
RESEARCH PAPER

A radial basis function-based multi-fidelity surrogate model:
exploring correlation between high-fidelity and low-fidelity models

Xueguan Song1
& Liye Lv1 & Wei Sun1

& Jie Zhang2

Received: 16 November 2018 /Revised: 28 January 2019 /Accepted: 22 February 2019 /Published online: 1 April 2019
# Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
In computational simulation, a high-fidelity (HF) model is generally more accurate than a low-fidelity (LF) model, while the latter
is generally more computationally efficient than the former. To take advantages of both HF and LF models, a multi-fidelity
surrogate model based on radial basis function (MFS-RBF) is developed in this paper by combining HF and LF models. To
determine the scaling factor between HF and LF models, a correlation matrix is augmented by further integrating LF responses.
The scaling factor and relevant basis function weights are then calculated by employing corresponding HF responses. MFS-RBF
is compared with Co-Kriging model, multi-fidelity surrogate based on linear regression (LR-MFS) model, CoRBF model, and
three single-fidelity surrogates. The impact of key factors, such as the cost ratio of LF to HFmodels and different combinations of
HF and LF samples, is also investigated. The results show that (i) MFS-RBF presents a better accuracy and robustness than the
three benchmark MFS models and single-fidelity surrogates in about 90% cases of this paper; (ii) MFS-RBF is less sensitive to
the correlation between HF and LFmodels than the threeMFSmodels; (iii) by fixing the total computational cost, the cost ratio of
LF to HFmodels is suggested to be less than 0.2, and 10–80% of the total cost should be used for LF samples; (iv) the MFS-RBF
model is able to save an average of 50 to 70% computational cost if HF and LF models are highly correlated.
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1 Introduction

Design optimization relying on computational simulations,
especially high-fidelity (HF) simulations, generally requires
expensive computational cost (Wang and Shan 2006). To im-
prove the computational efficiency, surrogate models have
been used to replace computationally expensive simulations,

which are constructed based on a small number of computa-
tional simulations. Surrogate models can be broadly classified
into four types: single-fidelity, hybrid, adaptive sampling-
based, and multi-fidelity surrogate models.

Single-fidelity surrogate models are the most conventional
type and have been widely used in engineering applications.
Popular single-fidelity surrogate models include the polynomial
response surface (PRS) (Myers et al.2016), radial basis function
(RBF) (Gutmann 2001; Sun et al. 2011), kriging (KRG)
(Matheron 1963; Sacks et al. 1989), and support vector regres-
sion (SVR) (Smola and Schölkopf 2004). However, it has been
shown that no single-fidelity surrogate model was found to be
the most effective for all problems (Goel et al. 2007), and it is
challenging to select the most appropriate single-fidelity surro-
gate prior.

Hybrid surrogate models ensemble multiple single-fidelity
surrogate models by using weight coefficients. It is crucial to
determine the weight coefficients for each single-fidelity sur-
rogate model, and two types of method are generally used
with constant or adaptive weights. It has been shown that
hybrid surrogate models are able to take advantages of each
single-fidelity surrogate model, thereby being more accurate
and robust than individual surrogate models (Zerpa et al.
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2005; Acar and Rais-Rohani 2009; Acar 2010; Liu et al.
2016).

Adaptive sampling-based surrogate models are proposed to
enhance the accuracy by using auxiliary criteria called infilling
strategies. Based on the strategy of choosing samples, infill strat-
egies can be generally divided into two types: one-stage ap-
proach (e.g., goal seeking proposed by Jones (2001)) and two-
stage approach (e.g., probability improvement (PI) proposed by
Kushner (1964) and expected improvement (EI) presented by
Schonlau et al. 1998). Theoretically, the accuracy of an adaptive
sampling-based surrogate model could be improved gradually
with the increase of infill points, but in reality, it often cannot
be guaranteed as infill points can bemisled if the initial surrogate
significantly deviates from the true response (Jones 2001).

For the three types of surrogate models mentioned above,
the observations at samples are usually obtained from HF
simulations. However, it is still computationally expensive
to run HF simulations despite of the advancement in comput-
ing power nowadays. To further reduce computational time
and resources, multi-fidelity surrogate (MFS) models that fuse
HF and low-fidelity (LF) information have been proposed by
Kennedy and O’Hagan (2000) and subsequently investigated
by Forrester et al. (2007), Han et al. (2013), Tyan et al. (2015),
Cai et al. (2017a), etc. Kennedy and O’Hagan presented a
Bayesian approach to improve surrogate modeling efficiency
by fusing expensive and cheap simulations. Forrester et al.
extended the KRG surrogate model to a CoKRG model,
which can be used to find optimal solutions more quickly
and enhance the accuracy of a surrogate model of the highest
level of analysis. Han et al. modified an MFS model by using
gradient information and showed that a gradient-enhanced
CoKRG model was more efficient in aero-load prediction.
Tyan et al. proposed a global variable-fidelity modeling meth-
od that makes it possible to build a global approximation of
the scaling function using the design of experiments (DoE)
and the RBF surrogate model. Cai et al. developed a multi-
fidelity high-dimensional model representation method to
tackle the risk of “curse of dimensionality.”

