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Abstract
The pursuit for design improvements by geometry modifications can easily become prohibitive using a trial and error process.
This holds especially when dealing with multi-physics problems—such as acoustic-structure interaction—where it is difficult
to realize design improvements intuitively due to the complexity of the coupled physics. Compared to classical shape opti-
mization, where a near optimal shape has to be supplied as an initial guess, topology optimization allows for innovative
designs through a completely free material distribution, such that the topology can change during the optimization process.
The goal of this article is to provide a comprehensive critical review of the proposed strategies for topology optimization
of coupled acoustic-structure interaction problems. The work includes a comparison of topology optimization formulations
with density, level set, and evolutionary-based methods and discusses the corresponding strengths and weaknesses through
the considered application examples. The review concludes with recommendations for future research directions.

Keywords Vibro-acoustics · Topology optimization · Density methods · Level set methods

1 Introduction

Since its introduction in the late 1980s, gradient-based
topology optimization has diversified significantly both
in terms of application areas, but also with emerging
variants of the original design parameterization. The initial
homogenization approach (Bendsøe and Kikuchi 1988)
laid the foundation for the so-called density method,
often referred to as the SIMP method (Bendsøe 1989).
Here, a pixel (or in 3D: voxel)-based design description
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is used with continuous element-wise design variables
representing a relative “element density” (not to be
confused with the mass density of the involved material).
Elimination of intermediate-valued (grey) design variables
with the penalization approach combined with appropriate
regularization of the optimization problem using filtering
techniques and length-scale control (Bourdin 2001; Bruns
and Tortorelli 2001; Guest et al. 2004; Wang et al.
2011) led to a breakthrough regarding generation of well
defined (black-white) pixelized structures. The result is
that only limited post-processing (if any, e.g., Christiansen
et al. 2015) is needed before fabrication. Combined with
efficient adjoint sensitivity analysis and the use of robust
and versatile mathematical programming tools, e.g., The
Method of Moving Asymptotes (MMA) (Svanberg 1987),
this has paved the way for the tremendous popularity of this
approach. Recently, a milestone has been reached with the
report of giga-scale design of a full aircraft wing with more
than one billion 3D elements and corresponding design
variables (Aage et al. 2017). Moreover, the method has
also proven its worth for a number of other applications,
ranging from material design (Larsen et al. 1997), acoustics
(Park and Wang 2008), optics (Jensen and Sigmund 2011),
and microfluidics (Alexandersen et al. 2016) as well as
coupled multi-physics problems such as thermo-electro-
mechanical devices (MEMS) (Sigmund 2001), turbulent
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flow heat transfer systems (Dilgen et al. 2018), and many
other application areas.

As an inherent feature of the density-based approach,
the structural boundary is constantly evolving during the
optimization procedure. That is, boundaries may appear
and disappear in a seamless fashion due to the continuous
design variables. The corresponding structural appearance
with gray scale at intermediate design stages can, however,
cause uncertainty and ambiguity in identifying well defined
boundaries. This poses a challenge when dealing with
structures affected by, e.g., pressure boundary loads and
calls for specialized schemes to be developed (Olhoff et al.
1991; Sigmund and Clausen 2007).

The quest for a well-defined boundary has partly
motivated the use of level set methods (Osher and
Sethian 1988; Sethian and Wiegmann 2000) for structural
topology optimization. With the aim of keeping the full
design flexibility from the density approach and combining
this with the well-defined boundaries known from shape
optimization methods, a level set function implicitly defines
the structural boundary through its zero level iso-curve. The
level set function is evolved via design sensitivities and
holes may merge or new holes may appear, partially thanks
to the introduction of topological derivatives (Novotny and
Sokołowski 2013). Several variants of the method has
appeared using the original version based on a boundary-
fitted mesh and design updates based on the solution of
a Hamilton-Jacobi equation. Since then, many alternative
versions have been introduced, of which the one based
on fixed meshes, cutfem methods (Hansbo and Hansbo
2004) and the use of mathematical programming tools has
been reported well-suited for complex interface problems
cf. (Villanueva and Maute 2017). Moreover, variants of the
level set methods such as phase field methods and implicit
functions have also appeared, which share theoretical and
implementation details with the mentioned approaches. It
should be mentioned that the numerical implementation of
level set methods share many of same issues as the density
method, and we refer to the review paper by (Sigmund and
Maute 2013) for a thorough review and comparison of the
two methods for structural optimization applications.

When considering coupled multi-physics problems like
electro-thermo-elastic or elasto-optical, the density and
level set methods can be applied with only minor adaptation
and usually without altering the basic parametrization
scheme. However, a challenge arises when considering
coupled problems where different physical fields couple at
the structural boundary. Examples include fluid-structure
and acoustic-structure interaction. In this paper, we focus
exclusively on the acoustic-structure interaction problem,
where the fluctuating acoustic pressure field acts as a
boundary load on the structure and the structural vibrations
act as acoustic sources. In standard solution procedures, it

is thus imperative to know the location of this boundary.
The level set methods operate with a well-defined boundary
and in both Shu et al. (2014) and Desai et al. (2018), the
authors adapted the re-meshing-based level set approach to
the acoustic-structure interaction problem where the zero
level set is now used to separate the structural and the
acoustic domains. That is, one solves the standard structural
vibration problem where the level set is positive and the
acoustic Helmholtz equation is solved in regions where the
level set function is negative. Instead of using re-meshing,
the level set method has also been used in combination
with the density parametrization, i.e., using an erstatz
material model and phase field approach to drive the design
evolution. In this approach, the level set field is mapped
to an indicator function which in turn used to interpolate
the material properties of the acoustic and elastic mediums,
thus preventing the challenges of tracking the boundary
changes throughout the optimization. Using this technique,
Noguchi et al. (2015) employed the unified multiphase
(UMP) technique based on Biot’s theory for poroelastic
waves (Lee et al. 2012). In Noguchi et al. (2016), the authors
derived a topological derivative for a vibro-acoustic system
modeled by a two-phase material model. Using topological
derivatives and the same modeling approach, Noguchi et al.
(2017) and Miyata et al. (2018) carried out level set–based
topology optimization. The UMP technique has also been
used in context of density-based topology optimization of
acoustic-mechanical-septa distribution by (Lee et al. 2015).
The vibro-acoustic systems have also been studied with a
combined Boundary Element (BEM) and FE formulation to
take advantage of the BEM’s capabilities of the modeling
the unbounded acoustic domains, while relying on FEM for
the structural part. Isakari et al. (2017) studied the level set–
based topology optimization of an elastic sound scatterer
using such a BEM-FEM solver.

As argued, the density method does not naturally
provide knowledge of the location of the acoustic-structural
interface. However, the mixed FE formulation has been
used to circumvent this problem and facilitate a monolithic
density-based parametrization approach. This formulation
was also used in Sigmund and Clausen (2007) to treat
the static pressure-load problem. With this formulation, the
pressure is introduced as an auxiliary variable in addition
to the displacements which allows one to transfer pressure
loads without explicit indication of the boundary location.
This formulation was used in the seminal work on acoustic-
structure topology optimization presented in Yoon et al.
(2007) and has later been applied to design a porous
microstructures for increased loss factor (Kook and Jensen
2017).

