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Abstract
The reliability analysis of structural systems is generally difficult when limit state function (LSF) is implicitly defined especially
by black-box models in engineering. To balance analysis efficiency and accuracy, an improved approach named BIS-FC is
proposed in this paper based on the Beta-spherical importance sampling (BIS) framework with the innovative concept of critical
region defined by combination with First Order Reliability Method (FORM). The critical region is defined by the hyper-tangent
plane of LSF at the Most Probable Point (MPP) and its parallel hyperplanes according to the convex or concave features of LSF,
wherein the samples are of both high occurrence probability and high misjudgment risk due to the linearization assumption of
FORM. BIS-FC only conducts LSF analysis for the BIS samples located in the critical region, and the other samples are directly
identified as safe or failure according to the linearized hyperplanes. Thus large computational cost can be saved compared to the
original BIS, andmeanwhile, the analysis accuracy can be greatly enhanced compared to FORM.An iterative process is proposed
to properly define the critical region, based on which reliability is analyzed sequentially until the stopping criteria for desired
estimation error level and stable convergence are satisfied. The algorithms of BIS-FC for both single and multipleMPP situations
are developed and testified with six numerical examples and one satellite structural engineering problem. The results demonstrate
the effectiveness of BIS-FC regarding good balance between efficiency and accuracy.
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1 Introduction

To analyze the reliability of a structural system under various
random uncertainties, the typical probabilistic model is de-
fined as follows (Yao et al. 2011):

R ¼ 1−P f

P f ¼ Pr g xð Þ < 0f g ¼ ∫g xð Þ<0 f x xð Þd xð Þ ð1Þ

where R is the reliability, Pf is the probability of failure,
x = (x1, … , xn) is an n-dimensional vector of uncertain vari-
ables with joint probability density function (PDF) fx(x), and

g(x) is the limit state function (LSF) of the system. The limit
state boundary is defined as g(x) = 0 and the failure domain is
defined as g(x) < 0. As the non-Gaussian random variable
vector x in the original X space can be transformed into inde-
pendent standard normal variable vector u in standard
Gaussian U-space (Du and Hu 2012; Rosenblatt 1952), it is
reasonable to focus attention in the U-space in the following
discussion, and (1) can be transformed as

P f ¼ Pr G uð Þ < 0f g ¼ ∫G uð Þ<0φn uð Þd uð Þ ð2Þ

where φn(u) is the n-variate joint standard normal PDF, and
G(u) is the transformation of g(x) in the U-space. It is gener-
ally difficult to calculate (2) analytically as G(u) is seldom
defined explicitly in engineering and usually involves black-
box simulation, e.g., structural finite element analysis (FEA).
Thus various approximation approaches have been developed
to solve (2), e.g., Laplace multidimensional integral methods
based asymptotic approximation (Breitung 1984; Evans and
Swartz 1995), dimension-reduction (DR) methodology (Noh
et al. 2008; Song 1990), First Order Reliability Method
(FORM) (Hasofer and Lind 1974; Hohenbichler and
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Rackwitz 1982; Du and Hu 2012) and Second Order
Reliability Method (SORM) (Breitung 1984), Simulation-
based methods (Helton et al. 2006; Kahn and Marshall
1953), etc.

In engineering, FORM is very prevailing for its sim-
plicity (Chen et al. 2016; Jiang et al. 2017; Keshtegar and
Hao 2018; Yao et al. 2013a, b). It only requires a signif-
icantly small number of LSF analysis to search the Most
Probable Point (MPP) and calculate the reliability index
β, based on which the reliability can be directly calculated
by the linearization assumption. However, this simplicity
brings accuracy loss, especially for highly nonlinear prob-
lems. For better accuracy, simulation-based method, e.g.,
Monte Carlo Simulation (MCS), is widely used (Yao et al.
2011). However, the implementation of crude MCS re-
quires a great quantity of samples to achieve acceptable
estimation accuracy, which becomes intractable for real-
world engineering problems. To alleviate the computa-
tional complexity, one popular way is to develop “cheap”
surrogate model instead of the expensive LSF model for
reliability analysis, e.g., the response surfaces method
(RSM) (Gayton et al. 2003; Guan and Melchers 2001),
polynomial chaos expansions (PCE) (Crestaux et al.
2009; Hu and Youn 2011), support vector machine
(SVM) (Bourinet et al. 2011), Kriging (Cai et al. 2017;
Cressie 1990; Wang and Wang 2016) and its variants with
active learning (Echard et al. 2011; Hu and Mahadevan
2015; Lv et al. 2015; Sun et al. 2017), etc. Since only a
small number of samples are needed for surrogate model-
ing, the computational burden can be greatly reduced.
However, for highly nonlinear problems, especially in
the high-dimensional situation, it is still a common diffi-
culty to overcome over-fitting or under-fitting. The surro-
gate model validation and error estimation also remain
open questions, which greatly affect the analysis accuracy.
Besides, as Ref. (Yun et al. 2018) pointed out, a post-
processing computational cost to evaluate the reliability
(e.g., sampling with the surrogate) is needed after the

surrogate modeling, which may be expensive and de-
serves attention for further efficiency enhancement espe-
cially for the implicit surrogate models such as Kriging
(Lee et al. 2013). Therefore, in addition to the continuous
research on the surrogate based method, many research
efforts are also devoted to enhance the sampling efficien-
cy, among which importance sampling (IS) (Au and Beck
1999; Melchers 1990; Papaioannou et al. 2016) is a pop-
ular direction for its efficiency and simplicity.

The key step of importance sampling is the proper selection
of importance sampling density function (Ang et al. 2015;
Hinrichs 2010). One intuitively understandable technique
with the advantage of easy implementation is the β-spherical
IS method (BIS), which is also called Truncated IS (TIS) or
radial-based IS (RBIS) (Harbitz 1986; Engelund and
Rackwitz 1993; Grooteman 2008). It defines the “β-sphere”
by the reliability index β of MPP, the inner part of which is
regarded as safe region. Thus the samples within the β-sphere
need not be analyzed with the expensive LSF and can be
excluded from sampling to enhance efficiency, as shown in
Fig. 1(a). To further reduce the computational burden, a mod-
ified IS method (M-ISM) is proposed (Yun et al. 2018). It first
shifts the importance sampling center to the MPP, and the IS
samples are shown as the black points in Fig. 1(b). Then
following the BIS method, the samples inside the β-sphere
are excluded. The samples outside the β-sphere are left and
divided into two groups according to the contribution of the
samples to the failure probability. Only those samples with
large contribution specified by the threshold need LSF analy-
sis, which are labeled as blue points in Fig. 1(b). This can save
computational cost compared to the original BIS within con-
trolled relative error.

In the aforementioned modified method M-ISM, the
sample contribution to the failure probability estimation
is only measured according to the original and IS sam-
pling PDF of the samples, which represents the sample
occurrence probability. Actually, the contribution of a
sample to the estimation accuracy of a reliability analysis

Fig. 1 The illustrative comparison between (a) BIS, (b) M-ISM, and (c) the proposed BIS-FC
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method is not only affected by its PDF weight (probabil-
ity of sample occurrence), but also the sample location
where the safe or failure state has great possibility to be
misjudged in the analysis method (risk of sample
misjudgment). Thus inspired by this idea, an improved
BIS method is proposed in this paper by identifying the
critical region which contains samples with both high oc-
currence probability and high misjudgment risk due to the
linearization assumption of FORM. The critical region is
defined by the hyper-tangent plane of LSF at the MPP and
its parallel hyperplanes in the specified direction accord-
ing to the concave or convex features of the nonlinear
LSF. This definition can effectively cover samples near
MPP which have high risk of misjudgment due to the
LSF nonlinearity as the hyperplanes move along the
LSF gradient direction (i.e., the hyperplanes are perpen-
dicular to the LSF gradient). Besides, this definition has
the advantage of easy implementation as it is very conve-
nient to generate hyperplanes, based on which the critical
region can be easily constructed. The parameters of the
hyperplanes are defined according to the gradient of LSF
at MPP, which is the byproduct of FORM and needs no
extra computation. As illustrated in Fig. 1(c), only the
samples in the critical region need LSF analysis, which
can save great computational cost compared to the
existing BIS methods. The concept of critical region can
be easily applied to the multiple-MPP situation, which is
also studied in this paper.

To sum up, the main contribution of this paper is the devel-
opment of an improved reliability analysis method which com-
bines the advantages of BIS and FORM with the concept of
Critical region (BIS-FC). On one hand, there exist fruitful re-
searches on FORM which can provide effective MPP search
and β estimation algorithms. By adding a modest computation-
al cost to FORM resulting from the LSF analysis of samples in
the critical region, the failure probability estimation accuracy
can be greatly enhanced especially for the nonlinear LSF prob-
lems. On the other hand, based on the BIS framework, the
analysis accuracy of BIS can be inherited as the proposedmeth-
od can converge to the original BIS result, which proves to be
efficient and accurate compared to crude MCS (Engelund and
Rackwitz 1993; Grooteman 2008; Yun et al. 2018).