In addition to KRG-based MFS models, other surrogate-
based MFS models have also been developed in recent years.
For example, Zhang et al. (2018) revised a heuristic MFS
model based on linear regression (LR-MFS), to minimize pre-
diction errors of HF samples. Cai et al. (2017b) proposed an
adaptive MFS model based on RBF. Durantin et al. (2017)
proposed a cooperative radial basis function (CoRBF)
model, and compared the CoRBF model with CoKRG. Li
et al. (2017) also developed a CoRBF model and found that
it performed better than other baseline MFS models. Zhou
et al. (2017a) transformed a multiple-to-one–dimensional
structure to a one-to-one–dimensional structure by consider-
ing a LF model as prior knowledge. Zhou et al. (2017b) also
proposed a sequential multi-fidelity model which aims at ad-
dressing an appreciate combination of HF and LF samples.

The hypothesis that a HF model is more accurate and more
computationally expensive, whereas a LFmodel is less accurate
but is considerably less computationally demanding (Viana
et al. 2014), is generally assumed in the development of MFS
methods. Thus, one of the key challenges in developing MFS
models is how to optimally combine HF and LF information
and take full advantage of the high accuracy of HF models and
the high computational efficiency of LF models.

In this paper, a multi-fidelity surrogate model based on
radial basis function (MFS-RBF) is developed. To construct
the MFS-RBF model, an integrated correlation matrix be-
tween HF and LF samples is first constructed by augmenting
the classical correlation matrix of an RBF model with LF
responses. An integrated weight vector that consists of a scal-
ing factor and relevant basis function weights are then calcu-
lated by employing HF responses. In the surrogate prediction
process, an integrated correlation matrix is constructed be-
tween HF samples and testing points by augmenting LF re-
sponses at testing points. Instead of calculating LF responses
directly, an RBF model built based on LF samples is used to
approximate true LF responses. To evaluate the performance,
MFS-RBF is compared with three baseline MFS models and
three single-fidelity surrogate models on three numerical
problems and one engineering problem. In addition, key fac-
tors that have significant influences on the accuracy of MFS-
RBF are explored, such as the correlation between HF and LF
models, the cost ratio of LF to HF models, the different com-
binations of HF and LF samples, the relationship between HF
and LF sample set, and basis functions.

The remainder of this paper is organized as follows.
Section 2 describes the overall framework of the developed
MFS-RBF model. Comparisons between the MFS-RBF mod-
el and three baseline MFS models are presented in Section 3.
Section 4 investigates the effects of key factors on the perfor-
mance of MFS-RBF and computational cost savings.
Conclusions and future works are provided in Section 5.

2 The MFS-RBF methodology

The MFS-RBF model is developed by integrating HF RBF
surrogate model and LF RBF surrogate model through a scal-
ing factor that is calculated based on a correlation matrix be-
tween HF and LF samples.

2.1 RBF surrogate model

A radial basis function (RBF) surrogate interpolates multivar-
iate points (basis function centers) by using a series of sym-
metric basis functions. A typical form of RBF is expressed as:

ŷ xð Þ ¼ ∑
n

i¼1
λiϕ r x; xið Þð Þ ð1Þ
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where ŷ xð Þ is the prediction of a true response function, λi is the
weighed coefficient for the i-th basis function, n is the number of
samples, r(x, xi) denotes the Euclidean distance between the i-th
sample xi and a testing point x, and ϕ is a basis function. Basis
functions usually include Gaussian (G), multi-quadric (MQ), and
inversemulti-quadric (IMQ) functions, as summarized in Table 1.

Shape parameter σ shown in Table 1 can be determined in
this paper by:

σ ¼ dmax=
ffiffiffiffiffi
2n

p
ð2Þ

where n is the number of samples, and dmax is the maximum
distance between any two samples.

To solve the unknown parameters λi, interpolation condi-
tions can be used.

ŷ xið Þ ¼ y xið Þ; i ¼ 1; 2; :::; n ð3Þ

By combining (1) and (3), a matrix form is given by:

Φλ ¼ y ð4Þ
whereΦ is a correlation matrix, ϕik=ϕ(r(xi− xk)), k = 1, 2, ...n.

2.2 MFS-RBF model

A typical form of an MFS model can be expressed as (5).

yH xð Þ ¼ ρyL xð Þ þ d xð Þ ð5Þ
where x is a set of samples, yH(x) and yL(x) represent the
responses of HF and LF models, respectively, ρ denotes a
scaling factor, and d(x) is a discrepancy function between
the HF and LF models. The construction of the MFS-RBF
model consists of the following two steps.

2.2.1 Step 1: scaling factor determination

The samples of HF and LF models are represented as xH
¼ x1h; x

2
h; :::; x

n
h

� �
and xL ¼ x1l ; x

2
l ; :::; x

p
l

� �
(xH ⊂ xL), respec-

tively. The corresponding responses of HF and LF models are
denoted as yH ¼ y1h; y

2
h; :::y

n
h

� �
and yL ¼ y1l ; y

2
l ; :::y

p
l

� �
, re-

spectively. The HF and LF sample sets are denoted as (xH,
yH) and (xL, yL), which include n and p samples, respectively.
Equation (5) can be transformed to

yH xHð Þ ¼ ρyL xHð Þ þ R xH; xHð Þω ð6Þ

where yH(xH) and yL(xH), respectively, represent the re-
sponses of HF and LF models at samples xH, ρ is a scaling
factor, R(xH, xH) is a correlation matrix between xH and xH,
and ω is a vector of coefficients.

In the MFS-RBF model, the traditional correlation matrix
R of an RBF model can be augmented as an integrated corre-
lationmatrixC. Thereby, (6) can be written in a matrix form as

yH ¼ Cβ ð7Þ
where yH is a vector of HF responses; the integrated correla-
tion matrixC is augmented by combining the LF responses at
the HF samples and the correlation matrix of HF samples, i.e.,

Cn� nþ1ð Þ ¼
y1lh R x1h; x

1
h

� �
::: R x1h; x

n
h

� �
::: ::: ::: :::
ynlh R xnh; x

1
h

� �
::: R xnh; x

n
h

� �
2
4

3
5; β is an aug-

mented coefficient vector constituted by ρ and ω, i.e., β(n +

1) × 1 = [ρ ω1 ... ωn]
′, where ω1 ::: ωn½ �0 ¼ ω.

