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Abstract

Reliability-based design optimization (RBDO) allows decision-makers to achieve target reliability in product performance under
engineering uncertainties. However, existing RBDO studies assume the target reliability as a given parameter and do not explain
how to determine the optimal target reliability. From the perspective of the market, designing a product with high target reliability
can satisfy many customers and increase market demand, but it can generate a large cost leading to profit reduction of the
company. Therefore, the target reliability should be a decision variable which needs to be found to maximize the company profit.
This paper proposes a reliability-based design for market systems (RBDMS) framework by integrating RBDO and design for
market system (DMS) approaches to find the optimal target reliability. The proposed RBDMS framework is applied to electric
vehicle (EV) design problems to validate effect of the target reliability on company profit—or market share—and engineering
performances of EV. Several observations about the optimal target reliability are presented from the case study with various
scenarios. From the EV design case study, it is verified that the proposed RBDMS framework is an effective way of finding the
optimal target reliability that maximizes the company profit, and the optimal target reliability varies depending on the situation of
market and competitors.

Keywords Reliability-based design optimization (RBDO) - Design for market systems (DMS) - Electric vehicles - Target
reliability - Uncertainty
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P Matrix of probabilistic performances
PyipGe Vector of probabilistic MPGe

Prange Vector of probabilistic driving range
Popecd Vector of probabilistic top speed
Pacca Vector of probabilistic acceleration
Ppai Vector of probabilistic battery lifetime

PR Vector of engineering performances that satisfy
the target reliability
Advertised attribute vector

eng Vector of advertised attributes determined from
engineering model

A
A

fengineering Engineering model

Jattribute Attribute model

f marketing Marketing model

Ix(x) Joint probability density function
Qp Failure set

1 Introduction

Engineering design generally aims to maximize functionality
of a system while satisfying constraints. To enhance the func-
tionality of an objective system, deterministic optimization
has been successfully used in engineering fields as it often
provides optimal solutions at the boundaries of design con-
straints (Lee and Jung 2008). However, small variations in
design variables and other parameters are derived from many
uncertainties such as geometrical tolerance, physical proper-
ties of materials, and operating conditions, often leading to
design failure. Currently, the stochastic nature of engineering
systems is naturally considered when solving optimization
problems (Frangopol and Maute 2003), and the target reliabil-
ity of a system is significantly considered. Therefore,
reliability-based design optimization (RBDO) maximizes the
functionality or utility of a system while satisfying the target
reliability regardless of inherent uncertainties in the design
variables and parameters. In RBDO, the reliability analysis
focuses on the evaluation of probabilistic constraints and pre-
diction of target probability of failure, whereas optimization
focuses on searching for optimal solutions. RBDO has been
widely used in various engineering fields such as aerospace
(Allen and Maute 2002; Pettit 2004; Lee et al. 2009; Missoum
et al. 2010), civil (Ellingwood and Galambos 1982; Nowak
1995), and mechanical engineering (Youn et al. 2004, 2005;
Dong et al. 2007; Noh et al. 2009; Lee et al. 2010, 2013; Yoo
and Lee 2014; Shin and Lee 2014, 2015; Lim et al. 2015), and
in various applications such as composite structures (Qu et al.
2003).

On the other hand, design for market systems (DMS)
emerged from the objective of maximizing specific values
such as profit or social welfare from the perspective of man-
ufacturers or producers (Lewis et al. 2006; Frischknecht et al.
2010; Kang et al. 2013; Kang 2014). This research area

@ Springer

focuses more on selling products or services rather than
optimizing products based on their performances. To de-
termine the optimal product design for a market system,
an optimization problem that maximizes specific profit or
social welfare while satisfying engineering or other con-
straints is formulated into a mathematical problem.
Quantitative market demand models are commonly uti-
lized in the marketing field for estimating customer pref-
erences (market demand) as a function of design attributes
and product prices. Therefore, expressing design attributes
as functions of decision variables or parameters must be
performed first to plug the market demand models into the
product design problem. DMS has been successfully uti-
lized for electric vehicle (EV) and hybrid EV design prob-
lems (Kang et al. 2015, 2016, 2017, 2018; Helveston
et al. 2015).

However, existing RBDO studies do not suggest how to
determine the target reliability, which affects the product reli-
ability that customers consider when purchasing a product,
and thus, designers use predetermined target reliability for
design optimization. On the other hand, existing DMS studies
focus on maximizing profit, but do not consider the impact of
the product reliability on profit. Therefore, a new design
framework is needed to overcome the aforementioned disad-
vantages of each method. It should also determine optimal
target reliability that maximizes a manufacturer’s profit by
considering how the target reliability affects the engineering
model and customer’s product purchase. For this purpose, a
reliability-based design for market systems (RBDMS) frame-
work, which integrates RBDO and DMS to find the optimum
target reliability from the perspective of the market, is pro-
posed in this paper.

The target reliability plays a key role in integrating RBDO
and DMS in the RBDMS framework. In an engineering mod-
el, the target reliability is used in the probabilistic constraints
of RBDO and determines product performances advertised to
customers. On the other hand, in a marketing model, cus-
tomers recognize the target reliability determined by the de-
signer as the product reliability through word-of-mouth, inter-
net reviews of those who have used the product in advance,
and institutional evaluation. This product reliability, along
with product performances, is one of the attributes that cus-
tomers evaluate when purchasing a product, and thus, it af-
fects market demand. As the product reliability improves,
market demand for the product grows, assuming the price
does not increase. Therefore, the engineering model and mar-
keting model are strongly coupled through the target reliabil-
ity in RBDMS, and thus, how the target reliability affects each
model should be identified. This is why the target reliability is
a decision variable in RBDMS to maximize profit. Figure 1
displays the interaction of three types of decision variables—
target reliability, design variables, and price—for profit max-
imization in the RBDMS framework. Target reliability and
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Fig. 1 Interaction of target reliability, design variables, and price for
profit maximization

design variables determine advertised performance, and then,
this advertised performance determines market demand along
with product reliability and price. The proposed RBDMS
framework is verified in this paper through a case study of
EV design which shows a new EV design that maximizes
profit of an EV manufacturer while ensuring reliability of
advertised product performances.