In addition to these main methods, we will briefly
review acoustic-structure interaction problems solved by the
bi-directional evolutionary topology optimization (BESO)
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method as presented in Picelli et al. (2015), Vicente et al.
(2015), and Chen et al. (2017). It should be noted also
that a number of topology optimization problems have
been studied for which the topological changes do not
involve a change in the boundary between the structural and
acoustic domains. The main part of these involve problems
where a plate is coupled to an acoustic domain. For most
problems, the in-plane material distribution involving two
material constituents is optimized (Yamamoto et al. 2008;
2009; Du and Olhoff 2010; Yang and Du 2013), but
also optimal distribution of thin damping layers has been
considered (Zhang and Kang 2013) in addition to optimal
plate thickness distribution (Akl et al. 2009), laminated
composites (Niu et al. 2010), and piezoelectric structures
(Yoon et al. 2018). Also, a few studies have appeared
where the optimization problem has been defined so as to
circumvent the need for modifying the structural boundaries
and thus enables the use of standard parameterization
schemes (see, e.g., Søndergaard and Pedersen 2014).

In the present paper, we will conduct a review of the
methods that have appeared which allows for introducing
topological changes in the distribution of acoustic and struc-
tural domains, i.e., the level set method, the density-based
method using the mixed FE formulation, and the BESO
method as a special variant of the density-based method.
The computational framework for the density and level set
methods will be outlined and results for a series of test
problems will be critically examined. All results presented
will be based on the authors’ implementation of the
optimization algorithm. Based on this comparative review,
recommendations for future research will be provided.

2 Topology optimization approaches

The general goal of an acoustic-structure topology opti-
mization problem is to determine the optimal layout of the
structural and acoustic domains, such that a given perfor-
mance measure, that we may denote Φ(u(x, t), p(x, t)), is
minimized. This formulation indicates that the performance
measure may depend both on both the structural vibration

level (the vibration amplitude u) as well as the acoustic
pressure amplitude p.

Figure 1a shows an illustration of the initial configuration
for a typical acoustic-structure optimization problem. Here,
a mechanical structure has two internal acoustic cavities
and is surrounded by an external acoustic medium. The
structure is excited by a time-harmonic mechanical load
f (t) and also a time-harmonic acoustic load q(t). The
loads generate vibrations of the structure and also acoustic
pressure fluctuation in the acoustic medium. The aim of
the optimization problem is now to minimize the prescribed
objective function

min Φ(u(x, t), p(x, t)) (1)

which in the hypothetical scenario illustrated in Fig. 1
results in the optimized distribution of structural and
acoustic domains shown in Fig. 1b. During the optimization
process, the structural domain has been reshaped and one of
the internal acoustic cavities has been removed. Acoustic-
structure optimization problems will most often involve
additional constraints on the allowable performance or its
configuration. A typical constraint in topology optimization
is to enforce a maximum allowable volume of the structure,
which we can formulate as
∫
Ωs

dΩ
∫
Ω

dΩ
≤ V ∗ (2)

where Ωs is the domain occupied by the structure, Ω is the
total domain under consideration, and V ∗ is the allowable
volume fraction.

In order to solve this optimization problem, the following
key points should be addressed:

– Design parametrization. The methods reviewed apply
parametrization based on the density or the level set
approach.

– Analysis method. All strategies reviewed rely on finite
element analysis of the underlying structural and
acoustic problems. The formulations used depend on
the choice of parametrization applying either a standard
segregated analysis combined with a body-fitted and
adaptive FE mesh (level set approach) or a mixed

Fig. 1 Schematic illustration of
a typical optimization problem.
a Initial configuration. b
Optimized configuration
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formulation combined with a fixed and regular FE mesh
(density approach).

– Sensitivity analysis. The methods reviewed are
gradient-based (the BESO method only to a certain
extend) and apply sensitivity analysis based on the FE
analysis.

– Design updates. The choice of design update method
is also linked to the choice of parametrization scheme:
The works using the level set approach use an
update scheme based on a solution to the Hamilton-
Jacobi transport equation. The density approach uses
mathematical programming, e.g., MMA, while the
BESO uses a heuristic update scheme.

In the following, the strategies outlined in the four key
points will be described in details including implementation
considerations.

2.1 Design parametrization

Existing approaches for topology optimization of acoustic-
structure interaction problems can, as previously stated, be
split into two main groups depending on the choice of
design parametrization. Note, however, that although the
design representations used for the density and level set
approaches are conceptually very different, it can be argued
that when it comes to a numerical implementation, the
similarities actually outweigh the differences as reported for
the case of structural optimization in Sigmund and Maute
(2013).

2.1.1 The density approach

The basic idea of density-based structural optimization is
to describe the topology by a spatially varying design field,
here γ (x). In the discretized setting, this is achieved by
assigning a design variable to each of the computational
domain pixels (2D) or voxels (3D). For the case of acoustic-
structure interaction, this means that a pixel with γ = 1
is interpreted as being structure, while γ = 0 corresponds
to an acoustic medium. The only difference to classical
structural topology optimization is that γ = 0 corresponds
to void in that case. Also, it is worth noting that in the
density method, the same mesh is often used for both
analysis and design and the mesh is usually kept fixed
throughout the optimization process. Furthermore, the mesh
is often regular which means that elaborate mesh generation
or re-meshing is avoided. In order to apply gradient-
based optimization methods, the design variable field is
represented as continuous, i.e.,

0 ≤ γi ≤ 1 (3)

where i indicates the pixel (element) number.
A schematic of the entire density-based optimization

process is illustrated in Fig. 2. Figure 2a shows a possible
initial structure modeled by setting the appropriate design
variables to either 1 (black) or 0 (white). However, one
of the greatest strengths of the density approach is that
initial designs are often not needed. In fact, more often,
a uniform distribution of the design variables is applied

Fig. 2 Illustration of parametrization using the density approach. a Initial design using a design configuration, b initial design with homogeneous
distribution of pixel densities, c intermediate design with grey pixels, and d optimized design
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as illustrated in Fig. 2b. The choice of the initial design
distribution is in general arbitrary, but could be chosen
to match the volume constraint γi = V ∗, if such a
constraint is present. Naturally, a random distribution of the
densities can be applied as well. As the optimization process
progresses, the topology of the design evolves and often
grey regions appear as shown in Fig. 2c. Through different
filtering and projection methods, the intermediate design
variables are slowly suppressed until the design converges
to a completely black (1) or white (0) configuration. The
optimized design is illustrated in Fig. 2d which also shows
how the pixel-based representation leads to the so-called
staircasing phenomena. That is, although the design is
completely black and white, the interface between solid
and acoustic region is jagged. This might pose problems
in multiphysics settings, which is why it is sometimes
beneficial to allow the interface to be smeared over a couple
of pixels.

2.1.2 The level set approach

In level set–based topology optimization, the design
representation is most often separated from the underlying
analysis mesh. This is achieved by representing the topology
by a scalar function φ, and by defining the different material
phases and interface based on the following rule:

φ(x) > 0, x ∈ Ωs (structural domain)

φ(x) = 0, x ∈ ∂Ω (interface)

φ(x) < 0, x ∈ Ωa (acoustic domain) (4)

Figure 3a illustrates an example of a level set function
and how it can be used to define structural and acoustic
domains as well as their common interface. This definition
is a straightforward extension of the approach usually used

for structural topology optimization where φ < 0 then
corresponds to void.

The level set function is usually discretized on a regular
grid, similar to that for the design variables in the density-
based method. However, the level set values are most often
assigned to nodal points instead of element centers.

Figure 4a shows a representative level set function
discretized on a regular grid, whereas Fig. 4b shows the
corresponding design configuration described by the the
zero-level contour. During the optimization process, the
level set function evolves into a new configuration. This is
illustrated in Fig. 4c and d which shows the grid-based level
set function and its geometric interpretation, respectively.