The paper is organized as follows. The fundamentals of
FORM and BIS are first introduced in section 2. Then the
proposed BIS-FC method is developed in section 3 for both
the single and multiple MPP situations. The critical region
definition for convex and concave LSF features, the iterative
procedure to identify the proper size of critical region for the
balance of efficiency and accuracy, and the step-by-step algo-
rithm to calculate reliability are presented in detail. In section
4 the proposed BIS-FC is testified with six numerical exam-
ples and a practical satellite structure problem, followed by
conclusions in the final section.

2 Fundamentals

2.1 FORM

The random vector x = {x1, x2,…xn} in the originalX space is
first transformed into the uncorrelated Gaussian random vec-
tor u = {u1, u2,…un} in U space. Then the MPP on the limit
state boundary G(u) = 0 is identified by solving the following
minimization problem:

min
u

uk k2 ¼ uTu s:t: G uð Þ ¼ 0
n

ð3Þ

Denote the optimum as u∗ and the reliability index as
β = ‖u∗‖. By linearizing the LSF with the hyper-tangent plane
at MPP, the reliability can be approximated as

R̂FORM ≈ fΦ βð Þ; if R > 0:5
Φ −βð Þ; if R ≤ 0:5

P̂
FORM

f ¼ 1−R̂FORM

ð4Þ

where Φ(⋅) denotes the standard normal cumulative distribu-

tion function (CDF), and R̂FORM represents the approximated

reliability obtained by FORM. P̂
FORM
f is the failure probabil-

ity. It is obvious that if LSF is nonlinear, this approximation
could lead to great accuracy loss. SORM can alleviate this
problem to some extent by using second-order approximation.
However, it may also become inaccurate for highly nonlinear
LSF situation; wherein simulation-based method can play an
important role.

2.2 Beta-spherical importance sampling

Beta-spherical (BIS), or β-spherical IS, and its variants have
been developed in (Harbitz 1986; Grooteman 2008; Yun et al.
2018). The main idea is to exclude the β-sphere from the
whole sampling space. Based on the reliability index β of
MPP, the β-sphere in the n-dimensionalU space can be drawn.
The center is located at the origin, and the radius equals to β.
As ‖u‖2 follows a chi-square distribution, the probability with-
in the β-sphere can be calculated by:

Pr ‖u‖≤β
n o

¼ Pr ∑
n

i¼1
u2i ≤β

2

� �
¼ CDFn

χ β2
� � ð5Þ

where CDFn
χ ⋅ð Þ denotes the cumulative chi-square distribu-

tion function with n degrees of freedom. Since the MPP is
defined as the point on the failure boundary which is closest
to the origin, it is certain that the failure events will not occur
inside the β-sphere. Thus it is reasonable to remove this region
from the whole sampling space for importance sampling.
Then the sampling domain is greatly reduced, and the occur-
rence ratio of the failure events is increased. As the probability
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of the remaining region is 1−CDFn
χ β2
� �

, the reliability can be

calculated as

R̂BIS ¼ CDFn
χ β̂

2
� �

þ 1−CDFn
χ β̂

2
� �� �

⋅
1

NBIS
∑
j¼1

NBIS

I G u j
� �

≥0
� �

¼ CDFn
χ β̂

2
� �

þ 1−CDFn
χ β̂

2
� �� �

⋅
NS

NBIS

ð6Þ

where NBIS is the total BIS sampling size and NS denotes the
safe events ofG ≥ 0. I(⋅) is an indicator functionwhich is one if
G ≥ 0 and zero otherwise.

The preceding derivation of BIS is based on the assumption
that the MPP can be accurately identified. However, in prac-
tical problems with highly nonlinear LSF, it is generally diffi-

cult to search the MPP accurately, and the estimated β̂ may be

different from the true value β. If β̂≤β, BIS method can be
applied without accuracy loss as the samples in the excluded

region (β̂ -sphere) are still absolutely safe. Only the efficiency

will be sacrificed as the safe samples between β̂ -sphere and
the true β-sphere are also analyzed, as shown in Fig. 2(a). In

the contrast, if β̂ > β, BIS accuracy will be greatly affected as

the samples between the β and β̂ spheres are partially
misclassified to be safe, as shown in Fig. 2(b). To maintain
the accuracy of BIS, one way is to use the existing advanced
MPP search method to robustly identify MPP (Hasofer and
Lind 1974; Hohenbichler and Rackwitz 1982; Keshtegar and
Chakraborty 2018) or multiple MPPs (Kiureghian and
Dakessian 1998). Another way is to develop adaptive strategy
during BIS to search MPP (Grooteman 2008). Since BIS is

not much sensitive to the MPP estimation as long as β̂≤β,
another conservative way is to reduce the estimated β̂ pur-
posefully for high confidence in the reliability analysis accu-
racy at the cost of certain extra computation. The more

efficient and accurate MPP search method for BIS can be an
important issue in the future research.

3 The improved approach based on combined
FORM and BIS

Without loss of generality, R̂≥0:5 (i.e. Pf ≤ 0.5) is discussed in
this paper. For the situation of R̂ < 0:5, the method proposed
in this paper can be directly applied by just switching the
failure and safe domain definition.

3.1 The critical region definition and reliability
analysis

3.1.1 The single-MPP situation

In this paper, the concept of critical region is introduced to
cover the area which has both large occurrence probability and
high misclassification risk due to the linearization assumption
of FORM. FORM utilizes the hyper-tangent plane GL of the
LSF at MPP to approximately divide the space into two parts,
namely the safe region and the failure region, based on which

the failure probability P̂
FORM
f can be easily calculated.

However, this simplification may lead to underestimation or
overestimation due to the convexity or concavity of the LSF in
the neighborhood ofMPP. According to (Lee et al. 2010), LSF
is defined as probabilistic concave or convex function as
follows:

(1) Probabilistic concave function: if the FORM-based reli-
ability analysis overestimates the probability of failure,

i.e., P̂
FORM
f > Pf , as shown in Fig. 3(a).

Fig. 2 Demonstration of BIS with inaccurate β̂: (a) β̂≤β and (b) β̂ > β
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(2) Probabilistic convex function: if the FORM-based reli-
ability analysis underestimates the probability of failure,

i.e., P̂
FORM
f < P f , as shown in Fig. 3(b).

For the concave situation in Fig. 3(a), the region on the safe
side of GL can be assured to be safe. The region that contrib-

utes most to the inaccuracy of P̂
FORM
f due to the linearization

is between GL (the red line) and its parallel hyperplane GL∗

(the red dashed line) on the failure side (further away from the
origin), as indicated by the shaded area. Due to the nonlinear-
ity of LSF, large safe part of this region is misclassified as
failure in FORM which leads to the overestimation.

For the convex situation in Fig. 3(b), the region on the
failure side of GL can be assured to be failure. The region that

contributes most to the inaccuracy of P̂
FORM
f due to the line-

arization is between GL (the red line) and its parallel hyper-
plane GL∗ (the red dashed line) on the safe side (closer to the
origin), as indicated by the shaded area. Due to the nonlinear-
ity of LSF, large failure part of this region is misclassified as
safe in FORM which leads to the underestimation.

From the preceding analysis, it can be concluded that the

estimation inaccuracy of P̂
FORM
f is mainly due to the misclas-

sification of the nonlinear region in the vicinity of MPP.
Inspired by this idea, the critical region which needs special
analysis can be defined. Describe the hyper-tangent plane GL

of the LSF at MPP as

GL uð Þ ¼ β− ∑
n

i¼1
λiui ¼ 0 ð7Þ

where λ = (λ1, λ2,…λn) is the normalized direction vector
from the origin to the MPP, and u = (u1, u2,…un) is the vari-
able vector in the U-space. To define the critical region, the
hyper-tangent plane GL∗(u) parallel to GL(u) is defined as

GL* uð Þ ¼ β �Δβ− ∑
n

i¼1
λiui ¼ 0 ð8Þ

where Δβ is a positive value which defines the critical
region width between the two hyperplanes GL∗(u) and
GL(u). GL∗(u) with positive Δβ corresponds to the con-
cave situation, and GL∗(u) with minus Δβ corresponds
to the convex situation.

With the hyperplanes GL∗(u) and GL(u), the whole
sampling space of BIS (the region outside the β-sphere)
can be divided into three parts, namely the assured safe
region (for the concave situation) or the assured failure
region (for the convex situation), the critical region, and
the unimportant region, as shown in Fig. 3(a) and 3(b)
respectively. The assured safe or failure region needs no
LSF analysis. The unimportant region is far away from
the origin and has low occurrence probability, which
means negligible impact on the failure probability esti-
mation as long as the critical region is reasonably de-
termined (see section 3.2). Therefore this region also
needs no LSF analysis and can be directly identified
as safe or failure by (8). Only the critical region needs
LSF analysis, which can greatly reduce the computa-
tional burden compared to the original BIS method.

With the aforementioned critical region definition, the reli-
ability estimation can be stated as:

Fig. 3 The illustration of (a) probabilistic concave and (b) probabilistic convex situations
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R̂ ¼ CDFn
χ β̂

2
� �

þ 1−CDFn
χ β̂

2
� �� �

⋅
1

NBIS
∑
j¼1

NBIS

I G u j
� �

≥0
� �

¼ CDFn
χ β̂

2
� �

þ 1−CDFn
χ β̂

2
� �� �

⋅
NS

NBIS

¼ CDFn
χ β̂

2
� �

þ 1−CDFn
χ β̂

2
� �� �

⋅
NS

A þ NS
C þ NS

U

NA þ NC þ NU

ð9Þ

where NBIS denotes the total sample size of the original BIS
method, which is the sum of the sample numbers NA, NC, and
NU from the assured safe (or failure) region, the critical region,
and the unimportant region, respectively. NS denotes the num-
ber of safe samples in BIS population, which is the sum of the
safe sample numbers NS

A, N
S
C , and NS

U from the assured safe
or failure region, the critical region, and the unimportant re-
gion, respectively.

