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Abstract
This paper presents a simple method for conservatively solving a reliability-based design optimization (RBDO) problem
of structures, when only a set of random samples of uncertain parameters is available. Specifically, we consider the truss
design optimization under the stress constraints, where the external load is a random vector. The target confidence level, i.e.,
the probability that the structural reliability is no smaller than the target reliability, is specified, without any assumption on
statistical information of the input distribution. We formulate a robust design optimization problem, any feasible solution of
which satisfies the reliability constraint with the specified confidence level. The derived robust design optimization problem
is solved with a sequential semidefinite programming. Two numerical examples are solved to show the trade-off between
the specified confidence level and the structural volume.

Keywords Reliability-based design optimization · Data-driven approach · Uncertain input distribution ·
Reliability with confidence · Order statistics · Robust optimization

1 Introduction

Consideration of uncertainty is indispensable for design
of structures having high assurance of quality. Two major
approaches to structural optimization against uncertainty are
reliability-based design optimization (RBDO) and robust
design optimization (see surveys by Park et al. (2006)),
Beyer and Sendhoff (2007), Valdebenito and Schuëller
(2010), Yao et al. (2011), and Jiang et al. (2018).
Roughly speaking, robust design optimization makes use
of a possibilistic (or bounded-but-unknown) model of
uncertainty, which assumes only the set of values that
the uncertain parameters can possibly take. In contrast,
RBDO adopts a probabilistic model of uncertainty, which
assumes statistic properties, i.e., a probabilistic distribution,
of the uncertain parameters. As an emerging research topic,
among others, in RBDO, diverse methods that can address
uncertainty in distribution have received considerable
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attention (Ito and Kogiso 2016; Ito et al. 2018; Peng et al.
2017; Noh et al. 2011a; Cho et al. 2016; Moon et al. 2017,
2018; Picheny et al. 2010; Gunawan and Papalambros 2006;
Youn and Wang 2008; Zaman and Mahadevan 2017; Jiang
et al. 2013; Noh et al. 2011b; Huang and Zhang 2009; Choi
et al. 2010).

Naturally, uncertainty has also been taken into account
in the research field of mathematical optimization. An
optimization model with possibilistic uncertainty is called
robust optimization (Ben-Tal et al. 2009), while the one
with probabilistic uncertainty is called chance-constrained
optimization (a.k.a. stochastic programming) (Shapiro et al.
2009). Robust optimization requires that each constraint is
satisfied in its worst case, when the uncertain parameters
can take any value in a prescribed uncertainty set. In chance-
constrained optimization, the probability that the constraints
are satisfied should be no smaller than the prescribed
threshold, when the distribution of the uncertain parameters
is given. Uncertainty in distribution is addressed in the
framework of distributionally robust optimization (Goh and
Sim 2010; Ben-Tal et al. 2013; Bertsimas et al. to appear;
Delage and Ye 2010), in which the worst-case distribution
is considered when a set of distributions is given.

In most literature on robust optimization, the uncertainty
set is assumed to be given a priori, and means for designing
the uncertainty set is rarely discussed. As an exception,
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Goldfarb and Iyengar (2003) proposed to use the linear
regression for the market data to determine the uncertainty
set for robust portfolio selection. Also, for making use
of data to design the uncertainty set, Tulabandhula and
Rudin (2014) proposed to apply statistical learning methods,
and Bertsimas et al. (2018) used the statistical hypothesis
testing. Recently, Hong et al. (2017) have proposed quite a
simple method to design the uncertain set. In this method,
a given data set is split into two sets, and one of them is
used to determine the shape and the other is used to calibrate
the size of the uncertainty set. The size calibration is based
on the order statistics (Arnold et al. 2008) of the data set
to give feasible solutions of the derived robust optimization
problem a statistical feasibility guarantee. This paper is
inspired by Hong et al. (2017).

This paper attempts to show how the idea in Hong et al.
(2017) can be utilized in RBDO with an unknown input
distribution. We assume that only the set of random sam-
ples of uncertain variables is available. Specifically, in this
paper, the external load applied to a structure is considered
a random vector. As usual in RBDO, we impose a lower
bound (i.e., a target reliability) for the probability that the
constraints on structural performance are satisfied. How-
ever, this probability itself is a random variable, because
we do not know the (joint) distribution of the external load.
Here, we consider any possible distribution such that the
given data set forms a random sample from it. We then
impose a lower bound (i.e., a target confidence level) for
the probability that the structural reliability is not smaller
than the target reliability. Using the idea in Hong et al.
(2017), we can derive a sufficient condition for this confi-
dence level constraint. Since this sufficient condition is in
a form of robust constraints, we thus transform the RBDO
problem with a confidence level to a robust design optimiza-
tion problem; more precisely, any feasible solution of the
latter problem is feasible for the former problem. Furthermore,
by using a technique developed in robust design optimiza-
tion (Kanno and Takewaki 2006a), we can transform the
robust design optimization problem to an optimization prob-
lem in the conventional form. Thus, we convert the RBDO
problem with a confidence level to a tractable form.

There exist several methods proposed for RBDO with
incomplete statistical information on random variables.
For example, Gunawan and Papalambros (2006) used the
Bayesian inference to estimate the structural reliability,
when for some of random variables only a finite number of
samples are available. To reduce the computational cost for a
Bayesian approach to reliability estimate, Youn and Wang
(2008) adopted the eigenvector dimension reduction method.
Noh et al. (2011a, b) proposed to use the adjusted mean
and correlation coefficient for an input normal distribution
model with a confidence level. Given the intervals of input
variables as data, Zaman andMahadevan (2017) proposed to

use the Johnson distribution as an input distribution model.
In Cho et al. (2016) and Moon et al. (2017, 2018), some
candidates of the input distribution types are prepared, and
distribution parameters are considered random variables to
compute the confidence level of the probability of failure
with a Bayesian approach. Ito et al. (2018) assumed that
each random variable follows a normal distribution with the
mean and the variance modeled as random variables, and
converted RBDOwith a confidence level to the conventional
form of RBDOwith a modified value of the target reliability
index. In this paper, we do not make any assumption on
the distribution type and the statistical parameters; we only
assume that the given data is a set of independent and
identically distributed samples drawn from an unknown
distribution.

