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Abstract

In this paper, a side constraint scheme is presented for topology optimization considering structural connectivity. Void features are
used as basic design primitives with their movements and shape changes to drive topology optimization. To ensure the structural
connectivity, design variables related to the centers of all the void features are bounded outside the design domain by means of
side constraints without introducing additional nonlinear constraints. It is shown that the side constraint scheme is effective to
eliminate enclosed voids and well adapted to the additive manufacturing (AM) without concern of unmelted powders inside the
structure. Several representative examples are tested to demonstrate the effectiveness of the proposed method.
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1 Introduction

Topology optimization (Bendsee and Sigmund 1999;
Zhou and Rozvany 1991) has been regarded as a pow-
erful design approach in determining the best material
distribution to obtain desired functional performances
within a given design domain. However, the complexity
of the obtained solutions might be a major problem for
conventional subtractive manufacturing techniques and
the original design has to be modified accordingly. In
recent years, additive manufacturing (AM) receives sig-
nificant attention (Frazier 2014; Gao et al. 2015; Horn
and Harrysson 2012; Wong and Hernandez 2012). This
manufacturing technique has the characteristics of de-
positing materials layer by layer and thus provides a
great flexibility for manufacturing of structures with
complex geometries. Therefore, AM is considered as a
better choice of achieving a seamless integration with
the advanced topology optimization method to attain
the lightweightness and high performance of a structure
both in design and manufacturing.

Responsible Editor: Qing Li

P< Weihong Zhang
zhangwh @nwpu.edu.cn

State IJR Center of Aerospace Design and Additive Manufacturing,
Northwestern Polytechnical University, Xi’an 710072, Shaanxi,
China

Although AM significantly opens up the design space, it is
not completely a free-form manufacturing technique. Two basic
issues exist at the design stage: overhang angle and structural
connectivity. The first one requires that the inclined angles along
the overhang boundaries of a designed structure should be less
than the critical overhang angle (COA). Otherwise, auxiliary
supports would be added to prevent the overhang portions from
collapsing during the AM process. As these supports are finally
removed, their presence will lead to the waste of materials, high
processing cost, and production time. For this reason, much
effort has been devoted to this problem (Gaynor and Guest
2014, 2016; Guo et al. 2017; Langelaar 2016; Langelaar
2017; Qian 2017; Wang et al. 2018; Zhang and Zhou 2018).
The second issue concerns the avoidance of enclosed voids
inside the designed structure for structural connectivity. The
existence of enclosed voids implies that there is no way to get
the unmelted powders and inner supports out of these voids after
the part is completed (Albakri et al. 2015; Chua and Leong
2014; Diegel et al. 2010; Hu et al. 2016; Liu and Ma 2016;
Meisel and Williams 2015; Zhou and Saitou 2017) by the AM
techniques, e.g., selective laser melting (SLM) and stereo lithog-
raphy appearance (SLA). Besides, building accuracy, minimum
feature size, interlayer mechanical properties, and surface finish
are also important factors influencing the AM quality (Diegel
et al. 2010; Qattawi and Ablat 2017).

Liu et al. (2015) and Li et al. (2016) proposed a virtual
temperature method to force the connections of isolated voids
for structural connectivity. In detail, a virtual heating source is
introduced to each void field, while solid areas are filled with
thermal insulation materials. In this way, isolated voids will be
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controlled by constraining the maximum temperature over the
structure to release the accumulation of heat energy. Clearly,
this method requires an additional temperature field analysis
so that the final design depends upon the choices of tempera-
ture limit and conductivity parameters significantly.

Moreover, the elimination of enclosed voids in a structure is
also required in casting, cutting, and some other manufacturing
processes. Take casting process as an example. In order to facil-
itate the removal of casting mold, enclosed voids are not allowed
in casting parts. As pointed out by Xia et al. (2010), a new void
cannot be nucleated in the interior of a structure if the conven-
tional level-set-based method without the topological derivative
is adopted. Gersborg and Andreasen (2011) implicitly involved a
connectivity constraint by using a Heaviside design parameteri-
zation. These methods are always tightly coupled to other casting
constraints, which will generate too conservative results. Hence,
there is still a lot of spaces exploiting a better approach for struc-
tural connectivity.

In this work, feature-driven topology optimization method
(Zhang et al. 2017a, b, ¢; Zhang and Zhou 2018; Zhou et al.
2016) is extended to take into account the structural connectiv-
ity for the AM. The design procedure is as follows. Void fea-
tures are modeled by level-set functions (LSFs) in terms of
closed B-splines (CBS) or super-ellipses that act as basic

(@)

primitives in topology optimization. A side constraint scheme
is proposed to bound design variables related to center points of
these features outside the contour of the design domain. This
scheme implies that the avoidance of enclosed voids is realized
without introducing additional nonlinear constraints and addi-
tional computing burden. Besides, fixed mesh technique is
adopted for structural analysis and sensitivity analysis.