To save the LSF analysis burden of the original BIS meth-
od, it is proposed that only the NC samples in the critical
region need LSF analysis to obtain the safe sample number

NS
C accurately. The NA samples in the assured safe or failure

region, and the NU samples in the unimportant region need no
LSF analysis. These samples can be judged as safe or failure
simply according to the linear hyperplanes (7) or (8). Thus
these part of computational cost can be saved, and NS

A and

NS
U can be obtained directly as

NS
A ¼ fNA; LSF is concave

0; LSF is convex

NS
U ¼ 0; LSF is concave

NU ; LSF is convex

� ð10Þ

Then the reliability estimation for the concave and convex
situations can be stated as

R̂
Concave

¼ CDFn
χ β̂

2
� �

þ 1−CDFn
χ β̂

2
� �� �

⋅
NA þ NS

C

NA þ NC þ NU

R̂
Concvex

¼ CDFn
χ β̂

2
� �

þ 1−CDFn
χ β̂

2
� �� �

⋅
NS

C þ NU

NA þ NC þ NU

ð11Þ

Thus based on FORM and the concept of Critical region, the
computational efficiency of the original BIS can be enhanced.
This improved reliability analysis method is named BIS-FC in
this paper. The key issue to maintain the accuracy and efficien-
cy of BIS-FC is the proper selection of the critical region width
Δβ, which will be discussed in detail in section 3.2.

3.1.2 The multiple-MPP situation

Similar to the critical region definition for the single-MPP in
section 3.1.1, the proposed method can be applied to define the
critical region for the multiple-MPP situation based on the
critical region for each MPP. However, as the concave or con-
vex features of the MPPs may be different, there may be inter-
section regions (area overlapping) which simultaneously be-
long to the assured safe, assured failure or unimportant regions

of different MPPs. Thus in this section, the region division
method for the multiple-MPP situation is further developed.

Denote the multiple MPP set as {M1,M2,⋯,MN _mpp},
where N _mpp is the total number. For each MPP Mi(1 ≤ i ≤
N _mpp), obtain the reliability index β̂i, generate the hyper-
tangent plane GL _ i(u) atMi with (7), and analyze the concave
or convex feature of LSF near Mi. For each Mi, define the
same critical region widthΔβ and generate the parallel hyper-

plane GL ∗ _ i(u) with (8) based on β̂i �Δβ according to the
concave or convex features at each MPP. Denote the index set
of the MPPs where the LSF local feature is concave as
IConcave, and the index set of the MPPs where the LSF local
feature is convex as IConvex. These two sets compose the total
index set of Mi(1 ≤ i ≤N _mpp).

Define the β-sphere with the minimum reliability index

β̂min ¼ min
1≤ i≤N mpp

β̂i Denote the BIS sampling space Ω as

the total U space excluding the β̂min -sphere. Following the
critical region definition in section 3.1.1, based on GL _ i(u)
and its parallel GL ∗ _ i(u), define the critical region ΩC _ i,
the unimportant region ΩU _ i, and the assured safe or failure
region for each MPP Mi(1 ≤ i ≤N _mpp). If i ∈ IConcave, then
the assured region for Mi is safe and denoted as ΩS

A i.

Otherwise, the assured region is failure and denoted as ΩF
A i.

Define the total critical region as the union of all the MPPs’
critical regions as

ΩC ¼ ∪
N mpp

i¼1
ΩC i ð12Þ

It means all the MPPs’ critical regions are regarded impor-
tant and need LSF analysis.

Define the assured failure region as the union of all the
assured failure regions ofMi(i ∈ IConvex) minus its intersection
with the critical region ΩC, which is

ΩF
A ¼ ∪

i∈IConvexð Þ
ΩF

A i− ∪
i∈IConvexð Þ

ΩF
A i

� �
∩ΩC ð13Þ

Define the assured safe region as the intersection of all the
assured safe regions ofMi(i ∈ IConcave) and all the unimportant
regions of Mi(i ∈ IConvex), which is

ΩS
A ¼ ∩

i∈IConcave
ΩS

A i

� �
∩ ∩

i∈IConvex
ΩU i

� �
ð14Þ

It is obvious that

ΩS
A∩ΩC ¼ ∅

∩
i∈IConvex

ΩU i

� �
∩ ∪

i∈IConvexð Þ
Ω F

A i

� �
¼ ∅ ⇒ ΩS

A∩Ω
F
A ¼ ∅ ð15Þ

The preceding definitionmeans that a sample is regarded as
assured failure if it is located in the assured failure region of
any Mi(i ∈ IConcave), except that it is located in the critical re-
gion. A sample is regarded as assured safe only if it is located

40 W. Yao et al.



in the assured safe region of allMi(i ∈ IConcave) and meanwhile
it is located in the unimportant region of Mi(i ∈ IConvex). This
definition is conservative to prevent aggressive estimation of
reliability.

The rest area is defined as the unimportant region, which is

ΩU ¼ Ω−ΩC−Ω F
A −Ω

S
A ð16Þ

To efficiently analyze the safe or failure state of the samples
in unimportant region, it is proposed to compare the projection
of the sample on each unit direction ofMi(1 ≤ i ≤N _mpp). If
there existMi such that the projection on this direction is larger

than β̂i, then this sample is regarded to be failure, which can
be stated that

ΩF
U ¼ PijPi∈ΩU ;∃Mi 1≤ i≤N mppð Þ→Pi � Mi

‖Mi‖
≥ β̂i

( )
ð17Þ

The rest of ΩU is regarded as safe, which is

ΩS
U ¼ ΩU−ΩF

U ð18Þ

Record the total sample number inΩ asNBIS, the number in

ΩC as NC, the number inΩF
A as N F

A , the number inΩS
A as N

S
A,

the number inΩF
U asN F

U , and the number inΩS
U asNS

U . Based
on the preceding region definition, the reliability estimation
can be stated as

R̂ ¼ CDFn
χ β̂

2

min

� �
þ 1−CDFn

χ β̂
2

min

� �� �
⋅
NS

NBIS

¼ CDFn
χ β̂

2

min

� �
þ 1−CDFn

χ β̂
2

min

� �� �
⋅

NS
A þ NS

C þ NS
U

NS
A þ N F

A þ NC þ NS
U þ N F

U

ð19Þ

It is obvious that the critical region definition and reliability
analysis of the single-MPP situation is a special case of the
multiple-MPP situation.

3.2 Iterative procedure to define the critical region

The selection ofΔβ directly affects the accuracy and efficien-
cy of the proposed BIS-FC method. If the critical region is
very large andΔβ approaches to infinity as the extreme case,
it is equivalent to the original BIS. Then good accuracy can be
obtained, but efficiency will be sacrificed in return. If the
critical region is very small and Δβ approaches to zero as
the extreme case, it is equivalent to the original FORM meth-
od. Then good efficiency can be obtained, but accuracywill be
sacrificed in return. Thus, the key of BIS-FC is how to prop-
erly determine the optimal critical region to achieve the bal-
ance between accuracy and efficiency.

3.2.1 The iterative procedure for reliability estimation

To properly define Δβ, a sequential method is proposed
which adjustsΔβ step by step until certain stopping criterion
is satisfied. The single-MPP and multiple-MPP situations are
discussed respectively in this section.

The single-MPP situation Initialize the reliability estimation as

R̂
0ð Þ ¼ Φ β̂

� 	
, where β̂ is obtained by FORM at the MPP.

Define the initial critical region width as Δβ0. For the kth
iteration (k ≥ 1), the critical region width is defined as

Δβk ¼ Δβ0 þ k−1ð Þ⋅Δβstep ð20Þ

whereΔβstep is the step increment. According toΔβk, the k th

parallel hyperplane G kð Þ
L* can be generated, and the critical

region of this iteration can be updated. The two parallel hy-
perplanes of two consecutive iterations are illustrated as the
red dashed lines in Fig. 4.

Fig. 4 The illustration of iterative process for probabilistic (a) concave and (b) convex LSF
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It can be observed that in both concave and convex situa-
tions, the assured safe or failure region is fixed during the
iteration change ofΔβk. Only the critical and the unimportant

regions are adjusted according to the move of G kð Þ
L* . Then the

reliability estimation in the k th iteration is

R̂
kð Þ
Concave ¼ CDFn

χ β̂
2

� �
þ 1−CDFn

χ β̂
2

� �� �
⋅

NA þ NS kð Þ
C

NA þ N kð Þ
C þ N kð Þ

U

R̂
kð Þ
Convex ¼ CDFn

χ β̂
2

� �
þ 1−CDFn

χ β̂
2

� �� �
⋅

NS kð Þ
C þ N kð Þ

U

NA þ N kð Þ
C þ N kð Þ

U

ð21Þ

where NA is fixed during iteration. NS kð Þ
C is the safe sample

number in the critical region updated in the kth iteration.

