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Abstract
Self-supporting designs that eliminate the need for structural supports can reduce manufacturing complexity caused by over-
hanging parts in additive manufacturing (AM). Traditionally, 45° is the minimum overhang angle required to ensure that designs
can bemanufactured without requiring any supporting structure. In this paper, a new self-supporting design method of AM based
on topology optimization with overhang angle constraint is proposed. A self-supporting index established using a continuous
logistic aggregate function is introduced to assess the supporting status of the specimen for AM process. This proposed self-
supporting index is continuous and can be directly differentiated for sensitivity analysis without further mathematical transfor-
mations in the optimization formulation. Furthermore, it can be easily extended to a high-dimension aggregate (i.e., it can easily
adapt to different overhang angles or self-supporting design domains). Numerical and fused deposition modeling (FDM) of a
cantilever andMBB beam reveal that the self-supporting design can satisfy either general overhang angles or arbitrary orientation
of AM deposition direction.

Keywords Topology optimization . Overhang angle . Support-free .Manufacturing constraint . Design for manufacturability

1 Introduction

Additive manufacturing (AM) processes are cutting-edge
technologies that have transformed industrial and mechanical
design. Prototypes can be easily printed using AM processes,
improving efficiency and convenience in developing new
products. Moreover, AM facilitates manufacturing of mechan-
ical structures with complicated shapes that could not be pro-
duced using conventional forging, casting, or machining
methods (AM-platform 2014; Huang et al. 2015; Gibson
et al. 2015).

However, as with other well-developed manufacturing
techniques, AM has its own drawbacks and constraints. One
critical problem relates to manufacturing overhanging parts of
specimens. Unwanted thermo-induced phenomena such as

sag, warp, and shrinkage can reduce product quality during
fabrication according to different melting schemes or material
properties. These thermo-induced effects are crucial for the
two most commonly used AM processes selective laser melt-
ing (SLM) and fused deposition modeling (FDM), and FDM
even cannot ignore the gravity effect. Generally speaking,
most of the physical distortions can be mitigated on the basis
of a certain geometrical manufacturing rule during the AM
processes (EOS GmbH Application Notes n.d.; Crucible
Design Ltd. 2015; Stratasys Ltd. 2018; Ultimaker 2018).
Adding supporting structures and redesign the specimen with
proper overhang angle are the two most common suggestions
for the manufacturability.

To ensure that specimens with overhangs can be produced
to an acceptable quality, extra supporting structures are re-
quired to maintain the specimen profile during SLM or
FDM. These extra supporting structures can be classified into
internal and external supports. The external support is vital for
maintaining the specimen profile during SLM or FDM, and it
should be removed after fabrication. However, external sup-
ports require extra materials, time, and energy consumption as
well as additional effort during postprocessing to remove it
from the specimen (Mirzendehdel and Suresh 2016; Kuo et al.
2018; Strano et al. 2013; Vanek et al. 2014). Internal support
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structures are used not only for maintaining the profile during
fabrication but also for enhancing the structural strength of a
specimen. Studies have shown that the need for external sup-
ports can be lessened or entirely removed owing to well-
designed internal supports (Cheng et al. 2017; Li et al. 2018;
Panesar et al. 2018; Wang et al. 2017; Wang et al. 2018).

The overhanging part of a specimen cannot be printed
without supports if its inclination remains below a minimal
value (e.g., 45° in the most general case) with respect to the
baseplate. By contrast, if the part with its inclination (i.e., the
overhang angle) is larger than this minimal value, it is said to
be self-supporting. Therefore, the overhang angle becomes a
constraint in designing specimens for manufacturing using an
AM process.

A specimen with mostly self-supporting parts can certainly
be produced cost effectively and efficiently. However, the
minimal value of the overhang angle varies according to the
material and manufacturing parameters in the AM process.
This study focused on how to incorporate overhang angle
constraints of AMwithin density-based topology optimization
for self-supporting structural design, which is a typical prob-
lem of designing for manufacturability in AM.

Incorporating self-supporting constraint in topology op-
timization aiming for AM was initiated by Leary et al.
(2014). They made support-free structures by attaching
additional materials onto regions that do not meet the
self-supporting criteria after topology optimization; how-
ever, this method means that the volume constraint is vio-
lated, and the final layouts might not be mechanically op-
timal. A filter-like Heaviside projection function proposed
by Gaynor and Guest (2016) enforces the structure ele-
ments that should be supported from its below elements
in a specific overhang region as defined by the filter. This
method was successfully demonstrated using the
Messerschmidt-Bölkow-Blohm (MBB) beam and cantile-
ver as examples.