The paper is organized as follows. Section 2 gives an in-
troduction about the topology modeling with closed B-spline
and super-ellipse in form of level-set function (LSF).
Moreover, the side constraint scheme is presented for the pur-
pose of structural connectivity. Section 3 gives a brief presen-
tation about structural analysis based on the fixed mesh tech-
nique and followed by sensitivity analysis. In Section 4, the
effectiveness and merits of the proposed method are demon-
strated with three numerical examples. Finally, conclusions
are drawn out in Section 5.

2 Topology modeling with closed B-spline
and super-ellipse

Level-set function @(x) is an implicit function defined in
a higher dimensional space (Fedkiw and Osher 2002).

Fig. 2 Control points P; and 3l
parameters R; of a quadratic CBS. 35
a In Cartesian coordinate system 3+ 27
OOR. b In Cartesian coordinate 25 |
system xOy 5 1
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Fig. 3 The definition of # and 3

The zero-value contour of a LSF can be used to repre-
sent the geometrical boundary of a feature or a structure.
Figure 1 depicts a bounded domain {2 for which an ar-
bitrary point x can obviously be classified according to
the sign of @(x).

P(x) >0 Vxe 2

B(x) < 0 Vx¢ 02 (
P(x) =0 V xe o

—_—
~—

S _z/2-17/18

(©)

Fig. 4 Control points and biquadratic CBS. a The distribution of control
points in Cartesian coordinate system ¢3R. b The corresponding surface
in Cartesian coordinate system #R. ¢ The polyhedron of control points in

where 0f2 is the solid-void interface.

In this paper, topology optimization is achieved by the
movements, intersections, and deformations of void features
defined by closed B-splines (CBS) and super-ellipse. Based
on our previous 2D works (Zhang et al. 2017b; Zhou et al.
2016), the LSFs of 3D void features are derived
correspondingly.

2.1 Mathematical formulation of closed B-spline

B-spline has been extensively used in the CAD community
due to its local modifiability and flexible controlling property.
A 2D CBS is defined as a generalized circle whose radius 7 is
parameterized as a linear combination of a set of control radii
{R;}. The LSF of the CBS is written as

6,5, 3,7) = =\ (x-x0)* + (-3p)? o
_ ¢ pp (072
7(6) —EIR,B,7P< o )

232272
177 ls21,':'18 *

(d)

Cartesian coordinate system xyz. d The corresponding surface in
Cartesian coordinate system xyz
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Fig. 5 The illustration of a super-
ellipse. a Geometric description.
b The corresponding LSF

@ (b)

Fig. 7 Connectivity of 2D structures. a Structure without enclosed void.
b Structure with two enclosed voids

Fig. 6 A 3D super-ellipse

Table 1 Specific requirements for void features

Void features Requirements Void features Requirements
1 Xo<0ory=>L, 6 yo=L,

2 xo=Lioryy>L, 7 X <0

3 xo=>Liory,<0 8 Xo=>1L,

4 X0<0o0ry,<0 9 Y=<

5 Yoz Lo 10 <0

Fig. 8 Initial structure with 10 void features
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Fig. 9 Topology modeling of a
structure with Boolean
operations. a Construction
process. b Corresponding LSFs

Fig. 10 The process of structural

analysis for 2D problems

Fig. 11 Heaviside function and
the regularized version. a
Heaviside function. b The
regularized Heaviside function
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Fig. 12 A plate with a circular hole

where B; , is the ith B-spline basis function defined by uni-
form and open knot vectors with order p. 0 is relevant to the
coordinate system and calculated as

arctan Yo X>Xo T 3
0= TR0 b [—— ,—} (3)
arctany Y0 +71 x< X 2
X=X

Considering the closure of B-spline curves, R; and R,, are
set to the same value. Figure 2 shows a quadratic CBS with a
set of control radii R={R;} = {1.5,2.5,0.8,3,1.2,3.2, 1.5}

Fig. 13 Material distributions. a
A=0.05.bA=025¢cA=2

@ (b) ©

(D)

>
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Fig. 15 The derivative of the regularized Heaviside function

and the mapping relation from Cartesian coordinate fOR to

xOy.
In 3D case, the LSF of the CBS is written as

0, (x.3,2,7) = =/ (x-x0)* + (%) + (z=20) "
ml m2 0 /2 /2
H0,5) = 5 ZIR,'JB,»‘I,( +27T/ >Bj,q<ﬁ+ / )

i=1 j= ™

with

2720
Vo) + 0mo)
where B; , and B; , are two independent B-spline basis func-

tions. As shown in Fig. 3, # and 3 represent inclined angles of
radius ». The value of 0 ranges within the interval [—7/2, 37/2]