If k = 1, NS kð Þ
C is obtained by running LSF for the samples

in the critical region between GL and G kð Þ
L* . If k > 1, NS kð Þ

C
consists of two parts. One is the safe sample number

NS k−1ð Þ
C obtained in the (k − 1)th iteration. The other is

the newly safe sample number ΔNS kð Þ
C obtained by run-

ning LSF analysis for the ΔN kð Þ
C samples in the newly

expanded critical region between G k−1ð Þ
L* and G kð Þ

L* . The

total sample number N kð Þ
U of the unimportant region can

be accordingly updated as N kð Þ
U ¼ N k−1ð Þ

U −ΔN kð Þ
C . Thus in

each iteration, the computational cost only comes from

the LSF analysis for the ΔN kð Þ
C samples in the newly ex-

panded critical region between G k−1ð Þ
L* and G kð Þ

L* .

The multiple-MPP situation For each MPP Mi(1 ≤ i ≤ N _

mpp) with the reliability index β̂i, denote the safe side region

of the hyper-tangent plane GL _ i as Ω
0ð Þ
S i. The intersection of

all the safe regions Ω 0ð Þ
S i is used for initial reliability estima-

tion, which is

R̂
0ð Þ
¼ Pr ∩

1≤ i≤N mpp
Ω 0ð Þ

S i

� �
ð22Þ

Define the initial critical region width as Δβ0 and the step
increment as Δβstep. For the kth iteration (k ≥ 1), the critical
region width Δβ(k) for each MPP is the same as defined in

(20), according to which the hyperplaneG kð Þ
L* i for eachMi(1 ≤

i ≤N _mpp) can be generated by (8). Based onGL _ i andG
kð Þ
L* i

for each MPP, the critical regionΩ kð Þ
C i, the unimportant region

Ω kð Þ
U i, and the assured safe or failure region can be defined. If

i ∈ IConcave, then the assured region for Mi is safe and denoted

as ΩS kð Þ
A i . Otherwise, the assured region is failure and denoted

as ΩF kð Þ
A i .

For the kth iteration (k ≥ 1), the reliability estimation is:

R̂ ¼ CDFn
χ β̂

2

min

� �
þ 1−CDFn

χ β̂
2

min

� �� �
⋅

NS kð Þ
A þ NS kð Þ

C þ NS kð Þ
U

NS kð Þ
A þ N F kð Þ

A þ N kð Þ
C þ NS kð Þ

U þ N F kð Þ
U

¼ CDFn
χ β̂

2

min

� �
þ 1−CDFn

χ β̂
2

min

� �� �
⋅
NS kð Þ

A þ NS kð Þ
C þ NS kð Þ

U

NBIS

ð23Þ

NS kð Þ
C is the safe sample number in the critical region up-

dated in the kth iteration. The same as the single-MPP situa-

tion, if k = 1,NS kð Þ
C is obtained by running LSF for the samples

in the critical region ΩC, which is the union of the regions

betweenGL _ i and G
kð Þ
L* i for each MPP. If k > 1, NS kð Þ

C consists

of two parts. One is the safe sample number NS k−1ð Þ
C obtained

in the (k − 1)th iteration. The other is the newly obtained safe

sample number ΔNS kð Þ
C by running LSF analysis for the Δ

N kð Þ
C samples in the newly expanded critical region which is

the union of the regions between G k−1ð Þ
L* i and G kð Þ

L* i for each
Mi(1 ≤ i ≤N _mpp).

NS kð Þ
A and NS kð Þ

U are the safe sample numbers in the assured

safe region ΩS kð Þ
A and the unimportant safe region ΩS kð Þ

U re-
spectively, which can be obtained by (14) and (18) based on
the updated region division in the kth iteration.

By sequentially increasing Δβk and updating the reli-
ability estimation, the analysis result will gradually con-
verge to the original BIS. The control of the iteration
process is mainly to balance the analysis accuracy and
efficiency. Thus error analysis of BIS-FC estimation is
first studied in section 3.2.2, based on which the iteration
process setup and the stopping criteria are developed in
section 3.2.3 and 3.2.4 respectively.

3.2.2 The error analysis of BIS-FC estimation

The estimation error of the proposed BIS-FC method,
compared to the original BIS method, mainly comes
from the misclassification of the samples in the unim-
portant region which are not accurately analyzed by
LSF. The error estimations for the single-MPP and
multiple-MPP situations are discussed respectively as
follows.

The single-MPP situation In the concave situation, there
are safe areas E in the unimportant region, e.g., the
areas E1 and E2 in Fig. 4(a), which are misclassified
as failure. In the kth iteration, denote the sample num-

ber in the misclassified area E kð Þ
Concave as N kð Þ

E Concave. Then
the reliability estimation of BIS-FC is smaller than the
original BIS result, and the error equals to the
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probability mass of the misclassified area E kð Þ
Concave,

which can be stated as

ΔR̂
kð Þ
Concave ¼ R̂

kð Þ
Concave−R̂BIS

¼ − 1−CDFn
χ β̂

2
� �� �

⋅
N kð Þ

E Concave

NBIS

¼ −Pr E kð Þ
Concave

n o
≤0

ð24Þ

The misclassified sample number decreases as the iteration
increases, which is

N kð Þ
E Concave ¼ N k−1ð Þ

E Concave−ΔNS kð Þ
C ð25Þ

It means that by conducting LSF analysis for the samples

ΔN kð Þ
C in the newly expanded critical region, ΔNS kð Þ

C safe
samples are identified and deduced from the misclassified
number.

In theU-space, for the concave situation, Pr E kð Þ
Concave

n o
can

be roughly estimated as

Pr E kð Þ
Concave

n o
≈λ kð Þ 1−Φ β̂ þΔβ kð Þ

� 	h i
ð26Þ

where Φ(⋅) denotes the standard normal CDF, and 1−Φ

β̂ þΔβ kð Þ
� 	

represents the probability mass of the unimpor-

tant region defined by the hyperplaneG kð Þ
L* , as shown in Fig. 5.

λ(k) is the ratio between the misclassified area and the total
unimportant region in the kth iteration, which is determined by
the nonlinearity of LSF in this area. Thus λ(k) is named the
nonlinearity coefficient in this paper.

For the convex situation, there are failure areas E in the
unimportant region, e.g., the areas E1 and E2 in Fig. 4(b),
which are misclassified as safe. In the kth iteration, denote

the sample number in the misclassified area E kð Þ
Convex as

N kð Þ
E Convex. Then the reliability estimation of BIS-FC is bigger

than the original BIS result, and the error equals to the prob-
ability mass of the misclassified area E(k), which can be stated
as

ΔR̂
kð Þ
Convex ¼ R̂

kð Þ
Convex−R̂

BIS
¼ 1−CDFn

χ β̂
2

� �� �
⋅
N kð Þ

E Convex

NBIS
¼ Pr E kð Þ

Convex

n o
≥0

ð27Þ

And the misclassified sample number is updated in the kth
iteration as

N kð Þ
E Convex ¼ N k−1ð Þ

E Convex− ΔN kð Þ
C −ΔNS kð Þ

C

� 	
ð28Þ

The reliability analysis error Pr E kð Þ
Convex

n o
can be roughly

estimated as

Pr E kð Þ
Convex

n o
≈λ kð Þ � Φ β̂−Δβ kð Þ

� 	
−Pr Ωβ−sphere∩Ω

kð Þ
U

n oh i
ð29Þ

where Pr Ωβ−sphere∩Ω
kð Þ
U

n o
is the probability of the part of β-

sphere which is located in the unimportant region. As the
integration of chi-squared distribution is complex, a simplified
rough estimation is given as

Pr Ωβ−sphere∩Ω
kð Þ
U

n o
≈CDFn

χ β̂
2

� �
⋅
max 0; 2β̂−Δβ kð Þ

n o
2β̂

ð30Þ

which decomposes the probability of the β-sphere uniformly

into an interval −β̂; β̂
h i

along the MPP direction. Then (29) is

reformulated as

Pr E kð Þ
Convex

n o
≈λ kð Þ � Φ β̂−Δβ kð Þ

� 	
−CDFn

χ β̂
2

� �
⋅
max 0; 2β̂−Δβ kð Þ

n o
2β̂

2
4

3
5

ð31Þ
The error estimation in (26) and (31) first needs determin-

ing the nonlinearity coefficient λ(k), which results from the

nonlinearity of LSF compared to the hyperplane G kð Þ
L* . If LSF

is highly nonlinear, λ(k) becomes large, which means the lin-

earization of the hyperplane G kð Þ
L* leads to great misclassifica-

tion and accuracy loss. In the contrast, λ(k) becomes small if
LSF is not highly nonlinear, i.e., relatively “flat”. Moreover, it
approaches to zero when LSF is almost linear and matches

closely to G kð Þ
L* , which means the linearization of the hyper-

plane G kð Þ
L* has little accuracy loss in the unimportant area.