Another scheme that can apply self-supporting constraint
during structure optimization is to estimate the layer-wise re-
lation between the supported and supporting elements during
finite-element analysis. Langelaar (2016, 2017) was the first
to propose a layer-wise filter that effectively excludes unprint-
able geometries from the design space. Smooth minimum and
maximum operators are introduced to provide the overhang
constraint and necessary gradient information for the density-
based topology optimization. Zhao et al. (2017) proposed a
simple quadratic function to represent the overhang constraint.
By using an efficient element detection method based on dis-
crete convolution, the total number of unsupported elements is
forced to be zero through the defined overhang angle.
Although the self-supporting identification is mostly proc-
essed by logic judgment instead of typical sensitivity analysis,
the resulting topology is reasonable. Moreover, Zhao’s meth-
od can easily be extended to a general overhang angles as in

the aforementioned work by Gaynor and Guest (2016) and
Langelaar (2017).

van de Ven et al. (2018) proposed a method in detecting the
overhang region using the anisotropic front propagation and
updating arrival times by ordered upwind method (OUM).
The sensitivity filter for arbitrary overhang angles is then
established according to this propagation. The resulting 2D
topology layout satisfied different overhang angle constraint
but might have a zigzag structure.

Besides adding additional constraint or transforming con-
straint into a filter based on adjoint method, the self-
supporting design approaches based on feature-driven topol-
ogy optimization are also reported. Zhang and Zhou (2018)
proposed polygon features which directly constrained the
overhang angle by geometry descriptions. Guo et al. (2017)
presented two kinds of explicit geometry parameter sets, mov-
ing morphable components (MMC) and moving morphable
voids (MMV), to optimize the structural topology for the sat-
isfaction of the general overhang angles.

A Heaviside projection–based integral (HPI) proposed by
Qian (2017) can reduce the undercut region requiring
supporting structures in AM through density-based topology
optimization. This method can also control the minimal over-
hang angle during structure optimization. However, a gray-
ness constraint is also required for a clear topology according
to the characteristic of the density filter based on Heaviside
functions. In addition, the parameters corresponding to the
grayness filter threshold and the precise perimeter require
more experience.

Many studies have attempted to define an index that may
quantify the degree of self-support in a target specimen for
AM while adopting topology optimization. However, not all
can directly or easily obtain the corresponding sensitivity of
the self-supporting index during topology optimization. Based
on the same element-wise geometrical relation of overhang
angle used in Langelaar (2017) and Zhao et al. (2017), herein,
a polynomial-based logistic aggregate function is proposed
that can not only quantify the degree of self-support in a spec-
imen but also easily be differentiated for the associated sensi-
tivity during optimization.

Comparing this study with Langelaar (2017) and Zhao
et al. (2017), the geometrical relations between supporting
and supported elements are the same; however, the transfor-
mation from the self-supporting condition to the mathematical
equations is quite different. All three methods can be applied
with existing density-based topology optimization method
without modifying the procedure. The comparisons of self-
supporting schemes referred from Zhao et al. are listed in
Table 1. Besides, all these three methods implement the self-
supporting condition from three different aspects, so which
one is better requires more studies and it is also beyond the
scope of this study. Nevertheless, comparisons of these three
methods are provided as a review of these three studies.
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This study provides each element a self-supporting index
that can be directly utilized as a manufacturing constraint
equation in an optimization problem. Langelaar (2017) pro-
posed a filter-like module that redistributes the sensitivities for
satisfying the overhang constraint by adjoint method. Zhao
et al. (2017) used the discrete convolution method to identify
which elements are out of support according to 0–1 design
results by Heaviside filter, and then directly eliminated those
unsupported density to zero in the constraint. From formula-
tion point of view, this study is similar to Zhao et al. in that
both studies implement self-supporting condition as constraint
in optimization. However, this study considers the self-
supporting relations with sensitivity analysis as Langelaar’s
work instead of only eliminating the unsupported elements
as Zhao et al.

From numerical programming point of view, Zhao et al.
(2017) provided a highly efficient program under a limited
prerequisite in meshing the design domain because the fixed
convolution mask may not work anymore when the non-
uniform free meshes are encountered. Langelaar (2017) used
smooth approximation function with radicands which may be
more time consuming in sensitivity analysis as compared to
the polynomial function adopted in this study. On the other
hand, the filter-like implementation might ignore certain con-
vergence problem than adding additional constraint function
as Zhao et al.