An application of order statistics in structural design can be
found in determination of the so-called A-basis and B-basis
values of allowable stresses of materials for, particularly,
aircraft and aerospace vehicles; see, e.g., Bhachu et al.
(2016). Here, the B-basis value refers to the value below
which 10% of the observations fall with 95% confidence.
From a givenmaterial data set, a non-parametric method finds
(a conservative estimate of) the B-basis value according to
order statistics (Bhachu et al. 2016, section II). Thus, from
the view point of structural optimization, this method uses
order statistics to determine the parameters (more precisely,
the specified bounds of stresses) in constraints. In contrast,
the method presented in this paper uses order statics to
determine the magnitude (or the level) of uncertainty against
which the constraints should be satisfied.

As for approximate solutionmethods for chance-constrained
optimization, scenario-generation approaches have been
developed (Calafiore and Campi 2005, 2006; Luedtke and
Ahmed 2008; Campi and Garatti 2011). In these methods,
a chance constraint is replaced by a set of constraints
evaluated at generated samples, where the probability that
the obtained solution violates the original constraint has a
theoretical bound. Also, there exist integer programming
approaches to chance-constrained optimization in the case
that the random variables have finite supports (Luedtke et al.
2010; Luedtke 2014; Vielma et al. 2012).

The paper is organized as follows. In Section 2, we
define the RBDO problem that we handle in this paper, and
give an overview of the methodology that links the RBDO
problem to a robust design optimization problem. Following
Hong et al. (2017), Section 3 explains how to construct the
uncertainty set used in the robust design optimization. As
a concrete RBDO problem, Section 4 discusses a design
optimization problem of trusses under the stress constraints.
Section 5 reports the results of numerical experiments.
Some conclusions are drawn in Section 6.

In our notation, � denotes the transpose of a vector or a
matrix. The Euclidean norm of vector x ∈ R

n is denoted
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by ‖x‖ = √
x�x. We often write the (n + m)-dimensional

column vector (x�, y�)� consisting of x ∈ R
n and y ∈ R

m

as (x, y). We use Sn to denote the set of n×n real symmetric
matrices. We write X � 0 and X � 0, respectively, if
X ∈ Sn is positive semidefinite and negative semidefinite.
For a, b ∈ R with a < b, ]a, b[ designates the open
interval between a and b. We use N (μ, Σ) to denote the
multivariate normal distribution with mean vector μ and
variance-covariance matrix Σ .

2 Problem setting

Throughout the paper, we assume that the input distribution
in RBDO is known imprecisely. Some situations might
match this assumption. For instance, suppose that only a set
of some samples of random variables is given, and we try
to use the data set directly rather to construct its empirical
distribution model. Also, we may suppose that a distribution
of random variables is given, but its statistical information is
not reliable. Moreover, even if reliable statistic information
of random variables is available, epistemic uncertainty
stemming from, e.g., empirical modeling of a structural
system, is inevitable. In this paper, we attempt to find a
structural design which is robust against such uncertainty
in a probabilistic model. By using the order statistics of the
data set, we can give a structural design a confidence level
for the prescribed reliability.

Consider a finite-dimensional structure. Let d denote the
number of degrees of freedom of the nodal displacements.
We use x ∈ R

m to denote the vector of design variables,
where m is the number of independent design variables.

Let q ∈ R
d denote the external load vector. Throughout

the paper, we assume that q is a random vector and
that the other quantities are not uncertain. For notational
convenience, let F denote the joint distribution function1

of q.2 Suppose that the performance requirement for the
structure is expressed as

gl(x; q) ≤ 0, l = 1, . . . , r .

Assuming that F is known, the conventional RBDO solves
the following optimization problem:

Min. g0(x) (1a)

s. t. P{gl(x; q) ≤ 0} ≥ 1 − ε, l = 1, . . . , r, (1b)

x ∈ X. (1c)

1It should be clear that, throughout the paper, a distribution function
means a cumulative distribution function (also called a cumulative
density function).
2Throughout the paper, we assume that F is unknown. We make no
assumption on statistical properties of q, and do not attempt to estimate
them. We use the notation F to clarify the notion of the confidence
level defined below.

Here, g0 : R
m → R is the objective function, ε ∈

]0, 1[ is a constant, and X ⊆ R
m is a given set, where

constraint (1c) represents, e.g., the side constraints of the
design variables. It is worth noting that ε is the threshold (or
the upper bound) of the failure probability, and −Φ−1(ε)

is the target reliability index, where Φ is the distribution
function of the standard normal distribution. For simplicity,
in the following we often call 1 − ε the target reliability.