As LSF is generally implicitly formulated or even defined
by a black-box model, it is difficult to obtain λ(k) analytically
and accurately. In this paper, it is proposed to approximate λ(k)

with reference to λ(k − 1). Assume that λ(k) equals to λ(k − 1) for
the similar misclassification ratio due to the similar LSF non-
linearity feature in the two consecutive iterations. ThenFig. 5 The probability mass estimation of the unimportant region
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λ kð Þ ¼ N kð Þ
E

N kð Þ
U

¼ N k−1ð Þ
E −ΔN kð Þ

E

N k−1ð Þ
U −ΔN kð Þ

C

; λ k−1ð Þ ¼ N k−1ð Þ
E

N k−1ð Þ
U

λ kð Þ ¼ λ k−1ð Þ⇒λ kð Þ ¼ ΔN kð Þ
E

ΔN kð Þ
C

¼ N k−1ð Þ
E

N k−1ð Þ
U

¼ N kð Þ
E

N kð Þ
U

ΔN kð Þ
E ¼ ΔNS kð Þ

C ; LSF is concave

ΔN kð Þ
C −ΔNS kð Þ

C ; LSF is convex

( ð32Þ

With λ(k) obtained from (32), the reliability estimation error
can be estimated with (26) or (31).

The multiple-MPP situation Similar to the single-MPP situ-
ation, the estimation error mainly comes from the
misclassified samples in the unimportant region, which
is affected by the probability mass of the unimportant area
and the LSF nonlinearity in this area. In the kth iteration,
due to the complexity of the area overlapping, each sam-

ple in the unimportant region si∈Ω
kð Þ
U may simultaneously

belong to the unimportant regions of several MPPs. To
analyze the misclassification risk, it is proposed to deter-

mine first which MPP’s unimportant region Ω kð Þ
U i the sam-

ple si∈Ω
kð Þ
U is associated to such that it has the biggest

risk. The algorithm is proposed as follows.

First, analyze the unimportant failure region ΩF kð Þ
U . For

each sample si∈Ω
F kð Þ
U , there may be several MPPs where the

LSF local nonlinearity is concave, and meanwhile, its corre-
sponding unimportant region can cover this sample. The index
set of the MPPs which satisfy the preceding conditions can be
stated as

ljl∈IConcave; si∈Ω kð Þ
U l

n o
ð33Þ

The MPP M j j∈ ljl∈IConcave; si∈Ω kð Þ
U l

n o� 	
, with which si

has the largest misclassification risk λ kð Þ
j 1−Φ β̂ j þΔβ kð Þ

� 	h i
defined by (26), is chosen as the reference MPP to calculate the

misclassification risk of si. Here λ
kð Þ
j is the nonlinearity coeffi-

cient of LSF at the jth MPP.
Similar to the unimportant failure region, for each

sample si∈Ω
S kð Þ
U in the unimportant safe region, the

MPP Mj(j ∈ IConvex) whose LSF local nonlinearity is con-
vex and whose unimportant region covering si has the
largest misclassification risk modeled by (29), is chosen
as the reference MPP to calculate the misclassification

risk of si∈Ω
S kð Þ
U .

Denote the misclassification risk at each sample si∈Ω
kð Þ
U in

the unimportant region as its misclassification weight, which is

w kð Þ
i ≈

max
j∈ ljl∈IConcave;si∈Ω kð Þ

U lf g
λ kð Þ
j 1−Φ β̂ j þΔβ kð Þ

� 	h i
; if si∈Ω

F kð Þ
U

max
j∈ ljl∈IConvex;si∈Ω kð Þ

U lf g
λ kð Þ
j �

h
Φ β̂ j−Δβ kð Þ
� 	

−CDFn
χ β̂

2

j

� �
⋅
max 0; 2β̂ j−Δβ kð Þ

n o
2β̂ j

i
; if si∈Ω

S kð Þ
U

8>>>>>>>>>><
>>>>>>>>>>:

ð34Þ

Then the total reliability estimation error is proposed to be
the average risk of all the samples in the unimportant region,
which is

e kð Þ≈
1

NS kð Þ
U þ N F kð Þ

U

∑
si∈Ω

kð Þ
U

w kð Þ
i ð35Þ

It is obvious that the error estimation (26) and (31) for the
single-MPP situation are exactly the special case of error es-
timation (34) and (35) for the multiple-MPP situation.

3.2.3 The iteration process setup

The iteration process of BIS-FC is conducted until the estima-
tion error compared to the original BIS drops into an accept-
able level. Meanwhile, the proper critical region can be grad-
ually identified to reduce the computational cost effectively.
Define the percentage of the saved computational cost com-
pared to the original BIS as

κ ¼ NBIS−N
kð Þ
C

NBIS
� 100% ð36Þ

In this section, the factors affecting the iteration process
and the efficiency are analyzed, based on which the iteration
process parameter setting up is discussed.

From the error estimation (26) for the single-MPP concave
situation, (31) for the single-MPP convex situation, and (35)
for the multiple-MPP situation, the main factors affecting the
reliability estimation error include the nonlinearity coefficient
of LSF, the reliability index at MPP, and the critical region
width. It is obvious that smaller nonlinearity coefficient and
larger critical region are preferred for smaller estimation error.

Due to the similar iteration process and error estimation for
both the single and multiple MPP situations, and the similar
trends of parameter effects on the estimation error, only the
single-MPP situation is discussed here for briefness, which
can be directly applied for the multiple-MPP situation. The
detailed parameter effects are discussed as follows.

The situation with smaller λ(k) Smaller λ(k) means the nonlin-
earity of LSF is not severe and there is small difference be-

tween LSF and the hyperplaneG kð Þ
L* . For both the concave and

convex situations, small λ(k) can greatly reduce the demand

for large Δβ(k). And if β̂ is large, Δβ(k) can be even smaller.
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Then huge computational burden for critical region analysis
can be saved, and great efficiency can be obtained by BIS-FC.

For the extreme situation that LSF is linear and parallel to

G kð Þ
L* , then λ

(k) = 0 and Pr{E(k)} = 0. Then the accurate estima-
tion is achieved, and nomore iteration is needed. For example,
if LSF is linear and accurately matches GL(u) at MPP, then it
can be calculated that λ(1) = 0 by analyzing the samples in the
initial critical region Δβ(1). Thus it can be concluded that
FORM is accurate and no iteration is needed for more
analysis.

The situation with larger λ(k) Larger λ(k) means that LSF is
highly nonlinear and there is significant difference be-

tween LSF and the hyperplane G kð Þ
L* . For the concave

situation, the small estimation error has to be achieved

by large β̂ þΔβ kð Þ. Especially if β̂ is small, then very
large Δβ(k) is needed, and the efficiency of BIS-FC will

be reduced. For the convex situation, if β̂ is small, small

β̂ -sphere is excluded. Thus very large Δβ(k) is also
needed. Therefore for both the concave and convex sit-
uations, the efficiency of BIS-FC will be greatly reduced

if β̂ is small. In the contrast, if β̂ is large, then maybe
only small Δβ(k) is enough to achieve small estimation
error, which accordingly may not reduce the efficiency
too much. To sum up, for the highly nonlinear situation,
the efficiency advantage of the proposed BIS-FC method
will be not as significant as the linear situation. But
compared to the original BIS, the proposed BIS-FC can
still significantly reduce the computational burden as the
LSF analysis for the assured region can be saved.

According to the preceding analysis, the thumb of rule for
the proper setup of the parameters Δβ0 and Δβstep in
implementing BIS-FC is summarized as follows:

Δβ0

If it is known in advance that LSF is not highly nonlinear, a
small Δβ0 is preferred. If it is known that LSF is highly non-
linear or there is no a priori knowledge about the nonlinear
condition, a modest value is preferred, which can leave flex-
ible adjustment room to identify the proper critical region by
the followed-up iteration process.

Δβstep

The step incrementΔβstep affects the newly expanded crit-
ical region in each iteration, which is directly related to the

sample numberΔN kð Þ
C ¼ N kð Þ

C −N k−1ð Þ
C for LSF analysis in this

iteration as

ΔN kð Þ
C ∝ Φ β̂ þΔβ k−1ð Þ þΔβstep

� 	
−Φ β̂ þΔβ k−1ð Þ

� 	h i
ð37Þ

It is obvious that smallerΔβstep relates to fewer samples in
the newly expanded critical region of each iteration.

& If LSF is not highly nonlinear, small critical region is
needed. Then small Δβstep is preferred so as to finely
adjust the critical region until satisfying the stopping

criteria. With the fixedΔβstep value, the sample numberΔ

N kð Þ
C ¼ N kð Þ

C −N k−1ð Þ
C in the newly expanded critical region

in the kth iteration will reduce as k increases.
& If LSF is highly nonlinear, the required critical region size

Δβ(k) depends on β̂ of theMPP. If β̂ is small, largeΔβ(k) is
needed. Then relatively larger Δβstep is preferred so as to
prevent tedious iteration process which expands the criti-
cal region step by step until the required size is achieved. If

β̂ is large, the need forΔβ(k) is less demanding andΔβstep
can be set to a modest or small value.