Figure 1 illustrates three overhang angles in AM: 26.6°,
45°, and 63.4°. To assess the characteristics of the proposed
self-supporting index, this study first focused on the overhang
angle of 45° because it is the manufacturing limitation for
most FDM–based machines. However, design examples in-
cluding overhang angles of 26.6° and 63.4° are also presented

to demonstrate the extensibility of the proposed self-
supporting index.

This paper is structured as follows. In Section 2, a logistic
aggregate function is introduced for use as an index, here-
after called the self-supporting index (SSI), to quantify the
degree of self-support in a specimen. This proposed SSI is
intentionally used as the overhang angle constraint in the
topology optimization of self-supporting structure.
Section 3 presents three different schemes for determining
the sensitivity of SSI with respect to the element density.
Using a cantilever as an example, the topology layouts with
different overhang angle constraints resulting from these
gradient schemes are compared and discussed. Section 4
investigates the reliability of using the proposed SSI as the
overhang angle constraint, and the self-supporting topology
optimization of an MBB beam in different orientations is
also demonstrated. Finally, the investigation of the self-
supporting structure design for additive manufacturing by
using the proposed logistic aggregate function is concluded
in Section 5.

The topology optimization including finite-element analy-
sis and optimization program were coded using MATLAB,
and the topology optimizationmethod in this study is the same
as the previous work (Kuo et al. 2018) (i.e., SIMP with
CAMD and optimized using GCMMAwith the continuation
method). The length scale control is not utilized in this study.

2 Quantifying the degree of self-support

This section introduces a logistic aggregate function that is
proposed to quantify the degree of self-support for each finite
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Fig. 1 Elements with different
overhang angles: a 45°, b 63.4°,
and c 26.6°

Table 1 Comparison of self-supporting manipulations

Method Supporting element
topology

Self-supporting
implementation

Self-supporting
identification

Approximation
function

Sensitivity

Langelaar (2017) Layer-wise enumeration Filter (no index) Logical (min and
max operator)

Soft max and min
(polynomial
with radicand)

Nonlinear (layer dependent)

Zhao et al. (2017) Mask (limited) Constraint (discrete
index)

Logical and threshold
(discrete convolution)

No Linear (layer independent)

This study Layer-wise enumeration Constraint (continuous
index)

Logical (& operator) Soft &, logistic
aggregate function
(polynomial)

Nonlinear (layer dependent)
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element in a targeted design domain during optimization. This
logistic aggregate function is conceptually based on the repul-
sion index (RI) proposed by Kuo et al. (2018), and it can be
extended to a more general function that is introduced in the
next section.

RI is originally used to meet the easy removal requirement
of external supporting structures by penalizing the adjacent
layer–wise elements for encouraging the topology layout to
be a twig-like structure. This RI can be extended and rewritten
in a more general form LA(ρ) called the logistic aggregate
(LA) function:

LA ρteð Þ ¼ T
∏T

t¼1ρt
q

∑T
t¼1ρt

q
; for 0≤ρt ≤1 andq∈ℜ ð1Þ

where ρte is an T × 1 density vector, q is the power for mod-
ifying the convexity of the function, and T is the number of
elements involved for aggregate. Note that LA is 1 if all ρt = 1,
and it is 0 if any of ρt = 0 (i.e., it is a continuous logical
conjunction function that can be analogue to N multiple
Boolean “and” operators). This function can be either convex
or concave according to the value of q. With this property, LA
function can be easily modified to satisfy the associate opti-
mization problem. In addition, this function can be regarded as
a “softand” function which smoothly approximates the logis-
tic “and” operators using a continuous function similar to the
“softmax” function.