The mapping of the level set function to the mesh used
for analysis can be done in several ways. The method
most often used in structural optimization is to apply
an ersatz material model and in this case the level set
method and the density-based method are very similar with
only minor differences. To the author’s knowledge, this
approach has not yet been applied to acoustic-structure
interaction problems. Instead, the approach used in the
existing works is to perform a complete remeshing-based
on the zero level contour, which ensures a crisp and well-
defined interface. However, we should note that recent
work on level set–based topology optimization applies novel
immersed boundary methods such as cut finite elements or
finite cell representations. These methods allow the analysis
and level meshes to coincide, while still maintaining the
crisp interface by using elaborate integration schemes (see,
e.g., Hansbo and Hansbo (2004) and Düster et al. (2008) for
more details).

Implicit representation of the interface using the values of
the level set function φ(x) also allows for easy calculation of
the geometric properties such as the unit normal vector and
the mean curvature, not only on the design interface ∂Ω ,
but everywhere in the domain D. The unit normal vector

Fig. 3 Level set model and the
design domain: a level set
function and its zero level set; b
Ωs and its embedding domain Ω
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Fig. 4 Illustration of the
discretized level set function.
a Grid values of the initial level
set function. b Initial design
described by the the zero-level
iso-curve. c Grid values of the
optimized level set function.
d Final design described by the
zero-level iso-curve

na pointing out from the acoustic domain is calculated
as

na = ∇φ

|∇φ| (5)

Likewise, the calculation of the mean curvature is also tied
to the level set function

κ = ∇ · na

= ∇ ·
[ ∇φ

|∇φ|
]

(6)

2.2 Finite element analysis of acoustic-structural
interaction (ASI)

Discretizing and meshing the analysis domain based on the
zero-level contour of the scalar level set function makes it
possible to employ standard segregated analysis. That is, the
structural equation is solved only in the solid region and the
acoustic wave equation is solved only in the acoustic region.
Thus, this approach is analogous to standard simulation of
acoustic-mechanical interaction problems as used in most
commercial and open source numerical tool boxes. In the
following section, we will describe how to perform the
segregated analysis using standard finite elements.

2.2.1 Segregated analysis

The governing equations for the time-harmonic motion of a
linear elastic body Ωs can be written as

∇T σ + ω2ρsu = 0 in Ωs (7)

σ = Cε (8)

ε = {ε11 ε22 2ε12}T (2D) (9)

ε11 = ∂u1

∂x
, ε22 = ∂u2

∂y
, ε12 = 1

2

(
∂u1

∂y
+ ∂u2

∂x

)

(10)

where body forces have been neglected, ρs is the density of
the solid, and ω is the radial frequency. Moreover, σ is the
Cauchy stress vector, C is the constitutive matrix, and the ε

is the strain vector. We consider the body to be subjected to
standard boundary conditions as well as being adjacent to
an acoustic medium in a part of the boundary. The boundary
conditions read

u = u0 in �sd (11)

nT
s σ = f in �sn (12)

nT
s σ = pna in �as (13)

where na is the normal vector of the acoustic boundary
pointing outward from the acoustic domain defined in (5)
and ns is the normal vector of the structural boundary
pointing to the acoustic domain. The vector f is the traction



Topology optimization of acoustic mechanical interaction... 785

Fig. 5 The coupled acoustic-structure system: the acoustic fluid
domain Ωa and the structural domain Ωs coupled by integrals over the
acoustic-structure interface �as

force defined on the part of the structural boundary �sn.
The definitions for the coupled system is illustrated in
Fig. 5 including all boundary conditions used throughout the
presented work.

Similarly, the strong form of the Helmholtz equation
describing the pressure fluctuations in the acoustic domain
is written as

∇2p +
(

ω

ca

)2

p = 0 in Ωa (14)

along with the following common boundary conditions:

p = p0 in �ad (15)

nT
a ∇p = an in �an (16)

nT
a ∇p = −ω2ρanT

s u in �as (17)

nT
a ∇p + ikp = 2ikpin in �ar (18)

where ca is the speed of sound in the acoustic medium, ρa

is the density, k = ω
ca

is the wave number, i is the imaginary
unit and an is the prescribed Neumann boundary condition
which is zero for the hard wall boundaries.

Applying the standard Galerkin procedure to carry out
the finite element discretization of the governing equations,
the following weak form of the elasticity equation is
obtained
∫
Ωs

δεT Cε dΩ − ω2ρs

∫
Ωs

δuT u dΩ

− ∫
�as

δuT pna d� = ∫
�sn

δuT f d�
(19)

Similarly, the weak form of the acoustic domain reads
∫
Ωa

(∇δp)T ∇p dΩ − ω2

c2
a

∫
Ωa

δp p dΩ

−ω2ρa

∫
�as

δp nT
a u d� = ∫

�an
δp an d�

where the radiation boundary condition in (18) is excluded
from the derivation for brevity. Here, δε is the virtual
strain, δu and δp are the test functions for displacements
and the pressure field, respectively. In order to carry out
the discretization, the continuous variables u and p are

approximated using linear iso-parametric shape functions

u = Nuu

p = Npp

ε = ∂Nuu = Buu (20)

where ∂ is the differential operator and Bu is the linear
strain-displacement matrix. The discretized matrix system
of the weak form is then
[ (

Ks − ω2Ms

) −C
−ρaω

2CT
(
Ka − ω2Ma

)
] [

u
p

]

=
[
f
g

]

(21)

with the matrices and vectors being

Ks =
∫

Ωs

BT
u CBu dΩs (22)

Ms =
∫

Ωs

ρsNT
uNu dΩs (23)

f =
∫

�sn

NT
u fd�sn (24)

for the structural domain and

Ka =
∫

Ωa

BT
pBp dΩa (25)

Ma =
∫

Ωa

1

c2
a

NT
pNp dΩa (26)

g =
∫

�an

NT
pand�an (27)

for the acoustic domain where the matrix Bp = ∂Np. The
coupling matrix is found as:

C =
∫

�as

NT
u naNp d�as (28)

As previously mentioned, the mesh is usually adapted
to the acoustic-structural boundary in each step of the
optimization algorithm. Figure 6 shows an example of a
such finite element grid where the the boundary curve is
obtained utilizing the marching square algorithm and the
curve is fitted to the mesh using simple triangulation.

2.2.2 Mixed formulation

In the case of a density-based parametrization, it is no
longer possible to clearly define the acoustic and structural
parts of the domain due to the possible appearance of
“grey” pixels in the design. Therefore, a single monolithic
formulation governing both physics and their coupling
is needed. The mixed formulation has been proposed to
do exactly this, that is, to model the acoustic-mechanical
interaction problems without having an explicit boundary
representation. The mixed finite element formulation, also
called the u/p (displacement/pressure) formulation, can
be found in many references (see, e.g., Zienkiewicz and
Taylor (2000)). In Wang and Bathe (1997), the formulation
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Fig. 6 Illustration of a fitted
finite element mesh to realize
the boundary curve. a Whole
computation mesh. b Close up
view of the mesh showing the
triangulation

was proposed to model acoustic-mechanical interaction
problems. In Sigmund and Clausen (2007), the static
mixed FE-formulation was used to solve pressure load
problems in density-based topology optimization and in
Yoon et al. (2007), the formulation was used for the
first time for topology optimization of acoustic-structure
interaction problems.

In the following, we present and motivate the use of the
mixed formulation for density-based topology optimization.
The mixed formulation is derived by first defining a
pressure variable using the bulk modulus as follows:

p = −KmT ε (29)

which is valid for small strains. Here, K is the bulk modulus
and m = {1, 1, 0}T is the vector formulation for the
Kronecker’s delta considering two-dimensional analysis.
The stress-strain relationship can then be stated as

σ = 2Ge − mp (30)

where G is the shear modulus and the deviatoric strain
vector e reads

e = (I0 − 1
2mmT )ε (2D) (31)

with I0 defined as a diagonal matrix I0 = diag(1, 1, 0.5).
Moreover, the bulk and shear moduli are defined from the
Young’s modulus E and the Poisson’s ratio ν as

K = E

2 (1 − ν)
, G = E

2 (1 + ν)
(32)

in the case of 2D plane stress conditions. The coupled
equations derived from the mixed formulation can now be
written as

∇T (2Ge − mp) + ω2ρu = 0 (33)
p

K
+ mT ε = 0 (34)

which can be viewed as an alternative formulation of the
original structural equations (with the advantage that it can
be applied to perfectly incompressible materials as well).