[ = arctan

- Solid material

|:| Intermediate material

. Weak material

Fig. 14 The effects of A upon 1200 -
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Fig. 16 A short beam. a Design 8
domain. b The freely optimized
result (Luo et al. 2009) /
7 4
7 F
(a) (b)

and the range of (3 is [~7/2, 7/2]. In addition, the closure of the
CBS requires that

Rij=Rm,; j=12,....m2
Rl,l - R2,1 = ... = le,l (6)
Rim = Roma = .. = Rt m2

Let us consider a set of control parameters R = {R; ;} = {4,
4,...,4}. Suppose two knot vectors =7={0,0,0,1/9,2/9,3/9,4/
9,5/9,6/9,7/9,8/9,1,1,1} and =,={0, 0, 0, 1/7, 2/7, 3/7, 4/7,
5/7, 6/7, 1, 1, 1} are used to define two quadratic B-
spline basis functions (p=2, ml =11, g=2, m2=9).
Figure 4a represents the distribution of control points
in the Cartesian coordinate system 63R and the resulting

Compliance
. o
I
>

(a) J =6349.68,V =27.10

B-spline surface is shown in Fig. 4b. Clearly, a plane is
obtained due to the same length of all control radii. Its
conversion into Cartesian coordinate xyz produces a
polyhedron of control points, as illustrated in Fig. 4c.
Especially, m1 control points overlap at two poles.
Figure 4d shows the constructed feature of the sphere
with a radius of 4.

2.2 Mathematical formulation of super-ellipse

A super-ellipse can be seen as a generalized representation of
circle, ellipse, square, and rectangle. The LSF of a 2D super-
ellipse centered at point (xg, vo) with semi-length a, semi-
width b, and inclined angle o (measured from the horizontal
axis counterclockwise) is expressed as

8000 T T T 28
. += Compliance|
7000 4 [—— Volume

6000

5000 {*

4000 4

3000 T v T
0 40 80 120 160
Iteration

(b)J =6011.72,V =16.00 (c)

Fig. 17 Free-form topology optimization with CBS void features. a The initial layout. b The optimized result. ¢ The convergence curves of compliance

and volume

(a)J =7131.12,V =28.53

Iteration

(b)J =7200.93,7 =16.00 (©)

Fig. 18 Topology optimization considering structural connectivity with CBS void features. a The initial layout. b The optimized result. ¢ The

convergence curves of compliance and volume
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Table 2  Evolutions of structural topology with connectivity

Iteration 7 Iteration 15 Iteration 24

O

Iteration 40 Iteration 60

il e W i et
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O

N

&b
5 ‘4)"1"! |
o —— = —,

S

S b X" _[cosa sina|[xxo (8)
(v, y) =17 [ || + B (7) y" —sina cosa | |y,
) s is a relatively large even integer number (s = 6 is taken in the
with present study). Figure 5a, b depicts the geometry and the cor-
30000 T

§ k F21 @

8 18000 - g

£ o

8§ 12000 16.00 18

6000 | 15
6245.39
0 50 100 150

Iteration

(a)J =8731.34,7V =24.37 (b) J=624539,V =16.00 ()

Fig. 19 Free-form topology optimization with 17 super-elliptical void features. a The initial layout. b The optimized result. ¢ The convergence curves of

compliance and volume

‘ b27
8000 += Compliance|
% 607571/ ,, %
§ 6000] T\ ermrmimemimi e =
L1s
5000 16.0
0 30 60 % 20"
Iteration
(a) J=747698,V =2630  (b) J =6075.71,V =16.00 ©

Fig. 20 Free-form topology optimization with 34 super-elliptical void features. a The initial layout. b The optimized result. ¢ The convergence curves of

compliance and volume

@ Springer



Topology optimization method with elimination of enclosed voids

125

|—— Volume
g 45000k} [ °
% i 21 5
E 300001 + S
8 HE
15000—‘ Nesiee 1600 |
L\9311.34 Bl St
T wm & w o i
Iteration
(a) J=931134,V=2659  (b) J=7880.14,V =16.00 (©)

Fig. 21 Topology optimization considering structural connectivity with 17 super-elliptical void features. a The initial layout. b The optimized result. ¢

The convergence curves of compliance and volume

(a)J =7784.72,V =27.96
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(b) J =7446.87,V =16.00 (c)

Fig. 22 Topology optimization considering structural connectivity with 34 super-elliptical void features. a The initial layout. b The optimized result. ¢

The convergence curves of compliance and volume

responding LSF of a super-ellipse. Here, five design variables
{x0, vo, @, b, a} are adopted to control a super-ellipse.