Figure 1 illustrates the geometrical relation of three dif-
ferent overhang angles in Zhao et al.: (a) 45°, (b) 63.4°, and
(c) 26.6°. For deriving the overhang angle as the element
relation that can be directly applied to optimal constraint
without additional mathematical transformations, a contin-
uous convex function is indispensable. A logistic function
SFte(ρte) quantifying the degree of supporting of ρt0 by each
ρte is defined as

SFte ρteð Þ ¼ 2
1−ρteð Þrρt0s

1−ρteð Þr þ ρt0s
;ρte ¼ ρt0; ρte½ �;∀e≠0 ð2Þ

where SFte(ρte) varies between 0 and 1, and ∀e ≠ 0 repre-
sents the number of supporting elements. The subscribe e in
(2) can be extended to the general overhang angles includ-
ing those listed in Fig. 1 (i.e., e = 1~3 for 45° and 63.4°, and
e = 1~7 for 26.6°). If ρt0 is full but its underneath ρte is a void
element, then SFte(ρte) = 1, which represents an unsupport-
ed situation (i.e., ρt0 = 1 and ρte = 0). The functions of
SFte(ρte) for r = s = 1 and r = s = 2 are illustrated in
Fig. 2a and b, respectively. The powers r and s play similar
roles as the power q for each ρt in (1).

Because of its simplicity and frequent occurrence, a 45°
overhang angle (Fig. 1a) is first selected as an example to
determine whether the element ρt0 is supported adequately
by its underneath supporting elements ρt1, ρt2, and ρt3. Now,

both the logistic and aggregate properties of (1) are used here
by assuming q = 1 and replacing ρt in (1) with SFte(ρte) from
(2):

SFn ρtð Þ ¼ 3
∏3

e¼0SFte ρteð Þ
∑3

e¼0SFte ρteð Þ ;ρt ¼ ρt0; ρt1; ρt2; ρt3½ � ð3Þ

where SFn(ρt) is the proposed SSI for ρt0 ranging between 0
and 1. Notably, element ρt3 = 0 if it is located on the right edge
of a design domain. Figure 3 presents a plot of SSI according
to (3) with different values of r and s with ρt3 = 0. Each figure
from Fig. 3a–d has three surfaces, from top to bottom corre-
sponding to ρt0 = 1, 0.5, and 0, respectively. The vertical edges
in Fig. 3 illustrated by the dotted line indicate that the SFn(ρt)
depends only on ρt0 and swhen ρt1 = ρt2 = 0. These three lines
are compared in Fig. 3e, which shows that SSI gradually
changes from the concave to convex function with an increase
in s. Comparing Fig. 3d with the rest of Fig. 3, the SFn(ρt)
value is small for any ρtewhen ρt0 is below 0.5. Consequently,
the gradient is insensitive with respect to the change of ρ1 and
ρ2, which makes Fig. 3d inadequate as an SSI for topology
optimization. Therefore, after testing r and s from 1 to 3 re-
spectively and examining the resulting convex surfaces and
curves for better convergence, r = 3 and s = 2 as illustrated in
Fig 3a are selected to be the default values for the following
self-supporting constraints.

For sensitivity analysis, Fig. 4 shows three gradient
schemes of SSI: the gradient is required only for the supported
element, the supporting elements, and for both the supported
and supporting elements, as respectively illustrated in Fig. 4a,
b, and c. From a mathematical perspective, Fig. 4a shows that
variation in the supported element ρt0 depends on whether the
supporting element ρte exists during the optimization, whereas
Fig. 4b shows the opposite (i.e., the variation in the supporting
element ρte depends on the supported element ρt0). Last,
Fig. 4c illustrates that both the gradients of supported and
supporting elements are taken into consideration during
optimization.

According to the sensitivity analysis and the associated
demonstration from Gaynor and Guest (2016), the upper/
supported element can exist only if the lower/supporting
elements can provide enough support. One way to meet
this overhang angle constraint is to modify the upper/
supported elements (i.e., similar with Fig. 4a in this study).
On the other hand, according to the sensitivity analysis
from Langelaar (2017), the lower/supporting elements
can be modified during the optimization to provide enough
support for the upper/supported one, which leads to the
similar element modification as shown in Fig. 4b in this
study.

Comparing with Gaynor and Guest (2016) and Langelaar
(2017), the topology optimization method used in this study
can meet the overhang constraint based on the proposed
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gradient scheme involving both supported and supporting el-
ements. This means if the supported element need support,
supporting elements have chance to increase the density. On

the other hand, the supporting elements might be dropped out
if the supported one does not exist. This is why we present and
compare all three schemes in this study.