We now proceed to the situation that F is unknown,
or known imprecisely. Instead, we are given a data set
D = {q̂1, . . . , q̂n}, where q̂1, . . . , q̂n are independent and
identically distributed samples drawn from F . It should be
clear that we do not attempt to estimate F from D. Rather,
we assume only that D forms a random sample from F .
Then the reliability of the structure, P{gl(x; q) ≤ 0}, is
considered a random variable with respect to F . In this
regard, we use

PF

{
P{gl(x; q) ≤ 0} ≥ 1 − ε

}

to denote the probability that the structure has the reliability
no smaller than 1 − ε. With this notation, the design
optimization problem that we attempt to solve is formulated
as follows:

Min. g0(x) (2a)

s. t. PF

{
P{gl(x; q) ≤ 0} ≥ 1 − ε

} ≥ 1 − δ,

l = 1, . . . , r, (2b)

x ∈ X. (2c)

Here, δ ∈]0, 1[ is a constant, and 1 − δ corresponds to the
target confidence level. Namely, any feasible solution of this
problem is guaranteed with probability at least 1− δ to have
the reliability no smaller than 1 − ε.

Hong et al. (2017) proposed a robust optimization
approach for approximately solving chance-constrained
optimization problems. The methodology, adjusted to our
context, can be summarized as follows. For α ≥ 0, define
Q(α) ⊂ R

d by

Q(α) = {q ∈ R
d | (q − q̄)�Ω(q − q̄) ≤ α}, (3)

where q̄ ∈ R
d is a constant vector and Ω ∈ Sd is a constant

positive definite real symmetric matrix. Suppose that Q(α)

satisfies

PF

{
P{q ∈ Q(α)} ≥ 1 − ε

} ≥ 1 − δ. (4)

Then we can easily see that, if x satisfies

gl(x; q) ≤ 0, ∀q ∈ Q(α),

then it satisfies

PF

{
P{gl(x; q) ≤ 0} ≥ 1 − ε

} ≥ 1 − δ.
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Therefore, problem (2a)–(2c) is approximated in a conser-
vative manner by the following robust optimization problem
with Q(α) satisfying (4):

Min. g0(x) (5a)

s. t. gl(x; q) ≤ 0 (∀q ∈ Q(α)), l = 1, . . . , r, (5b)

x ∈ X. (5c)

More precisely, any feasible solution of problem (5a)–(5c)
is feasible for problem (2a)–(2c).

What remain to be considered are how to construct
Q(α) satisfying (4) and how to solve problem (2a)–(2c).
Concerning the former, Section 3 briefly explains an idea
found in Hong et al. (2017). The latter is dealt with in
Section 4, for a concrete design optimization problem of
trusses.

3 Construction of uncertainty set

As explained in Section 2, the confidence level in RBDO
is guaranteed at a feasible solution of a robust optimization
problem with the uncertainty set, Q(α), satisfying (4). We
utilize the data set, D, to construct such a Q(α). In this
section, we summarize the idea presented in Hong et al.
(2017), with adjusting it to our purpose.

With referring to the definition in (3), we see that Q(α) is
determined by q̄,Ω , and α. Among them, we first determine
q̄ and Ω , and subsequently determine α. We choose some
data points randomly from D. Let μ̂ and Σ̂ denote the
mean and the variance-covariance matrix of the chosen data
points. Then we put q̄ = μ̂ and Ω = Σ̂−1.

In the following, we use the remaining data points in D

to determine α satisfying (4). For simple notation, we use
the same notation, D = {q̂1, . . . , q̂n}, to denote the set
of remaining data points. A small value of α is preferable
to avoid an overly conservative structural design. The key
observation in Hong et al. (2017, Lemma 3) is obtained from
fundamentals of the order statistics. For the convenience
of the reader, essentials of the proof, with modification to
adjust our context, are repeated here.

Proposition 1 Let FX be a continuous distribution func-
tion, andX1, . . . , Xn ∈ R be its independent and identically
distributed samples. We use X(1) < X(2) < · · · < X(n)

to denote the order statistics of X1, . . . , Xn. For a given
ε ∈]0, 1[, choose δ satisfying

(1 − ε)n ≤ δ < 1. (6)

Then, for any natural number p (1 ≤ p ≤ n) satisfying

n∑

k=p

(
n

k

)
(1 − ε)kεn−k ≤ δ, (7)

we have

PFX
{FX(X(p)) ≥ 1 − ε} ≥ 1 − δ. (8)

Proof Let s1−ε denote the (1 − ε)-quantile of FX, i.e.,

FX(s1−ε − 0) ≤ 1 − ε ≤ FX(s1−ε).

As a simple computation, we obtain

PFX
{FX(X(p)) > 1 − ε}

= PFX
{X(p) > s1−ε}

= 1 − PFX
{X(p) ≤ s1−ε}. (9)

As a fundamental of the order statistics (Arnold et al.
2008, section 2.2), we have3

PFX
{X(p) ≤ s1−ε}

=
n∑

k=p

(
n

k

)
FX(s1−ε)

k(1 − FX(s1−ε))
n−k

=
n∑

k=p

(
n

k

)
(1 − ε)kεn−k . (10)

It follows from (9) and (10) that (7) implies (8).

Remark 1 The assumption in (6) of Proposition 1 ensures
the existence of p satisfying (7); we can easily see that
p = n satisfies (7).

Define a : Rd → R by

a(q) = (q − q̄)�Ω(q − q̄).

Renumber the data points q̂1, . . . , q̂n ∈ D so that

a(q̂(1)) < a(q̂(2)) < · · · < a(q̂(n))

holds. Then, a(q̂(1)), . . . , a(q̂(n)) correspond to the order
statistics of samples a(q̂1), . . . , a(q̂n). Let p̃ be the

3 To see (10), we begin with the simplest case, p = n. We then obtain

PFX
{X(n) ≤ s1−ε}

= PFX
{Xj ≤ s1−ε (j = 1, . . . , n)}

= PFX
{X1 ≤ s1−ε} × · · · × PFX

{Xn ≤ s1−ε}
= FX(s1−ε)

n,

where the last equality follows the assumption that X1, . . . , Xn form a
random sample from FX . Next, for p = n − 1 we can derive

PFX
{X(n−1) ≤ s1−ε}

= PFX
{Xj ≤ s1−ε (j = 1, . . . , n)}

+
n∑

i=1

PFX
{Xj ≤ s1−ε (j �= i), Xi > s1−ε}

= FX(s1−ε)
n +

(
n

1

)
FX(s1−ε)

n−1(1 − FX(s1−ε))

=
(

n

n

)
FX(s1−ε)

n +
(

n

n − 1

)
FX(s1−ε)

n−1(1 − FX(s1−ε)).