According to (7), the LSF of a 3D super-ellipse corre-
sponds to

s x* s y* N Z* s
IRg) =1- —_ e —_ 9
6,(5,3,2) \/ + + ©)
where
x X=X
v | =ABC|yy (10)
z 720
with
1 0 0
A= 1|0 cosa; -sinqg (11)
0 sino;  cosa
cosay O sinap
B = 0 1 0 (12)
—sina, 0 cosap
cosaz -—sinaz O
C=|sinaz cosa; 0 (13)
0 0 1

The design variables involved in a 3D super-ellipse are
{X0, Yo, 20, a, b, ¢, 1, A, i3 }. Among them, (xo, o, Z9) repre-
sent the coordinates of the center point. Semi-length a, semi-
width b, and semi-height ¢ describe the dimension of a super-
ellipse. o, a, and a3 denote the rotation angles around the x-
axis, y-axis, and z-axis, respectively. It is noteworthy that the
rotation angle is always considered to be enlarged for coun-
terclockwise direction from the positive end of rotation axis.
The order of rotation axis is strictly in accordance with the first
x-axis, then y-axis, and the last z-axis. Figure 6 shows a super-
ellipse with oy =45°, ap; =457, and a3 =45".

2.3 Side constraint scheme for structural connectivity

Figure 7a shows an example in terms of structural con-
nectivity without enclosed void. In contrast, the

Fig. 23 A simply supported beam (Li et al. 2016)
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Table 3 Three design cases of initial structure

Items The number of The number of The total number
void features on void features on of void features
the top surface the four side

surfaces

Case 1 5 4 9

Case 2 5 8 13

Case 3 9 12 21

existence of two inner voids shown in Fig. 7b will
make it difficult to remove unmelted powders or auxil-
iary supports produced in the AM process. The pro-
posed side constraint scheme is to take locations of
center points of void features as design variables and
then constrain their variations outside the design
domain.

To make things clear, consider a rectangular domain
with dimensions L; X L, in Fig. 8. All 10 void features
are constrained to impose their center locations along
the borders of the design domain at least. Each feature
will only have a part inside the design domain so that
enclosed voids are avoided to ensure the structural
connectivity.

A summary is made about the side constraints to the feature
centers in Table 1. It is noteworthy that there are two options
for the void features with centers located at the corners. The
same method can be extended to 3D problems. Void features
are initially distributed on the boundary surfaces of the design
domain and the variation bounds of design variables are de-
termined correspondingly.

From the above presentation, we can see that struc-
tural connectivity can be effectively achieved without
introducing any additional constraint in topology optimi-
zation. In this way, only proper bound values are im-
posed for design variables related to the void centers
within the framework of feature-driven method.

3 Topology optimization and sensitivity
analysis

3.1 Structural analysis with fixed computing mesh

According to Section 2, suppose n void features defined by the
LSFs ¢,1(x),0,2(X),..., ¢,,(x) are involved in a design domain
defined by the LSF ¢,(x). The LSF of the whole structure, &,
can then be constructed through Boolean operations of void
features and the design domain, i.e., union U and intersection
N. Figure 9 shows the construction process of a structure.
Boolean operations are mathematically equivalent to the fol-
lowing min and max computing.

b = min(¢d,_max(¢vl7¢v27'-'7¢vn)) (14)

Here, the negative sign means that each feature rep-
resents a void rather than a solid inclusion. Within this
scope, KS function given below is utilized to formulate
the expression approximately.

KS = %ln(ew’1 +e" L 4 e"%) (15)

In this expression, ¢1,¢,, ..., ¢, denote the LSFs of g
primitives. The sign of parameter w determines the type of
Boolean operation. w>0 and w<0 correspond to max and
min, respectively. Other functions, e.g., R-function and P-
norm, can also be used for the max and min computing
(Ricci 1973; Rvachev 1982; Shapiro 1991). Based on (14),
@ is expressed as

1
®=—In(e" +e™") w<0 (16)
w
with
1 ‘
@, =—In(e"" + " + ..+ ") w>0 (17)
w

In our study, fixed mesh technique is adopted for structural
analysis. Without loss of generality, Fig. 10 illustrates a 2D

(a)J =218.47,V =30782.70 (b)J =219.07,V =30262.40 (c)J =220.28,V =29158.90

Fig. 24 The initial structure with CBS void features. a 9 void features. b 13 void features. ¢ 21 void features
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structure. The structural domain {2 is embedded into a rectan-
gular domain {2 which is further discretized into regular quad-
rilateral elements. Thus, three kinds of elements exist: (i) void
elements with all nodes located outside the physical domain
£2; (it) solid elements with all nodes located inside the physical
domain §2; (iii) boundary elements cut by the structural
boundary 0f2. Consider the general integral related to the solid
domain defined by @.