(a) (b)

(c)

(e)

(d)

Fig. 3 Value of SFn(ρt) when a
r = 3 and s = 2, b r = s = 1, c r =
s = 2, d r = s = 3, and e
ρt1 = ρt2 = ρt3 = 0

(a) (b)

Fig. 2 Value of SFte(ρte), where a
is r = s = 1 and b is r = s = 2
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The sensitivity of SSI from Fig. 4 is illustrated as follows:

∂SF ρð Þ
∂ρn

¼ ∑N
n¼1∂SFn ρtð Þ

∂ρn
ð4Þ

where ρ is a N × 1 density vector of the whole design domain,
N is the number of elements involved for topology optimiza-
tion, and ρn is the element that will be updated according to the
gradient schemes illustrated in Fig. 4. ρn varies in different
schemes: ρn = [ρt0] in Fig. 4a,ρn = [ρt1, ρt2, ρt3] in Fig. 4b, and
ρn = [ρt0, ρt1, ρt2, ρt3] in Fig. 4c.

3 Characteristics of SSI using a cantilever

Figure 5 illustrates a cantilever with a size of 0.03 ×
0.09 m2, and it is fixed at its bottom. The design domain
is meshed using 4-node square finite elements with a size
of 0.5 × 0.5 mm2, the Young’s modulus is 70 GPa, and the
Poisson’s ratio is 0.3. This beam is subjected to a horizon-
tal force of 50 Nt acting on the center of its free top end.
The objective is to minimize the total strain energy c, or
equivalently the compliance, with a 50% volume reduction
of the design domain. The fabrication process of printing
this cantilever is from bottom to top, and the self-
supporting requirement must be satisfied. The formulation

based on topology optimization without including the
gravity effect is written as follows:

Minimize : c ρð Þ ¼ FTu ¼ uTKu ð5aÞ

Subject to : ∑
N

n¼1
ρnvn≤Vt ð5bÞ

SF ρð Þ
SF0

¼ ∑N
n¼1SFn ρtð Þ

SF0
≤ε ð5cÞ

10−4 ¼ ρmin≤ρn≤1 ð5dÞ
Ku ¼ F ð5fÞ
where the objective function c(ρ) is the total strain energy
of the design domain, u is the displacement vector of each
node, K is the global stiffness matrix, F is the force vector,

Fig. 5 Design domain of cantilever beam for performing self-supporting
structure topology optimization

Fig. 4 Three different schemes
for determining the sensitivity of
self-supporting constraints

Fig. 6 Cantilever after topology optimization a with and b without
normalization
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and Ku = F is the force equilibrium equation that is also
required to calculate the sensitivity during optimization. vn
is the volume of each element, Vt is the value of total
volume constraint (i.e., 50% in this practice), and ρmin is

the lower bound of the density that prevents singularity
during the finite-element analysis. The continuation
method that progressively increases p from 1 to 3 with an
increment of 0.125 is adopted here to encourage a 0–1

Fig. 7 Topology layout of cantilever with and without self-supporting
constraint and their corresponding SSI: a and e without self-supporting
constraint, b and fwith gradients only on the supported elements, c and g

with gradients only on supporting elements, and d and hwith gradients on
both supporting and supported elements

Table 2 Self-supporting index and compliance of Fig. 7

(a) Without self-supporting (b) Supported element (c) Supporting element (d) Both

Compliance, c 634.2262 652.3949 740.5167 668.0777

SD of SSI 11.4 × 10−3 5.479 × 10−3 6.288 × 10−3 3.561 × 10−3

Max SFn(ρt) 0.18518 0.17414 0.1442 0.04513

SF(ρ) 17.3580 6.5843 21.046 9.9768
SF ρð Þ
SF0

1.61 × 10−3 0.61 × 10−3 1.95 × 10−3 0.92 × 10−3

C/Cref 100% 102.86% 116.76% 105.3%
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design that might keep the objective close to the global
optimum (Petersson and Sigmund 1998).

SF(ρ) is the summation of all the elemental SSIs SFn(ρt),
and SF0 is the value of SF(ρ) when all the elements are in the
poorest supporting condition (i.e., all of the elements have the
same penalty index equal to value 1). According to (5c), the
overhang constraint is satisfied by approximating the normal-
ized summation SSIs to 0 (i.e., ε is close to 0). Normalizing
SF(ρ) with respect to SF0 smooths the sensitivity of the self-
supporting constraint, and therefore the topology layout is able

to converge during optimization. Figure 6 shows the resulting
cantilever with and without normalization under a 45° angle
constraint. The resulting cantilever topology becomes too
sparse and over-constrained if (5c) has not been normalized.