3.2.4 The stopping criteria

As the applicability of the proposed BIS-FC method largely
depends on its accuracy, the stopping criterion should be de-
fined such that the estimation error is controlled within the
acceptable level. Define the estimation error threshold as γE.
Then the stopping criterion for estimation error control can be
stated as

e kð Þ≤γE

e kð Þ ¼

λ kð Þ 1−Φ β̂ þΔβ kð Þ
� 	h i

; if single−MPP concave

λ kð Þ �
h
Φ β̂−Δβ kð Þ
� 	

−CDFn
χ β̂

2
� �

⋅
max 0; 2β̂−Δβ kð Þ

n o
2β̂

i
; if single

−MPP convex
1

NS kð Þ
U þ N F kð Þ

U

∑
si∈Ω

kð Þ
U

w kð Þ
i ; if multiple−MPP situation

8>>>>>>>>>>><
>>>>>>>>>>>:

ð38Þ

In some situations, when the accuracy condition is satis-
fied, the relative difference between the two consecutive esti-
mations may still be relatively large. For example, if γE is
defined to be a relatively large value (e.g. γE = 0.01) to repre-
sent a big error tolerance, this threshold may be quickly
achieved. However, the reliability estimation may still change
greatly during the iteration. Then the researcher may need to
check the result when the estimation converges to a stable
value if the computational resource is available. In this case,
define the relative difference between the two consecutive
estimations as

ε kð Þ
r ¼ jR̂

kð Þ
−R̂

k−1ð Þ
j

R̂
k−1ð Þ ≤γε ð39Þ
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where γε is the preset small tolerance. It is noteworthy that the

condition ε kð Þ
r ≤γε may not really represent the convergence,

as it is also affected by the iteration parameter settings. Take
the concave case for example, the estimation difference of two
consecutive iterations is

jR̂
kð Þ
Concave−R̂

k−1ð Þ
Concavej ¼ 1−CDFn

χ β̂
2

� �� �
⋅
ΔNS kð Þ

C

NBIS
ð40Þ

From (32) it is known thatΔNS kð Þ
C ≈λ kð ÞΔN kð Þ

C . AsΔN kð Þ
C is

proportional to the probability mass of the newly expanded

area between the two consecutive hyperplanesG k−1ð Þ
L* andG kð Þ

L*
as shown in (37), then

jR̂
kð Þ
Concave−R̂

k−1ð Þ
Concavej∝ΔN kð Þ

C ∝ Φ β̂ þΔβ k−1ð Þ þΔβstep

� 	
−Φ β̂ þΔβ k−1ð Þ

� 	h i
ð41Þ

It is obvious that if Δβstep is set to be very small, ε kð Þ
r

will be accordingly very small and may easily drop into
the tolerance γε. Thus special care should be taken when
using this convergence criterion. Moreover, it is strongly
suggested to use this condition as a supplement to the
criterion of estimation error.

To sum up, the stopping criteria of BIS-FC include two
parts. The first one is for accuracy control, as shown in (38),
which requires the estimation error compared to the original
BIS method to be smaller than the threshold. The second one
is for stable convergence, as shown in (39), which requires the
relative change between the two consecutive estimations to be
smaller than the threshold. The second criterion is optional
and should be used with special care to avoid misjudgment
of the convergence condition.

3.3 The algorithm of BIS-FC

According to the definition of critical region in section
3.1, and the iterative procedure for proper critical region

Fig. 6 The flowchart of the
proposed BIS-FC method

Fig. 7 The BIS sampling in Example 1
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identification developed in section 3.2, the system reli-
ability can be analyzed sequentially until reaching the
prescribed small estimation error level compared to the
original BIS method; meanwhile efficiency can be en-
hanced by only conducting expensive LSF for the samples
in the critical region. To sum up, the flowchart of the
proposed BIS-FC method is illustrated in Fig. 6. The main
algorithm is explained as follows. For conciseness, the
single-MPP and multiple-MPP situations are stated to-
gether. The single-MPP situation is regarded as a special
case with the MPP number N _mpp = 1.

Step 1. Transfer the original random vector x = {x1, x2,…
xn} into the uncorrelated standard Gaussian random
vector u = {u1, u2,…un} in the U space.

Step 2. Obtain the MPPs {M1,M2,⋯,MN _mpp}(N _mpp ≥
1) and calculate their corresponding reliability index

β̂i 1≤ i≤N mppð Þ. Obtain the hyper-tangent plane
GL _ i(u) of LSF at each MPP according to (7).

Step 3. Determine the probabilistic concave or convex of
LSF at the vicinity of eachMPP following the meth-
od in (Lee et al. 2010), based on which define the
direction of the hyperplanes for critical region
identification.

Step 4. Generate NBIS samples based on the original BIS

method in the area outside the β̂min -sphere, where

β̂min ¼ min
1≤ i≤N mpp

β̂i. The sampling can be realized

by the acceptance-rejection or MCMC-related
methods.

Step 5. Initialize the iterative process. Calculate the initial

reliability estimation R̂
0ð Þ

by (22), which can be

simplified to R̂
0ð Þ ¼ Φ β̂

� 	
for the single-MPP situ-

ation. Define the initial critical region width asΔβ0,
the step increment as Δβstep, the estimation error
tolerance as γE, and the stable convergence thresh-
old as γε. Denote the iteration number as k = 1.

Step 6. For the kth step, set Δβ(k) =Δβ0 + (k − 1) ⋅Δβstep.

Generate the hyperplane G kð Þ
L* i parallel to GL _ i.

According to GL _ i and G kð Þ
L* i, define the critical re-

gion, assured safe or failure region, unimportant re-
gion for each MPP following the definition in sec-
tion 3.1.1, based on which the total critical region,
assured safe and failure region, unimportant safe and
failure region can be defined following equations
from (12) to (18) for multiple-MPP situation.
Denote the sample number in the critical region as

N kð Þ
C .

Step 7. If k = 1, conduct LSF analysis for theN kð Þ
C samples in

the critical region, and record the safe number NS kð Þ
C ;

otherwise, conduct LSF analysis only for the ΔN kð Þ
C

¼ N kð Þ
C −N k−1ð Þ

C samples in the newly expanded criti-
cal region.

Step 8. Calculate the reliability R̂
kð Þ
according to (23), which

can be simplified to (21) for the single-MPP
situation.

Step 9. Check the stopping conditions.

Step 9.1. Check the reliability estimation error e(k) by
(38). If e(k) > γE, k = k + 1 and go back to
Step 6; otherwise, go to Step 9.2 if it is appli-
cable or go to Step 10 if the stable conver-
gence criterion is not used.

Step 9.2. Calculate the relative difference ε kð Þ
r between

the two consecutive estimations by (39). If

ε kð Þ
r ≤γε, the stable convergence is achieved
and go to Step 10; otherwise, k = k + 1 and
go back to Step 6. Special attention is needed
for using this criterion, which is discussed in
detail in section 3.2.4.

Step 10. End the iteration procedure and output the reliabil-

ity result R̂
kð Þ
.

Table 1 The reliability analysis results by crude MCS and BIS in
Example 1

Methods Ncalls R̂BIS EMCS β̂

Crude
MCS

107 0.9976 – –

BIS 39 + 1844 0.9975 0.01% 3

Table 2 The comparison of the BIS results with different β̂ in
Example 1

β̂ Ncalls R̂BIS EMCS

2 5246 0.9974 0.02%

2.3 3971 0.9975 0.01%

2.6 2765 0.9975 0.01%

2.9 2119 0.9975 0.01%

Table 3 The
probabilistic models of
the random variables for
Example 2

Variable Mean CV Prob. Dist.*

x1 10 0.5 Normal

x2 9.9 0.5 Normal

*Prob. Dist.: Probability Distribution; CV:
Coefficient of Variation
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4 Examples

In this section, six numerical examples and one engineering
example are employed to verify the proposed BIS-FCmethod.
Due to the randomness of sampling, in each example, 100
independent runs are conducted. The average reliability anal-
ysis results are used for performance discussion. To demon-
strate the effectiveness of BIS-FC which is based on the
framework of BIS, the accuracy and efficiency are compared
against the original BIS. The efficiency is measured by the
saved computational cost defined in (36), and the relative error
compared to BIS is defined as

EBIS ¼ jR̂−R̂BISj
R̂BIS

� 100% ð42Þ

The crude MCS is also used as benchmark to measure the
estimation accuracy as

EMCS ¼ jR̂−R̂MCS j
R̂MCS

� 100% ð43Þ

where R̂BIS and R̂MCS are the reliability estimations obtained
by BIS and MCS respectively.

4.1 Example 1

A two-dimensional LSF is used to demonstrate the original

BIS and the effect of the reliability index β̂ β̂≤β
� 	

on reli-

ability estimation. The LSF is defined as:

G uð Þ ¼ 5� u21−u
2
2−45 ð44Þ

where both u1 and u2 are independent standard normal random
variables, denoted as u1, u2 ∼N(0, 1). The safe region is de-
fined by G(u) < 0. The reliability analysis results of the crude
MCS (the sample size is 107) and the original BIS are listed in
Table 1. The HL-RF method (Hasofer and Lind 1974;
Hohenbichler and Rackwitz 1982) is used for MPP searching

in BIS, and the accurate value β̂ ¼ β ¼ 3 is obtained. The total
number of function calls to the LSF is denoted as Ncalls. For
BIS, Ncalls includes the function calls used in FORM for MPP
searching and the sample analysis in the importance sampling
process (Fig. 7). The results show that BIS can effectively
improve the efficiency compared to MCS with good accuracy.