In this paper, the rank of the matrix C is n, namely C is row
full rank. According to the matrix theory (Petersen and Pedersen
2008), there exists unique least norm solution β indicating that
MFS-RBFmodels can strictly go through HF samples. Then, the
parameter vectorβ can be calculated by (8) which is transformed
from (7), with obtained scaling factor ρ andω. It is seen from (7)
that the first element of β denotes the scaling factor ρ.

β ¼ CT CCT� �−1
Y ð8Þ

2.2.2 Step 2: prediction of MFS-RBF

The MFS-RBF model is finally formulated as.

ŷmf xð Þ ¼ ρŷL xð Þ þ r x; xLð Þω ð9Þ
where ŷmf xð Þ represents the vector of predictions calculated
by MFS-RBF at testing points x (i.e., x = {x1, x2, ..., xm}, and
m is the number of testing points); ŷL xð Þ represents the vector
of corresponding predictions of LF models; ρ and ω can be
obtained in Step 1; r(x, xL) is the correlation matrix between
testing points x and LF samples xL. The matrix form is then
formulated as

ŷmf ¼ cβ ð10Þ
where the integrated correlation matrix c is augmented by
combining predictions of the LF model at testing points ŷL
xð Þ and the correlation matrix between LF samples and testing
points r(x, xL), which is expressed as

c ¼
ŷl x1ð Þ r x1; x1h

� �
::: r x1; xnh

� �
::: ::: ::: :::

ŷl xmð Þ r xm; x1h
� �

::: r xm; xnh
� �

2
64

3
75 ð11Þ

Table 1 Typical basis functions in RBF

Name Form

Gaussian function ϕ rð Þ ¼ e−r
2=σ2

Multi-quadric function ϕ rð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ σ2

p

Inverse multi-quadric function ϕ(r) = 1/(r2 + σ2)
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The integrated correlation matrix C shown in (7) is aug-
mented by adding LF responses at samples xH. Thus, in the
prediction process, to construct the augmented matrix c be-
tween HF samples and testing points, corresponding re-
sponses of the LF model yL(x) at testing points x are simulta-
neously needed. In addition to run LF simulations and get the
LF sample set directly, an RBF model built based on the LF
sample set (xL, yL) is used to obtain approximate responses ŷL
xð Þ at testing points x.

2.3 Performance criteria

Different metrics can be used to assess the modeling accuracy
of MFS models, which can be broadly classified into two
types, namely global criteria such as R2 (i.e., R-square, coef-
ficient of determination) and root mean square error (RMSE),
local criteria such as relative maximum absolute error
(RMAE). RMSE is highly correlated with R2 and cannot ex-
press the goodness of fit intuitively, because the value of
RMSE depends on responses. That is, for different problems,
the value of RMSE varies with the responses. RMAE cannot
represent the overall performance in the design space.
Therefore, R2 is selected as the only criterion for the compar-
isons in this paper.

In this paper, R2 is adopted as the sole performance criteri-
on, since RMSE is strongly correlated with R2 and RMAE
cannot reflect the global performance in the design space.
The R2 metric is calculated as

R2 ¼ 1−
∑n

i¼1 yi−ŷi
� �2

∑n
i¼1 yi−y

� �2 ð12Þ

where n is the number of samples; yi and ŷi represent true
responses and predictions at testing points, respectively; and
y is the means of true responses. Essentially, R2 denotes the
correlation between the true model and the surrogate model,
and the surrogate model is more accurate if R2 is closer to one.

The Pearson correlation coefficient (PCC), also referred to
as Pearson’s r, is a measure of the correlation between two
random variables X and Y. In this paper, we use square of
Pearson’s r which is denoted as r2 to describe the correlation
between HF and LF functions which is inspired by Toal
(2015), as shown in (13).

r2 ¼
∑n

i¼1 yh−yh
� �

yl−yl
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 yh−yh
� �2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 yl−yl
� �2

r
0
BB@

1
CCA

2

ð13Þ

where yh and yl denote the HF and LF responses, respectively;
yh and yl represent the means of the HF and LF responses,
respectively.

3 Numerical examples

3.1 Design of experiments

Design of experiments (DoEs) are methods to strategically
generate samples from computer simulations or experiments
in a domain of interest to build surrogate models. In this paper,
it is assumed that the number of DoE (HF simulations) points
is m × n for a single-fidelity surrogate model, where n is the
dimension of the problem and m is a user-defined value. To
build an MFS model, the number of HF samples is set to be
k × n (k <m), and the remaining (m − k) × n HF simulations
are replaced bymore LF simulations. If the computational cost
ratio between LF and HF models is θ, then the number of LF
samples should be (m − k) × n/θ.