Similarly, we can obtain the first equality of (10) for general p.
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minimum natural number satisfying (7). It is worth noting
that p̃ depends only on n, ε, and δ, i.e., the number of data
points in D, the target reliability, and the target confidence
level. From Proposition 1, we obtain

PFA
{FA(a(q(p̃))) ≥ 1 − ε} ≥ 1 − δ, (11)

where FA is the distribution function of a(q). On the other
hand, the definition of the distribution function yields

FA(α) = P{a(q) ≤ α} = P{q ∈ Q(α)}. (12)

It follows from (11) and (12) that we obtain

PF

{
P{q ∈ Q(α̃)} ≥ 1 − ε

} ≥ 1 − δ

with α̃ = a(q(p̃)).
The upshot is that any feasible solution of problem (5a)–

(5c) with the uncertainty set Q(α̃) is guaranteed to have the
reliability 1 − ε with the confidence level no smaller than
1 − δ.

Remark 2 Although in this paper we restrict ourselves
to single load cases for simplicity, the presented method
can deal with multiple load cases. For a problem with
s load cases, we suppose that corresponding data sets,
D1, . . . , Ds ⊆ R

d , of external loads are given, where Dj

forms a random sample from Fj (j = 1, . . . , s). It is worth
noting that Dj and Dj ′ (j ′ �= j) may consist of different
numbers of data points. For each j = 1, . . . , s, we compute
q̄j and Ωj by using some data points randomly chosen from
Dj . Apply the procedure described above to determine α̃j ,
so that we have

PFj

{
P{q ∈ Qj(α̃j )} ≥ 1 − ε

} ≥ 1 − δ.

Thus, for a problem with multiple loads, we replace (5b)
with

gl(x; q) ≤ 0 (∀q ∈ Qj(αj )), l = 1, . . . , r; j = 1, . . . , s

and solve problem (5a)–(5c).

4 Application to truss design under stress
constraints

In this section, we demonstrate how the methodology
introduced in Section 2 can be applied to a concrete problem
in RBDO. Specifically, we consider design optimization
of trusses under uncertainty in the external load. As for
the reliability, we consider the probability that the member
stresses do not exceed the specified bound.

Consider a truss structure. We use xi (i = 1, . . . , m)

to denote the member cross-sectional area, which is
considered a design variable, where m is the number of
members. We set the lower bound, denoted x > 0, for
xi , and do not consider change in truss topology in the

course of optimization. In the following, we assume small
deformation and linear elasticity.

Let K(x) ∈ Sd denote the stiffness matrix, which has the
form

K(x) =
m∑

i=1

xiKi =
m∑

i=1

E

li
xibib

�
i .

Here, li is the undeformed length of member i, E is the
Young modulus, bi ∈ R

d is a constant vector, and Ki =
E

li
bib

�
i is a constant matrix. The equilibrium equation is

written as

K(x)u = q.

Since we give positive lower bounds for all the member
cross-sectional areas, it is natural to assume rankK(x) = d.
Therefore, the equilibrium equation has a unique solution
for any q ∈ R

d . We use u(x; q) to denote this solution.
For member i, let σi(u) denote the stress corresponding

to displacement u. Since we do not allow change in the truss
topology in the course of optimization, the stress constraint
can be written simply as

σ i ≤ σi(u(x; q)) ≤ σ i,

where σ i and σ i are specified lower and upper bounds,
respectively. This constraint can be rewritten as

|σi(u(x; q)) − ri | ≤ σci (13)

with σci = (σ i − σ i)/2 and ri = (σ i + σ i)/2. Since
q is considered a random vector, σi(u(x; q)) is a random
variable. Therefore, we handle constraint (13) within the
framework of the reliability constraint with the specified
confidence level, as explained in Section 2. Accordingly,
the design optimization problem that we attempt to solve is
formulated as follows:

Min. l�x (14a)

s. t. PF
{
P{|σi(u(x; q))| ≤ σc} ≥ 1 − ε

} ≥ 1 − δ,

i = 1, . . . , m, (14b)

xi ≥ x, i = 1, . . . , m. (14c)

Here, the objective function is the structural volume. As
a conservative approximation of problem (14a)–(14c), we
consider the following robust optimization problem:

Min. l�x (15a)

s. t. |σi(u(x; q))| ≤ σc (∀q ∈ Q(α̃)),

i = 1, . . . , m, (15b)

xi ≥ x, i = 1, . . . , m. (15c)

The attention of the remainder of this section is focused
on how to solve this robust optimization problem.
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Define Gi ∈ Sd+1 by

Gi =
[

Ebi/ li
−ri

] [
Ebi/ li
−ri

]�
−

[
O O

O σ 2
ci

]
(16)

so that

|σi(u) − ri | ≤ σci ⇔
[

u

1

]�
Gi

[
u

1

]
≤ 0

holds. For x ∈ R
m satisfying (15c), define Ψ (x) ∈ Sd+1 by

Ψ (x) =
[

K(x)

−q̄�
]

Ω

[
K(x)

−q̄�
]�

−
[

O O

O α̃

]

so that

∃q ∈ Q(α̃) : K(x)u = q ⇔
[

u

1

]�
Ψ (x)

[
u

1

]
≤ 0

holds. The following proposition can be obtained in a man-
ner similar to (Kanno and Takewaki 2006a, Proposition 3.1).