However, it can also be shown that the Helmholtz
equation governing the acoustic pressure can be recovered
from this equation by substituting u in (33) into (34) and
setting the shear modulus to zero (G = 0). Thus, using the
mixed formulation, structural Ωs and acoustic Ωa parts of
the domain Ω can be realized by defining the bulk modulus
K , shear modulus G and density ρ as

K = Ks, G = Gs, ρ = ρs on Ωs

K = Ka, G = 0, ρ = ρa on Ωa (35)

In regions with intermediate values of γ , thus not
belonging to neither Ωs nor Ωa , it is proposed to interpolate
the values of K , G, and ρ between the structural and
acoustic values in (35). Such an interpolation is found in
Yoon et al. (2007):

K(γ ) = Ks

γ

1+(1 − γ ) n
+Ka

(

1− γ

1 + (1 − γ ) n

)

(36)

G(γ ) = Gs

γ

1 + (1−γ ) n
(37)

ρ(γ ) = ρsγ + ρa (1−γ ) (38)

in which the interpolation of K and G is based on
a two material RAMP interpolation scheme (Stolpe and
Svanberg 2001) used to avoid the artificial vibration modes
in low-density areas reported for the more standard SIMP
interpolation function (Pedersen 2000). Here, the parameter
n is a positive number that controls the curvature of the
interpolation function. As seen from the (38), the mass
density ρ is interpolated linearly between the acoustic and
the structural domains.

Acoustic boundary conditions for the mixed formulation
are derived using that ∇p = ω2ρsu. Figure 7 illustrates
the most commonly used boundary conditions for the mixed
formulation in the acoustic domain. Boundary conditions
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Fig. 7 Boundary conditions for the mixed finite element method
in acoustic domain Ωa . a Radiation, b dirichlet, c hard wall, and
d acceleration

for the structural domain remain the same and do not require
any special attention.

The weak form of the mixed formulation given in (33)
and (34) are obtained following the standard Galerkin
approach

∫

Ω

δεT 2GDε dΩ−
∫

Ω

δεT mp dΩ−ω2ρ

∫

Ω

δuT u dΩ =0 (39)
∫

Ω

δp
p

K
dΩ +

∫

Ω

δpmε dΩ = 0 (40)

where δε is the virtual strain, δu and δp are the test functions
for the displacement and the pressure field, respectively.
Moreover, the matrix D is defined as

D = I0 − 1
2mmT (41)

Again the continuous variables u and p are approximated
by the following shape functions

u = Nuu

p = Npp

ε = ∂Nuu = Buu (42)

where ∂ is the differential operator and Bu is the linear
strain-displacement matrix. Inserting the approximation in
(42), into the weak forms in (39) and (40), a matrix
formulation of the weak form is obtained as
[ (

K − ω2M
) −C

−CT −A

] [
u
p

]

=
[
f
g

]

(43)

where

K =
∫

Ω

2GBT
uDBu dΩ (44)

M =
∫

Ω

ρNT
uNu dΩ (45)

C =
∫

Ω

BT
umNp dΩ (46)

A =
∫

Ω

1
K
NT

pNp dΩ (47)

In order to realize a stable finite element solution to
the mixed u/p formulation, displacement variables should
use higher order interpolations than the auxiliary pressure
variable (Zienkiewicz and Taylor 2000; Wang and Bathe
1997). To this end, displacement variables are discretized
with second order Lagrangian shape functions whereas the
pressure field is represented using first order Lagrangian
shape function. For triangular and quadrilateral elements,
this corresponds to using T 6/3 and Q8/4 elements,
respectively.

2.3 Sensitivity analysis

A gradient-based optimization approach requires compu-
tation of the sensitivities of the objective function and
constraints with respect to the design variables. In the fol-
lowing, we will outline the basic procedure followed when
using the density and the level set approaches.

2.3.1 Density-based parametrization

In order to carry out the adjoint analysis, firstly the
Lagrangian is formed

L = Φ(γ , v(γ )) + λT r(γ , v(γ )) (48)

where r = Sv − h = 0 defines the residual vector, v =
{u, p}T is the vector of state variables, h = {f, g}T is the
source vector, S is the system matrix found from (43), and
λ is a vector of Lagrange multipliers. For zero residual,
the Lagrangian coincides with the objective function. The
derivative with respect to the design variable can be written
following the chain rule as

dL
dγ

= ∂Φ

∂γ
+ ∂Φ

∂v
∂v
∂γ

+ λT

(
∂r
∂γ

+ ∂r
∂v

∂v
∂γ

)

(49)

= ∂Φ

∂γ
+ λT ∂r

∂γ
+

(
∂Φ

∂v
+ λT ∂r

∂v

)

︸ ︷︷ ︸
=0

∂v
∂γ

Since the Lagrange multiplier can be freely chosen, it
is selected such that the underlined part of the equation
becomes zero to avoid the computationally expensive
evaluation of the term ∂v

∂γ
. The adjoint equation then

becomes

ST λ = −
(

∂Φ

∂v

)T

(50)

Here, it is noted that, the state variables can be complex
variables if, e.g., the radiation condition given in Fig. 7 is
utilized. In this case, the term ∂Φ

∂v on the right hand side
of the adjoint equation in (50) is realized as Dühring et al.
(2008)

∂Φ

∂v
= ∂Φ

∂vr

− i
∂Φ

∂vi

(51)
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where the subscripts r and i denote the real and the
imaginary parts of a complex number. Having calculated the
Lagrange multipliers that satisfy (50), the sensitivity of the
objective function is then calculated as

dΦ

dγ
= ∂Φ

∂γ
+ �

(

λT ∂S
∂γ

v
)

(52)

where �(·) denotes the real part of a complex quantity. The
�(·) operator is used to compress the sensitivity equation
into a simplified form and details of this derivation can be
extracted from the results in Jensen (2007).

It should be emphasized that the adjoint approach
presented here is especially efficient for a very high
number of design variables and a low number of constraint
functions. The main cost is associated with solving the
adjoint equation (50)—a step that is particularly cheap if the
original FE equation is solved using a direct solver since the
stiffness matrix is then already factorized.

2.3.2 Level set parametrization

Level set sensitivity analysis differs significantly from the
density-based analysis presented in Section 2.3.1 where
the differentiation was carried out with respect to an
element design variable γ . Instead, the derivatives are here
handled by treating the domain Ω as a continuous medium
and examining what happens when the boundary ∂Ω is
perturbed; i.e., the sensitivities take the form of shape
derivatives. However, there are also similarities, since the
adjoint method is employed for efficient computation. An
in depth introduction to shape derivatives can be found in
Choi and Kim (2005). Here, it is noted that we have left out
the overbar notation for the continuous variables to keep the
notation clean for the reminder of this work.

We will assume, without loss of generality, that the
objective function to be minimized can be written on the
following form:

J =
∫

Ωobj

Φ(u, p) dΩ (53)

The shape derivative of the objective function J is now
computed as

J̇ =
∫

Ωobj

∂Φ

∂p
p′ dΩ +

∫

Ωobj

∂Φ

∂u
u′ dΩ

+
∫

∂Ωobj

ΦVn d� (54)

where the prime superscript specifies a derivative with
respect to a pseudo-time, ∂Ω is the boundary variation and
Vn represents a normal (or design) velocity of the boundary.
For simplicity, we will assume that Ωobj is a fixed domain
and separate from the design domain. Hence, the third term

in (54) vanishes because Vn = 0 for ∂Ωobj since there is no
overlap between the design and objective domains.