To evaluate the performance, the MFS-RBF model is com-
pared with three benchmark MFS models (i.e., CoKRG
(Forrester et al. 2007), LR-MFS (Zhang et al. 2018), and
CoRBF (Durantin et al. 2017)) and three single-fidelity surro-
gate models (i.e., PRS, RBF-MQ, and KRG) through three
widely used numerical test problems (i.e., the Forretal func-
tion (n = 1) from ref. Forrester et al. (2007), the Branin func-
tion (n = 2) from ref. Liu et al. (2016), and the Colville func-
tion (n = 4) from ref. Durantin et al. (2017)) and one engineer-
ing problem. It is worth noting that since the source code of
the CoRBF model is not available, some specific parameters
may be different from those inDurantin’s paper evenwewrote
the code according to this paper. In addition, genetic algorithm
(GA) is used for CoKRG and CoRBF models to search the
unknown parameters, and for the LR-MFSmodel, a first-order
PRS is used to approximate the discrepancy function. To de-
termine the number of samples for building a surrogate, the
accuracies of RBF-MQ with different sample sizes are com-
pared. The criterion of R2 ≥ 0.8 is used to determine an appro-
priate sample size (Forrester et al. 2008). The accuracy is
averaged over 50 randomly sampling sets.

In this paper, the standard Forretal, Branin, and Colville
functions and the corresponding variants are considered as the
HF and LF functions, respectively. In addition, the method of
defining a LF function is inspired by Toal (2015), who intro-
duced the thought of the correlation r2 between HF and LF
responses. For Forretal, Branin, and Colville cases, in
Subsections 3.2, 3.3, and 3.4, the value of k is set as 0.8 ×m,
and then the numbers of HF samples for the Branin andColville
functions are 4, 8, and 32, respectively. The cost ratio θ is set to
be 0.1, meaning that the computational cost of a HFmodel is 10
times of a LF model. Hence, the numbers of LF samples for the
Branin and Colville functions are10, 20, and 80, respectively.
For the engineering case in Subsection 3.4, the value of k is set
as 0.5 ×m, and then the numbers of HF samples are 5. The cost
ratio θ is set to be 0.2, and then the number of LF samples is 25.

Among many available DoE methods, the Latin hypercube
sampling (LHS) has been proved to be capable of balancing
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the trade-off between accuracy and robustness by generating a
near-random set of samples. For all surrogate models in this
paper, the MATLAB function lhsdesign is adopted to generate
DoE samples. To mitigate the impact of random DoE on sur-
rogate performance, 20 sets of DoE samples are generated
randomly and the averaged results are compared for the three
numerical test problems. In addition, 1000 × n randomly gen-
erated testing points are used for validation.

3.2 Test problem 1: Forretal function

In the case of Forretal function, to ensure that the correlation
between HF and LF functions varies from 0 to 1, the LF
function is derived from the HF function by multiplying a
coefficient function of parameter A and adding a first-order
term of x.

HF model:

yh ¼ 6x−2ð Þ2sin 12x−4ð Þ ð14Þ

LF model:

yl ¼ 1−A2−2A
� �

yh þ 10 x−0:5ð Þ−5 ð15Þ

where x ∈ [0, 1], yh is a HF model, yl is a LF model, and the
parameter A varies from 0 to 1 to reflect the degree of the
correlation r2.

Figure 1 compares the MFS-RBF model with single-fidelity
surrogate models. Two sample sets, 4n and 5n, are generated to
construct different single-fidelity surrogate models. To elimi-
nate the effect of DoE, the accuracies of the single-fidelity sur-
rogates are averaged over 20 randomly sampling sets. The red
dashed line in Fig. 1 shows the relationship between correlation
r2 and the parameter A for the Branin function. It is observed
that the MFS-RBF model with the minimum r2 value is obtain-
ed when A = 0.47. The r2 between the HF and LF models de-
creases as A increases from 0 to 0.47, while the r2 increases as A
increases from 0.47 to 1. A maximum r2 is obtained when A =

1. It is seen from Fig. 1 that the tendency for the performance of
MFS-RBF strongly matches the tendency of the correlation r2.
From Fig. 1, we can see that MFS-RBF with 4n HF samples
almost outperforms all single-fidelity surrogates no matter the
sample number is 4n or 5n.

Figure 2a compares the MFS-RBF, CoKRG, LR-MFS, and
CoRBF models for the Forretal function on R2 and the stan-
dard deviation (Std) of R2. Each value of R2 at parameter A is
the average of the results obtained for 20 DoEs, and the Std of
R2 denotes the standard deviation of the 20 values. The results
show that MFS-RBF performs better than CoKRG and is sim-
ilar to CoRBF. It is interesting to find that the tendency of the
performance of the MFS-RBF, CoKRG, and CoRBF models
as shown in Fig. 2a is consistent with the tendency of the HF/
LFmodel correlation r2 as shown in Fig. 1, while the LR-MFS
model is slightly insensitive to the correlation r2.

Figure 2b shows the relationship between the HF/LF corre-
lation r2 and the accuracy R2. It is observed that for the MFS-
RBF, CoKRG, and CoRBF models, the accuracy R2 increases
as the correlation between the HF and LF models r2 increases.
This validates the assumption made in (5) in which a HFmodel
can be represented as a function of a LFmodel. In addition, it is
seen that the MFS-RBF model shows larger mean of R2, which
performs better than CoKRG and CoRBF models in terms of
prediction accuracy and robustness.

3.3 Test problem 2: Branin function

Similar to the Forretal function, the LF function in Branin case
is obtained from HF function by subtracting a quadratic term
of x which multiplies a coefficient function of parameter A.

