measure the safety degree of

the structure or system involving random uncertainties, the
failure probability was proposed and then studied by many
scholars (Li 1995; Shi et al. 2017; Yun et al. 2019a).
Afterwards, the reliability-based optimization design
(RBDO) was introduced to replace the traditional determinis-
tic one (Enevoldsen and Sorensen 1994; Papadrakakis and
Lagaros 2002; Zou and Mahadevan 2006). When solving a
RBDO problem, plenty of failure probabilities of the structure
or system under various design settings are needed to be esti-
mated (Ching and Hsieh 2007; Meng et al. 2018; Yuan 2013;
Feng et al. 2019b). The failure probability function (FPF)
Pf(θ), defined as the failure probability with respect to the
design parameter vector θ = (θ1, θ1,⋯, θm) where m is the
number of design parameters, is usually estimated in advance
to simplify the process of the RBDO. As pointed out in Ref.
(Yuan 2013), the RBDO problem can be decoupled into an
ordinary optimization problem if the whole FPF Pf(θ) can be
obtained in advance. In addition, by using Pf(θ), the
reliability-based sensitivity indices, such as reliability-based
Sobol’ index (Zhou et al. 2019) and reliability-based mo-
ment-independent sensitivity index (Yun et al. 2019b; Xu
et al. 2019), can be directly estimated without any extra model
evaluations. These sensitivity indices can be used for model
simplification, model validation, and optimization.
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At present, many computational methods have been devel-
oped to estimate the FPF, and they can be mainly classified
into two groups, i.e., the interpolation method and the Bayes
formula method. In the interpolation method, numerous fail-
ure probabilities at some predefined interpolation design pa-
rameter points ought to be estimated at first; then, the FPF can
be approximately obtained by different interpolation tech-
niques. For instance, Jensen (Jensen 2005) employed a linear
function to locally approximate the function log[Pf(θ)], and at
least m reliability analyses are needed to determine the corre-
sponding coefficients of the linear function. Gasser (Gasser
and Schueller 1997) adopted a quadratic function to replace
the linear function used in Jensen’s method to get a better
approximation of the function log[Pf(θ)], but the minimum
required number of reliability analyses soars to m +m(m +
1)/2. Although the interpolation method is suitable for many
mathematical and engineering problems, the total computa-
tional cost involved may be unaffordable for the practitioners
in solving some complicated engineering problems. Thereof,
Au (Au 2005) proposed the Bayes formula method so as to
reduce the total computational burden of estimating the FPF.
The key of this method is to regard the design parameters θ as
a random vector, and then the FPF Pf(θ) can be expressed as a
combination of the probability density function (PDF) of θ,
the conditional PDF of θ based on the failure event F and the
failure probability considering uncertainties of both input var-
iables and design parameters. By using a single reliability
analysis, all the three components of the FPF can be simulta-
neously estimated, and subsequently the whole FPF can be
acquired. In order to further improve the efficiency and accu-
racy of the Bayes formula method, some enhancements to the
original method were developed. For example, Ching (Ching
and Hsieh 2007) employed the maximum entropy principle to
estimate the conditional PDF of θ. Yuan (Yuan 2013) pro-
posed some weighted approaches to rewrite the failure prob-
ability and then estimated the FPF efficiently.

It should be pointed out that, in the existing researches,
the FPF is mostly independent with the time t, which there-
fore can be called time-independent FPF (TIFPF) in these
researches. However, for a large number of engineering
problems, the time t plays an important role in affecting
the performance of the structure or the system, thereof the
failure probability of a structure or system is also a func-
tion with respect to its service time te (Hu and Du 2013).
Hence, the authors of this contribution expect to propose
the concept of the time-dependent failure probability func-
tion (TDFPF) Pf(θ, te) in this paper, which can be defined
as a function of the time-dependent failure probability
(TDFP) with respect to the design parameters θ and service
time te. When the service time te is fixed at certain value t*e ,
the TDFPF P f θ; t*e

� �
can be regarded as a TIFPF. When the

design parameters are fixed at certain values θ∗, the
TDFPF Pf(θ

∗, te) can be considered as a one-dimensional
FPF with respect to its service time. If the entire TDFPF

can be obtained, the RBDO for the time-dependent prob-
lem defined in Refs. (Wang and Wang 2012; Hu and Du
2015a) can be decoupled into an ordinary optimization
problem and solved by many existing mature methods.

In order to estimate the TDFPF, the direct Monte Carlo
simulation (DMCS) is primarily proposed. In this method,
for each given design parameter point, the TDFP is estimated
by the double-loopMCS (Okuda et al. 1997), then the TDFPF
can be acquired based on the above obtained TDFPs corre-
sponding to all given design parameter points. To drastically
reduce the computational cost, an efficient computational
method by combining an adaptive Kriging-MCS (AK-MCS)
and Bayes formula (shorten as AK-MCS-Bay) is developed.
In this method, the Bayes formula is employed to transform
the TDFPF Pf(θ, te) into the form of the pre-defined PDF of θ,
the conditional PDF of θ based on the time-dependent failure
event, and the augmented TDFP considering uncertainties of
both input variables and design parameters. Next, a single AK
model is constructed to estimate the augmented TDFP at any
specific service time. By using the failure samples recognized
by AKmodel trained in the MCS sample pool, the conditional
PDF of θ can be evaluated by the kernel density estimation
(KDE) method.

The paper is outlined as follows. Section 2 introduces the
concepts of TDFP and TDFPF. Section 3 proposes the DMCS
to estimate the TDFPF. Section 4 develops the AK-MCS-Bay
for efficiently estimating the TDFPF. Section 5 employs one
mathematical example and three engineering examples to
demonstrate the accuracy and efficiency of the two proposed
computational methods. Section 6 summarizes the
conclusions.