The remainder of this paper is organized as follows.
Section 2 introduces the engineering model and uncertain fac-
tors. Section 3 presents the marketing model for estimating
customers’ preferences. Section 4 provides the RBDMS for-
mulation and modeling assumptions. In Sect. 5, the proposed
RBDMS framework is applied to an EV design case, and the
optimal results of three design methods are compared. Finally,
Sect. 6 concludes the paper and describes future research
directions.

2 Engineering model
2.1 EV simulation model

To understand how uncertainties at the engineering level af-
fect EV performances, two engineering models are presented:
(1) an EV performance model that simulates vehicle perfor-
mances while considering uncertainties in battery and driving
characteristics for different mechanical designs, and (2) a bat-
tery degradation model that presents the cycle life of a Li-ion
battery.

2.1.1 EV performance model

EV performances such as MPGe, driving range, top speed, and
acceleration are determined by the design of powertrain, which
contains a battery pack and motor that are connected to wheels
through a final drive. To simulate such an EV performance
model, we adapt the powertrain system of the Nissan Leaf
and its specifications listed in Table 1 (Energy Efficiency and

Table 1 Specifications of EV model

Vehicle curb weight 1631 kg

Frontal area 227 m?

Rim diameter 406.4 mm

Tire width 205 mm

Coefficient of drag 0.29

Motor(s) type Permanent magnet
AC synchronous

Max. motor(s) power 80 kW

Max. motor(s) torque 280 Nm

Max. motor(s) speed 10,390 rpm

Rated cell capacity 33.1 Ah

Nominal cell voltage 38V

Renewable Energy 2011a, 2011b). AMESim software and a
battery degradation model explained in Sect. 2.1.2 are com-
bined to modify our analytical EV performance model
(AMESim 2016). The EV model comprises of each submodel
for driver, control unit, motor torque control, battery, three-
phase inverter, permanent magnet synchronous motor, and
gear, respectively. Vehicle performances are then determined
based on driving cycle. The parameters related to the EV per-
formance model are similar to Nissan Leaf. In the battery pack,
the cells connected in series form a branch and several branches
are connected in parallel. Battery characteristics are given by

”Batt-’”cellxN— (1)

P
OCVgqt = OCV¢q X N

where gy and r.e are the internal resistances of battery and
cell, respectively; Ng and Np are the number of battery cells in
series and parallel, respectively; and OCVg,; and OCV g, are
the open-circuit voltages of battery and cell, respectively. The
battery capacity is determined by the number of cells, which is
directly related to the driving range of the EV. Furthermore, the
array of cells in the battery pack influences the battery voltage
and current limits, which affect the output power of the motor.
The weight of the battery pack, which is proportional to the
number of cells, also influences the total weight of the EV and
in turn affects the EV acceleration and MPGe.

The motor output torque can be calculated using stator
inductances, stator currents, permanent magnet flux linkage,
and the number of pole pairs as follows:

T = Nooe (0l =414

3
where @, = Lals+ \/;QDPM @)
©q = Lgly

where ¢, and ¢, are the stator flux linkages of the 4 and g axis,
respectively; ¢py 1s the permanent magnet flux linkage; L,
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and L, are the stator inductances of the 4 and g axis, respec-
tively; I; and /, are the stator currents of the d and ¢ axis,
respectively; T is the motor torque; and Npy is the number
of pole pairs.

High-speed and low-torque output from the motor are
transformed to low-speed and high-torque output through
the final drive. The final drive ratio, which is one of the deci-
sion variables, is the ratio of the input and output speeds and is
obtained using

T'shafi = FR X Totor
Winotor = FR X Wehatt

(3)

where Tyaq and Thowr are the torques of shaft and motor,
respectively; Wenan and wioeor are the velocities of shaft and
motor, respectively; and FR is the gear ratio. Fuel economy,
MPGe, is also related to the final drive ratio in terms of dif-
ferent energy consumptions.

2.1.2 Battery degradation model

The lifetime of a battery depends highly on the daily driving
distance. Li-ion battery capacity decreases owing to increased
cell impedance caused by solid—electrolyte interface growth,
loss of accessible lithium ions, and degradation of electrical
parts because of cycling (Ning et al. 2003; Lawder et al.
2014). The state of charge (SoC) is the amount of useful re-
maining charge compared to its initial fully charged state giv-
en by

SoC(t) = L"Ig:dT

where [ is the charging current, Oy is the total charge of the

x 100 (4)

battery, and KOI (7)dr refers to the delivered charge. The

discharged battery capacity, which is the complement of
SoC, that is, the depth of discharge (DoD), is defined as

DoD = 50Cipitia=S0 Cinal - (5)

The capacity fade is related to the number of cycles and
DoD of the batteries (Peterson et al. 2010). In general, an EV
battery should be replaced when its capacity decreases to 80%
of its initial capacity (Helveston et al. 2015).