HF model:

yh ¼ x2−
5:1

4π2
x21 þ

5

π
x1−6

	 

þ 10 1−

1

8π

	 

cos x1ð Þ

þ 10 ð16Þ
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Fig. 3 Comparison between
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LF model:

yl ¼ yh− 0:5A2 þ Aþ 0:2
� �

x2−
5:1

4π2
x21 þ

5

π
x1−6

	 
2

ð17Þ

where xi ∈ [−5, 10], xi denotes the i-th variable for i = 1, 2.
Figure 3 compares the MFS-RBF model with single-fidelity

surrogate models. Two sample sets, 4n and 5n, are generated to
construct different single-fidelity surrogate models. It is ob-
served that the MFS-RBF model with the minimum r2 value
is obtained when A = 0.57. The r2 between the HF and LF
models decreases as A increases from 0 to 0.57, while the r2

increases as A increases from 0.57 to 1. A maximum r2 is
obtained when A = 0. It is seen from Fig. 3 that the tendency
for the performance of MFS-RBF strongly matches the tenden-
cy of the correlation r2. When the correlation r2 is greater than
0.8 (i.e., when 0 ≤A ≤ 0.37), MFS-RBF with 4n HF samples
outperforms all single-fidelity surrogates no matter the sample
number is 4n or 5n. Overall, MFS-RBF performs better than the
three single-fidelity surrogate models with fewer samples (i.e.,
“prs_4,” “rbf_mq_4,” and “krg_4”) as A varies from 0 to 1.

Figure 4a compares the MFS-RBF, CoKRG, LR-MFS, and
CoRBF models for the Branin function on the R2 and Std of
R2. The results show that when A is less than 0.3, i.e., the
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correlation r2 is about 0.9, MFS-RBF performs worse than
CoKRG but better than LR-MFS and CoRBF; when A is
greater than 0.3, MFS-RBF outperforms all the MFS models
in prediction accuracy. From the results of Std of R2, we can
see thatMFS-RBF behaviors the best in terms of robustness as
A varies from 0 to 1. It is also found that the tendency of the
performance of the MFS-RBF, CoKRG, and LR-MFS models
as shown in Fig. 4a is consistent with the tendency of the HF/
LF model correlation r2 as shown in Fig. 2.

Figure 4b shows the relationship between the HF/LF corre-
lation r2 and the accuracy R2. It is observed that the accuracy R2

increases as the correlation between the HF and LF models r2

increases. This validates the assumption made in (5) in which a
HF model can be represented as a function of a LF model. In

addition, it is seen that the MFS-RBF model shows the largest
mean of R2, which outperforms the other three baseline MFS
models in terms of prediction accuracy and robustness.

3.4 Test problem 3: Colville function

Similarly, for the case of the Colville function, the LF function
is derived from the standard Colville function.

HF model:

yh ¼ 100 x21−x2
� �2 þ x1−1ð Þ2 þ x3−1ð Þ2 þ 90 x23−x4

� �
þ 10:1 x2−1ð Þ2 þ x4−1ð Þ2

� �
þ 19:8 x2−1ð Þ x4−1ð Þ ð18Þ
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LF model:

yl ¼ yh A2 x1; x2; x3; x4ð Þ� �
− Aþ 0:5ð Þ 5x21 þ 4x22 þ 3x23 þ x24

� �
ð19Þ

where xi ∈ [−1, 1], xi denotes the i-th variable for i = 1, 2, 3, 4.
Figure 5 compares the MFS-RBF model with single-

fidelity surrogate models. Two sample sets, 8n and 10n, are
generated to construct different single-fidelity surrogate
models. It is observed that the least r2 occurs when A = 0.68.
When A ≤ 0.68, r2 monotonically decreases from 0.27 to 0.
When A ≥ 0.68, r2 monotonically increases from 0 to 0.9. It is
seen that the tendency of the MFS-RBF performance strongly
matches the tendency of HF/LF correlation r2. When the cor-
relation r2 is greater than 0.8, namely A ≥ 0.95, MFS-RBF
performs the best. When the correlation r2 is less than 0.8,
namely 0 ≤ A ≤ 0.95, MFS-RBF always performs better than
most single surrogate models except “rbf_mq_10” and
“krg_10”.

Figure 6a compares MFS-RBF, CoKRG, LR-MFS, and
CoRBF based on R2 and Std of R2 for the Colville function.
It is again found that the performance tendencies for all MFS
models are consistent with the correlation tendency as shown
in Fig. 5. In addition, MFS-RBF is relatively insensitive to the
correlation r2 than the other baseline MFS models and per-
forms the best in robustness with the lowest Std of R2.
Figure 6b shows that the accuracy R2 increases as the HF/LF

correlation r2 increases. Overall, the mean and Std of R2 in
Fig. 6 show that MFS-RBF outperforms the other three base-
line MFS models in terms of robustness, and the accuracy
performance of MFS-RBF is the best when the correlation is
low.

3.5 Engineering problem

In addition to the three numerical problems, an engineering
problem, i.e., computational fluid dynamic (CFD) analysis of
a pressure relief valve (PRV) as shown in Fig. 7a, is conducted
to investigate the performance of the developed MFS-RBF
model. The flow enters the valve from the inlet, goes through
the gap between the disc and the seat, and discharges from the
outlet. The opening and closing of PRV are controlled by
resultant force exerted on the disc. When the fluid force (F)
is bigger than the force against on the disc, the PRVopens. To
obtain the fluid force (F), steady simulations based on two
CFD models with different dimensions are conducted. The
standard k − ε turbulent model is used; the medium is water
with an initial temperature of 300 K. The three-dimensional
(3-D) CFD model established using 284,412 unstructured
grids (Fig. 7b) and the 2-D axisymmetric CFD model with
9646 unstructured grids (Fig. 7c) of the relief valve are con-
sidered as the HF and LF simulation models, respectively. In
CFD simulations, the inlet pressure (P) is constant. The pres-
sure of outlet is 0. The inlet pressure (P) and the opening lift
(L) are selected as two design variables, with ranges of
0.1~0.4 atm and 1~4 mm, respectively (Fig. 7).