2 Problem definition

Consider a general time-dependent limit state function Y =
G(α,β(t), t), where α ¼ α1;α2;⋯;αn1½ � represents the n1-di-
m e n s i o n a l r a n d o m v a r i a b l e v e c t o r , β tð Þ ¼
β1 tð Þ;β2 tð Þ;⋯;βn2 tð Þ� �

denotes the n2-dimensional stochastic
process vector, and t expresses the time. It is quite difficult to
deal directly with the stochastic process in time-dependent reli-
ability analysis. Thanks to the spectral representation methods,
such as expansion optimal linear estimation (EOLE) (Li and Der
Kiureghian 1993), orthogonal series expansion (OSE) (Zhang
and Ellingwood 1994), and Karhunen-Loeve expansion (KLE)
(Ghanem and Spanos 2003), the stochastic process vector β(t)
can be transformed into a function with respect to the
random variable vector ξ ¼ ξ1; ξ2;⋯; ξn3

� �
and time t, i.e.,

β tð Þ≈βe ξ; tð Þ. Therefore, the time-dependent limit state
function Y = G(α, β(t), t) can be transformed into the
form onlycontaining random variables and time, i.e.,
Y ¼ G α;β tð Þ; tð Þ≈G α;βe ξ; tð Þ; t� � ¼ g X ; tð Þ, w h e r e
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X = [X1, X2,⋯, Xn] = [α, ξ] and n = n1 + n3. According to the
transformed time-dependent limit state function g(X, t), the
TDFP Pf(te) within the time interval [0, te] can be described as

Pf teð Þ ¼ P g X ; tð Þ≤0;∃t∈ 0; te½ �f g ¼ P F teð Þf g ð1Þ

where P(⋅) denotes the probability operator, and F(te) = {X| g(X,
t) ≤ 0,∃t ∈ [0, te]} represents the time-dependent failure event.
Equation (1) indicates that the TDFP and time-dependent failure
event are both functions with respect to the service time te.

In practical engineering, the distribution types of the input
variables are usually known, and their distribution parameters,
e.g., the mean or standard deviation, should be further

designed. Let θ = (θ1, θ1,⋯, θm) be them-dimensional design
parameter vector, and the TDFP for a given θ is formulated as

Pf θ; teð Þ ¼ P F teð Þjθf g ð2Þ

In the RBDO for the time-dependent problem, numerous
TDFPs for some values of θ within the admissible region are
usually required to estimate. Meanwhile, in practice, the de-
sign service time te may be continually adjusted in different
design stages; thus, a number of TDFPs under different ser-
vice times are needed to evaluate. The quantity Pf(θ, te) as a
function of θ and te is defined as the TDFPF, which is the main
objective in this paper.

Fig. 1 The flowchart of the proposed AK-MCS-Bay for estimating the TDFPF

Fig. 2 The estimates of TDFPF Pf(θ, te) obtained by DMCS and AK-MCS-Bay for example 1

Efficient computational method based on AK-MCS and Bayes formula for time-dependent failure probability... 1375



3 Direct Monte Carlo simulation for TDFPF

The basic idea of the DMCS for estimating the TDFPF Pf(θ,
te) is to discretize the design parameters θ and service time te
in their regions [θL, θU] and [tL, tU] at first, and then the
double-loop MCS is employed to estimate the TDFP for each
discrete point. The detailed procedure of the DMCS can be
summarized as follows:

Step 1. Discretize the region [θL, θU] into Nθ points, i.e.,
θi(i = 1, 2,⋯, Nθ), and the region [tL, tU] into Nt

points, i.e., tj(j = 1, 2,⋯,Nt).
Step 2. For each discrete point {θi, tj}(i= 1, 2,⋯,Nθ, j= 1, 2,

⋯,Nt), the TDFP Pf(θi, tj) can be estimated as follows.

Step 2.1. Generate N1 samples of the input variables
X = [X1, X2,⋯, Xn] according to the joint PDF fX(x| θi)
and uniformly generate N2 samples of the time variable
t in the interval [0, tj], which are denoted as sample ma-
trices A and B respectively, i.e.,

A ¼
x 1ð Þ
1 x 1ð Þ

2 ⋯ x 1ð Þ
n

x 2ð Þ
1 x 2ð Þ

2 ⋯ x 2ð Þ
n

⋮ ⋮ ⋱ ⋮
x N1ð Þ
1 x N 1ð Þ

2 ⋯ x N1ð Þ
n

2
6664

3
7775 ð3Þ

B ¼
t 1ð Þ

t 2ð Þ

⋮
t N2ð Þ

2
664

3
775 ð4Þ

Let k = 1.

Step 2.2. Define the matrix C(k), i.e.,

C kð Þ ¼
C kð Þ

1

C kð Þ
2
⋮
C kð Þ

N2

2
6664

3
7775 ¼

x kð Þ
1 x kð Þ

2 ⋯ x kð Þ
n t 1ð Þ

x kð Þ
1 x kð Þ

2 ⋯ x kð Þ
n t 2ð Þ

⋮ ⋮ ⋱ ⋮ ⋮
x kð Þ
1 x kð Þ

2 ⋯ x kð Þ
n t N2ð Þ

2
6664

3
7775 ð5Þ

Compute the model outputs g C kð Þ
l

� �
at N2 samples C kð Þ

l

l ¼ 1; 2;⋯;N 2ð Þ in matrix C(k), then judge each sample ma-
trix whether fail or not according to the following indictor
function:

I F C kð Þ
� �

¼
0 g C kð Þ

l

� �
> 0;∀ l ¼ 1; 2;⋯;N 2

1 g C kð Þ
l

� �
≤0;∃ l ¼ 1; 2;⋯;N 2

8<
: ð6Þ

If IF(C
(k)) = 0, the sample matrix C(k) is regarded to be safe;

otherwise, it is considered to be failed. Then, k = k + 1.

Step 2.3. If k <N1, go to step 2.2; otherwise, compute the
TDFP Pf(θi, tj) according to (7).

Pf θi; t j
� � ¼ 1

N1
∑
k¼1

N1

I F C kð Þ
� �

ð7Þ

After estimating the Nθ ×Nt TDFPs, the TDFPF can be
approximately obtained by the interpolation technique.