V(D) = fﬁ@b(x)H(@)dQ (18)

when ¢(x)=B'DB (B is the strain-displacement matrix
and D is the elasticity matrix), ¥(®) is equal to the
structural stiffness matrix. When ¥(x) =1, ¥(P) is equal
to the structural volume. H(-) denotes the Heaviside
function.

H(®) = {01 qﬁq}ioo (19)

In numerical implementation, H(®) is often smoothed by
its regularized version H (®). Here, the regularized Heaviside

function H(®) in the form of piecewise polynomial (Wang
et al. 2003) is adopted.

1 X P> A
_ 3(1-N) (& & 1+
A b < -A

(20)

In this expression, a very small positive number A (com-
monly, A=1x 10°~1x 10_3) is introduced as the “ersatz
material” (Allaire et al. 2004) to prevent the singularity of
stiffness matrix in structural analysis. Compared with
Heaviside function in Fig. 11a, b has a significant transition
near zero level-set. A determines the width of transition
interval.

In our work, the value of LSF at the center point of
each element is utilized for the assignment of material

property.
E; = H(®(x))Eo (21)

where x.; represents the coordinates of the center point
of the ith element. E, and E; are Young’s modulus of
solid material and that of the ith element, respectively.

Take the plate with a hole in Fig. 12 as an example.
The left side of the plate is fixed and a vertical force is
applied at the lower right corner. The structure has a
dimension of 20 x 20 and the radius of the circular hole
centered at (10,10) is 5. Thus, the LSF of the whole
structure responds to

P = \/ (x-10)> + (»-10)*-5 (22)

The first step is to embed the structure into a regular
domain with a dimension of 20 x20. The domain is
further discretized into rectangular elements of size
0.5x0.5. Figure 13 gives the material distributions with
three different values of A. Obviously, the number of
elements full of intermediate materials increases when
A is set to a larger value. At the same time, the sensi-
tivity accuracy cannot be guaranteed when A is too
small, which will be tested in Section 4.3.

The effects of A upon compliance and volume are further
investigated and illustrated in Fig. 14a and b, respectively.
When A is equal to 0.24, the compliance has the same value
as the solution of finite element analysis (FEA). With the
increase of A, the compliance keeps coming down and con-
siderable errors produce. Notice that in FEA, element type and
element size are consistent with the fixed mesh adopted in this
paper. The volume also has a downward trend except for a
small segment at the beginning and reaches the analytic solu-
tion at A =0.27. In view of this, nearly half of the element size
seems to be a good choice for A.

In addition, the LSF is normalized into a quasi-equidistant
iso-contour needed in sensitivity analysis with narrow band
scheme by means of the first-order approximation of signed
distance function (Zhou et al. 2016). This treatment is impor-
tant for the attainment of a clear material distribution in topol-
ogy optimization.

3.2 Sensitivity analysis

Here, topology optimization related to the minimization of
structural compliance with the volume constraint is consid-
ered. Since structural connectivity can be directly realized by
the side constraints limiting the coordinates of the center
points of all void features, no additional constraints are re-
quired in the optimization problem. The general mathematical
formulation remains unchanged and is stated as

Min J = F'U
KU=F -

 JV= IEH(Q(x))dQSV (23)
d;<d;<d; i=1,2,..,n

where J is the structural compliance. V is total volume of the
structure with its upper bound V. d; refers to the vector of
design variables involved in the ith feature with the lower
bound d; and upper bound d;. The composition of design
variables is determined by specific void features adopted in
the structure.
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00

(a) J=233.72,V=9599.00 (b) J=232.50,=9599.72 (c) J=231.05,V =9600.00

(e) ®

Fig. 25 Free-form topology optimization. a The optimized result in case 1. b The optimized result in case 2. ¢ The optimized result in case 3. d Half of the
optimized structure in case 1. e Half of the optimized structure in case 2. f Half of the optimized structure in case 3

SLOG

(a) J=239.71,V=959837 (b) J=238.78,V=9598.71 (c) J=237.06,V =9599.20

&&&

) (e) ®

Fig. 26 Topology optimization considering structural connectivity. a The optimized result in case 1. b The optimized result in case 2. ¢ The optimized
result in case 3. d Half of the optimized structure in case 1. e Half of the optimized structure in case 2. f Half of the optimized structure in case 3

Fig. 27 The distribution of the

center points of void features in

the freely optimized results. a

Case 1. b Case 2. ¢ Case 3 »O‘ >o< . »"
(a)

a (b) (©)
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Fig. 28 The distribution of the
center points of void features in
the optimized results considering
structural connectivity. a Case 1.
b Case 2. ¢ Case 3
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Fig. 29 The convergence curves of compliance and volume for free-form topology optimization. a Case 1. b Case 2. ¢ Case 3