In a similar way as for the density-based sensitivity
analysis, we will construct an adjoint problem in order
to avoid explicit computation of the terms p′ and u′. For
this purpose, a weak form of the governing equations
is constructed, where the test functions are replaced by
Lagrange’s multipliers λp and λu, corresponding to the
pressure and displacement fields, respectively. Furthermore,
the two weak forms are added into one single equation:

∫

Ωs

λT
ε Cε dΩ − ω2ρs

∫

Ωs

λT
u u dΩ

+
∫

Ωa

(∇λp)T ∇p dΩ − ω2

c2
a

∫

Ωa

λp p dΩ

−
∫

�as

λT
u na p d� − ω2ρa

∫

�as

λp nT
a u d� = 0 (55)

where λε has also been introduced as an adjoint strain field
which is calculated as λε = Buλu. In (55), the radiation
boundary �ar is not included and the Neumann boundaries
for both acoustic and structural domains (�an and �sn) are
considered to be zero for clarity.

For use in the subsequent derivation, we now take the
shape derivative of (55). Terms containing the pseudo-time
derivative of the adjoint fields recover the state equation of
the coupled system and sum to zero. This leaves us with the
following expression

∫

Ωs

λT
ε Cε′ dΩ−ω2ρs

∫

Ωs

λT
u u

′ dΩ

+
∫

Ωa

(∇λp)T ∇p′ dΩ− ω2

c2
a

∫

Ωa

λp p′ dΩ

−
∫

�as

λT
u na p′ d�−ω2ρa

∫

�as

λp nT
a u

′ d�

+
∫

∂Ωs

GsVn d�+
∫

∂Ωa

GaVn d�+
∫

�as

GasVn d�=0 (56)

where the G functions collect the boundary terms in (56)
that are the coefficients of the normal velocity Vn:

Gs = λT
ε Cε − ω2ρsλ

T
u u

Ga = (∇λp)T ∇p − ω2

c2
a

λp p

Gas = −∇
(
λT

u na p
)T

na − κ
(
λT

u na p
)

− ω2ρa

(

∇
(
λp nT

a u
)T

na − κ
(
λp nT

a u
))

(57)

and κ is the mean curvature defined in (6).
In order to construct the adjoint equation, the differen-

tiated weak form in (56) is added to (54) and the terms
containing p′ and u′ are collected together. The adjoint
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variables are now chosen so that the following adjoint
equation is fulfilled

∫

Ωs

λT
ε Cε′ dΩ − ω2ρs

∫

Ωs

λT
u u

′ dΩ

+
∫

Ωa

(∇λp)T ∇p′ dΩ − ω2

c2
a

∫

Ωa

λp p′ dΩ

−
∫

�as

λT
u na p′ d� − ω2ρa

∫

�as

λp nT
a u

′ d� =

−
∫

Ωobj

∂Φ

∂p
p′ dΩ −

∫

Ωobj

∂Φ

∂u
u′ dΩ (58)

Using the discretization approach outlined in (42), the
discrete form of the (58) takes the form

[ (
Ks − ω2Ms

) −C
−ρaω

2CT
(
Ka − ω2Ma

)
]T [

λu

λp

]

=
[

− ∂Φ
∂u

− ∂Φ
∂p

]

(59)

Considering optimization problems where the parts of
the acoustic boundary ∂Ωa and structural boundary ∂Ωs

subjected to design changes are equal to the boundary of
the coupled surface �as and having a set of Lagrange
multipliers that satisfies the adjoint equation (58), the
expression for the shape derivative of the objective function
J becomes

J̇ =
∫

�as

G�as Vn d� (60)

where

G�as = λT
ε Cε − ω2ρsλ

T
u u + (∇λp)T ∇p − ω2

c2
a

λp p

−
[

∇
(
λT

u na p
)T

na + κ
(
λT

u na p
)]

−ω2ρa

[

∇
(
λp nT

a u
)T

na + κ
(
λp nT

a u
)]

(61)

We note that, if the radiation boundary condition is
included in the acoustic domain, i.e., (18), the derivation
remains the same. However, the state and adjoint variables
become complex variables, in which case the shape
derivative of the objective function should be replaced by

J̇ =
∫

�as

� (
G�as

)
Vn d� (62)

In order to convert the optimization problem with an
inequality volume constraint to an unconstrained optimiza-
tion problem (Nocedal and Wright 2006), the following
augmented Lagrange function is proposed:

L = J + λ

[∫

Ωs

dΩ − V0

]

+ 1

2�

[∫

Ωs

dΩ − V0

]2

(63)

where λ is the Lagrangian multiplier and � is a penalization
parameter. The updating scheme is

λl+1 = λl + 1

�l

[∫

Ωs

dΩ − V0

]

, �l+1 = η�l (64)

where l is the number of the current iteration of the
algorithm and η is a smalll positive number (> 1) which
slowly increases the value of the penalization parameter
�. Thus, the shape derivative of the augmented Lagrange
function reads

L̇=
∫

�as

(

� (
G�as

)+λl+ 1

�l

[∫

Ωs

dΩ−V0

])

︸ ︷︷ ︸
Gtot

Vn d� (65)

Using the steepest decent method in which the decent
direction satisfies L̇ < 0, the design velocity Vn is chosen as

Vn = −Gtot (66)

which will be used in the update scheme presented later.

2.4 Design updatemethods

Before proceeding, we note that all reviewed methods are
based on an optimization cycle that consists of FE analysis,
sensitivity analysis, and design updates repeated in an
iterative fashion until a convergence criteria is met. The
procedures applied for the design updates for the density
methods and the level set method will be outlined in the
following.

2.4.1 Non-linear mathematical programming

The topology optimization problem can be posed by first
defining a real valued cost function Φ. The minimization of
this function with respect to the design variables γ is sought
while satisfying the given constraints ψi . Mathematically,
the problem is stated as

min
γ

Φ(γ , v(γ )) (67)

s.t. r(γ , v(γ )) = Sv − h = 0 (68)

ψi ≤ 0 (69)

0 ≤ γ ≤ 1 (70)

The solution to the above stated optimization problem
((67) to (70)) is solved using nonlinear programming
tools. A popular choice among the topology optimization
community is the method of moving asymptotes (MMA)
algorithm (Svanberg 1987, 2001). The algorithm requires
the derivatives of both the cost function Φ and the
constraints ψi with respect to the design variable γ . The
problem is solved in a nested manner, such that the state-
problem is left out of the optimization problem. It should
be noted that topology optimization problems are often
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characterized by a large number of design variables and few
constraints.

To introduce mesh independency and to avoid checker-
board problems, regulation techniques should be applied on
the design parametrization. For this purpose, either the con-
volution type density filtering (Bruns and Tortorelli 2001)
or the density filtering based on the solution of a Helmholtz
type equation (Lazarov and Sigmund 2011) is applied on the
design variable field. Also to achieve crisp designs, projec-
tion schemes on the filtered design variable can be applied
(Guest et al. 2004; Wang et al. 2011). Additionally, a con-
tinuation scheme is applied on the penalization parameter n

in the interpolation scheme in (36)–(36) which reduces the
risk for the optimization algorithm to get stuck in a local
minimum.