The cycle life, which results from capacity fades with re-
gard to the DoD of batteries, was theoretically and
experimentally presented by Thaller (1983) as

1+ F-D
(A+20)(1 + PD)D

Cycle Life = (6)
where D corresponds to the DoD of the battery; F is the addi-
tional fraction of the nominal capacity used to represent excess
capacity; P stands for the penalty factor that leads to a higher
rate of capacity loss for the deeper DoD due to higher
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shedding rates, mechanical stresses, and severe mass transport
environments; A is the capacity loss factor associated with
capacity loss in each cycle; and o represents the standard
deviation of (1 —A). The multiplication of parameters A and
D represents the amount of capacity loss in a cycle, and the
multiplication of parameters P and D indicates the additional
capacity loss in deeper DoD. All parameters, which are used
equally as in Thaller (1983), are chosen to yield the expected
cycle life when operating the actual EV and to be able to
calculate the cycle life conservatively. In this study, battery
life is considered as the cycle life on the assumption that all
drivers drive every day and that the battery is recharged once a
day. This statement is reasonable in terms of rigorous battery
lifetime estimation. Although the battery degradation model
depends highly on specific battery chemistry, temperature,
and storage conditions, these factors are ignored in this paper.

In this battery degradation model, DoD is calculated using
the initial battery capacity and driving distance. By utilizing
MPGe, which is predetermined using the EV performance
model, the given driving distance of the designed EV can be
converted into energy consumption; and using the initial ca-
pacity of the battery, DoD is determined by Egs. (4) and (5).

2.2 Engineering uncertainty
2.2.1 Battery capacity, voltage, and weight

The Li-ion battery is one of the best candidates for EVs owing
to its high-energy density, long life span, and relative safety
(Gomadam et al. 2002; Millner 2010; Tong et al. 2015). Given
the hypersensitivity of Li-ion batteries to uncertainties,
uniformity at the component level is highly required
(Santhanagopalan and White 2012). However, some devia-
tions of material and physical properties that occur during
manufacturing exist between cells and parameter uncertainties
should be quantified to estimate battery performance more
accurately (Jing et al. 2014; Tong et al. 2015). Dubarry
et al. (2010) conducted an experiment with statistical and
electrochemical analyses on 100 LiCoO, Li-ion battery
cells using an equivalent circuit model, and displayed dis-
tributions of the capacity, open-circuit voltage, and weight
of cells. Uncertain cell properties such as solid particle
size and porosity may lead to variations in cell character-
istics (Hadigol et al. 2015). Properties of these uncer-
tainties are adapted in the engineering model explained
in Sect. 2.1. Table 2 lists statistical properties of all the
random parameters including daily driving distance and
driving cycle used in the engineering model.

2.2.2 Driving distance

Even with the same battery capacity, the DoD of the bat-
tery differs with energy consumption depending on the
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Table 2 Properties of random

parameters Distribution Mean Standard deviation
Cell capacity Normal 33.1 Ah 0.5 Ah
Cell voltage Normal 38V 0.02V
Cell weight Normal 0.7864 kg 0.0149 kg
Daily driving distance ~ Log-normal 3.11 mi 0.62 mi

Driving cycles

Combination of the standard driving cycles drawn randomly with the same probability

driving distance (Lawder et al. 2014). To deal with the
uncertainty of daily driving distances of users, we use
the daily vehicle miles of travel (VMT) data of 2009
National Household Travel Survey (U.S. Federal
Highways Administration 2009). Log-normal distribution
is used to describe daily driving distance of drivers as
shown in Table 2 (Pl6tz et al. 2017). The distribution of
the daily VMT results in a wide range of battery lifetimes.
To determine the actual lifetime of batteries, Eq. (6) is
integrated with the distribution of DoD.

2.2.3 Driving cycle

Various driving patterns affect EV performances such as
driving range and thus MPGe (Berry 2010). Standard
driving cycles, which represent driving patterns as vehicle
speed over time, have been used to report fuel consump-
tion of vehicles by the US Environment Protection
Agency (Environmental Protection Agency 2017).
Similarly, to reflect actual driving patterns in the engi-
neering model, representative standard driving cycles pro-
vided by EPA are applied when calculating the driving
range. Table 3 summarizes the characteristics of the EPA
standard driving cycles (EPA website). Given that combi-
nations of different driving cycles are frequent and natural
in actual driving conditions, an average driving range cal-
culated from the combination of the standard driving cy-
cles drawn randomly with the same probability is used as
the driving range of the designed vehicle in this paper
(Kamble et al. 2009).

2.3 Target reliability in engineering model

Actual performances fluctuate and vary because of the
engineering uncertainties mentioned above, and form per-
formance distributions which can be defined as probabi-
listic attributes. Therefore, EV performances that are ad-
vertised to customers can be described using the target
reliability. For example, 95% target reliability implies that
vehicles less than 5% among all produced ones will show
lower EV performances than the advertised values as
shown in Fig. 2. Thus, as the target reliability increases,
advertised product attributes will be lowered for the prod-
uct to satisfy the target reliability. When certain target
reliability is used in RBDO, then we assume that the
product reliability evaluated by customers and used in a
marketing model is identical with the target reliability
which will be explained in more detail in Sect. 3.3.

3 Marketing model

A marketing model estimates market demand by estimating
customer preferences toward price of a designed product and
its attributes. This section discusses how to predict the market
demand from customer preferences and heterogeneity which
influence the optimal product design and company profit.