According to the above three steps, it can be observed that
the total number of model evaluations in the DMCS is NM =
NθNtN1N2. For the complicated engineering problem with

Fig. 3 The TDFPs varying with service time te where θ is fixed at 3 in
example 1

Fig. 4 The TDFPs varying with the design parameter θ where te is fixed
at 3 in example 1

Table 1 The MRE and
NOME of the four
computational methods
in example 1

Method MRE NOME

DMCS 0 108

DLKM 0.02654 55

SLKM 0.02671 35

AK-MCS-Bay 0.02724 28
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small TDFP, the values of N1 and N2 need to be large
enough so as to obtain accurate results. Thus, for such
problems, the computational burden in evaluating the
entire TDFPF by the DMCS might be too large to be
accepted by the engineers. Recently, numerous meta-
model approach, such as double-loop Kriging model
(Wang and Wang 2015), single-loop Kriging model
(Hu and Mahadevan 2016), importance sampling based
Kriging model (Meng et al. 2019), and response surface
model (Zhang et al. 2017), have been proposed to esti-
mate the TDFP. Although these meta-models are pretty
efficient in estimating the TDFP compared with the
double-loop MCS, they were mainly proposed to evalu-
ate the TDFP at certain design parameters θ and service
time te. If the designers want to obtain the whole
TDFPF by using these existing methods, the basic
meta-models should be primarily constructed to estimate
the TDFP at fixed design parameter and service time,
and then TDFP at other design parameters and service
times can be subsequently estimated by adaptively
updating the basic meta-model. Therefore, the computa-
tional cost and time for estimating the TDFPF by
employing existing meta-models are higher and longer
than those in estimating a single TDFP. In order to dra-
matically reduce the total number of model evaluations
in estimating TDFPF, an efficient AK-MCS-Bay is de-
veloped in the next section.

4 Efficient AK-MCS-Bay for TDFPF

4.1 The equivalent transformation of TDFPF based
on Bayes formula

According to Au’s idea (Au 2005), the design parameters θ
can be treated as uncertain variables. Given a prior joint PDF
fθ(θ) for the design parameters, the TDFPF defined in (2) can
be transformed into (8) based on the Bayes formula:

P f θ; teð Þ ¼ P F teð Þjθf g

¼ f θ θjF X ;θ; teð Þf gP F X ; θ; teð Þf g
f θ θð Þ ð8Þ

where P{F(X, θ, te)} denotes the augmented TDFP by consid-
ering both input variables X and design parameters θ as ran-
dom variables, and it can be defined as follows:

P F X ; θ; teð Þf g ¼ P g X jθ; tð Þ≤0;∃t∈ 0; te½ �f g ð9Þ

fθ{θ| F(X, θ, te)} is the joint PDF of θ conditioned on the
time-dependent failure event F(X, θ, te) defined in (10),

F X ; θ; teð Þ ¼ X jθð Þjg X jθ; tð Þ≤0;∃t∈ 0; te½ �f g ð10Þ

Based on (8), it can be concluded that the TDFPF Pf(θ, te)
can be divided into three parts, i.e., fθ(θ), P{F(X, θ, te)} and
fθ{θ| F(X, θ, te)}. In practical application, the joint PDF fθ(θ)

Fig. 5 A four-bar function
generator mechanism

Table 2 The distribution types
and parameters of the input
variables of example 2

Variables Distribution Mean Standard deviation

R1(mm) Normal μR1
0.1

R2(mm) Normal 122 0.1

R3(mm) Normal 66.5 0.1

R4(mm) Normal 100 0.1

Efficient computational method based on AK-MCS and Bayes formula for time-dependent failure probability... 1377



is usually assigned beforehand. The TDFP P{F(X, θ, te)} is a
function with respect to the service time te. If te is fixed at a
certain value t*e , the TDFP P F X ; θ; t*e

� �� 	
will be a constant

which can be estimated by many existing computational algo-
rithms, such as double-loop MCS (Okuda et al. 1997), first-
passage based approach (Sacks et al. 1989; Hu et al. 2013),
extreme performance-based approach (Au and Beck 2001; Du
and Sudjianto 2004), and meta-model approach (Zhao and
Ono 2001; Yun et al. 2017). Then, after estimating the
TDFP P F X ; θ; t*e

� �� 	
, the samples of θ on the failure domain

can be also obtained, so the conditional joint PDF f θ
θjF X ; θ; t*e

� �� 	
can be evaluated according to the obtained

failure samples of θ by several methods, such as the paramet-
ric density estimation (Izenman 2008), the histogram estima-
tion (Scott 1992), and the kernel density estimation (KDE)
(Park and Marron 1990) etc. At present, the most popular
density estimation approach is KDE, which is a proven im-
portant tool in the statistical analysis of data (Botev et al.
2010). Thus, in this paper, the KDE is employed to estimate
the joint PDF f θ θjF X ; θ; t*e

� �� 	
, and one can refer ref.

(Saltelli et al. 2008) for details.
From the above analysis, the most direct computational

method based on (8) for estimating the TDFPF Pf(θ, te) is to

primarily discretize the service time te at its region [tL, tU] into
Nt points, i.e., tj(j = 1, 2,⋯,Nt). Then, for each tj(j = 1, 2,⋯,
Nt), the TDFP P{F(X, θ, tj)} can be estimated by the time-
dependent reliability analysis method, and subsequently, the
joint PDF fθ{θ| F(X, θ, tj)} can be estimated by the KDE tech-
nique. Thereof, this MCS based on Bayes formula (shorten as
MCS-Bay) needs Nt time-dependent reliability analyses to
obtain the whole TDFPF Pf(θ, te), while the DMCS proposed
in the last section needs NθNt time-dependent reliability anal-
yses. Compared with the DMCS, theMCS-Bay can reduce the
total computational cost in estimating the TDFPF Pf(θ, te) to
some extent, but Nt time-dependent reliability analyses still
need a great deal of model evaluations for some complicated
problems. Hence, in order to extremely reduce the number of
model evaluations, an AK-MCS-Bay is introduced for esti-
mating the TDFPF Pf(θ, te) in the next subsection.

4.2 An AK-MCS-Bay for estimating TDFPF

The basic idea of the AK-MCS-Bay is to constitute a MCS
sample pool of X ∣ θ and t at first, then the AK model is
constructed to distinguish the signs of the time-dependent
limit state function at all the samples in the MCS sample pool.

Fig. 6 The estimates of TDFPF Pf(θ, te) obtained by DMCS and AK-MCS-Bay for example 2

Fig. 7 The TDFPs varying with service time te where θ obtained by
DMCS and AK-MCS-Bay is fixed at 55 mm in example 2

Fig. 8 The TDFPs varying with the design parameter θ where te is fixed
at 125.5° in example 2
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Therefore, the key issues of the AK-MCS-Bay are how to
constitute the MCS sample pool and how to construct and
update the Kriging model.