The overall algorithm for density-based topology opti-
mization of acoustic-structure interaction problems can be
stated as follows

1. Initialize the design variable field. This can be either
uniform, random or a specified design.

2. Apply filtering operation to obtain the physical design.
3. Solve the mixed state equation, (43).
4. Solve the adjoint equation, (50).
5. Calculate the sensitivity, (52), and apply chain rule to

take filtering operation into account.
6. Update the design using MMA.
7. Stop iterations when the change in design variables is

below a user defined tolerance or continue from the step 2.

2.4.2 BESO

As an alternative to using mathematical programming for
the design updates in density-based topology optimization,
the BESO formulation is also included in this work.
The overall optimization algorithm is identical to the one
presented in the previous section except for step 6 which is
replaced by:

1. [6.] Heuristic design updates based on the sensitivities
evaluated at the discrete design (without any intermedi-
ate densities and following a “soft-kill” approach where
only structural and acoustic elements are allowed).

This means that at all stages throughout the optimization
procedure the design will be fully discrete, meaning that
the removed structural elements are replaced with acoustic
elements and vice versa. The corresponding material
properties of both media are still calculated through the
interpolation functions given in the (35) to (38). Various
heuristic update schemes have been introduced for the
BESO approach (see, e.g., Huang and Xie (2007), (2009),
(2010); Huang et al. (2010)). Here, we use the BESO update

scheme presented in Huang and Xie (2009) and Huang et al.
(2010).

The BESO formulation has previously been presented
in Vicente et al. (2015) for acoustic-mechanical interaction
problems. However, it should be noted that our BESO
implementation is based on the mixed finite element
formulation (Section 2.2.2), hence the sensitivities are
calculated in the same fashion as presented in Section 2.3.1.
This means that our BESO approach differs from the one
in Vicente et al. (2015) where a segregated finite element
model is used to solve the acoustic-mechanical interaction
problem and only the structural part of the domain is
included in the sensitivity analysis.

2.4.3 Boundary shape evolution

When using the level set approach, the normal “design”
velocity Vn, computed such that J̇ < 0, is used to update
the design. A Hamilton-Jacobi type of equation (Osher and
Fedkiw 2003) is obtained by the defining a “time derivative”
of the level set function φ(x):

∂φ

∂t
− Vn|∇φ| = 0 in Ω, φ(x, 0) = φ0(x) (71)

As seen from the Hamilton-Jacobi equation, the design
∂Ω is updated by moving the zero level set (φ = 0) with
the normal velocity Vn of the moving boundaries.

Solution of the Hamilton-Jacobi, i.e., (71), is most
commonly realized by employing the finite difference
method. A number of different explicit upwinded finite
difference schemes can be found in the literature (Sethian
1999; Osher and Fedkiw 2003), which provide a robust and
stable solution to (71). In a finite element framework, Xing
et al. (2010) realized the solution of the Hamilton-Jacobi
equation by adding stabilizing diffusion in the streamline
direction, whereas (Liu et al. 2005) solved a reaction-
diffusion equation obtained by adding an artificial diffusion
term.

In our implementation, we make use of the finite volume
method and hence solve the following form of the Hamilton-
Jacobi equation

∂φ

∂t
− vn · ∇φ = 0 (72)

where vn = Vn

( ∇φ
|∇φ|

)
and the discretization is done on the

equivalent divergent form of (72), which reads

∂φ

∂t
− [∇ · (vnφ) − φ∇ · vn] = 0 (73)

First-order upwind scheme is utilized for the discretization
of the convective term and the temporal term is discretized
by the finite difference method using the first order
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forward Euler scheme. Stable time evaluation is realized by
satisfying the CFL stability condition

�t ≤ h

max |Vn| (74)

where h is the grid size in the level set mesh.
Furthermore, after a few design iterations, too steep or

flat regions can occur in the level set function which can
lead to inaccurate representation of the boundaries. In order
to regularize the optimization, the level set function is thus
periodically re-initialized into a signed distance function
by solving the re-initialization equation (Osher and Fedkiw
2003). We remark that many alternative regularization
methods exist. For example, Yamada et al. (2010) proposed
a level set method from the concept of the phase field model
which provides a perimeter constraint method to regularize
the optimization problem and does not require solving the
reinitialization equation throughout the optimization. The
following equation is used for reinitialization of the level set
function φ

∂φ

∂t
+ s · ∇φ = S(φ) (75)

where s = S(φ)
( ∇φ

|∇φ|
)

and the sign function S(φ) is

approximated as Peng et al. (1999)

S(φ) = φ
√

φ2 + |∇φ|2h2
(76)

Here, it is noted that S(φ) is updated at every time-step.
For the finite volume discretization of the reinitialization
equation, the second term on the left hand side of (76) is
also written in its equivalent divergent form as

∂φ

∂t
+ [∇ · (sφ) − φ∇ · s] = S(φ) (77)

For the examples considered in this work, the reinitialization
equation is discretized with a first-order upwind scheme for

the convective term and a first order forward Euler scheme
for the temporal term. Selection of the utilized time step �t

is again based on the CFL stability condition given in the
(74) where Vn is replaced by |s|.

The overall algorithm for the level set–based topology
optimization of acoustic-structure interaction problems is then

1. Initialize the level set function to represent the initial
design and update the mesh in the structural and
acoustic domains either by marching-squares algorithm
or by total re-meshing the both domains.

2. Solve the state equation (21).
3. Solve the adjoint equation (58).
4. Update the Lagrange multiplier according to 64.
5. Calculate the design velocity Vn (66) and extrapolate it

to the level set mesh.
6. Solve the Hamilton-Jacobi equation (73) to evolve the

shape. (See Section 2.4.3)
7. Re-initialize the level set function (77). (See

Section 2.4.3)
8. Update the mesh from the new level set function.
9. Stop iterations when the change in the objective

function is below a user defined tolerance or continue
from the step 2.

3 Comparison of methods

In the following sections, we use our implementations of the
density-based and level set topology optimization methods
to solve two representative topology optimization problems
in vibro-acoustics. Both problems concern the minimization
of the sound pressure in a prescribed objective domain, i.e.,

J (p) =
∫

Ωobj

|p| dΩ (78)

subject to a volume constraint.

Fig. 8 Schematic illustration of
the example 1 showing the
boundary conditions of the
optimization problem. Gray
color shows the design domain,
blue color illustrates the region
where the objective function is
evaluated
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Table 1 Material properties considered for the structure

E [Pa] ν ρs [kg/m3]

1000.0 0.3 1.0

3.1 Example 1

The first example is adopted from Yoon et al. (2007) and
a schematic illustration of the design problem, including
boundary conditions, is given in Fig. 8. The design problem
concerns the design of a flexible partition which minimizes
the downstream sound pressure in a duct. The model
is excited by an incoming plane wave with amplitude
pin = 1 kPa to the left and the right most boundary is
modelled as open using an absorbing boundary condition.
The optimization is carried out for a single frequency of
f = 1.0/π Hz. The allowed volume fraction is set to
55% of the design domain. The material properties of the
considered structure and the acoustic fields are listed in the
Tables 1 and 2. To allow for a fair comparison, the same
background mesh is used for both density-based and level
set topology optimization methods, i.e., an uniform mesh
with an element size of 2 × 10−2 m.

The problem is first solved using the density-based
formulation. To regularize the problem, a Helmholtz-type
density filtering (Lazarov and Sigmund 2011) with a
filtering radius of r = 0.015 m is used. Regularized
Heaviside projection (Wang et al. 2011) with a threshold
η = 0 is employed where the sharpness parameter is
taken as β = 3 at the start of the optimization. To avoid
getting stuck in a low-quality local minima, we apply
a continuation strategy on the convexity parameter n in
the RAMP interpolation functions ((36) to (38)) and the
sharpness parameter β. The process is started with n = 3
and at every 50th design cycle the value is increased by one
until it reaches n = 6. After this β takes the values of 7 and
then 14 in the subsequent 50 design iterations. The initial
material distribution is a uniform design with γ = 0.5.