3.1 Utility model and product attributes

In market systems, a product design problem can be formulat-
ed as a mathematical optimization problem that maximizes

Table 3 Characteristics of

standard driving cycles UDDS NYCC LA92 HWFET uUSo06
Characteristics ~ City/low City/frequent stops City/aggressive ~ Highway/under  Aggressive
speed with low speed driving 60 mph driving
Top speed 56.70 mph  27.7 mph 67.20 mph 59.90 mph 80.30 mph
Avg. speed 19.58 mph  7.09 mph 25.92 mph 48.20 mph 47.97 mph
Max. 148 m/s”  2.68 m/s® 3.08 m/s® 1.43 m/s® 3.76 m/s’
acceleration
Avg. 0.50 m/s>  0.62 m/s? 0.64 m/s’ 0.19 m/s* 0.67 m/s”
acceleration
Distance 7.45 mi 1.18 mi 6.99 mi 10.26 mi 8 mi
Time 22.8 min 10 min 16.2 min 12.8 min 10 min
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Fig. 2 Advertised attribute determination

profit while satisfying various constraints. Such a mathemat-
ical optimization problem includes an economic model that is
based on market demand and product cost.

To express customer demand as a function of design attri-
butes that are the product properties evaluated by the cus-
tomers, research on product characteristics assessed by cus-
tomers, representing the design attributes with respect to de-
cision variables, must be initially performed. As the designer
or company chooses the decision variables, product attributes
are determined or calculated through simulation. Therefore,
after estimating part-worths (customer preferences), a set of
weights which indicate the importance of each design attribute
perceived by customers, choice probability can be predicted
using the logit model. Then, market demand is calculated as
the product of the market share and market potential or market
size.

Individual-level utility v;;, which is the sum of part-worths
of the designed product, can be defined as (Green and Krieger
1996)

K Lk
vi= 2 Y Bz (7)
k=11=1

where [3;;; represents the part-worth of the /th level of the Ath
attribute for the ith individual, and z;; corresponds to a binary
dummy number, which is equal to 1 if the level / of the kth
attribute is selected for the jth alternative, and 0 otherwise. For
given utilities of competing products, the choice probability is
calculated using

eVi

b=y e
ijeJ

(3)

which is similar to the probability of the ith individual
selecting option j from a set of alternatives J. By using
part-worth data of individual i, the predicted market de-
mand for the designed product, which represents the pref-
erence of individual Z, can be expressed as the product of
the market share P;; and potential market size s.
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Accordingly, the predicted profit is defined as the product
of the market demand and margin, which is the price
minus unit production and warranty costs. In this paper,
the fixed cost for an EV body and its battery cost which is
determined by the number of battery cells in series and
parallel are included in the unit production cost.

The data needed for the market share estimation ex-
plained above can be obtained from customer survey. A
method using questionnaires for the survey is more gen-
eral and suitable for studying customer preferences toward
new product concepts such as EVs. Several multiple-
choice questions are included in the questionnaire, and a
set of designs with combinations of various levels of at-
tributes as listed in Table 4 is presented to respondents.
Specifications of general EVs in the real market are used
to choose attribute levels. The respondents are asked to
answer 16 choice questions, and then select the most pre-
ferred design in each question. When no satisfactory de-
sign exists, respondents may pick none of the options.
Importance in Table 4 means the difference percentage
between the maximum and minimum values of the part-
worths of the attribute level. The larger the difference
between levels is, the more important the attribute is.

3.2 Hierarchical Bayesian approach

To obtain the individual-level part-worth distribution, ac-
tual respondent results collected from a choice-based con-
joint (CBC) survey are needed. Given existence of various
customer preferences toward product attributes, the part-
worths for similar attributes differ. This study uses a hier-
archical Bayesian (HB) approach (Train 2001; Rossi et al.
2005; Orme 2009) to build a heterogeneous market. Based
on the results of a survey conducted using Mturk
(Amazon 2017), which was targeted for the customers in
the USA, individual-level part-worth distribution is de-
rived. Responses are drawn from 252 subjects living in
the USA: 49% were male and 51% were female, 9% were
15-24 years of age, 44% were 25-34 years of age, 28%
were 3544 years of age, 12% were 45-54 years of age,
and 7% were 55—64 years of age.

CBC analysis is first performed to estimate individual
part-worths, and then HB analysis follows. Responses
from the survey are utilized in the HB analysis to estimate
individual part-worths using the Markov-chain Monte
Carlo. In the HB conjoint, an individual’s part-worths f3;
are assumed to be derived from a multivariate normal
distribution 3;~(@, A) where 0 is a vector of means
and A is a covariance matrix.

Part-worths can explain a heterogeneous market be-
cause an individual-level market demand sP;; is used for
calculating profit in system-level optimization. The aver-
age profit of all individual market scenarios can then be
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Table 4 Attribute levels and their
part-worths Attribute Part-worth Importance
Product reliability Level 5 rating 4 rating 3 rating 2 rating 38.9%
Mean 2412 1.515 —0.450 —3.476
(Std) (1.844) (1.147) (0.845) (2.379)
Warranted battery lifetime Level 3 years 7 years 11 years 15 years 11.5%
Mean —1.089 —0.114 0.563 0.640
(Std) (1.061) (0.432) (0.481) (0.541)
Range Level 80 mi 130 mi 180 mi 230 mi 14.1%
Mean —1.331 0.038 0.489 0.803
(Std) (1.782) (0.554) (0.896) (1.106)
MPGe Level 90 100 110 120 0.9%
Mean —0.044 —0.037 —0.008 0.088
(Std) (0.156) (0.144) (0.091) (0.381)
Top speed Level 70 mph 90 mph 110 mph 130 mph 4.1%
Mean -0434 0.098 0.154 0.182
(Std) 0.617) (0.231) (0.216) (0.236)
0-60 mph Level 6s 8s 10s 12's 1.4%
Mean 0.119 0.030 —0.060 —0.090
(Std) (0.266) (0.192) (0.189) (0.243)
Price Level $15,000 $25,000 $35,000 $45,000 29.1%
Mean 1.930 0.894 —0.356 —2.468
(Std) (2.093) (0.871) (0.836) (2.294)

used as the objective function. Although part-worth coef-
ficients are discrete, the interpolation of intermediate at-
tribute values using a nature cubic spline enables
individual-level utility models to describe continuous at-
tributes. As presented in Table 4, the large variance of
part-worths demonstrates that heterogeneous preferences
should be considered in the market system design.