In order to generate the samples of X ∣ θ, N MCSð Þ
1 samples

of θ should be generated according to its assigned joint PDF

fθ(θ) at first, i.e., θ j1 j1 ¼ 1; 2;⋯;N MCSð Þ
1

� �
. Next, based on

the joint PDF f X X jθ j1

� �
at the corresponding distribution

parameters θ j1 j1 ¼ 1; 2;⋯;N MCSð Þ
1

� �
, N MCSð Þ

1 samples of

X ∣ θ can be generated as x j1 jθ j1 j1 ¼ 1; 2;⋯;N MCSð Þ
1

� �
. It

is noticed that the purpose of the proposed AK-MCS-Bay is to
estimate all the TDFPs under different service times te ∈ [tL,
tU] by using a single Kriging model. Thus, the interval bound-
ary of the time t should be introduced as t ∈ [0, tU]. By uni-

formly generating N MCSð Þ
2 samples in the interval [0, tU], the

samples of time t can be labeled as t j2 j2 ¼ 1; 2;⋯;N MCSð Þ
2

� �
.

Finally, the MCS sample pool including N MCSð Þ
1 N MCSð Þ

2 sam-

ples can be constituted by the combination of N MCSð Þ
1 samples

of model inputs and N MCSð Þ
2 samples of the time variable, i.e.,

h
x1jθ1; t1ð Þ; x1jθ1; t2ð Þ;⋯; x1jθ1; tN MCSð Þ

2

� �
; x2jθ2; t1ð Þ; x2jθ2; t2ð Þ;⋯;

x2jθ2; tN MCSð Þ
2

� �
; ⋯ ;

xN MCSð Þ
1

jθN MCSð Þ
1

; t1
� �

; xN MCSð Þ
1

jθN MCSð Þ
1

; t2
� �

;⋯;

xN MCSð Þ
1

jθN MCSð Þ
1

; tN MCSð Þ
2

� �
�. If the states of all the samples in the

MCS sample pool, i.e., safety state or failure state, can be
clearly recognized, all the TDFPs under different service times
te ∈ [tL, tU] can be estimated by the double-loop MCS. For this
purpose, the AK model is constructed as follows.

The basic idea of Kriging model is that time-dependent
limit state function g(X| θ, t) can be regarded as a realization
of a stochastic field gK(X| θ, t) which is given as

gK X jθ; tð Þ ¼ f X jθ; tð Þξ þ Z X jθ; tð Þ ð11Þ
where f(X| θ, t) = [f1(X| θ, t), f2(X| θ, t),⋯, fp(X| θ, t)] repre-
sents the p-dimensional basis function vector, ξ = [ξ1, ξ2,
⋯, ξp]

T denotes the vector of regression coefficients, and
Z(X| θ, t) is a stationary Gaussian process with zero mean. The
first item f(X| θ, t)ξ is the deterministic part which approximately
gives a mean value of the model response. The second item is
the nonparametric stochastic process whose covariance between
two points x j1 jθ j1 ; t j1

� �
and x j2 jθ j2 ; t j2

� �
is defined in (12),

cov Z x j1 jθ j1 ; t j1
� �

; Z xj2 jθ j2 ; t j2
� �� �

¼ σ2
ZRZ Z xj1 jθ j1 ; t j1

� �
; Z x j2 jθ j2 ; t j2
� �� � ð12Þ

where σ2
Z is the process variance and RZ is the correlation func-

tion. Generally, Gaussian correlative model is employed to de-
fine the stochastic process and one can refer ref. (Echard et al.
2011) for details.

In general, the initial Krigingmodel is constructed by using
a few number of samples according to (11). The initial sam-
ples can be generated by employing the Hammersley sam-
pling approach (Hammersley et al. 1996) or Latin
Hypercube Sampling approach (Stein 1987). The number of
initial samples varies from tens to hundreds according to the

Table 3 The MRE and
NOME of the four
computational methods
in example 2

Method MRE NOME

DMCS 0 108

DLKM 0.03594 337

SLKM 0.03867 172

AK-MCS-Bay 0.03921 101

Fig. 9 The schematic diagram of the automobile front axle
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nonlinear degree of the time-dependent limit state function. In
general, the higher the nonlinearity of the time-dependent lim-
it state function is, the bigger the number of initial samples
should be selected (Yun et al. 2019c). Then, the samples in the
MCS sample pool are used to update the model. At present,
several available sampling criterions for the selection of new
sample to update the Kriging model have been proposed, such
as the CA-learning function proposed in ref. (Wang and Wang
2015) and the U-learning function developed in ref. (Echard
et al. 2011). The application of CA-learning function is to
estimate the failure probability with certain confidence level,
which is accurate and efficient in estimating the failure prob-
ability, but may misjudge the signs of the limit state functions
corresponding to the samples which have fewer impacts on
the failure probability. The basic idea of the U-learning func-
tion is to accurately recognize the signs of the limit state func-
tions corresponding to all the samples in the sample pool.
Then, the failure probability can be estimated as the ratio
between the number of the failure samples recognized by the
U-learning function and the number of all the samples in the
sample pool. Thus, compared with the CA-learning function,
the U-learning function is more accurate but less efficient in
estimating failure probability. It should be pointed out that the
purpose for constructing an adaptive Kriging model in this
subsection not only includes accurately estimating the aug-
mented TDFP, but also contains accurately recognizing the

signs of the limit state functions corresponding to all the sam-
ples in the sample pool. Therefore, the U-learning function is
adopted in this paper.

For the sample point x j1 jθ j1 ; t j2
� �

, the U-learning function
is defined as

U xj1 θ j1

� �
; t j2

� � ¼ jgK x j1 jθ j1 ; t j2
� �j

σgK x j1 jθ j1 ; t j2
� � ð13Þ

The bigger the value of the U-learning function is, the
bigger the probability of accurately recognizing the signs
of the time-dependent limit state function at the sample
point is. Hence, the confidence level of the Kriging mod-
el for recognizing the signs of all the samples in the
MCS sample pool is introduced as

CLk ¼ minU xj1 jθ j1 ; t j2
� �

j1 ¼ 1; 2;⋯;N MCSð Þ
1 ; j2

¼ 1; 2;⋯;N MCSð Þ
2 ð14Þ

According to (13) and (14), it can be observed that CLk is
the minimum value of the U-learning functions with respect to
all the samples in MCS sample pool, and CLk can reflect the
worst case that the current Kriging model misjudges the
sign of g xj1 jθ j1 ; t j2

� �
; j1 ¼ 1; 2;⋯;N MCSð Þ

1 ; j2 ¼ 1; 2;⋯;N MCSð Þ
2 . In

Fig. 10 The TDFPs varying with the design parameter θ obtained by DMCS and AK-MCS-Bay where te is fixed at 4 in example 3

Table 4 The distribution types
and parameters of the input
variables of example 2

Inputs Distribution Mean Standard deviation

a (mm) Normal 12 0.6

b (mm) Normal 65 3.25

l (mm) Normal 14 0.7

h (mm) Normal 85 4.25

M (N/mm) Normal μM0
7.5 × 105

T (N/mm) Normal μT0
1.55 × 105
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general, the bigger the value of the CLk is, the greater power
the current Kriging model can accurately recognize the sign of
g(x| θ, t) .