3.1 Topology layout comparisons from different
gradient schemes

Figure 7a–d show the resulting topology layouts with and
without 45° self-supporting constraints, whereas Fig. 7e–h

Fig. 8 Cantilevers after topology optimization with different overhang angle constraints and their corresponding SSI: a and e are without overhang angle
constraint, b and f have an overhang angle constraint of 26.6°, c and g)have a 45° constraint, and d and h have a 63.4° constraint
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show the corresponding SSI distributions in the gray scale.
Figure 7b–d show the resulting topology layouts with the
three different gradient schemes previously mentioned. The
SSI distribution in Fig. 7e–h represents the degree of self-
support, where the darker gray denotes larger SSI.

The topology resulting from using only the supported ele-
ment gradient as in Fig. 4a appears to be a sufficiently sharp
layout, even though the Heaviside filter (Sigmund 2007) has
not been adopted. This shows that 95% of all elements in the
design domain are less than 0.1 or larger than 0.9. However, a
more detailed examination reveals that parts of the internal
structure are not properly self-supported for a 45° overhang
angle. As can be seen in Fig. 7f, the four portions of the design
domain, two near the top and the other two in the middle of the
cantilever, have SSI values larger than 0.14, which indicates
that they are not properly self-supporting. This poor self-
support is improved when the gradient scheme is changed to
involve only the supporting element gradient, as illustrated in
Fig. 4b. Figure 7c shows only two small portions near the top
of the cantilever with SSI values larger than 0.14. The gradi-
ents of both the supported and supporting elements are
displayed in Fig. 7d. All SSIs in Fig. 7h are smaller than
0.0452, which indicates that all the structures in the design
domain are self-supporting. Presenting the SSI distribution
in gray scale as in Fig. 7e–h helps to identify whether the
structure is self-supporting during the AM process.

Table 2 compares the compliance c, SF(ρ), and SSI in the
design domain from each topology layout in Fig. 7. The

compliance of the topology without self-supporting constraint
is used as a baseline denoted by Cref. Comparing the topology
layouts from the results involving self-supporting constraint in
the optimization, the compliance is positively correlated to the
quantity of twigs. The more twig-like ribs in the structure, the
higher the total strain energy is. Using only the supporting
elements’ gradient during optimization, the layout tends to
have more twig-like structures, as shown in Fig. 7c; whereas
with only the supported elements’ gradient, the resulting to-
pology appears to have more trunk-like structures.

The maximum value of SSI in Fig. 7h is at least three times
smaller than the others. In this study, the threshold is not
explicitly defined to determine whether elements are self-
supporting; however, the SSI truly reflects the relative degree
of self-supporting in a specific structure. The normalized sum-
mation SSIs (5c), SF(ρ)/SF0, numerically approximates to a
very small number close to zero. It indicates that results opti-
mized by GCMMA are numerically convergent and accept-
able with the proposed overhang constraint. The standard de-
viation (SD) of the SSI listed in Table 2 quantifies the distri-
bution of the SSI for each topology layout. The SSI distribu-
tion of the topology layout without self-supporting constraint
spreads out over a wider range, and the SD is an order larger
than those with self-supporting constraint. This result shows
that when the SSI distribution tends to be less dispersive, the
self-supporting constraint effectively restricts the overhang in
the prescribed angle (45° in this example). Figure 7d shows a
compromise between the compliance and the self-supporting

(a) (b)

Fig. 9 Optimization history for
different overhang angles: a are
the objective values from (5a) and
b are the normalized SSI values
from (5c)

Table 3 Self-supporting index
and compliance of Fig. 8 (a) Without self-supporting (b) 26.6° (c) 45° (d) 63.4°

Compliance, c 634.2262 637.2922 668.0777 767.8608

SD of SSI 11.4 × 10−3 7.398 × 10−7 3.561 × 10−3 8.11 × 10−3

Max SFn(ρt) 0.18518 0.00003 0.04513 0.08095

SF(ρ) 17.3580 8.0190 9.9768 26.5508
SF ρð Þ
SF0

1.61 × 10−3 0.74 × 10−3 0.92 × 10−3 2.46 × 10−3

C/Cref 100% 100.48% 105.3% 114.76%
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requirement because the compliance of the topology without
the self-supporting constraint is the smallest.

Comparing with Gaynor and Guest (2016) and
Langelaar (2017) mentioned in the end of Section 2,
the topology optimization method used in this study
can meet the overhang constraint based on the proposed
gradient scheme involving both supported and supporting
elements.