Proposition 2 Suppose rankK(x) = d. Then x satisfies

|σi(u(x; q)) − ri | ≤ σci , ∀q ∈ Q(α̃) (17)

if and only if there exists νi ≥ 0 satisfying

Ψ (x) − νiGi � 0.

A proof appears in Appendix.
It follows from Proposition 2 that problem (15a)–(15c) is

equivalent to the following optimization problem:

Min. l�x (18a)

s. t. Ψ (x) − νiGi � 0, i = 1, . . . , m, (18b)

νi ≥ 0, i = 1, . . . , m, (18c)

xi ≥ x, i = 1, . . . , m. (18d)

Here, x ∈ R
m and ν ∈ R

m are variables to be optimized.
We next present an algorithm for finding a local optimal

solution of problem (18a)–(18d). The algorithm is essentially
based on the same idea as the sequential semidefinite
programming (sequential SDP) proposed in Kanno and
Takewaki (2006a); see also Kanno et al. (2001) and Kanzow
et al. (2005). It is worth noting that a maximization problem
of the robustness of a truss is considered in Kanno and
Takewaki (2006a). In contrast, in problem (18a)–(18d), we
fix the target robustness, α̃. Hence, the sequential SDP for
problem (18a)–(18d), presented in Algorithm 1, is simpler
than the one used in Kanno and Takewaki (2006a).

In the sequential SDP, the nonlinear matrix-valued
function Ψ in (18b) is linearized at the incumbent solution,
denoted x(k). Also, to prevent too large step length, the
quadratic penalty on variations of variables, i.e., ρ‖x −
x(k)‖2 and ρ‖v−v(k)‖2, are added to the objective function,
where ρ > 0 is a penalty parameter. Accordingly, at the kth

iteration we solve the following problem in variables x and
ν:

Min. l�x + ρ(‖x − x(k)‖2 + ‖ν − ν(k)‖2) (19a)

s. t. DΨ (x(k)) (x − x(k)) + Ψ (x(k)) − νiGi � 0,

i = 1, . . . , m, (19b)

νi ≥ 0, i = 1, . . . , m, (19c)

xi ≥ x, i = 1, . . . , m. (19d)

Here, DΨ (x(k)) is the derivative of mapping Ψ : R
m →

Sd+1 at x(k) defined such that DΨ (x(k)) z is a linear
function of z = (z1, . . . , zm)� ∈ R

m given by

DΨ (x(k)) z =
m∑

i=1

zi

∂Ψ

∂xi

(x(k)).

Problem (19a)–(19d) is an SDP problem, which can be
solved efficiently with a primal-dual interior-point method
(Anjos and Lasserre 2012).

Algorithm 1 Sequential SDP for problem (18a)–(18d).

Require: 0, 0 0.
1: 0.
2: repeat
3: Solve (19a)–(19d) to find optimal solution
4:

5:

6: until 0

5 Numerical experiments

This section presents two numerical examples. Algorithm 1
was implemented in MATLAB ver. 9.0.0. We solved the
SDP problem in (19a)–(19d) by using CVX ver. 2.1 (Grant
and Boyd 2008, 2018) with SDPT3 ver. 4.0 (Tütüncü et al.
2003). The cvx precision parameter of CVX is set to
best, which means that the solver continues as far as it can
make progress (Grant and Boyd 2018). Computation was
carried out on a 2.2GHz Intel Core i5 processor with 8GB
RAM.

In the following examples, the lower bound for the
member cross-sectional areas is set to x = 100mm2. Note
that the lower bound constraints on the member cross-
sectional areas are inactive for all the solutions obtained in
this section. The parameters of Algorithm 1 are ρ = 10−3

and ε0 = 10−4 mm2. The initial point is given as x
(0)
i =

2000mm2 (i = 1, . . . , m).

5.1 Example (I): 2-bar truss

Consider the planar truss shown in Fig. 1. The truss has
m = 2 members and d = 2 degrees of freedom of the
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Fig. 1 Example (I). A 2-bar truss

nodal displacements. The Young modulus of the members is
E = 20GPa. The lower and upper bounds for the member
stresses are σ i = −100MPa and σ i = 100MPa (i = 1, 2),
respectively.

The data set D ⊂ R
2 of the external load vector consists

of 250 data points drawn from the normal distribution with
mean μ and variance-covariance matrix Σ given as

μ =
[

0
−100

]
kN, Σ =

[
100 50
50 150

]
kN2. (20)

This does not mean that the external load is assumed to
follow the normal distribution. It should be emphasized that
no assumption is made on the distribution that uncertain
parameters follow.

Figure 2 shows the data points, as well as the uncertainty
set obtained from the data set. We used 50 data points,
indicated by “◦” in Fig. 2, to determine q̄ and Ω of

Fig. 2 The data set for example (I). “◦” The data points used for
learning the shape, i.e., q̄ and Ω , of the uncertainty set; and “×” for
determining the size, α̃

the uncertainty set. The mean and the variance-covariance
matrix of these data points are

μ̂ =
[ −1.319

−97.865

]
kN, Σ̂ =

[
115.40 49.53
49.53 138.46

]
kN2,

from which we put

q̄ =
[ −1.319

−97.865

]
kN, Ω =

[
0.010237 −0.003662

−0.003662 0.008532

]
kN−2.

The remaining 200 points, indicated by “×” in Fig. 2, were
used to determine α̃. For instance, if we set ε = 0.1 and
δ = 0.08 (i.e., if we require that the failure probability
should not be greater than 10%, with 8% confidence level),
then we obtain

p̃ = 187, α̃ = 48.947.