If the valueCLk fails to meet the requirement, a new sample
from the MCS sample pool would be added to update the
Kriging model. The criterion for selecting the new sample

x j1 jθ j1 ; t j2
� �*

is given as

x j1 jθ j1 ; t j2
� �* ¼ argminU xj1 jθ j1 ; t j2

� �
j1

¼ 1; 2;⋯;N MCSð Þ
1 ; j2 ¼ 1; 2;⋯;N MCSð Þ

2 ð15Þ

By adding the most contributive sample selected by (15) in
sequence, the Kriging model can be constantly updated until
the confidence level CL*k satisfies the requirement. As sug-
gested in ref. (Echard et al. 2011), the required confidence
level CL*k is set to 2 in this paper, which indicates that the
probability of misjudging the sign of g(x) is no more than
Φ(−2) = 0.0228.

4.3 The implementation of AK-MCS-Bay

Based on the Kriging model gK(X| θ, t), the TDFP P{F(X, θ,
te)} for any service time te ∈ [tL, tU] can be estimated by using
the samples in the MCS sample pool. At the same time, the
conditional joint PDF fθ{θ| F(X, θ, te)} can also be estimated
according to the samples of θ on the failure domain. Thus,
without any extra model evaluations and samples, the whole
TDFPF Pf(θ, te) can be obtained based on the existing MCS
sample pool. The flowchart of the efficient AK-MCS-Bay is
given in Fig. 1. It consists of 10 steps:

Step 1. Input the time interval [tL, tU] of the service time te.
Assume a prior PDF f θp θp

� �
p ¼ 1; 2;⋯;mð Þ for

each design parameter, and their joint PDF can be

represented as f θ θð Þ ¼ ∏
m

p¼1
f θp θp
� �

when the pa-

rameters are independent. Ref. (Au 2005) indicated
that the choice of fθ(θ) does not affect the accuracy
of the failure probability estimates, and the uniform
distribution is chosen in this paper for simplicity.

Fig. 11 The TDFPs varying with the design parameter θ obtained by DMCS and AK-MCS-Bay where te is fixed at 7 in example 3

Fig. 12 The TDFPs varying with the design parameter θ obtained by DMCS and AK-MCS-Bay where te is fixed at 10 in example 3
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Step 2. According to the joint PDF fθ(θ), generate N MCSð Þ
1

samples of the design parameters θ, i.e.,

θ j1 j1 ¼ 1; 2;⋯;N MCSð Þ
1

� �
, then N MCSð Þ

1 samples

x j1 jθ j1 j1 ¼ 1; 2;⋯;N MCSð Þ
1

� �
of input variables

X ∣ θ c a n b e g e n e r a t e d b a s e d o n

f X xjθ j1

� �
j1 ¼ 1; 2;⋯;N MCSð Þ

1

� �
.

Step 3. Uniformly generate N MCSð Þ
2 samples of the time var-

iable t in the interval [0, tU], i.e.,

t j2 j2 ¼ 1; 2;⋯;N MCSð Þ
2

� �
.

Step 4. On the basis of the samples generated in Steps 2 and
3, the MCS sample pool is constituted as ½ x1jθ1; t1ð Þ
; x1jθ1; t2ð Þ;⋯; x1ð jθ1; tN MCSð Þ

2
Þ; x2jθ2; t1ð Þ;

x2jθ2; t2ð Þ ;⋯; x2jθ2; tN MCSð Þ
2

� �
; ⋯ ;

xN MCSð Þ
1

jθN MCSð Þ
1

; t1
� �

; xN MCSð Þ
1

jθN MCSð Þ
1

; t2
� �

;⋯; xN MCSð Þ
1

jθN MCSð Þ
1

; tN MCSð Þ
2

� �i
:

Step 5. Randomly select N0 training samples from the MCS
sample pool and compute the corresponding re-
sponses. Then, the initial Kriging model gK(X| θ, t)
can be constructed based on these N0 training
samples.

Step 6. Compute the confidence level CLk of the current
Kriging model in the MCS sample pool. If CLk is
smaller thanCL*k , go to step 7; otherwise, go to step 8.

Step 7. According to (15), select new training sample

x j1 jθ j1 ; t j2
� �*

f rom the MCS sample pool .

Compute g x j1 jθ j1 ; t j2
� �*h i

and update the Kriging

model gK(X| θ, t) by adding the selected new train-
ing sample in the training set. Then, go to Step 6.

Step 8. Discretize the region [θL, θU] into Nθ points, i.e.,
θi(i = 1, 2,⋯, Nθ), and the region [tL, tU] into Nt

points, i.e., tj(j = 1, 2,⋯,Nt).
Step 9. For each discrete point {θi, tj}(i = 1, 2,⋯,Nθ, j = 1, 2,

⋯,Nt), the TDFP Pf(θi, tj) can be estimated according
to the samples in the MCS sample pool as follows.

Step 9.1. Search the samples which satisfy the inequality
0 < t j2 < t j in the MCS sample pool, and judge whether

each sample x j1 jθ j1 j1 ¼ 1; 2;⋯;N MCSð Þ
1

� �
of input

variable fails or not according to the indictor function
shown in (16)

I F x j1 jθ j1

� � ¼ 0 gK x j1 jθ j1 ; t j2
� �

> 0; ∀0 < t j2 < t j
1 gK x j1 jθ j1 ; t j2

� �
≤0; ∃0 < t j2 < t j



ð16Þ

Step 9.2. The TDFP P{F(X, θ, tj)} can be estimated by (17).