3.2 Self-supporting structures with general overhang
angle constraints

To validate the proposed LA function–based SSI that can be
employed for general overhang angle constraints, three differ-
ent overhang angles, as shown in Fig. 1, were applied to the
same cantilever model.

A comparison between Fig. 1a and b denotes that the quan-
tity of supporting elements ρte and the derivation of SF(ρ) are
the same even though the supporting configuration is differ-
ent. In contrast to Fig. 1a and b, Fig. 1c is different in both
supporting configuration and the supporting element num-
bers. However, simply changing e in (3) from 3 to 7 yields
Fig. 1c. In general, the proposed LA function SFn(ρt) can be
used for any arbitrary overhang angle regardless of the num-
ber of supporting elements ρte.

Figure 8a shows a resulting cantilever after topology opti-
mization without overhang constraint, whereas Fig. 8 b–d
display the same cantilever problem with three different over-
hang angle constraints: 26.6°, 45°, and 63.4°, respectively.
Figure 8e–h show the SSI distribution on the gray scale. All
the cantilevers shown in Fig. 8 result from topology optimi-
zation with the gradient of both supporting and supported
elements. In order for an easier examination, the small trian-
gles illustrated in each figure are added to represent the spe-
cific overhang angle for each result (i.e., 26.6° in the right half
of Fig. 8a and 45° in the left half, 26.6° in Fig. 8b, 45° in
Fig. 8c, and 63.4° in Fig. 8d). Some of the non-overhanging
beams have light gray color in Fig. 8e with 45° SSI detection;
however, they have a magnitude at least an order smaller than
the highest values. These blur elements in Fig. 8e correspond
to the blur boundary of those ribs’ profile in Fig. 8a. The
severity of blur distributions can be mitigated with the pro-
posed overhang constraint as can be seen in the self-
supporting results in this study.

Figure 8a shows that parts of the internal rib-like structure
inside the cantilever have angles less than 26.6°, which might
not be possible to manufacture using AM. Topology layouts
with self-supporting constraints, as illustrated in Fig. 8b–d,
meet their respective angle constraint. For example, the layout
shown in Fig. 8a looks similar to that in Fig. 8b. However,
upon further examination, every internal rib–like structure

Fig. 10 Topologically optimal
cantilever print obtained using the
FDM machine a without and b
with a 45°overhang angle
constraint

Fig. 11 Design domain of half-
MBB beam for performing self-
supporting structure topology
optimization
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inside the cantilever in Fig. 8b has angles larger than 26.6°,
which guarantees that the cantilever satisfies the overhang
constraint. The maximum SSIs of Fig. 8a–d are 0.18518,
0.000023, 0.04513, and 0.08095, which indicates that the
maximum SSIs with the overhang constraints are at least
two times smaller than that without overhang constraint.

Figure 9 plots the convergence history for both the compli-
ance and the normalized summation SSIs from results of
Fig. 8. In Fig. 9a, the compliance from the topology layout

without overhang constraint and that with 26.6° overhang
angle constraint converges to the value close to each other.
Consequently, their corresponding topology layouts illustrat-
ed in Fig. 8a and b look alike. With the increase in the over-
hang angle, the topology layout evolves to have more twig-
like ribs. Nevertheless, the compliance from the topology lay-
out converges after 60 iterations. Figure 9b shows that all the
normalized summation SSI from the results with overhang
angle constraints approximate to 0 after 100 iterations.

Table 4 Self-supporting index and compliance of Fig. 12

(a) (b) (c) (d) (e)

Compliance, c 707.055 762.265 817.392 715.036 726.474

SD of SSI 24.03 × 10−3 5.155 × 10−3 4.633 × 10−3 3.580 × 10−3 3.871 × 10−3

Max SFn(ρt) 0.1919 0.05337 0.05463 0.05801 0.04860

SF(ρ) 33.8378 15.4017 17.6135 8.6626 9.9529
SF ρð Þ
SF0

3.19 × 10−3 1.45 × 10−3 1.66 × 10−3 0.82 × 10−3 0.94 × 10−3

C/Cref 100% 107.8% 115.6% 101.1% 102.7%

Fig. 12 Half of MBB beam in
different orientations after
topology optimization with and
without 45° overhang angle
constraint: a the only set without
overhang constraint, in the same
position as Fig. 11; b same
orientation as (a) but with
overhang constraint; c the
horizontal reflection of (b); d 90°
counterclockwise rotation from
(a); and e horizontal reflection of
(d)
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Table 3 lists the SSI and the compliance of Fig. 8. The SD
of SSIs without overhang constraint is larger than those with
overhang constraint. It indicates that the SSI values with over-
hang constraint distribute more concentration with a smaller
maximum value. Although the summation of SSIs, SF(ρ),
corresponding to the overhang constraint of 63.4° is larger
than that without constraint, the maximum SSI, Max
SFn(ρt), is at least twice smaller. The larger value of SF(ρ) is
because the more twig-like ribs the more blur element
appearing in the topology layout. Nevertheless, Fig. 8d still
satisfies the overhang angle constraint.