The boundary of Q(α̃) is shown in Fig. 2 by a solid curve.
The solution obtained by Algorithm 1 is

x∗ = (1240.7, 1752.2)mm2. (21)

Figure 3a shows this solution, where the width of each
member in the figure is proportional to its cross-sectional
area. The algorithm terminated after 11 iterations. The
computational time was 3.1 s. To confirm the feasibility and
quality of the obtained solution, we computed the extreme
values of the member stresses, when the external load
satisfies q ∈ Q(α̃). Figure 3b reports the results, where
the member indices are shown in Fig. 1 and σc := σ i =
−σ i (i = 1, 2). We can confirm that, for each member,
there exists an external load with which the stress constraint
becomes active.

The optimal value increases as the required confidence
level increases. Figure 4 shows this trade-off relationship.
As for the threshold of the failure probability, we here
consider three cases: ε = 0.1, 0.08, and 0.05. It is worth
noting that, for ε = 0.05, the assumption in (6) of
Proposition 1 reads δ ≥ (1 − ε)n = (1 − 0.05)200 �
3.5053 × 10−5. This means that, to obtain a solution with
a confidence level larger than 1 − (3.5053 × 10−5) for
ε = 0.05, the proposed method requires a larger number of
data points than the present data set.

Figure 5 reports the results of Monte Carlo simulation
for the solution obtained with ε = 0.1 and δ = 0.08.
We generated 50000 data sets, each of which consists of
50000 samples drawn as q ∼ N (μ, Σ). For each data set,
we checked the population of data points with which the
stress constraint is violated. Figure 5 shows the ratio of
the population divided by the total number of data points.
We can see that the ratio of failure is much less than the
specified threshold, ε = 0.1. However, this does not imply
that the obtained solution is overly conservative. Namely,
although in our problem setting we consider any distribution
that can explain the given data in Fig. 2, the Monte Carlo
simulation was performed for only one distribution.
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Fig. 3 The obtained solution of
example (I) with ε = 0.1 and
δ = 0.08. a The obtained truss
design; and b its maximum and
minimum member stresses

a b

ba

c

Fig. 4 The trade-off between the confidence level and the objective value of the solution obtained by the proposed method. Example (I) with
a ε = 0.1; b ε = 0.08; and c ε = 0.05
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Fig. 5 The results of Monte Carlo simulation for a specified normal distribution. Example (I). a The failure probability of the constraint on
member 1; and b the one on member 2

We next investigate the gap between the proposed
method and methods using an estimated distribution.
Namely, we assume the normal distribution, and use all
the data points in Fig. 2 to estimate the mean and the
variance-covariance matrix. This estimation yields

μ̌ =
[ −0.861

−99.130

]
kN, Σ̌ =

[
104.78 47.87
47.87 133.48

]
kN2.

Then, we generate 5×106 samples drawn as q ∼ N (μ̌, Σ̌),
and compute the structural response of the solution in
(21). Figure 6 reports the values of |σi(x

∗; q)|/σc for these
samples, where |σi(x

∗; q)|/σc > 1 means that the stress
constraint is violated. The obtained failure probabilities for
member 1 and member 2, respectively, are 0.01442 and
0.00956. These values are less than the specified lower

bound for failure probability, ε = 0.1, because in the
proposed method the distribution type is not identified.

A solution obtained by the proposed method generally
depends on choice of data points used for learning the shape
and for calibrating the size of the uncertainty set. In Fig. 7,
we investigate robustness of the proposed method against
this choice. Here, we used a single data set, consisting of
250 data points. Also, we fixed the number of data points
used for shape determination as 50; the remaining 200 data
points were used for size calibration. Partition of the data
set into these two sets was determined randomly. Figure 7
reports the objective values obtained for 10000 randomly
generated partitions. The mean of these objective values is
3.7966 × 106 mm2, and the standard deviation is 0.0677 ×
106 mm2. Thus, variation of the objective value is quite
small. It is worth noting that, since all the solutions in Fig. 7

Fig. 6 The results of Monte Carlo simulation for a normal distribution estimated from the data in Fig. 2. Example (I). aMember 1; and bmember
2
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Fig. 7 The objective values obtained for example (I) with (ε, δ) =
(0.1, 0.08), when the given data set is partitioned randomly into a set
for shape determination and a set for size calibration of the uncertainty
set

satisfy the reliability constraint with at least the specified
confidence level, we can adopt the best one (i.e., the solution
having the minimal objective value) among them as the final
solution.

We next examine robustness of the proposed method
against choice of the number data points for shape
determination; the other data points are used for size
calibration. Figure 8 shows variation of the obtained
solutions, where the the data set, consisting of 250 data
points, is fixed. Figure 8a shows the variation of the
minimal p satisfying (7) in Proposition 1. This value is
used in the size calibration phase. It should be clear that
the relation in Fig. 8a is not affine, although it looks almost
affine. Figure 8b reports the objective values obtained by
the proposed method. We can observe that variation of
the objective values is only about 5%. Also, reducing
the number of data points for size calibration does not
necessarily imply increase in the objective value. Figure 8c
and d show the constructed uncertainty set, as well as

a b

dc

Fig. 8 Variation of the solution for example (I) with (ε, δ) =
(0.1, 0.08) with respect to the number of data points for shape deter-
mination of the uncertainty set. a The minimum p satisfying (7) (i.e.,
p̃ in Section 3); b the objective value; c the uncertainty set when 30

data points are used for shape determination; and d the uncertainty set
when 227 data points are used for shape determination. “◦” The data
points for shape determination; and “×” for size calibration
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Fig. 9 The objective values obtained for example (I) with (ε, δ) = (0.1, 0.08), when data sets are randomly generated. a 80 data points; b 150 data
points; c 250 data points; and d 450 data points. In every case, randomly chosen 50 data points are used for shape determination of the uncertainty
set

separation of the data set, when 30 data points and 227
data points are used for shape determination, respectively.
In Fig. 8d, all of the remaining 23 data points are used
for size calibration. Compared with Fig. 8c, some data
points far from the center of the ellipsoid are not selected
(accidentally) as the ones for size calibration, the objective
value in Fig. 8d is not too overly conservative.