The derivative of the equilibrium equation KU =F at the
both ends is
oK oU OF

K— ="

a_cliUJ’ od;  ad; (24)

Since load vector F is design-independent with 0F/od,; = 0,
the sensitivity of the compliance with respect to featured de-
sign variables can be expressed as

oJ 1 0K ;0U 1 0K 0K 1, 0K

S g £l K—=_-U""U- ———UuT =

a, 2V VTV R 72w U W VTV
(25)

Then, the general mathematical formulation for both stift-
ness matrix and volume in the form of (18) is considered. The
sensitivity of ¥(®) with respect to d; is expressed as

with
_ )t
-

0(®) is discontinuous and is further replaced with the de-

b=0

B0 (27)

rivative of the regularized Heaviside function, §(®). As shown
in Fig. 15, §(®) is nonzero only when values of the corre-
sponding LSF fall into the transition interval [-A, A].

~ 3(1-=a) (1 _&*\
5@y ={ 7 (Z F) Ast < 4 (28)
0 else

Therefore, the sensitivities of element stiffness matrix and
element volume are computed as
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Fig. 30 The convergence curves of compliance and volume for topology optimization considering structural connectivity. a Case 1. b Case 2. ¢ Case 3
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Fig. 31 The initial structure with void features of super-ellipse (J=
226.69,V=29185.60)

d0 (30)

In details, for solid or weak elements, the sensitivities are
zero due to the zero-value of 0(®). That is to say, only the
elements full of intermediate materials are actually involved in
the calculation.

4 Numerical examples

In this section, several numerical examples are provided to
validate the effectiveness of the proposed method. The glob-
ally convergent method of moving asymptotes (GCMMA)
(Svanberg 1995) within the Boss-Quattro™ optimization plat-
form (Radovcic and Remouchamps 2002) is used as the opti-
mizer. Young’s modulus of solid material and Poisson’s ratio
are Eq=1 and v=0.3, respectively. The geometric data and
loads are all dimensionless in the following examples.

4.1 A short beam

Figure 16 depicts a short beam. It is completely fixed along
the left side and a vertical force is applied at the middle point
of the right side. The model is discretized into a 80 x 40 quad-
rilateral mesh. The volume fraction of 50% is used as the
upper bound of the volume constraint. Parameters A =0.05
and A=1x 10 ° are used in (20).

(a) J=232.51,V =9600.00 (b)

Fig. 32 Free-form topology optimization. a The optimized result. b Half
of the optimized structure

@ Springer

(a) J=239.40,V =9599.95 (b)

Fig. 33 Topology optimization considering structural connectivity. a The
optimized result. b Half of the optimized structure

First, CBS curves are considered as void features to realize
topological changes. In order to study the influence of con-
nectivity constraint upon the optimized topologies, both free-
form topology optimization and topology optimization con-
sidering structural connectivity are carried out. Figures 17a
and 18a show the corresponding initial design models com-
posed of 17 voids, each of which has 24 control radii. In total,
442 design variables exist. Figure 17b gives the freely opti-
mized result, which shares the same topology as in Fig. 16b.
Six inner holes violate the connectivity constraint. It is also
observed that some void features move outside the design
domain and become useless. Figure 17¢ depicts the conver-
gence curves of compliance and volume.

When void features in Fig. 18a are constrained to limit their
locations of center points, each feature will have a portion that
cannot enter the interior of the design domain. Hence, all voids
are guaranteed to communicate with the outside of the design
domain. The optimized result with connectivity is illustrated
in Fig. 18b. The solution is a simply connected structure to
favor the evacuation of the unmelted powders or liquids and
removing support materials during the AM process. To have a
clear idea about the topological changes, some intermediate
iterations are given in Table 2. It is observed that structural
optimization considering connectivity is actually a process of
changing the boundary of the design domain. The conver-
gence histories of compliance and volume are shown in
Fig. 18c. In comparison, the free-form optimization achieves
a compliance of 6011.72, while the compliance of the struc-
ture with connectivity has an increasing value of 19.78%.

P obil

(@ (b)
Fig. 34 The distribution of the center points of void features in the

optimized results. a Freely optimized result. b Optimized result of
connectivity
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Fig. 35 The convergence curves
of compliance and volume. a
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Now, the same number of super-ellipses is used to drive
topology optimization. Each super-ellipse has five design vari-
ables related to the position, orientation, semi-length, and semi-
width. There are a total number of 85 design variables, which is
only one fifth of CBS features. Figure 19a represents the initial
configuration without considering structural connectivity.
Compared with CBS feature, super-ellipse tends to achieve
topological change through intersection because of its insuffi-
cient deformation ability. This leads to a relatively simple to-
pology with three inner holes in Fig. 19b. Figure 19¢ represents
the convergence curves of compliance and volume. Usually,
this deficiency is compensated by increasing the number of
super-ellipses. When the initial structure consists of 34 super-
ellipses distributed in a crossing way over the design domain,
the corresponding optimized structure shares the topology sim-
ilar to the result in Fig. 17b, as illustrated in Fig. 20.