P F X ; θ; t j
� �� 	 ¼ 1

N MCSð Þ
1

∑
N MCSð Þ

1

j1¼1
I F x j1 jθ j1

� � ð17Þ

Step 9.3. According to the failure samples of θ which
satisfy the equation I F x j1 jθ j1

� � ¼ 1, the joint PDF
fθ{θ| F(X, θ, tj)} can be estimated by the KDE technique.
Step 9.4. The TDFP Pf(θi, tj) can be estimated by (18).

Pf θi; t j
� � ¼ f θ θijF X ; θ; t j

� �� 	
P F X ; θ; t j

� �� 	
f θ θið Þ ð18Þ

Step 10. After estimating the Nθ ×Nt TDFPs, the TDFPF
can be approximately obtained by the interpolation
technique.

5 Test example

In this section, four examples, i.e., a mathematical example, a
four-bar generator mechanism, an automobile front axle, and a
corroded bending beam involving stochastic load, are employed

Fig. 13 The TDFPs varying with te where θ1 is fixed at 3.6 × 106N ⋅mm
and θ2 is fixed at 3.2 × 106N ⋅mm in example 3

Table 5 The MRE and
NOME of the four
computational methods
in example 3

Method MRE NOME

DMCS 0 1.5 × 109

DLKM 0.01675 275

SLKM 0.02328 167

AK-MCS-Bay 0.02179 154
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to demonstrate the feasibility, accuracy, and effectiveness of the
two proposed computational methods in estimating the TDFPF.
In these examples, four methods, i.e., the DMCS, double-loop
Kriging model (DLKM), single-loop Kriging model (SLKM),
and AK-MCS-Bay, are used for comparison. In order to com-
pare the accuracy of these four methods in estimating TDFPF,
the mean relative error (MRE) is defined as follows:

MRE ¼ 1

Nθ
∑
j¼1

Nθ jP̂ jð Þ
f −P jð Þ

f j
P jð Þ

f

ð19Þ

where Nθ is the number of discrete points of θ, P
jð Þ
f represents

the failure probability estimated by the DMCS and P̂
jð Þ
f denotes

the failure probability estimated by other new computational
methods.

5.1 Example 1: A mathematical example

Consider a time-dependent limit state function Y = g(X, t)
which is expressed by (Yun et al. 2017),

g X ; tð Þ ¼ X 2
1X 2−5X 1t þ X 2 þ 1ð Þt2−20 ð20Þ

where t is the time variable, X1 and X2 are two independent

input variables with normal distribution, i.e., X 1∼N

μX 1
; 0:32

� �
and X2~N(3.5, 0.3

2). The mean value of X1 is
taken as the design parameter, i.e., θ ¼ μX 1

and θ ∈ [3, 4].
The interval of the service time te is chosen as te ∈ [0, 3].

At first, the DMCS is employed to estimate the TDFPF
Pf(θ, te), where Nθ and Nt are both set to 10. Thereof, 10 ×
10 = 100 time-dependent reliability analyses are needed in
estimating TDFPF. In each time-dependent reliability
analysis, the number of samples of the input variables is
N1 = 104, and the number of samples of the time variable
is N2 = 102. Thereof, the total number of model evalua-
tions for the DMCS in estimating the TDFPF Pf(θ, te) is
NM = NθNtN1N2 = 108. The results of the TDFPF Pf(θ, te)
estimated by the DMCS are plotted in Fig. 2(a). Then, the
AK-MCS-Bay is employed to estimate the TDFPF Pf(θ,
te). The total number of model evaluations for constructing
the AK model is 28, i.e., 10 initial samples and 18
updating samples. The estimates of the TDFPF Pf(θ, te)
obtained by the AK-MCS-Bay are established in Fig.
2(b). From Fig. 2, it can be seen that the results of the
DMCS and the AK-MCS-Bay are consistent with each
other. To further compare the results obtained by the
DMCS and the AK-MCS-Bay, respectively, Fig. 3 plots
the TDFPs varying with service time te where θ is fixed
at 3, and Fig. 4 plots the TDFPs varying with the design
parameter θ where te is fixed at 3. The results in Figs. 3 and
4 also demonstrate that the AK-MCS-Bay is accurate

Fig. 14 The corroded bending beam

Table 6 The distribution types
and parameters of the input
variables of example 4

Variables Distribution Mean Standard deviation

σu(Pa) Normal 2.4 × 108 2.4 × 107

a0(m) Normal μa0 0.01

b0(m) Normal μb0 4 × 10−3

ξ1 Normal 0 100

ξ2 Normal 0 50

ξ3 Normal 0 98

ξ4 Normal 0 121

ξ5 Normal 0 227

ξ6 Normal 0 98

ξ7 Normal 0 121
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enough in estimating the TDFPF compared with the
DMCS.

In addition, the computational cost and MRE of the
DMCS, DLKM, SLKM, and AK-MCS-Bay are listed in
Table 1, where NOME denotes the number of model evalua-
tions. From Table 1, it can be concluded that AK-MCS-Bay is
more efficient than the two existingmeta-models in estimating
TDFPF, while they have similar precision.

5.2 Example 2: A four-bar generator mechanism

A four-bar generator mechanism (Du n.d.) shown in Fig. 5 con-
sists of three rotatable bars and a fixed bar. The length of these
bars is considered as input variables, i.e., X = (R1,R2,R3,R4),
and the distribution types and parameters of these input vari-
ables are listed in Table 2. Themean value ofR1 is viewed as the
design parameter, i.e., θ ¼ μR1

and θ ∈ [50, 55]. The motion
output can be easily derived by the following two equations:

R1cosαþ R2cosδ−R3cosφ−R4 ¼ 0
R1sinαþ R2sinδ−R3sinφ ¼ 0



ð21Þ

whereα denotes themotion input, andφ and δ represent the two
motion outputs. By solving the equations defined in (21), φ and
δ can be expressed as

φ ¼ 2arctan
D�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ E2−F2

p
E þ F

δ ¼ arctan
R3sinφ−R1sinα

R4 þ R3cosφ−R1cosα

8>><
>>: ð22Þ

where D, E, and F are given by the following equations:

D ¼ −2R1R3sinα
E ¼ 2R3 R4−R1cosαð Þ
F ¼ R2

2−R
2
1−R

2
3−R

2
4 þ 2R1R4cosα

ð23Þ

The concerned motion output is φ, and the desired motion
output function is assumed as

φd αð Þ ¼ 76° þ 60°sin 3 α−95:5°
� �

=4
� � ð24Þ

Fig. 16 The TDFPs varying with the design parameter θ obtained by DMCS and AK-MCS-Bay where te is fixed at 35 in example 4

Fig. 15 The TDFPs varying with the design parameter θ obtained by DMCS and AK-MCS-Bay where te is fixed at 10 in example 4
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Thereof, by regarding the motion input α as the time var-
iable t, the time-dependent limit state function of the four-bar
generator mechanism can be indicated as

g R1;R2;R3;R4; tð Þ ¼

C−abs 2arctan
D�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ E2−F2

p
E þ F

− 76° þ 60°sin 3 t−95:5°
� �

=4
� �� � ! ð25Þ

where C is the allowable threshold and it is set to 0.6 in this
case. The lower limit of t is 95.5°, and the service time te is
chosen as te ∈ [99.5, 125.5].

Firstly, the DMCS is used to estimate the TDFPF Pf(θ, te),
where Nθ, Nt, N1, and N2 are chosen as 16, 14, 104, and 102,
respectively. Thus, the total number of model evaluations for
the DMCS in estimating the TDFPF Pf(θ, te) is NM =
NθNtN1N2 = 2.24 × 108. The estimates of the TDFPF Pf(θ, te)
obtained by the DMCS are plotted in Fig. 6(a). Next, the AK-
MCS-Bay is used to estimate the TDFPF Pf(θ, te) of the four
bar function generator mechanism. The total number of model
evaluations for constructing the AK model is 101, i.e., 30
initial samples and 81 updating samples. The results of the
TDFPF Pf(θ, te) estimated by the AK-MCS-Bay are plotted
in Fig. 6(b). According to Fig. 6, it can be observed that the
results of the DMCS and the AK-MCS-Bay are approximately
consistent with each other. In order to further compare the
estimates obtained by the two different computational
methods, Fig. 7 plots the TDFPs varying with service time te
where θ is fixed at 55mm, and Fig. 8 plots the TDFPs varying
with the design parameter θ where te is fixed at 125.5°.

Figures 7 and 8 show that despite small differences between
the estimates of these two computational methods which may
be caused by the error of the KDE, they lead to the same
changing trends. Besides, the results of the DMCS, DLKM,
SLKM, and AK-MCS-Bay are shown in Table 3. According
to Table 1, it can be seen that compared with other three
methods, AK-MCS-Bay can dramatically reduce the compu-
tational cost in estimating TDFPF with accept precision.

5.3 Example 3: An automobile front axle

Consider the automobile front axle (Shi et al. 2017) shown in
Fig. 9. Themaximum normal stress and shear stress are σ =M/
Wx and τ = T/Wρ, where M and T represent the bending mo-
ment and torque which are time-varying, i.e., M ¼ M0
1
10 cos

t
4 þ 9

10

� �
and T ¼ T0sin t

3, in whichM0 and T0 are initial
bending moment and torque. Wx and Wρ denote the section
factor and the polar section factor which are given as

Wx ¼ a h−2lð Þ3
6h

þ b
6h

h3− h−2lð Þ3
h i

Wρ ¼ 0:8bl2 þ 0:4 a3 h−2lð Þ=l� � ð26Þ

In order to check the strength of the front axle, the limit
state function is defined as

g ¼ σs−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 þ 3τ2

p
ð27Þ

where σS is the ultimate stress of yielding, and it is set to σS =
460Mpa. The distribution types and parameters of the six
input variables, i.e., a, b, l, h, M0, and T0, are established in
Table 4. The mean values of M0 and T0 are viewed as the
design parameters, i.e., θ = [θ1, θ2] and

θ1 ¼ μM0
∈ 3:4� 106; 3:6� 106
� �

N ⋅mm,
θ2 ¼ μT0

¼ 3:0� 106; 3:2� 106
� �

N ⋅mm. The service time

te is chosen as te ∈ [3, 10].
In the DMCS, the sample number Nθ, Nt, N1, and N2 are

chosen as 100, 15, 104, and 102, respectively. Thus, the total
number of model evaluations for the DMCS in estimating the
TDFPF Pf(θ, te) is NM = NθNtN1N2 = 1.5 × 109. In the AK-
MCS-Bay, the total number of model evaluations for con-
structing the AK model is 154, i.e., 50 initial samples and
101 updating samples. In order to compare the results of the
TDFPF Pf(θ, te) estimated by the two computational methods,
the TDFPs varying with the two-dimensional design parame-
ters where the service time is fixed at 4, 7, and 10, respectively,
are plotted in Figs. 10, 11, and 12. Meanwhile, Fig. 13 plots
the TDFPs varying with service time te where θ1 is fixed at
3.6 × 106N ⋅mm and θ2 is fixed at 3.2 × 106N ⋅mm. From Figs.
10, 11, 12, and 13, it can be observed that the results obtained
by the AK-MCS-Bay are approximately consistent with those

Fig. 17 The TDFPs varying with te where θ1 is fixed at 0.2 m and θ2 is
fixed at 0.04 m in example 4

Table 7 The MRE and
NOME of the four
computational methods
in example 4

Method MRE NOME

DMCS 0 7 × 108

DLKM 0.04851 1839

SLKM 0.05672 417

AK-MCS-Bay 0.06210 379
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obtained by the DMCS. Furthermore, theMRE and NOME of
the DMCS, DLKM, SLKM, and AK-MCS-Bay are
established in Table 5. Table 5 indicates that AK-MCS-Bay
is more efficient than DLKM and SLKM in estimating
TDFPF of this example, while the precision of AK-MCS-
Bay is not lower than that of SLKM.