3.3 Product reliability in marketing model

As product reliability is related to customer-perceived val-
ue, a product with high reliability continuously attracts
customers through word-of-mouth (Levin and Kalal
2003; Huang et al. 2007; Park et al. 2007). Therefore, as
the product reliability influences EV selection of cus-
tomers, the reliability of EVs should be available to cus-
tomers for reference when making a purchase. The prod-
uct reliability used for the questionnaire listed in Table 4
is based on J.D. Power. The predicted reliability provided
by J.D. Power, which is a statistically derived formula that
uses power circle ratings from the initial quality study
(IQS) and vehicle dependability study (VDS), provides
consumers with information on a vehicle’s reliability over
time (J.D. Power 2017). IQS measures initial vehicle
quality during the first 90 days of ownership, whereas
VDS measures long-term vehicle quality. To estimate

how customers perceive EV reliability, this paper uses
the power circle ratings introduced by J.D. Power: 5 =
“among the best,” 4 = “better than most,” 3 = “about av-
erage,” and 2 = “the rest.” Then, each rating perceived by
customers is matched to a certain reliability depending on
the reliability distribution of EVs in the market.

This product reliability in the marketing model is equal
to the target reliability in the engineering model, and it
determines product performances (advertised attributes) as
explained in Sect. 2.2. It will be explained in Sect. 4 how
to integrate the engineering model and the marketing
model using the target reliability to propose a RBDMS
framework.

4 RBDMS

The engineering model explained in Sect. 2 and the market-
ing model explained in Sect. 3 are integrated into a RBDMS
framework to find the optimal product design which maxi-
mizes a manufacturer’s profit and product performances at
the same time. Figure 3 illustrates the information flow of
RBDMS for EV design from the viewpoint of the manufac-
turer. The target reliability, which is one of decision vari-
ables, is equally used in reliability constraints of the engi-
neering model. It determines product performances that
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Fig. 3 Information flow of RBDMS for EV design

satisfy the target reliability and are advertised to customers
such as MPGe, range, top speed, 0 to 60 mph, and warranted
battery lifetime. Then, customers perceive the target reli-
ability as the product reliability, which is one of product
attributes and considering factors when purchasing an EV
through J.D. Power circle ratings. The product attributes
determined from the engineering model along with EV price
are passed on to the marketing model and thus the product
utility can be calculated by the part-worths drawn from sur-
vey results. The final product then competes against other
conventional EVs, and market share can be estimated from
the result of choice probability. Once the predicted market
demand is derived from the market share and market size,
the profit of the manufacturer will be the product of the
market demand and margin. To estimate the feasible range
of decision variables, an extensive simulation with a set of
constraint functions and specifications of EVs in the real
world is performed. The decision variables used in the EV
case study and their bounds are listed in Table 5.

Table 5 Decision variables and their bounds for EV design

Decision variables Lower bound Upper bound

1. Target reliability (R) 10% 100%

2. Price (Price) $15,000 $45,000
3. Warranted battery lifetime (W) 3 years 15 years
4. Number of battery cells in series (Ns) 80 250

5. Number of battery cells in parallel (Np) 1 4

6. Gear ratio (FR) 2 12
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4.1 RBDMS formulation

Based on a general formulation of RBDO (Lee et al. 2011),
RBDMS is formulated as

find X= X;ower.,R, W, Price
max u(II) = pu(D X (Price=MC)—C)
subject to  Ib<X<ub
g (Acng) <0
P[G(X,RP,) > 0] <P}
where  Xpuer = [Ns, Np, FR]

PR — 1-R
P= [PMPGe7 Prange: Pspeed7 Paccels PBatt]

A= [AT

eng’

R, W, Price]

T
Aeng = [AMPGE~, Arange~, Aspeed ’ Aaccel}

[MC, P] = fengineering (XPUWW? RPe)

[C7 Aeng> W] = fattribute (P’ R)
D= fmarketing (A)

where the objective is to maximize the mean of profits IT; p()
represents the mean value; D, MC, and C correspond to the
vector of market demand, manufacturing cost, and compensa-
tion cost, respectively; X is the deterministic decision variable
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vector; X, stands for the powertrain design variable vec-
tor; R, W, and Price indicate the decision variable of the target
reliability, warranted battery lifetime, and price, respectively;
P[] is the probability measure; P} is the target probability
of failure; Ib, ub, g, and G indicate the lower bounds, upper
bounds, inequality constraints on advertised performances,
and probabilistic constraints, respectively; FR represents the
decision variable of the final gear ratio; RP, denotes random
parameter vectors of the engineering model; P represents the
probabilistic performance matrix; A is the advertised attribute
vector; A, denotes the vector of advertised attributes deter-
mined from the engineering model; fengineering: fattributes and f-
marketing indicate the engineering model, attribute model, and
marketing model, respectively.