Fig. 37 The initial structure with CBS void features

60

For topology optimization considering structural connec-
tivity, super-ellipses are initially distributed along the bound-
ary of the design domain to facilitate the constraints on center
points. Figures 21a and 22a give two initial structures with
different numbers of super-ellipses. However, Figs. 21b and
22b illustrate that both two optimized structures are similar to
the CBS-based result without enclosed void shown in
Fig. 18b. The values of structural compliance correspond to
7880.14 and 7446.87. The convergence histories are shown in
Figs. 21c and 22c, respectively.

4.2 A simply supported hexahedron

A 3D hexahedron studied in (Li et al. 2016) is considered in
Fig. 23. It has a dimension of 40 x 40 x 20 with four corners
fixed at the bottom face in all three directions. A vertical force
is applied at the center of the bottom face. Suppose that a
bottom layer of 40 x 40 x 2 is a non-designable solid domain.
Here, the structure is discretized with 50 x 50 x 25 8-node
hexahedra elements. The volume fraction is limited to 30%,
equally a volume of 9600. The smoothing parameter A is
chosen to be 0.4 and X is 1 x 107°.

Three cases are considered in Table 3 and initial layouts of
CBS voids are shown in Fig. 24 to study the influences upon
the optimized topology. Each void feature is represented by
the CBS defined by 120 control radii. The initial structures
will be used to perform both topology optimization without
and with the consideration of structural connectivity,
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Fig. 38 Material distributions. a
A=0.1.b A=04

RECOREENN

(a) J=10376.80, V' =19435.10

respectively. For the former, features are allowed to move
freely rather than being restricted outside the design domain.
Figure 25a—c gives the results of free-form optimization in
three cases. Correspondingly, Fig. 25d—f provides the half
models for the better observation of interior topologies. It
can clearly be seen that even with different numbers of void
features, the similar topology with one enclosed void is pro-
duced. Besides, compliance decreases as the number of fea-
tures increase, but the amount of reduction is small.

Now, side constraints are imposed for design variables
related to the center coordinates of featured CBS. In de-
tail, the z-coordinates of center points are all bounded by
20=>20 for the features centered on the top surface.
Similarly, other features are constrained for the x- or y-

Fig. 39 Free-form topology
optimization. a The optimized
result with A=0.1. b The
optimized result with A=0.4. ¢
Half of the optimized structure
with A=0.1. d Half of the
optimized structure with A=0.4

ACONDDNN

(b) J=10217.00,V =19417.60

coordinates of center points. The optimized results and the
corresponding half models are shown in Fig. 26. In three
cases, the enclosed holes disappear. The compliance
values are 239.71, 238.76, and 237.06 with the increasing
values of 2.56%, 2.69%, and 2.60%.

In the results of free-form topology optimization, distribu-
tions of the center points of CBS features are depicted in
Fig. 27. Black squares representing the center points inside
the domain have a large number, while red solid circles
representing the center points located outside the design do-
main are few. By contrast, all center points are successfully
restricted outside the design domain owing to the imposed
side constraints for the connectivity, as illustrated in Fig. 28.
For two kinds of topology optimization, the convergence

& &

(a) J =10844.80,V =7186.29

(b) J=10614.00,) =7199.83

=

(c) (d)
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Fig. 40 Topology optimization
considering structural
connectivity. a The optimized
result with A=0.1. b The
optimized result with A=0.4. ¢
Half of the optimized structure
with A=0.1. d Half of the
optimized structure with A=0.4

Fig. 41 The convergence curves
of compliance and volume for
free-form topology optimization.
aA=0.1.bA=04

Fig. 42 The convergence curves
of compliance and volume for
topology optimization
considering structural
connectivity.a A=0.1.b A=04
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Fig. 43 The initial structure with void features of super-ellipses (/=
13021.15,V =15400.96)

curves of compliance and volume are shown in Figs. 29 and
30, respectively. At the beginning of iterations, compliance
changes sharply because the volume constraint is violated.

Consider now the super-ellipse as an alternative feature. The
initial structure is shown in Fig. 31 and the dimension of each
void feature is 3 x 2 x 2. There are 65 super-ellipses perpendic-
ular to the surfaces of the design domain. The total number of
design variables is thus 65 x 9 =585. Figure 32a, b shows the
optimized result and the corresponding half model, respective-
ly. In comparison with the CBS-based results, Fig. 32a pro-
duces the similar topology with one enclosed void.