One HF simulation takes about 50 min, while one LF sim-
ulation takes about 10 min on a computer with a 3.4GHz
processor and 8 cores CPU, and 16G RAM. Thus, the cost
ratio θ of the LF model to the HF model is 0.2. To construct
MFSmodels, each type ofMFSmodel is constructed based on
5 (2.5n; n is the number of variables) HF samples and 25

Table 2 Sampling configurations for Branin and Colville

Cases θ = 0.02 θ = 0.1 θ = 0.125 θ = 0.2 θ = 0.25

Branin (2-D) HF 8 8 8 8 8

LF 100 20 16 10 8

Colville (4-D) HF 32 32 32 32 32

LF 400 80 64 40 32
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Fig. 9 The effect of the cost ratio
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(12.5n) LF samples, and thus the total cost of constructing
MFSmodels is equal to that of generating 10 (5n) HF samples.
Another 40 randomly generated samples are used for valida-
tion. To eliminate the effect of DoE randomness, 20 sampling
sets are generated and the results are averaged.

The comparison of MFS-RBF with three baseline MFS
models and three single-fidelity surrogates are shown in
Fig. 8. It is seen that MFS-RBF performs the best among all
the surrogates for this engineering problem, as illustrated by
the largest mean of R2. Comparing with the other three MFS
models, the MFS-RBF model also behaves better in the ro-
bustness metric with lower Std of R2.

4 Exploring the effects of key MFS-RBF factors

In this section, we use Branin and Colville to further explore
the effects of key factors on the performance of MFS-RBF. It
is assumed that the total cost of generatingDoE points is fixed,
with a total budget of 5n and 10n HF samples for the Branin
and Colville functions, respectively. All the results in this sec-
tion are averaged over 20 random sampling sets to eliminate
the effect of DoE.

4.1 Effect of the cost ratio of LF to HF models

It is assumed that the total cost of HF samples accounts for 4/5
of the total cost, and the remaining 1/5 is allocated to LF
samples. That is, if the initial sample number is 5n (m = 5)
and 10n (m = 10), 4n (k = 4) and 8n (k = 8) HF samples are
used for the Branin and Colville functions, respectively. The
remaining 1n (m − k = 1) and 2n (m − k = 2) HF samples are
replaced by more LF samples ((m − k)n/θ). To better evaluate
the sensitivity of MFS to the cost ratio θ, five cost ratios of LF
to HF models are compared in this subsection, i.e., 0.25, 0.2,

0.125, 0.1, and 0.02. The detailed sampling configurations
according to different cost ratios for the Branin and Colville
functions are summarized in Table 2.

Figure 9 illustrates the effect of different cost ratios on the
performance of MFS-RBF for the Branin function. It is ob-
served that when the cost ratio θ decreases, the performance of
MFS-RBF becomes more sensitive to the correlation r2, the
accuracy ofMFS-RBF is improved significantly (as shown by
the mean of R2), and the robustness of MFS-RBF is slightly
improved except in the case of θ = 0.25 (as shown by the Std
of R2). It is seen from Fig. 9 that MFS-RBF with θ = 0.25
shows the worst performance as illustrated by the lowest R2

at most time. The HF/LF correlation r2 shows little influence
on the performance of MFS-RBF when θ = 0.25 and θ = 0.2.
Thus, the MFS-RBF model may not be suitable for the con-
dition that the cost ratio θ ≥ 0.2.

It is seen from Fig. 9 that when the correlation r2 is greater
than 0.7,MFS-RBF shows the best accuracy and robustness in
the case of θ = 0.02. When the correlation 0 ≤ r2 ≤ 0.7, the
performance of MFS-RBF with θ = 0.25 performs the best
but is still poor as shown by small values of R2. The variation
in the robustness is partially due to that more LF samples are
added in the MFS-RBF model when decreasing the cost ratio
θ, thereby more LF information is blended into MFS-RBF.
Thus, the accuracy of the LF model also significantly affects
the MFS-RBF model. When the HF/LF correlation r2 is
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Table 3 Sampling configurations for Branin and Colville

Cases 1_4 2_3 2.5_2.5 3_2 4_1 4.5_0.5

Branin (2-D) HF 2 4 5 6 8 9

LF 80 60 50 40 20 10

Colville (4-D) HF 8 16 20 24 32 36

LF 320 240 200 160 80 40
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strong, it has positive impact on the performance of MFS-
RBF, while when the HF/LF correlation r2 is weak, it has
negative impact on the performance of MFS-RBF.

Figure 10 illustrates the effect of different cost ratios on the
performance of MFS-RBF for the Colville function as A
changes from 0 to 1. It is seen from Fig. 10 that when r2 ≥
0.7, the performance of MFS-RBF becomes more sensitive to
the HF/LF correlation with the increase of cost ratio θ, which
is similar to the results observed for the Branin function.

From Fig. 10, we observe that when the correlation r2 is less
than 0.7, cost ratio θ has no significant influence on the perfor-
mance of MFS-RBF.When the correlation r2 is greater than 0.7,
the performance of MFS-RBF becomes better as the cost ratio θ
decreases. In this case, the LF and HF models are more correlat-
ed. A lower cost ratio θ indicates a larger size of LF samples, and
the LF model can be fitted more accurately. A relatively more
accurate LF model can improve the performance of MFS-RBF
when HF and LF models have strong correlation.