The optimized design obtained using the density method
with the mixed formulation is shown in Fig. 9. The result
is the well-known structure from the literature and it
closely resembles the structure reported by Yoon et al.
(2007). We note that the problem closely corresponds to the
maximization of the clamped beam’s first natural frequency.

The example problem is then solved using the level
set formulation. In order to avoid too large or too small

Table 2 Material properties considered for the acoustic domain

ca [m/s] ρa [kg/m3]

1.0 1.0

Fig. 9 Optimized design with the density-based topology optimiza-
tion. The objective value of the end design evaluated with mixed
formulation, C = 48.9N

gradients of the level set function, we re-initialize it as a
signed distance function at every 6th iteration. Also, since
the level set method is known to be highly dependent on
the initial topology (Villanueva and Maute 2014), we use
two different initial configurations. First, the design domain
is initialized with a straight beam with holes distributed
periodically (Fig. 10a). Secondly, the design obtained from
the density-based optimization is considered as a “smart”
initial guess for the level set optimization. This is included
to investigate if the level set optimization keeps and/or
improves the structure obtained using the density method.

The optimized designs are given in Fig. 10 where the
displacement magnitude of the structures is included for
qualitative comparison. The corresponding level set surface
for the optimized design in Fig. 10b is shown in Fig. 11. We
note that the design obtained using the density-based result
as initial guess performs significantly better than the design
obtained with an initial configuration based on a beam
with holes. Qualitatively, the design obtained using the
density-based method is unaltered when used as input for
the level set method. However, interestingly, it is found that
the objective of the level set design in Fig. 10c constitutes a
28.6% reduction in objective value compared to the density
based result evaluated using the mixed formulation, c.f.
Fig. 9. To investigate this discrepancy further, we perform
a body-fitted mesh analyses of all three designs using
the segregated formulation. The density-based design is
thresholded at γ = 0.5 using the marching square algorithm
and the resulting frequency responses are collected in
Fig. 12. From the plot, it is clear that the performance of the
density-based design is practically identical to the best result
obtained using the level set method. Hence, the discrepancy
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Fig. 10 Displacement
magnitude |u| [m] contours
showing a initial structure for
the level set method, b optimized
design obtained with the level
set method, the objective value
of the end design C = 68.7N,
and c optimized design of the
level set method where the
initial guess is the optimized
design from the density-based
optimization, objective value of
the end design C = 34.9N

in objective value is due to the mixed formulation requiring
a finer mesh than the segregated analysis (Zienkiewicz and
Taylor 2000).

Figure 13 shows the sound pressure level (SPL) of the
acoustic domain. The plots confirm by visual inspection

Fig. 11 Level set surface of the optimized design

that the designs obtained by both initial guesses indeed
lower the sound pressure level in the objective domain when
compared to initial beam structure with holes. It is also clear
that the lowest pressure level is obtained for the optimized
design using the density-based result as an the initial guess.

Fig. 12 Frequency response of the objective function. Black line is the
optimized design with the density method (body-fitted mesh), blue line
is the optimized design with the level set method, and the red line is
the optimized design of the level set method where the initial guess is
the optimized design from the density method
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Fig. 13 Sound pressure level [dB] contours showing a initial structure for the level set method, b optimized design obtained with the level set
method, and c optimized design of the level set method where the initial guess is the optimized design from the density-based optimization

It is important to mention that the objective evolution of
any initial guess for the level set method is relatively smooth
(c.f. Fig. 14). This means that the design update scheme for
the level set function is likely to result in a local mimima,
which is similar to solving the density-based problem
without a continuation scheme, i.e., using a constant high
value for the penalization parameter. However, there is no
obvious way to introduce the same convexification in the
level set method using the Hamilton-Jacobi equation, and

Fig. 14 The iteration history of the objective function for the level set
method

hence, great care must be exerted when designing the initial
guess for the level set method.

3.2 Example 2

In Example 2, the design of a dome structure is considered.
The problem is adopted from Shu et al. (2014) and
Vicente et al. (2015) and a schematic illustration of the
model problem can be seen in the Fig. 15 along with the
dimensions of the computational domain. The boundary
condition for the bottom of the computational domain is
clamped for the structure and zero Dirichlet for the acoustic
domain. All other boundary conditions for the acoustic
problem are hard wall conditions. The system is excited
with a point pressure load in the acoustic domain inside the
dome and the objective is to minimize the absolute pressure
over the prescribed objective domain near the top boundary.
The design domain is fixed to the dome area shown at the
Fig. 15 and 80% of the design domain is allowed to be filled
with material. This example is solved for three frequencies,
i.e., 4 Hz, 5.3 Hz, and 6 Hz, and the sum of the absolute
pressures constitutes the objective function.

The material properties of the structure and the acoustic
field are listed in the Tables 3 and 4. We construct a
uniform mesh with an element size of 1.5 × 10−2 m for the
computational domain and carry out the optimization using
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Fig. 15 Schematic illustration
of example 2 showing the
boundary conditions of the
optimization problem. Gray
color shows the design domain,
blue color illustrates the region
where the objective function is
evaluated. The coordinates of
the lower left and upper right
corners of the objective domain
are (0.06, 1.44) and
(2.94, 1.485), respectively

the same mesh resolution for both the density-based and the
level set–based methods.

The density-based topology optimization approach uti-
lizes a similar continuation strategy for the convexity
parameter n and the sharpness parameter β as used in Exam-
ple 1 (c.f. Section 3.1). In this case, the parameter n is
increased at every 100th design cycle and after the final
value of n = 6, the parameter β takes the values of 7, 14,
and 28 for the subsequent 50 design iterations. The filtering
radius and the initial material distribution are taken to be the
same as in the previous example.

Figure 16 shows the optimized design obtained using the
density-based method. The structure contains one partial
hole at the top and the profile of the dome gets thinner
towards the sides of the dome. The structure is as thick as
the diameter of the prescribed design domain around the top
partial hole.

The problem is then solved using the level set
formulation. Similar to the first example, the level set
function is re-initialized as a signed distance function every
8th iteration. In Fig. 17, the level set surface of the optimized
design is shown. The optimized design contains no holes
and looks very similar to the structure reported in Shu et al.
(2014). Although in Shu et al. (2014), the dome structure is
optimized for a distributed load applied at the outer edge of
the dome.

To allow for a fair comparison of the performance of
the optimized designs, we once again apply a body-fitted

Table 3 Material properties considered for the structure

E [Pa] ν ρs [kg/m3]

100 × 103 0.3 100

mesh analysis. In Fig. 18, we compare the displacement
magnitude of the designs obtained using the density-based
and level set–based optimization methods to the initial
structure used for the level set optimization. Although the
structures obtained with both optimization methods have a
similar inner shape, the density-based design in Fig. 18c
clearly exhibits smaller displacements at the sides of the
dome compared to the level set result in Fig. 18b. Similarly,
the sound pressure level contours are shown in Fig. 19
clearly showing that both designs exhibit a significant
reduction of the acoustic pressure outside of the dome
compared to the initial dome structure with equally spaced
holes. Considering the objective values of the end designs
listed in Fig. 18, we note that the optimized design using the
density method performs approximately 40% percent better
than the structure optimized with the level set method.