Finally, we vary the data set size and observe change
in the obtained solutions. As for the data set size, we
consider four cases, where data sets consist of 80, 150, 250,

Table 1 The statistics of the results shown in Fig. 9

#data points Mean (×106 mm3) Std. dev. (×106 mm3)

80 (Fig. 9a) 4.067154 0.188729

150 (Fig. 9b) 3.911177 0.097406

250 (Fig. 9c) 3.880620 0.082373

450 (Fig. 9d) 3.854804 0.074021

and 450 data points drawn from the normal distribution
with mean μ and variance-covariance matrix Σ in (20).
In each case, we prepared 10000 randomly generated data
sets with randomly changing a seed of the random number

Fig. 10 Example (II). A 29-bar truss
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Fig. 11 The data set for example (II). “◦” The data points used for
learning the shape, i.e., q̄ and Ω , of the uncertainty set; and “×” for
determining the size, α̃

generator of MATLAB. For every data set, we used 50
randomly chosen data points for shape determination of the
uncertainty set; the remaining data points were used for
size calibration. Figure 9 and Table 1 report the obtained
results. It is natural that the mean and the standard deviation
of the obtained objective value decrease as the number
of data points increases, because a larger number of data
points provide us with more information on the underlying
distribution. In other words, the results shown in Fig. 9 and
Table 1 do not necessarily mean that a solution obtained
with a small number of data points is overly conservative,
because, to ensure robustness against uncertainty in a

distribution with a smaller number of data points, we need
to consider an uncertainty set with a larger size.

5.2 Example (II): 29-bar truss

Consider the planar truss shown in Fig. 10. The truss
consists of m = 29 members, and has d = 20 degrees
of freedom of the nodal displacements. The undeformed
lengths of horizontal members and vertical members are
1m. The Young modulus of the members is E = 20GPa.
The lower and upper bounds for the member stresses are
σ i = −100MPa and σ i = 100MPa (i = 1, . . . , m),
respectively.

Figure 11 shows the data set D ⊂ R
d of the external

load vector constituting of 300 samples drawn from a
normal distribution. Thus, the number of random variables
is d = 20. The mean of the external load, denoted
μ, is as illustrated in Fig. 10, where the magnitudes of
the two nonzero nodal forces are 100 kN. The variance-
covariance matrix is Σ = 250I in kN2. Again, it should
be clear that in our framework no assumption is made on
the distribution that the external load follows. Namely, the
normal distribution mentioned above was used only for
generating the data set.

Among 300 data points, we used 100 data points to learn
q̄ and Ω , and the remaining 200 points to determine α̃. We
set ε = 0.1 and δ = 0.08. Figure 12a shows the solution
obtained by Algorithm 1. The algorithm terminated after
120 iterations. The total computational time was 799.2 s.
Concerning the truss design in Fig. 12a, Fig. 12b collects
the extreme values of the member stresses corresponding
to q ∈ Q(α̃), where the member indices are shown in

b

a

Fig. 12 The obtained solution of example (II) with ε = 0.1 and δ = 0.08. a The obtained truss design; and b its maximum and minimum member
stresses
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Fig. 13 The trade-off between the confidence level and the objective
value of the solution obtained with the proposed method. Example (II)
with ε = 0.1

Fig. 12a and σc := σ i = −σ i (i = 1, . . . , m). We can
observe that, for each member, there exists a load case with
which the stress constraint becomes active. For the target
reliability 1 − ε = 0.9, Fig. 13 shows the trade-off between
the confidence level, 1− δ, and the structural volume of the
solution obtained by the proposed method.

6 Conclusions

This paper has presented a data-driven approach to
reliability-based design optimization (RBDO) of structures
subjected to the uncertain external load. In this approach,
a robust design optimization problem is solved to find
a structural design that has the target reliability with
the prescribed confidence level. The probability that the
reliability of the obtained solution is no smaller than the
target reliability is guaranteed to be no smaller than the
prescribed confidence level, irrespective of the distribution
of the external load. The uncertainty set, used in the robust
design optimization problem, is determined from the given
data (i.e., the set of given samples of the external load), by
using the order statistics. This construction procedure of the
uncertainty set basically follows the idea presented in Hong
et al. (2017).

The methodology presented in this paper is quite
versatile, in the sense that many of existing techniques
for robust design optimization can be incorporated into
the framework. This suggests possibilities of extensions
of the presented method to RBDO problems in diverse
problem settings. For instance, uncertainty in stiffnesses of
structural elements (Guo et al. 2009, 2011, 2015; Kanno and

Takewaki 2006b, 2008) could be explored. Also, for topology
optimization, a topology-dependent uncertainty set of the
external load, considered in Yonekura and Kanno (2010),
Kanno and Guo (2010), and Kanno (2018) for robust design
optimization, could be extended for RBDO. A key is that,
roughly speaking, robust design optimization can consider
a bit more complicated constraints, as well as larger-
size problems, than RBDO, although the computational
efficiency should be evaluated directly.