In order to demonstrate the effect of β̂ β̂≤β
� 	

on reliability

estimation of BIS, β̂ is purposefully set to be 2, 2.3, 2.6, 2.9

Table 4 The reliability analysis results of different methods in
Example 2

Methods Ncalls R̂ EMCS β̂

Crude MCS 107 0.9942 – –

BIS 20 + 2793 0.9941 0.01% 2.226

FORM 20 + 0 0.9870 0.70% 2.226

BIS-FC 20 + 392 0.9938 0.04% 2.226

Table 5 The iteration process of the proposed BIS-FC method in
Example 2

k ΔN kð Þ
C R̂

kð Þ
E kð Þ
BIS *

1 189 0.9910 0.30%

2 106 0.9932 0.10%

3 59 0.9938 0.04%

4 29 0.9938 0.04%

*E kð Þ
BIS , the relative error comparedwith the original BIS in the kth iteration

Fig. 8 The comparison between (a) the original BIS and (b) BIS-FC sampling in Example 2
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respectively and the results of BIS are listed in Table 2. It can
be observed that all the results can achieve good accuracy. The

estimation results are not sensitive to the β̂ value (as long as

β̂≤β ) which is an advantage of robustness. However, the

small β̂ leads to the sacrifice of efficiency, as more samples

outside the β̂ -sphere need LSF analysis. Thus the accurate

estimation of β̂ still plays an important role to enhance both
the accuracy and the efficiency of BIS.

4.2 Example 2

The two-dimensional concave LSF from the literature (Zou
et al. 2002) is used to demonstrate the proposed BIS-FCmeth-
od. The LSF is defined as:

g xð Þ ¼ x31 þ x32−18 ð45Þ
where x1 and x2 are random variables and their probabilistic
distributions are shown in Table 3. The LSF is probabilistic
concave and highly non-linear in the vicinity of the MPP, as
shown in Fig. 8. The reliability analysis results obtained by the
proposed BIS-FC, the crude MCS, the original BIS, and
FORM are compared in Table 4. The crude MCS sample size
is 107. The original BIS only needs 2813 samples to achieve
good accuracy on average of 100 independent runs. The BIS

sampling is shown in Fig. 8(a). For FORM, the MPP is
searched by the trust region update method (Zou et al. 2002)
(4 iterations with 20 LSF calls), as the HL-RF algorithm does

not converge in this case. The reliability index β̂ is calculated

as 2.226, and the reliability is estimated as Φ β̂
� 	

¼ 0:9870

by FORM.
For the proposed BIS-FC method, set the initial critical

region width and the step increment as Δβ0 =Δβstep = 0.2.
Set the stopping criterion of estimation error tolerance in
(38) as γE = 0.001 and the convergence tolerance in (39) as
γε = 0.0001. As shown in Fig. 8(b), among the samples of BIS
(blacks dots), only a small portion are located in the critical
region after convergence (blue-star points) which are analyzed
with the accurate LSF. The other samples located in the as-
sured safe or unimportant region are directly identified as safe
or failure by the linear hyperplane at MPP (the red line) and its
parallel (the red dashed line). Thus great computational cost
can be saved. Table 5 and Fig. 9 show the detailed iterative
process. It reaches stable convergence after four iterations and

the sample number ΔN kð Þ
C in the newly expanded critical re-

gion analyzed in each iteration is 189, 106, 59 and 26, respec-
tively. It is obvious that as the iteration proceeds, the function
calls to LSF reduce significantly, which complies with the
analysis in section 3.2.3. Table 5 shows that the proposed
method can greatly improve the analysis accuracy compared
with FORM (the relative error compared to MCS is reduced
from 0.7% to 0.04%). Meanwhile, its computational cost is
much lower than the original BIS (almost reduced by 85%)
with minor sacrifice of accuracy. The results demonstrate that
the proposed method can achieve a good balance between
efficiency and accuracy.

4.3 Example 3

The following probabilistic convex LSFwith two independent
standard normal random variables is used to demonstrate the
effect of Δβstep on estimation:

G uð Þ ¼ −2:62þ 0:15� u21 þ u2 ð46Þ
where u1 and u2 are independent standard normal variables.
The analysis results obtained by the crude MCS, the original
BIS and FORM, are shown in Table 6.

For FORM, the MPP is identified by the HL-RF algorithm

(6 LSF calls), and the reliability index is β̂ ¼ 2:62. The reli-

ability estimated by FORM is Φ β̂
� 	

¼ 0:9956 and the rela-

tive error compared to MCS is 0.39%. BIS uses 2564 (6 +
2578) function calls on average (only 0.0256% of the MCS
sample number) to achieve a satisfied accuracy in comparison
to the crude MCS. The BIS samples are represented by the
black dots in Fig. 10(a).

Fig. 9 The iteration history of BIS-FC in Example 2

Table 6 The reliability analysis results of different methods in
Example 3

Methods Ncalls R̂ EMCS β̂

Crude MCS 107 0.9917 – –

BIS 6 + 2578 0.9916 0.01% 2.62

FORM 6 + 0 0.9956 0.39% 2.62
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To discuss the effect of different step increment on the
iterative convergence and accuracy of BIS-FC, set
Δβ0 =Δβstep as 0.5 and 0.2 respectively. Set the stopping
criterion of the estimation error tolerance as γE = 0.001 and
the convergence tolerance as γε = 0.0001. The analysis results
are compared in Table 7, and the iteration processes are com-
pared in Table 8. It is shown that it takes four iterations for
convergence when Δβstep = 0.5 (i.e. the final critical region
width Δβk =Δβ0 + (k − 1) ⋅Δβstep = 2.0) and 8 iterations
when Δβstep = 0.2 (i.e. Δβk = 1.6). The parallel hyperplanes
defining the critical region in each iteration and the conver-
gence histories for both settings are shown in Fig. 10 and Fig.
11 respectively, wherein the samples in the critical regions are
labeled as blue-star. With the same stopping criteria, the crit-
ical regions for the two settings should be the same. As the
step increment of 0.5 is larger than 0.2, it needs less iteration
number to reach the stopping criteria. However, smaller step
increment can better finely adjust the critical region till
reaching the stopping criteria. Thus although BIS-FC needs
more iterations withΔβstep = 0.2, it can gradually converge to
a smaller critical region width which is skipped over by the
large step increment. Accordingly, the function calls to LSF
with Δβstep = 0.2 is slightly smaller (Ncalls = 678) than that
with Δβstep = 0.5 (Ncalls = 788). But with slightly wider criti-
cal region, the analysis accuracy (EBIS = 0.008%) with
Δβstep = 0.5 is obviously better than that (EBIS = 0.014%) with

Δβstep = 0.2. This clearly demonstrates the thumb of rules for
the settings of Δβstep in section 3.2.3.

To demonstrate the convergence capability of the proposed
method to the original BIS, continue the iterative process until
there is no more sample added to the critical region, i.e., the
unimportant region shrinks to zero. For the case of Δβstep =
0.2, the iterative analysis results are shown in Fig. 12. In total,
it takes 32 iterations to finally converge to the original BIS,
which demonstrates the capability of the proposed BIS-FC to
infinitely approach till final convergence to the BIS result.

4.4 Example 4

To further study the effectiveness of BIS-FC under different
LSF nonlinearity and reliability level conditions, the

Fig. 10 (a) The critical region definition and (b) the iterative process in Example 3 (Δβstep = 0.5)

Table 7 The reliability analysis results with different step increment
settings in Example 3

Δβstep k Ncalls R̂ EBIS

0.2 8 678 0.99174 0.014%

0.5 4 788 0.99168 0.008%

Table 8 The iteration process of the proposed BIS-FC method in
Example 3

Δβstep Iteration ΔN kð Þ
C R̂

kð Þ
E kð Þ
BIS

0.5 1 270 0.99310 0.140%

2 218 0.99205 0.038%

3 162 0.99178 0.010%

4 138 0.99168 0.008%

0.2 1 142 0.99414 0.250%

2 103 0.99347 0.180%

3 87 0.99283 0.012%

4 83 0.99243 0.079%

5 81 0.99205 0.041%

6 71 0.99193 0.029%

7 57 0.99180 0.016%

8 54 0.99174 0.014%
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following four two-dimensional concave problems are
discussed.

G1 ¼ u2− u21 þ 0:5
� �

G2 ¼ u2− u21 þ 3
� �

G3 ¼ u2− u21=7þ 0:5
� �

G4 ¼ u2− u21=7þ 3
� � ð47Þ

where u1 and u2 are independent standard normal variables.
For each LSF Gi (i = 1,⋯, 4), the failure region is defined as
Gi > 0. G1 and G2 are a group with the same LSF nonlinear
level but different reliability indexes at MPP, which are 0.5
and 3 respectively. G3 and G4 are a group with the same LSF
nonlinear level which is much flatter than the first group. Set
Δβ0 =Δβstep = 0.2, the stopping criterion of the estimation
error tolerance as γE = 0.001, and the convergence tolerance
as γε = 0.00001. The analysis results obtained by BIS-FC,

FORM and MCS (the sample size is 107) for the four LSFs
are shown in Table 9 and Fig. 13.