5.4 Example 4: A corroded bending beam involving
stochastic load

In this subsection, a corroded bending beam (Fig. 14) involv-
ing stochastic load is employed from refs. (Zhang et al. 2017;
Hu and Du 2015b; Feng et al. 2019c) as the fourth example.
The time-dependent limit state function of this corroded bend-
ing beam is defined as

Y ¼ G α;β tð Þ; tð Þ

¼ a0−2ktð Þ b0−2ktð Þ2σu

4
−
F tð ÞL
4

−
ρsta0b0L

2

8
ð28Þ

where a0 and b0 denote the width and height of the beam,
respectively, σu represents the ultimate strength, ρst = 7.84 ×
104N, k = 5 × 10−5m/year, and L = 5m are the density, corro-
sion coefficient, and the length of the beam, and F(t) is a
stochastic process modeled by (Shi et al. 2017)

F tð Þ ¼ 6500þ ∑
7

i¼1
ξi ∑

7

j¼1
aijsin bijt þ cij

� � !
ð29Þ

in which ξi(i = 1, 2,⋯, 7) are seven independent random var-
iables, aij, bij, cij(∀i, j = 1, 2,⋯, 7) are coefficients of the sine
wave basis functions, i.e.,

a ¼

0:13 0:36 0:14 3:07 0:17 0:13 0:12
0:02 0:18 0:09 0:13 0:69 0:04 0:27
0:08 0:29 0:14 3:09 0:05 0:37 0:13
0:03 0:06 0:01 0:04 0:63 0:3 0:06
0:03 0:00 0:00 0:00 0:00 0:00 0:00
0:01 0:00 0:00 0:00 0:00 0:00 0:00
0:01 0:00 0:00 0:00 0:00 0:00 0:00

2
666666664

3
777777775
;

b ¼

0:06 0:31 0:15 0:28 0:24 0:44 0:48
0:38 0:15 0:40 0:06 0:42 0:09 0:01
0:10 0:33 0:03 0:29 0:11 0:26 0:38
0:28 0:07 0:59 0:55 0:42 0:23 0:29
0:52 0:00 0:00 0:00 0:00 0:00 0:00
0:77 0:00 0:00 0:00 0:00 0:00 0:00
0:91 0:00 0:00 0:00 0:00 0:00 0:00

2
666666664

3
777777775
;

c ¼

2:91 −2:34 −2:43 −2:82 −2:15 0:47 2:90
−2:91 2:21 −0:97 0:98 −1:03 −3:81 −0:35
1:25 0:52 2:62 0:23 0:91 −1:39 −2:45
0:73 0:00 −0:45 −0:50 1:93 −3:64 −3:00
0:18 0:00 0:00 0:00 0:00 0:00 0:00
−1:71 0:00 0:00 0:00 0:00 0:00 0:00
−2:46 0:00 0:00 0:00 0:00 0:00 0:00

2
666666664

3
777777775
:

By transforming the input stochastic process F(t) into (29),
this time-dependent problem Y =G(α, β(t), t) is transformed
into Y = g(X, t) where X is a 10-dimensional input random
variable vector, and its distribution type and parameters are
listed in Table 6. The mean values of a0 and b0 are viewed as
the design parameters, i.e., θ = [θ1, θ2] and
θ1 ¼ μa0∈ 0:15; 0:2½ �m, θ2 ¼ μb0 ¼ 0:03; 0:04½ �m. The ser-
vice time te is chosen as te ∈ [0, 35]year.

At first, the DMCS is adopted to estimate the TDFPF Pf(θ,
te), where Nθ, Nt, N1, and N2 are chosen as 100, 7, 104, and
102, respectively, which causes the total number of model
evaluations to NM = NθNtN1N2 = 7 × 108. In the AK-MCS-
Bay, the total number of model evaluations for constructing
the AK model is 379, including 50 initial samples and 329
updating samples. In order to compare the results of the
TDFPF Pf(θ, te) estimated by DMCS and AK-MCS-Bay, the
TDFPs varying with the design parameters where the service
time is fixed at 10, 35, respectively, are plotted in Figs. 15 and
16. Furthermore, Fig. 17 plots the TDFPs varying with service
time te in which θ is fixed at [0.2, 0.04]. Based on Figs. 15, 16,
and 17, it can be seen that the results acquired by the AK-
MCS-Bay are approximately consistent with those obtained
by the DMCS. In addition, the results of the DMCS, DLKM,
SLKM, and AK-MCS-Bay are shown in Table 7. From
Table 7, it can be observed that compared with DMCS,
DLKM, and SLKM, AK-MCS-Bay can greatly reduce the
computational cost in estimating TDFPF with accept preci-
sion, and the relatively large error of AK-MCS-Bay may be
mainly caused by the error of the KDE.

6 Conclusion

In this paper, the concept of the TDFPF is proposed for facil-
itating the reliability-based design optimization for the time-
dependent problem. The TDFPF is a function of the TDFP
with respect to the design parameters θ and the service time te.
In order to estimate the whole TDFPF, two computational
methods, i.e., the DMCS and the AK-MCS-Bay, are devel-
oped. In the DMCS, the regions of the design parameters θ
and service time te are discretized to some points at first. Then,
the double-loop MCS is employed to estimate the TDFP for
each discrete point. Despite that the DMCS is accurate and
easy to implement in estimating the TDFPF, it needs a great
deal of model evaluations for the complicated engineering
problem with small TDFP. Thereof, to efficiently estimate
the TDFPF, the AK-MCS-Bay is introduced. In the AK-
MCS-Bay, the Bayes formula is employed to transform the
TDFPF Pf(θ, te) into three components, i.e., the pre-defined
probability density function (PDF) of θ, the conditional PDF
of θ based on the time-dependent failure event, and the aug-
mented TDFP by regarding both the input variables and
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design parameters as random variables. Next, a single Kriging
model is constructed so as to efficiently estimate all the
TDFPs under different service times te. At the same time,
the conditional PDF of θ based on the time-dependent failure
event can be also acquired on the basis of the samples in the
failure domain by the KDE method. Finally, the TDFP at any
combination of the design parameters and service time can be
evaluated. Four numerical examples are used to demonstrate
the feasibility, accuracy, and effectiveness of the two proposed
computational methods. The results illustrate that compared
with DMCS, the proposed AK-MCS-Bay computational
method can greatly reduce the total number of model evalua-
tions with acceptable precision. The error of AK-MCS-Bay
mainly comes from two sources, the first one is the error of the
adaptive Kriging model which can be reduced by increasing
the sample pool size or improving the required confidence
level; the second one is the error of KDE which is the mainly
error source because the existing density estimation method
may lose accuracy in dealing with high-dimensional prob-
lems. In the future, a widely used density estimation technique
will be possibly explored to further improve the accuracy of
the proposed method.
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