Finally, the frequency responses of the dome structures
are shown in Fig. 20. We note that the plot consists of
the three designs, i.e., the initial beam with holes and two
optimization results as well as an extra design consisting
of the design domain fully filled with material. Firstly, it
is clear that both optimized designs outperforms the initial
design and the fully filled dome. Secondly, it is noted
that the optimization results in a minimization of the first
resonance frequency and maximization of the second. Third
and lastly, it is observed that the density-based method has a
better performance for two target frequencies, i.e., f = 4 Hz
and f = 6 Hz. However, from visual inspection of the

Table 4 Material properties considered for the acoustic domain

ca [m/s] ρa [kg/m3]

343 1.21
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Fig. 16 Optimized design with the density-based topology optimiza-
tion. The objective value of the end design evaluated with mixed
formulation, C = 0.0022N

frequency response, it is clear that the level set method
has the lowest response around the target frequency f =
5.3 Hz. This advocates the use of a finer frequency range
discretization though this is deemed outside the scope of the
current review paper.

3.2.1 BESO

The comparative study is concluded with a single design
obtained using the BESO formulation. The optimized
design is shown in Fig. 21 along with the sound pressure
level contour for a frequency of 4Hz. The resulting topology
is found to be in good agreement with the result presented
in Vicente et al. (2015).

The performance of the BESO design shows a similar
reduction of the acoustic pressure outside the optimized
dome compared to the level set and density method results
given in Fig. 19. The frequency response of the BESO
optimized dome is shown in the Fig. 22 which also includes
the response for the density-based design, both evaluated

Fig. 17 Level set surface of the optimized design

using a body fitted mesh and a segregated analysis.
The difference in response in the vicinity of the three
optimization frequencies are clearly observed, showing that
the density-based design has superior performance for the
target frequencies of 4 Hz and 6 Hz, whereas the BESO
design exhibits better performance around the second target
frequency 5.3 Hz similar to the level set design. It is
noted that for all methods, the reduction in the sound
pressure level in the specified frequency range is obtained
by reducing the first resonance frequency and increasing the
second resonance frequency of the coupled system. Here, it
is noted that, even though the BESO approach provides a
crisp design without any gray scale, the calculated objective
value of the final design shows a significant discrepancy in
the objective value compared to a body fitted analysis of the
design, c.f. Fig. 21. This further underlines the previously
mentioned inherent limitations of the standard u− p mixed
formulation wrt. modelling accuracy.

4 Conclusions and recommendations

The aim of this review paper has been to provide an
overview and comparison of the different approaches
that have currently been applied for solving topology
optimization problems in vibro-acoustics. In the following,
we summarize the most significant findings, highlight the
challenges, and conclude with recommendations for future
directions within the field of acoustic-mechanical topology
optimization.

For all studied examples, the density-based method
was shown to provide the best performing designs from
an arbitrary initial guess. We mainly ascribe this to the
possibility of designing a continuation scheme on the
penalization parameter that effectively and consistently
results in better local minima. On the contrary, the level
set approach does not facilitate such a continuation scheme
making the results more prone to stuck in local minima
and highly dependent on the initial design. Also, though
not presented here, we emphasize that the use of rigorous
mathematics such as non-linear programming methods
easily facilitates the inclusion of additional constraints on
both physics and geometry (Sigmund and Maute 2013).

However, this should not be interpreted as a rejection
of the level set–based methods. On the contrary, problems
having a multiphysical nature is often highly dependent on
the interface representation, i.e., the coupling conditions.
The examples presented here clearly demonstrated the
issues arising from intermediate density regions and thus a
poor interface representation. That is, poor accuracy in the
modeling using mixed formulation makes the density-based
optimization approach challenging and problematic for
problems which are strongly coupled and sensitive to design
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Fig. 18 Displacement magnitude |u| [m] contours for the frequency
f = 6 [Hz] showing a initial structure for the level set method, b opti-
mized design obtained with the level set method, the objective value of
the end design C = 0.0026N, and c body-fitted analysis of optimized

design obtained with the density method resulting in an objective value
of C = 0.0015N. The analysis in c is performed on a thresholded
design at γ = 0.5 using the marching squares algorithm

Fig. 19 Sound pressure level [dB] contours for the frequency f =
4 [Hz] showing a initial structure for the level set method, b optimized
design obtained with the level set method, and c body fitted analysis

of the optimized design obtained with the density method, thresholded
at γ = 0.5 using the marching squares algorithm
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Fig. 20 Frequency response of
the objective function for
example 2. The blue line is the
optimized design using the level
set method, the red line is the
initial design with holes, the
yellow line is the design domain
fully filled with material and the
purple line is the optimized
design using the density method

Fig. 21 Optimized design obtained from the BESO method with
mixed FE formulation showing a final optimized design field and b
sound pressure level [dB] contour for the frequency f = 4 Hz. The

objective value of the end design evaluated with mixed formulation,
C = 0.0029N and body fitted analysis of optimized design obtained
with BESO resulting in an objective value of C = 0.0019N

Fig. 22 Frequency response of the objective function. Black line is the optimized design obtained from BESO approach with mixed formulation,
and purple line is the optimized design with the density method
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changes at the interface. Another significant challenge for
the density-based methods is that the optimized designs
require a postprocessing step and a subsequent body
fitted analysis to verify its performance. This step can
be completely avoided when using the level set methods
with a crisp interface representation, which together with
the possibility to easily enforce complicated coupling
conditions advocates the continued use and development of
level set methods.

Finally, it was shown that the BESO method provided
comparable results in the second example. While the
method generally yields very good results for pure static
structural optimization where the design sensitivities are of
equal sign (more material is always better), its application
to more complicated problems involving dynamics and/or
multi-physics appears to be more problematic. Throughout
the work, the BESO method is found to be the least stable of
the considered methods and in some cases it leads to lack of
convergence. This we ascribe to the heuristic BESO update
algorithm that is not well suited for handling problems with
both positive and negative design sensitivities. However, the
BESO method also has its justification. That is, the method
is very easy to implement in commercial black-box codes
without the need to access element integration routines and
does not require expensive re-meshing schemes. In fact,
for many problems one can use energy expression to get
sensitivity information which makes it even simpler to adopt
into existing codes.

4.1 Recommendations

Firstly, we recommend that subsequent work on vibro-
acoustic optimization always includes a benchmark against
previous work as shown in this paper. That is, solving old
problems with new methods can only be justified if the
new method provides an improvement compared to existing
methods. In the following, we provide recommendations for
the density and level set method, separately.

For the density-based methods, we have the following
recommendations. Firstly, we note that the mixed formula-
tion is an expensive modeling tool since it can lead to poor
accuracy on coarse meshes, even with crisp designs, and
that the intermediate densities at the interface lack a phys-
ical explanation. The mixed formulation is also prone to
numerical instabilities arising from the choice of interpola-
tion functions (Wang and Bathe 1997), which means that for
a stable solution high order elements must be used which
in turn increases the computational complexity even further.
Therefore, we suggest that more work should go into new
interpolation schemes that, potentially, could alleviate the
need for the mixed formulation. On the other hand, a mono-
lithic formulation have many desirable properties and hence
another path to follow is to modify, or expand, the standard

u − p mixed formulation such that it is better at capturing
the sharp jumps in state fields that arise when performing
topology optimization.

For the level set–based methods, we have the following
recommendations. The main issue with level set methods
using the Hamilton-Jacobi update scheme is the problem
of adding more constraints. We therefore suggest that
focus is put on methods that ensure crisp interfaces, e.g.,
xFEM (Gerstenberger and Wall 2008) or CutFEM methods
(Hansbo and Hansbo 2004; Burman et al. 2014), together
with mathematical programming tools. This latter would
allow the optimization analyst to include more constraints
whereas the first means that tedious post processing can be
avoided.

5 Replication of results

All results presented in this work are in fact reproductions of
already published and developed methods. For replicating
the presented examples, the readers can find the relevant
information in the corresponding sections.
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