In Eq. (9), the probabilistic constraint is evaluated through
areliability analysis which calculates the probability of failure
defined as

Pr=P[G(X) > 0] = QI Fx(x)dx (10)

where fx(x) represents the joint probability density function,
and () is the failure set defined as {x: G(X) > 0}. In this study,
Monte Carlo simulation is utilized to perform the reliability
analysis since both the engineering and marketing models are
computationally efficient.

4.2 Modeling assumption

Four assumptions are made when modeling the entire
framework for EV design. First, in computing the market
share of the designed EV, we assumed that there are two
competitors in the market: 2017 Nissan Leaf and 2017
Chevrolet Bolt. Two competitors’ market sizes in the
USA are used to determine the market demand. Second,
to satisfy the minimum performances of an EV to drive in
the real world, following constraints are applied to EV
performances in all scenarios tested: the driving range
should be more than 80 mi, Oto 60 mph acceleration should
be shorter than 12 s, and the top speed should be faster than
70 mph. Third, the compensation cost is assumed to com-
pensate for 10% of the battery capacity only for failures
within the warranted battery lifetime period. Fourth, it is
necessary to map the product reliability and the reliability
used in the customer survey—that is, J.D. Power rating. In
this study, customers score the reliability power circle with
ratings of 5, 4, 3, and 2, which correspond to 100%, 75%,
50%, and 25% reliability, respectively.

4.3 Three design methods

To investigate the importance of RBDMS for EV design, three
different design methods shown in Fig. 4 are examined:

*  Method 1 (RBDO): maximizing engineering performances
with fixed target reliability

*  Method 2 (RBDO + DMS): maximizing profit with fixed
target reliability

*  Method 3 (RBDMS, proposed): maximizing profit with
optimal target reliability

Comparison of Method 1 with other methods is neces-
sary to show that an unprofitable product can be designed
when designing a product using conventional RBDO
without considering the market system. In addition, the
reason for comparing Method 2 with Method 3 is to prove
that profit can be reduced if the target reliability is set
excessively without using and searching for the optimal
target reliability, even when the market system is
considered.

Method 1 utilizes RBDO that maximizes performances
with fixed target reliability and does not involve a mar-
keting model for EV design. In Method 1, design vari-
ables become decision variables and the target reliability
is predetermined before performing RBDO. For the prob-
abilistic performances resulting from engineering uncer-
tainties, the performances that satisfy the given target re-
liability are determined. Since EV has multiple perfor-
mances (objectives), the weighted sum of the engineering
performances is used as the objective function where the
weights are determined by the importance of each perfor-
mance as listed in Table 4. Then, Method 1 is formulated
as

_yT
find X = X ower
np
max W,‘PR[
X i=1

subject to Ib<X<ub
8(Aeng) <0
P[G(X,RP,) > 0]<P "
where Xponer = [Ns, Np, FR] (11)
PR = 1-R
P = [PumpGe, Prange, Pspeed; Paccet Pat]

PR = [PRMPGC’ PRrangey PRspeed’ PRaccely PRBatt]
P = fengineering (Xpowem RPe)

PR = freliability(Pa R)
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Fig. 4 Comparison among RBDO, RBDO+DMS, and RBDMS

where the objective is to maximize the weighted sum of
the engineering performances that satisfy the target reli-
ability; w is the weight determined by the importance of
each performance; np is the number of engineering per-
formances; PR represents the vector of engineering per-
formances that satisfy the target reliability; and ficiiability
indicates the reliability model that determines the engi-
neering performances that satisfy the target reliability.

Method 2 simply connects the objective function of
RBDO with DMS and the EV price is included in deci-
sion variables. In Method 2, the target reliability is still
fixed and predetermined as in Method 1 before perfor-
ming RBDO and optimization is performed without con-
sidering the impact of the target reliability on engineering
and marketing models. Attribute values obtained from
RBDO are used as advertised attributes in the marketing
model. Method 2 uses profit as the objective function and
is an intermediate scenario to clearly explain benefits of
the proposed RBDMS. The mathematical formulation of
Method 2 can be expressed as
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find X — [xT

max
X

subject to

where

power> W, Price}

w(II) = p(D X (Price—MC)—C)
Ib<X<ub

g(Aeng) <0

P[G(X,RP, > 0)]<P e

Xpower = [Ns, Np, FR]

PleEt — 1-R

P = [PmpGe, Prange: Pspeed; Paccel, PBatt]

A= [AT

eng’ W, Prlce}
T
Aeng = [AMPGE7Arange:Aspeed7Aaccel}

[MC, P Xpower, RP,)

= fengineering(
[Ca Acng7 W} = [ attribute (P7 R)

D= fmarketing (A)

(12)
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where the objective is to maximize the mean of profits
affected by the price, which is a decision variable, and
the market share determined by the design variables and
the given target reliability. The difference between
Methods 2 and 3 is that the target reliability is excluded
from decision variables and advertised attributes.

Method 3, presented in Eq. (9), is the proposed RBDMS
where the target reliability is optimized as a decision variable
to maximize profit as explained in Sects. 4.1 and 4.2. Here, the
product reliability that customers consider when purchasing a
product is used as an advertised attribute. In Method 3, RBDO
and DMS are combined through the target reliability, and op-
timization is performed simultaneously considering the effect
of the target reliability on advertised performances, the effect
of design variables on performance and cost, and the effect of
the target reliability, advertised performances, and price on
market demand.