The presented method provides a feasible solution of the
RBDO problem with a confidence level. The gap between
the objective value obtained by the presented method and
the optimal value of the original problem remains to be
studied. When only very limited number of data points
are available, the proposed method cannot provide with
us sufficiently high confidence for high reliability. As a
remedy, possibility of use of a non-parametric bootstrap
method (Hanson and Koopmans 1964), which is often used
for assessing allowable stresses of materials in structural
design (Bhachu et al. 2016; Edwards et al. 2011), could be
explored.
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Appendix : Proof of Proposition 2

This section presents a proof of Proposition 2. The following
well-known fact, called the S-lemma, plays a pivotal role.

Proposition 3 Let f , g : Rn → R be quadratic functions.
Suppose that there exists an x̂ ∈ R

n satisfying f (x̂) < 0.
The following two statements are equivalent:

(a) f (x) ≤ 0 ⇒ g(x) ≥ 0,
(b) ∃τ ≥ 0: g(x) + τf (x) ≥ 0 (∀x ∈ R

n).

A proof can be found in a survey paper (Pólik and Terlaky
2007). A slight variance is made in the following.

Proposition 4 Let f , g : Rn → R be quadratic functions.
Suppose that there exist an x̂ ∈ R

n satisfying f (x̂) < 0
and an x̃ ∈ R

n satisfying g(x̃) > 0. The following two
statements are equivalent:

(a) f (x) ≤ 0 ⇒ g(x) ≤ 0,
(b) ∃ν ≥ 0: f (x) − νg(x) ≥ 0 (∀x ∈ R

n).

Proof It follows from Proposition 2 that (a) holds if and
only if there exists τ ≥ 0 satisfying τf (x) − g(x) ≥ 0
(∀x ∈ R

n). The latter condition is not satisfied with τ = 0,
because there exists x̃ such that g(x̃) > 0. By putting
ν = 1/τ , we obtain (b).
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The following fact can be found in, e.g., Calafiore and El
Ghaoui (2004).

Proposition 5 Let Q ∈ Sn, p ∈ R
n, and r ∈ R. The

following two statements are equivalent:

(a)

[
x

1

]� [
Q p

p� r

] [
x

1

]
≥ 0 (∀x ∈ R

n),

(b)

[
Q p

p� r

]
� 0.

Proof It is trivial that (ii) implies (i). We show that (i)
implies (ii) by the contradiction. Suppose that (ii) does not
holds, i.e., there exist x′ ∈ R

n and ξ ∈ R satisfying
[

x′
ξ

]� [
Q p

p� γ

] [
x′
ξ

]
< 0. (22)

If ξ �= 0, then (22) is reduced to
[

x′/ξ
1

]� [
Q p

p� γ

] [
x′/ξ
1

]
< 0,

which contradicts (i). Alternatively, if ξ = 0, then (22) is
reduced to

x′�Qx′ < 0. (23)

Put x = ηx ′ to see that the left-hand side of (i) is reduced to

(x�Qx′)η2 + 2(p�x′)η + γ, (24)

which can be viewed as a quadratic function of η, when we
fix x′. It follows from (23) that (24) is not bounded below.
Therefore, there exists an η such that (24) becomes negative,
which contradicts (i).

As an immediate corollary of Proposition 4 and
Proposition 5, we can obtain the following fact.

Proposition 6 Suppose that A, B ∈ Sn+1 satisfies A �� 0
and B �� 0. The following two statements are equivalent:

(a)

[
x

1

]�
A

[
x

1

]
≤ 0 ⇒

[
x

1

]�
B

[
x

1

]
≤ 0,

(b) ∃ν ≥ 0: A − νB � 0.

Proof of Proposition 2 Observe that (17) can be rewritten
equivalently as

∃q ∈ Q(α̃) : K(x)u = q ⇒ |σi(u)| ≤ σc,

which is further rewritten as
[

u

1

]�
Ψ (x)

[
u

1

]
≤ 0 ⇒

[
u

1

]�
Gi

[
u

1

]
≤ 0. (25)

Since we assume rankK(x) = d, we have

{u ∈ R
d | ∃q ∈ Q(α̃) : K(x)u = q} �= ∅.

Therefore, Ψ (x) �� 0. Also, from the definition of Gi

in (16), we see that Gi �� 0. Therefore, we can apply
Proposition 6 to (25), which completes the proof.
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Valdebenito MA, Schuëller GI (2010) A survey on approaches for
reliability-based optimization. Struct Multidiscip Optim 42:645–
663

Vielma JP, Ahmed S, Nemhauser GL (2012) Mixed integer linear
programming formulations for probabilistic constraints. Oper Res
Lett 40:153–158

Yao W, Chen X, Luo W, van Tooren M, Guo J (2011) Review of
uncertainty-based multidisciplinary design optimization methods
for aerospace vehicles. Progress Aerosp Sci 47:450–479

Yonekura K, Kanno Y (2010) Global optimization of robust truss
topology via mixed integer semidefinite programming. Optim Eng
11:355–379

Youn BD, Wang P (2008) Bayesian reliability-based design optimiza-
tion using eigenvector dimension reduction (EDR) method. Struct
Multidiscip Optim 36:107–123

Zaman K, Mahadevan S (2017) Reliability-based design optimiza-
tion of multidisciplinary system under aleatory and epistemic
uncertainty. Struct Multidiscip Optim 55:681–699

http://arXiv.org/abs/1704.04342
http://arXiv.org/abs/1407.1097

	A data-driven approach to non-parametric reliability-based design optimization of structures with uncertain load 
	Abstract
	Introduction
	Problem setting
	Construction of uncertainty set
	Application to truss design under stress constraints
	Numerical experiments
	Example (I): 2-bar truss
	Example (II): 29-bar truss

	Conclusions
	Acknowledgments
	Appendix 1 : Proof of Proposition 2
	Publisher's note
	References