4.2 Effect of the different combinations of HF and LF
samples

To better explore the effect of different combinations of HF
and LF samples, the cost ratio θ is set to be 0.1. The total cost
used to generate HF samples for single-fidelity surrogates is
divided into six cases, namely “1_4,” “2_3,” “2.5_2.5,”
“3_2,” “4_1,” and “4.5_0.5.” For the Branin (or Colville)
function, the case of “1_4” means that the cost of running
1/5 × 5n (or 1/5 × 10n) HF samples is allocated to generate
HF samples, and the cost of running 4/5 × 5n (or 4/5 × 10n)
HF samples is allocated to generate LF samples, as well as
other cases. The detailed sampling configurations according to
different combinations of HF and LF samples for Branin and
Colville are summarized in Table 3.

Figure 11 illustrates the effect of different combinations of
HF and LF samples on the performance of MFS-RBF for the
Branin function. By comparing Fig. 11 with Fig. 1, it is

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.0

0.2

0.4

0.6

0.8

1.0

0 r2 0.7 0.7 r2 0.8

R2

A

rbf_mq_5

1_4

2_3

2.5_2.5

3_2

4_1

4.5_0.5

0.7 r2 1.0

Fig. 11 Impact of the
combination of HF and LF
samples on the performance of
MFS-RBF for Branin

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.0

0.2

0.4

0.6

0.8

1.0

0.7 r2 1.0

R2

A

rbf_mq_10

2_8 4_6

5_5 6_4

8_2 9_1
0  r2 0.7

Fig. 12 Impact of the
combination of HF and LF
samples on the performance of
MFS-RBF for Colville

976 Song et al.



observed that MFS-RBF with more HF samples and fewer LF
samples (e.g., cases “4_1” and “4.5_0.5”) is less sensitive to the
correlation r2. This can be attributed to the less biased informa-
tion (from the LF samples) integrated into MFS-RBF. MFS-
RBF tends to be more robust when increasing the number of
HF samples. Regarding the prediction performance, when the
correlation r2 is less than 0.7, MFS-RBF performs better with
increase of the HF sample size, but always behaves worse than
the single-fidelity RBFmodel constructed from 5nHF samples;
when the correlation r2 is greater than 0.7, MFS-RBF in the
cases of “3_2” and “2.5_2.5” has a slightly better performance
than that of in the cases of “4_1,” “2_3,” and “1_4.” In addition,
the MFS-RBF model in the case of “4.5_0.5” still performs
worse than the single-fidelity surrogate “rbf_mq_5.”

Figure 12 illustrates the effect of different combinations of
HF and LF samples on the performance of MFS-RBF for the
Colville function as A varies from 0 to 1. The results of the
Colville function are similar to those of the Branin function.
When the correlation r2 is less than 0.7, it is observed that the

accuracy ofMFS-RBFwithmore HF samples is improved but
still worse than the single-fidelity surrogate model
“rbf_mq_10”; when the correlation r2 is greater than 0.7, the
MFS-RBF with more HF samples performs worse (e.g., case
“4.5_0.5”) than those with fewer HF samples (e.g., case
“4_1”). By comparing Fig. 10 and Fig. 3, the MFS-RBFmod-
el becomes less sensitive to the correlation r2 by adding more
HF samples. The case “1_4” always performs the worst as the
correlation r2 increases. Thus, it is suggested that 10–80% of
the total budget should be used for generating LF samples.

4.3 Effect of the relationship between HF and LF
samples

In the Subsections 4.1 and 4.2, it is assumed that the HF sample
set is a subset of the LF sample set which is denoted by
“Condition 1.” In this part, the performance of the MFS-BRF
model is investigated when the HF sample set is not a subset of
the LF sample set which is expressed by “Condition 2.” The
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relevant settings, such as sample size, correlations, and combi-
nations in this part, are the same as those in Subsections 4.1 and
4.2. Figures 13 and 14 show the comparisons of different cost
ratios and combination of HF and LF samples on the perfor-
mance ofMFS-RBF through the Branin and Colville functions.
The blue columns express the mean and Std of R2 when r2 ≥ 0.7
in the case of “Condition 2,” while the red columns denote the
mean and Std of R2 when r2 ≥ 0.7 obtained in the case of
“Condition 1” in Subsections 4.1 and 4.2.

From Figs. 13 and 14, accuracy and robustness metrics in
terms of “Condition 2” are consistent with those in the case of
“Condition 1” for the Branin and Colville functions. Overall,
it can be concluded that HF sample set is not necessarily a
subset of LF sample set. It is worth noting that the HF sample
set is still a subset of the LF sample set in the rest of this paper.

4.4 Effect of the different basis functions

In this subsection, the effect of different basis functions of MFS-
RBF models is explored. For the Branin (Colville) function, the

total budget is the cost of 5n (10n) HF samples and the number
of HF samples is 4n (8n). The cost ratio θ is set to be 0.1. Basis
functions used in this part are shown in Table 1, including multi-
quadric (MQ), Gaussian (G), and inverse multi-quadric (IMQ)
functions. Figure 15 shows that in terms of accuracy and robust-
ness, MFS-RBF with MQ basis function performs the best,
MFS-RBF with IMQ basis function behaves the second, and
MFS-RBF with G basis function is the worst. From Fig. 15b,
we can see that when the basis function is G, R2 has no results,
which means that the accuracy of the MFS-BRF with G basis
function is too poor. Overall, MFS-RBFwithMQ basis function
behaves the best, and MQ is suggested to be chosen as the basis
function of the MFS-RBF model in this paper.