Figure 10a and b displays the FDM practices comparing
workpiece quality with and without overhang angle constraint
(e.g., Fig. 7a and d). Both FDM processes were realized using
Ultimaker 2+ with the suggested optimal process parameters
in Cura 3.2. The structures with overhang angles smaller than
45° can still be printed. Nevertheless, Fig. 10a shows that
some portions of the structure as indicated by the rectangular
boxes significantly have flash, especially at the bottom of
branches whose angles are less than 45°. By contrast, the four
solid lines with angles of 45° as shown in Fig. 10b indicate
that every part of the structure satisfies the required overhang
constraint, and consequently, the resulting structure has a
high-quality surface at the bottom of every branch.

4 Topology layout comparisons from general
workpiece orientations

To further prove that the proposed SSI can be generally ap-
plied to different structure designs oriented in arbitrary direc-
tions, a symmetric MBB beam model was selected with the
same dimension as that of Langelaar (2017). Figure 10 illus-
trates a 90 × 30 mm2 half-MBB beam meshed by 0.5 ×
0.5 mm2 4-node square elements with a 70 GPa Young’s
modulus and 0.3 Poisson’s ratio. The beam is subjected to a
vertical 50 N concentrated force on the left top corner, and it is
fixed horizontally on its left side due to the symmetry. The
formulation is the same as that in (5) with a 45° overhang
angle constraint.

Figure 12 illustrates the topology layout with and without
self-supporting constraints. All the MBB beams are built from
bottom to top in the AM process, as indicated by the arrow at
the corner in each figure. The SSI distributions are illustrated
next to their corresponding topology layout. Fig. 12a is the
only layout without the overhang angle constraints, whereas
the others have 45° overhang angle constraints. Figure 12a
and b is the same orientation as Fig. 11, whereas Fig. 12c is
a horizontal reflection of Fig. 11. Figure 12d is a 90° counter-
clockwise rotation of Fig. 11, and Fig. 12e is a horizontal
reflection of Fig. 12d.

Table 4 compares the compliance, SF(ρ), and SSI in the
design domain from each topology layout in Fig. 12. Because

CAMD was applied instead of the Heaviside filter, the quan-
tity of relatively high-value SSI correlates as much to the
quantity of blur elements as it does to the twig quantity. This
phenomenon leads to the SF(ρ) in Fig. 12b and c being almost
twice as high as those in Fig. 12d and e, even though the four
maximum SSIs corresponding respectively to Fig. 12b–e are
closed to each other in magnitude, as listed in Table 4. In
addition, comparing the compliance of the topology with
and without self-supporting constraints, the more twigs that
appear in the structure, the more compliant the structure is, as
can be seen in Table 2.

5 Conclusion

This study proposed a continuous LA function that can be
employed not only in quantifying the degree of self-support
for each element through the topology layout but also for
satisfying arbitrary overhang angle requirements. The pro-
posed LA function does not require additional mathematical
transformations for optimization formulation, and it can be
directly applied in sensitivity analysis. This formulation can
make the resulting topology layouts meet the overhang angle
constraint for general orientations of the deposition direction,
as specified for AM.

So far, there is no threshold or critical value of SSI for
estimating whether each element is self-supporting in this
study. As an alternative, the maximum value and the standard
deviation of SSI are utilized for assessing the effectiveness of
proposed self-supporting constraint. Every portion of the
resulting topology layout in Figs. 8 and 12 guarantees satisfy-
ing the self-supporting requirement with the proposed self-
supporting constraint. Therefore, the threshold value of SSI
is not required, and the maximum and SD of SFn(ρt) proves to
be sufficient to determine whether the element is well-
supported during the optimization. The proposed SSI includes
design for manufacturability requirements in the topology de-
sign by using FDM practices according to the topology layout
results.
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