A target reliability value of 99.87% commonly used in the
field of RBDO for vehicles is used for the fixed target reliabil-
ity in Methods 1 and 2 (Youn et al. 2004). The EV design
optimization results obtained using Methods 1, 2, and 3 are
shown and compared in the next section.

5 Results and discussion

This section compares optimization results obtained by three
methods explained in Sect. 4.3. In all three methods, we deal
with the number of battery cells in parallel and in series as
discrete and continuous variables, respectively, and solve the
optimization problem in Eq. (9) using sequential quadratic
programming with multiple initial points. Optimal values of
the number of battery cells in series are then rounded up to
natural numbers. Computation time for one optimization is
25 h on average using a standard desktop (Intel i7 6900
CPU @ 3.20 GHz with 64.0 GB of RAM).

Table 6 summarizes the optimal designs and outcomes ob-
tained using three methods. The table shows the mean and
standard deviation of profit and market share for Methods 2
and 3, and the mean and standard deviation of the actual bat-
tery lifetime and actual performance for the probabilistic en-
gineering model in all methods. The advertised attributes are
the values presented to customers who want to purchase an
EV, and actual performances are the performance results ob-
tained from RBDO with the fixed target reliability in Methods
1 and 2 and the optimal target reliability in Method 3.

Since Method 1 maximizes performances without consid-
ering profit, the total number of battery cells can be extremely
high because price and cost are irrelevant to the objective
function. In addition, performances such as range and battery
lifetime which have a large importance of attributes in Table 4
are extremely high as well. Based on the cost, the profit be-
comes positive when the price is higher than the

manufacturing cost ($47,507). Assuming that the price is the
average price of two competitors, $31,820 for Leaf and
$37,495 for Bolt, the profit becomes negative. Therefore, from
the market’s point of view, RBDO without considering DMS
yields an infeasible design. Method 2 results in a feasible
design and marketable outcomes. When compared to
Method 1, higher profit is achieved since the objective is to
maximize profit, and lower overall advertised attributes are
obtained because of cost. Method 3 shows an optimum design
with the maximum profit since the target reliability is
optimized—in this case study, it was lowered from 99.87 to
92.69%—and good product performances simultaneously.

By comparing design optimization results of Methods 2
and 3, following observations can be made:

1. The optimal target reliability in Method 3 is lower than the
target reliability in Method 2 to maximize profit which
increases from $71.9 M in Method 2 to $77.3 M in
Method 3. This is because the improved advertised attri-
butes owing to the lower target reliability have higher
effect than the lower product reliability, and thus, the mar-
ket share has increased from 19.7 to 24.4%. In addition,
due to the improved advertised attributes, the price can be
relatively high (from $30,654 to $33,154). When the
tradeoff of utility is considered, reduced part-worths due
to the lower target reliability and increased price are
0.1496 and 0.3344, respectively. Increased part-worths
due to the improved advertised performance and warrant-
ed battery lifetime are 0.9282 and 0.5867, respectively.
This shows that the increased utility due to improved ad-
vertised performance and warranted battery lifetime
(0.9282 + 0.5867 = 1.5149) is much larger than the de-
creased utility due to lower target reliability and increased
price (0.1496 + 0.3344 = 0.4840).

2. The number of battery cells in series in Method 3 in-
creases from 112 in Method 2 to 142. As the target reli-
ability varies, the optimal design is also affected since the
advertised attributes change. In Method 3, optimization is
performed considering changes in advertised attributes,
cost, and market share caused by changes in the target
reliability, design variables, and price, as shown in Fig.
1. In the optimal design of Method 3, if the number of
battery cells in series decreases from 142 to 112, the utility
of advertised performance and warranted battery lifetime
is decreased by 1.1 and the cost is decreased by $3,774.
As a result, market share decreases from 24.4 to 15.8%.
Since this effect is worse than the reduction of cost,
Method 3 therefore derives a design to increase the num-
ber of battery cells in series. That is, as the target reliabil-
ity decreases, the number of battery cells in series in-
creases even though the cost rises in order to maximize
the utility of advertised performance and warranted bat-
tery lifetime. Method 3 finds a strategy to improve
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Table 6 Optimal designs and outcomes obtained using three design methods

Method 1 (RBDO) Method 2 (RBDO + DMS) Method 3 (RBDMS)

Decision variables Target reliability

Warranted battery lifetime

Price

Number of battery cells in series

Number of battery cells in parallel

Gear ratio
Outcomes Profit
Market share
Cost Manufacturing cost
Warranty compensation cost
Battery lifetime
MPGe
Range
0-60 mph
Top speed
Battery lifetime

Advertised attributes

Probabilistic attributes (actual performance)
MPGe
Range
0—60 mph

Top speed

99.87% 99.87% 92.69%
12.1 years 3.28 years 5.63 years
334,658 $30,654 $33,154
220 112 142

3 2 2

8.58 8.66 9.5

— $850 M $71.9 M $773 M
($259 M)* ($46.1 M) ($47.3 M)
59.3% 19.7% 24.4%
(18.1%) (16.7%) (14.9%)
$47,507 $20,087 $23,861
$0.11 M $14,194 $1.1 M
12.1 years 3.28 years 5.63 years
93.1 101.5 109.1
229.9 mi 86.2 mi 115.4 mi
7.02s 7.83 s 6.8 s

89.5 mph 83.4 mph 83.7 mph
16.06 years 4.92 years 6.69 years
(1.48 year) (0.57 year) (0.72 year)
105.89 119.21 118.18
(5.35) (6.44) (6.37)
262.07 mi 100.04 mi 125.76 mi
(14.09 mi) (5.51 mi) (6.74 mi)
693 s 7.74 s 6.77 s
(0.037 s) (0.031 s) (0.023 s)
89.69 mph 83.69 mph 83.75 mph
(0.087 mph) (0.099 mph) (0.062 mph)

Fixed values, which are not decision variables, are in italics

*Standard deviations are enclosed in parentheses

advertised attributes with more battery capacity, and thus
to increase the final price to maximize profit.