4.5 Computational cost

In addition to the accuracy improvement, this subsection further
investigates computational cost savings from the MFS-RBF
model. It is assumed that the cost ratio of LF to HF functions θ
is 0.1 and the MFS-RBF model is constructed with the “4_1”
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combination as defined above. It is seen thatMFS-RBFperforms
relatively better when r2 ≥ 0.7, and hence the computational cost
comparison is performed under large correlation r2 values in this
subsection. In addition, since the MFS-RBF model is an RBF-
MQ-basedmulti-fidelity surrogatemodel, we compare theMFS-
RBF model to a single-fidelity RBF-MQ model.

For the Branin function, the comparisons are implemented
under three HF/LF correlation values, namely r2 = 0.9, r2 =
0.95, and r2 = 1.0. In these three cases, the total computational
cost of MFS-RBF models is the same, with the total budget of
5n HFmodels. Figure 16 and Table 4 show the computational
cost of MFS-RBF and RBF-MQ under the three correlation
cases. It is seen from Fig. 16 that when the correlation r2 = 0.9,
the R2 of MFS-RBF built from 5n samples is approximately
0.86, which is similar to the RBF-MQ when using the same
number of 7n samples, and then MFS-RBF saves approxi-
mately 40% computational cost. When the correlation r2 =
0.95, the R2 of MFS-RBF is approximately 0.87, and RBF-
MQ requires more than 7n samples to attain the same accura-
cy. Hence, MFS-RBF saves approximately 40% computation-
al cost. When the correlation r2 = 1.0, the R2 of the MFS-RBF
model is about 0.90, and RBF-MQ requires 9n samples to
attain the same accuracy. Hence, MFS-RBF saves approxi-
mately 80% computational cost. Overall, MFS-RBF saves
an average of 50% computational cost.

For the Colville function, the comparisons are implement-
ed under two correlation values, namely r2 = 0.8 and r2 = 0.9.

In these two cases, the total computational cost of MFS-RBF
models is the same, with the total budget of 10n HF models.
Figure 17 and Table 5 show the computational cost of MFS-
RBF and RBF-MQ under the two correlation cases.

From Fig. 12, we observe that when the correlation r2 =
0.8, the R2 of MFS-RBF built by 10n samples is about 0.85,
and RBF-MQ model requires about 15n samples to attain the
same accuracy. Thereby, MFS-RBF saves approximately 50%
computational cost compare with single RBF surrogate.When
the correlation r2 = 0.9, the R2 of the MFS-RBF model is
about 0.88, and RBF-MQ model requires 19n samples to at-
tain the same accuracy. Hence, the MFS-RBF model saves
approximately 90% computational cost. Overall, the MFS-
RBF model saves an average of 70% computational cost.

5 Conclusions

A multi-fidelity surrogate model based on RBF, called MFS-
RBF, was developed in this paper. MFS-RBF integrated high-
fidelity and low-fidelity models by using a scaling factor and
an augmented correlation matrix. To validate the performance
of MFS-RBF, three benchmark MFS models (i.e., CoKRG,
LR-MFS, and CoRBF) and three widely used single-fidelity
surrogates (i.e., PRS, RBF-MQ, and KRG) were selected, and
three numerical test problems and one engineering problem
under different correlations between HF and LF models were
tested. Comparison results showed that when the correlation

Table 4 Computational cost of MFS-RBF and RBF-MQ under
different correlation values for Branin

Correlation r2 MFS-RBF cost Accuracy R2 RBF cost Cost saving

0.9 5n 0.86 ~ 7n 40%

0.95 5n 0.87 7n 40%

1.0 5n 0.90 9n 80%
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Fig. 17 Computational cost of
MFS-RBF and RBF-MQ under
different correlation values for
Colville

Table 5 Computational cost of MFS-RBF and RBF-MQ under
different correlation values for Colville

Correlation r2 MFS-RBF cost Accuracy R2 RBF cost Cost save

0.8 10n 0.85 ~ 15n 50%

0.9 10n 0.88 ~ 19n 90%
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r2 between HF and LF models is greater than 0.7, MFS-RBF
generally performs better than single-fidelity surrogates.
MFS-RBF also performed better than three baseline MFS
models in terms of both accuracy and robustness. The results
of this paper will be of great help for the MFS research com-
munity, for example, to strengthen the understanding whether
a MFS model could be trusted, and to provide suggestion
under what conditions a MFS model would be better than a
single surrogate model.

The effects of key factors on the performance of MFS
models were also investigated, including the cost ratio θ, the
combination of HF and LF samples, the relationship between
HF and LF samples, and basis functions. Results showed that
MFS-RBF is less sensitive to the correlation between HF and
LF models than the three baseline MFS models. This finding
is more useful for real engineering applications, as the corre-
lation between HF and LF models is generally unknown prior
and could be weak in many cases. It was also found that with
the same total computational cost, (i) the cost ratio of LF to HF
is suggested to be less than 0.2, (ii) 10–80% of the total cost
should be used for generating LF samples, (iii) the HF sample
set is not necessarily to be a subset of LF sample set, and (iv) a
MFS-RBF model with the MQ basis function performs the
best. The computational cost of MFS-RBF was also investi-
gated, and the results showed that MFS-RBF could save an
average of 50 to 70% computational cost when HF and LF
models are strongly correlated.

In this paper, we assumed that the cost ratio θ and the
correlation r2 are independent, but this is not always true in
practice. In a situation such as the LF model is a coarser 3-D
model and the HF model is a finer 3-D model, the cost ratio θ
and the correlation are dependent. Future work will model the
coupling effects between the cost ratio and the correlation to
further improve MFS-RBF.
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