Figure 33a represents the optimized result with the impo-
sition of side constraints. From the half model shown in
Fig. 33b, it can clearly be seen that no inner void exits. The
compliance is 239.40, which is 2.96% higher than the freely
optimized result (J=232.51). Figure 34a, b depicts the

Fig. 44 Free-form topology
optimization. a The optimized
result. b Half of the optimized
structure

distributions of the center points of super-ellipses in both op-
timized results. The convergence histories of compliance and
volume are compared in Fig. 35a, b.

4.3 A torsion beam

Another 3D example of a torsion beam shown in Fig. 36 is
studied. The structure is completely fixed along the left side
and four loads are imposed on the four vertices of the right
plane with an inclined angle of 45°. Suppose two cuboid
zones with a dimension of 20 x 20 x 2 at both ends of the
structure are chosen as non-design solid domains. The beam
is discretized into hexahedral elements of size 0.8 x 0.8 x 0.8.
Parameters A =1 x 107° are used in (20). The upper bound of
volume is set to be 7200 with a volume fraction of 30%.

As shown in Fig. 37, there are 44 CBS void features with
60 controlling radii in the initial structure and all features are
centered on the surfaces. The total number of design variables
is 44 x (60 + 3) =2772. To highlight the effect of A, Fig. 38a,
b gives the material distributions of the initial structure when
Ais set to 0.1 and 0.4, respectively. The latter has about one
layer of intermediate elements around each hole, but only a
few scattered intermediate elements exist in the former. The
corresponding freely optimized results are illustrated in
Fig. 39a, b. The half models in Fig. 39¢c, d indicate that a large
enclosed void exists. Besides, compared with Fig. 39b, there
are many pits on the surfaces of the structure in Fig. 39a.

(a) J=10902.80,7 =7199.69 (b)

Fig. 45 Topology optimization
considering structural
connectivity. a The optimized
result. b Half of the optimized
structure

(a) J=12284.76,V =7198.39 (b)
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Fig. 46 The convergence curves 60000 ‘ 16000 40000 21000
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In Fig. 37, center points of all void features are restrict-
ed outside the design domain. The optimized results and
the half models are shown in Fig. 40. Although structure
configurations are no longer the same with different
values of A, holes are always generated on the outer sur-
face to realize structural connectivity. Similarly, the opti-
mized result tends to have rough surfaces with A=0.1.
Compared with their respective freely optimized results,
the compliance of the structure with connectivity goes up
by 72.56% and 13.07%. Figures 41 and 42 give the con-
vergence histories of two kinds of topology optimization.
The curves with A=0.1 always fluctuate greatly due to
the sensitivity inaccuracy caused by too few intermediate
elements. Therefore, a too small value of A causes a de-
terioration of structure smoothness and large fluctuations
of the convergence curves.

With a better choice (A =0.4), topology optimization
with void features of super-ellipse is also performed. The
initial distribution of super-ellipses is demonstrated in
Fig. 43. There are 120 super-ellipses centered on the sur-
faces of the design domain. The total number of design
variable 1s 120 x 9 = 1080, which is about one third of the
CBS-based topology optimization. Optimized topology is
obtained after the movements, rotations, and deformations
of super-ellipses and shown in Fig. 44a. The correspond-
ing half model is illustrated in Fig. 44b. The big cavity is
enclosed, which inevitably leads to the accumulation of a
large amount of powders or liquids.

Figure 45a represents the optimized structure consider-
ing connectivity and its half model is provided in Fig. 45b
for a better observation. Clearly, it is the desired topology
which has many accesses for the support structures or
unmelted powers to be moved out. The final compliance
corresponds to J=12284.76 and it is 12.67% higher than
that of unconstrained optimal solution (J=10902.80).
This is the price that should be paid for the structural
connectivity. The convergence histories of compliance
and volume are shown in Fig. 46 with the satisfaction of
the prescribed volume constraint.

(b)

5 Conclusions

The present work presents a simple side constraint scheme in
combination with void features for the design of structural con-
nectivity in topology optimization. Both 2D and 3D examples
show that the proposed method does have the capability of en-
suring the structural connectivity in the optimized result.
Compared with freely optimized results, the elimination of
enclosed cavity always comes at the cost of increasing structure
compliance. Moreover, the increase of void features contributes
to a reduction of compliance. The choice of parameter A is also
important to ensure the computing accuracy in structural analysis
and sensitivity analysis. Half of the element size is a reasonable
choice for A. In the future, the proposed method will be inte-
grated with the minimum length scale and overhang constraint.
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