3. The warranted battery lifetime in Method 3 increases
from 3.28 years in Method 2 to 5.63 years. With the
improved battery capacity as mentioned in Observation
2, the battery in the EV design obtained using Method
3 will experience a smaller DoD for the same driving
distance which leads to longer battery time from Eq.
(6). From the increased warranted battery lifetime and
as a result significantly increased warranty compensa-
tion cost, it can be said that Method 3 finds the opti-
mum value of the warranted battery lifetime and war-
ranty compensation cost by optimizing the target
reliability.

4. Tt is confirmed that the optimization problem can be
solved with the target reliability as a decision variable.
When performed with 100 initial designs considering
tradeoffs between attributes, the optimizations with 87
different initial designs converge to the same optimum
design listed in Table 6 which is considered to be the
global optimum.

In addition to the comparative study among Methods 1,

2, and 3, parametric studies are performed using Method 3
to see the effect of the target reliability on profit based on
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different types of the market. For the parametric study,
three different reliability markets are considered: high re-
liability market (HRM), medium reliability market
(MRM), and low reliability market (LRM). For example,
HRM is a market in which reliability range is narrow com-
pared with MRM and LRM, and a relatively high reliabil-
ity is required in order to obtain a high reliability rating.
The optimization results using Method 3 in Table 6 are
based on the MRM case in which market competitors have
medium reliability. Matches between customers’ perceived
and actual reliability are listed in Table 7. Figure 5 shows
parametric study results on reliability matching in three
cases of HRM, MRM, and LRM. For HRM, it can be seen
that the optimum target reliability should be increased, and

Table 7 Matches between perceived and actual reliability

Perceived reliability Actual reliability

Power circle rating HRM MRM LRM
5 rating (among the best) 100% 100% 100%
4 rating (better than most) 80% 75% 70%
3 rating (about average) 60% 50% 40%
2 rating (the rest) 40% 25% 10%
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Fig. 5 Optimal target reliability and profit in three reliability markets

profit tends to decrease due to the increased target reliabil-
ity. For MRM and LRM, the optimum target reliability
decreases to maximize profit since competitors’ reliabil-
ities are relatively low.

To further investigate the effect of the target reliability
on profit in three reliability markets, parametric study by
changing the target reliability is performed. In this para-
metric study, the target reliability is not considered as a
decision variable but a fixed given parameter for optimiza-
tion. The optimal target reliability in each market is marked
with a red dot in Fig. 6 which is corresponding to the
optimal target reliability in Fig. 5. In all cases, excessive
increase in the target reliability has a very negative impact
on profit, that is, the profit drops sharply when the target
reliability increases from 98 to 100%. This shows that it is
not advantageous for a company to increase the target re-
liability more than necessary.

From the EV design case study, it is observed that the
proposed RBDMS is an effective way of finding the optimal
target reliability that maximizes the company profit by inte-
grating DMS into RBDO. Furthermore, it is also observed that
the optimal target reliability varies depending on the situation
of market and competitors.

6 Replication of results

The code for this paper is available at the website: (https://
drive.google.com/open?id=1_O_YOVZUe26ASa5X
qLXAwJyOLturp75).

7 Conclusion

In this study, an RBDMS framework that integrates RBDO
with DMS to find the optimal target reliability by considering
design variables, price, market demand, and cost at the same
time is proposed and applied to EV design. The RBDMS
framework successfully models how the target reliability is
perceived by customers as the product reliability and reflected
in the purchase. In the model, target reliability determines the
advertised performances from the probabilistic performances
of engineering model, and influences market demand by af-
fecting advertised attributes and the product reliability.
Therefore, the novelty of this study is to propose a methodol-
ogy that suggests a way to find optimal target reliability that
maximizes profit by considering how the target reliability in-
teracts with engineering and marketing models. The proposed
methodology can resolve the problem of existing RBDO
yielding unprofitable results and can also solve the problem
of not achieving maximum profit when RBDO and DMS are
simply combined with fixed target reliability.

The advantages of RBDMS using target reliability as a
decision variable are presented by comparing the optimization
results of three methods (RBDO, RBDO + DMS, and
RBDMS). Although a simple integration of RBDO and
DMS with fixed target reliability yields a design with feasibil-
ity and marketability, RBDMS can find the optimal target
reliability as a decision variable to maximize the profit while
satisfying engineering constraints. EV design case study
shows that the proposed RBDMS is an effective way of find-
ing the optimal target reliability that maximizes the company
profit and the optimal target reliability varies depending on the
situation of market and competitors. The proposed approach
can be applied to other engineering design problems such as
smartphones and notebooks where battery lifetime varies
greatly depending on the usage environment, and there is a
large gap between real battery lifetime and advertised battery
lifetime. There are several limitations in this work. Additional
research should focus on measuring the reliability from the
perspective of customers, release several assumptions made
in this study, and reflect more fidelity in the engineering model
and its uncertainties. Market uncertainty and customer prefer-
ence for a targeted market which considers geographic effects,
local regulations, etc. need to be considered in future research
as well (Kang et al. 2018).
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Fig. 6 Effect of target reliability on profit in three markets
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