First, discuss the results of BIS-FC. It can be observed

that, with the same reliability index of β̂ ¼ 0:5, G1 with
higher nonlinear level needs more iterations and function
calls to LSF analysis than those of G3. The same compar-
ison can be observed between G2 and G4. This clearly
indicates that larger nonlinearity leads to the sacrifice of
efficiency of BIS-FC compared to the “flat” LSF situa-
tion. With the same nonlinearity level, G1 and G3 with

larger failure probability (β̂ ¼ 0:5 ) need more iterations
and function calls to LSF analysis than those of G2 and

G4 with smaller failure probability (β̂ ¼ 3 ). The compu-
tational cost saved by BIS-FC compared to BIS is 65%
for G1 and 70% for G3, which is lower than the ratio 89%

for G2 and 93% for G4. This demonstrates that when β̂ is
large, the need for Δβ(k) is less demanding. Thus BIS-FC
can be very efficient for both highly nonlinear and flat
LSFs under this circumstance. If the reliability index of
MPP is small and the LSF is highly nonlinear, the effi-
ciency of BIS-FC will be reduced. However, compared to
the original BIS method, the advantage of efficiency is
still significant. The preceding results conform to the
analysis in section 3.2.3.

Second, compare the results between BIS-FC and FORM.
It is obvious that FORM is very efficient with much less func-
tion calls to the LSF analysis. In the situations of extremely

small failure probability (β̂ ¼ 3 ), FORM can achieve very
good accuracy for both the flat and high nonlinear problems,
i.e., G2 and G4. It is because the misclassified region due to
the nonlinearity is far from the origin and has small probability
mass. However, FORM has large estimation error due to the
LSF nonlinearity when the failure probability is large. For the

situation β̂ ¼ 0:5, the relative error compared toMCS is up to

Fig. 11 (a) The critical region definition and (b) the iterative process in Example 3 (Δβstep = 0.2)

Fig. 12 The iteration process of BIS-FC until final convergence to the
original BIS in Example 3
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17.9%. Compared to FORM, the proposed BIS-FC method
can greatly enhance the analysis accuracy by only adding a
modest extra computational cost. The samples in the critical
region, which have both large occurrence probability and high
risk of misclassification, are analyzed with LSF. Thus a good
balance between the accuracy and efficiency can be achieved.
For both flat and high nonlinear LSF, in the situations with
either small or large failure probability, BIS-FC can robustly
obtain good estimation accuracy.

4.5 Example 5

A roof truss case from (Keshtegar and Hao 2018; Yun et al.
2018) is studied to verify the proposed BIS-FC. As shown in
Fig. 14, the perpendicular deflectionΔc at the node C should
be smaller than a threshold ζ, and the six-dimensional LSF is:

g ¼ ζ−
ql2

2

� �
3:81

ACEC
þ 1:13

ASES

� �
ð48Þ

Table 9 The reliability analysis results of different methods in Example 4

LSF β̂ BIS-FC FORM BIS MCS

k Ncalls R̂ EBIS Ncalls R̂ EMCS Ncalls R̂ R̂

G1 0.5 14 3158 0.84194 0.019% 9 0.6915 17.9% 8964 0.84210 0.84210

G2 3.0 4 206 0.99949 0.003% 6 0.9987 0.008% 1932 0.99952 0.99952

G3 0.5 6 2643 0.73557 0.010% 6 0.6915 5.98% 8921 0.73550 0.73540

G4 3.0 2 72 0.99906 0.006% 6 0.9987 0.004% 1035 0.99900 0.99900

Fig. 13 The critical region definition for (a) G1, (b) G2, (c) G3, and (d) G4 in Example 4
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where l is the distance between node A and B, AC and AS are
the cross-sectional areas of reinforced concrete and steel bars
respectively, and EC and ES are the elastic modulus of the
corresponding materials. The random input variables are in-
dependent, and the distribution models are listed in Table 10.
The failure region is defined as g < 0.

Set the threshold ζ of the node deflection as 0.03 and 0.025
respectively, so as to check the validity of the proposed meth-
od in the situations with small and extremely small failure
probability. Conduct reliability analysis with the crude MCS,
FORM, BIS, the modified important sampling method (M-
ISM) from Ref. (Yun et al. 2018), and BIS-FC for the two
threshold settings, and the results are listed in Tables 11 and
12 respectively. For the crude MCS, 108 samples are used for
accuracy, and the analysis results are used as benchmark for
comparison. The HL-RF method is used for MPP identifica-

tion. The reliability index at MPP is β̂ ¼ 3:4 for ζ = 0.03 and

β̂ ¼ 2:39 for ζ = 0.025. As in both settings, the failure proba-
bility obtained by FORM is smaller than MCS, LSF is prob-
abilistic convex near MPP. Then in BIS-FC, the hyperplane

for defining the critical region in the kth iteration should be

generated by β̂−Δβk. Set the reliability estimation error toler-
ance as γE = 0.001 and the convergence tolerance as γε =
0.00001. Three different step width settings are used for com-

parison. As the reliability approaches to one when β̂ ¼ 3:4,

the failure probability P̂ f ¼ 1−R̂ is used for clear demonstra-
tion in this example.

For both ζ = 0.03 and ζ = 0.025, the estimation errors of
FORM compared to MCS are very large and up to over
30% due to the nonlinearity. BIS can achieve very small esti-
mation error (1.07% and 0.08%) with much less samples
(19,169 and 6442), which is much more efficient than crude
MCS. The proposed BIS-FC method can further significantly
reduce the sample number (by over 95% for ζ = 0.03 and over
80% for ζ = 0.025) compared to BIS, and meanwhile, control
the estimation error within 0.5% compared to BIS and around
1% compared to MCS. Thus the effectiveness of the proposed
method is verified in good balance of estimation accuracy and
efficiency.

The M-ISM method from Ref. (Yun et al. 2018) is also
used for comparison. As introduced in section 1, M-ISM can
enhance sampling efficiency by only analyzing the samples
near MPP and outside the β-sphere which have higher con-
tributive weights measured by the sample occurrence proba-
bility (as illustrated in Fig. 1). In Table 11 it shows thatM-ISM
can achieve good accuracy (EBIS = 1.40% and EMCS = 2.45%)
with only 1233 samples, which is very efficient. However,
when the sample number is increased to 4778, there is very
limited accuracy improvement as EBIS = 0.93% and EMCS =
1.99%. For the proposed BIS-FC, with the gradually increased

Fig. 14 The roof truss example (Keshtegar and Hao 2018; Yun et al.
2018)

Table 10 The probabilistic
models of the random variables
for Example 5

Variable q(N/
m)

l(m) AS(m
2) AC(m

2) ES(N/m
2) EC(N/

m2)

Mean value 20,000 12 9.82 × 10−4 0.04 1.2 × 1011 3 × 1010

Standard deviation 1600 0.24 5.89 × 10−5 0.008 8.4 × 109 2.4 × 109

Table 11 The reliability analysis results of different methods in Example 5 (ζ = 0.03)

Methods Δβstep ka Ncalls P̂ f EBIS EMCS

Crude MCS – – 108 4.9850×10−4 – –

FORM – – 17 3.2481×10−4 – 34.84%

BIS – – 19,169 4.9318×10−4 – 1.07%

M-ISMb – – 1233 4.8630×10−4 1.40% 2.45%

– – 4778 4.8860×10−4 0.93% 1.99%

BIS-FC 0.1 6 17 + 483 4.8157×10−4 2.35% 3.40%

0.2 4 17 + 724 4.8571×10−4 1.51% 2.57%

0.3 3 17 + 905 4.9246×10−4 0.15% 1.21%

a The total iteration number after reaching the stopping criteria
b The accuracy level for stopping condition is Cr = 2%. The results are from Ref. (Yun et al. 2018)

An improved reliability analysis approach based on combined FORM and Beta-spherical importance sampling in... 53



critical region and slightly increased sample number (from
483 to 905), the accuracy can be effectively improved by
reducing EBIS from 2.35% to 0.15% and reducing EMCS from
3.40% to 1.21%. In Table 12, M-ISM can achieve good accu-
racy (EBIS = 2.38% and EMCS = 2.46%) with the sample size as
small as 707. However, when the sample size is gradually
increased to 1505, 2974, and 5911, there is no accuracy im-
provement. For BIS-FC, with the gradually increased critical
region and slightly increased sample number (from 539 to
1002), the accuracy can be effectively improved by reducing
EBIS from 2.30% to 0.32% and reducing EMCS from 2.38% to
0.40%. Thus in this example, it shows that M-ISM can
achieve good accuracy with greatly reduced sampling cost.
However, M-ISM may fail to effectively improve the analysis
accuracy by increasing the sample number with LSF analysis
because the sample selection is based on the sample contrib-
utive weight which is measured only by the sample occur-
rence probability. However, for the proposed BIS-FC, with
the step-by-step increase of the critical region, the samples
with both large occurrence probability and high risk of

misclassification due to the linearization assumption of
FORM are analyzed sequentially. Thus BIS-FC can effective-
ly enhance the analysis accuracy with a good balance of com-
putational cost.

By comparing the BIS-FC results obtained with the three
different step increment settings, the similar trends as shown
in Example 3 can be observed as well. For the same problem,
smaller step increment means more iteration number; but the
capability to finely adjust the critical region is better. With
larger final critical region width, which means more samples
need LSF analysis, better accuracy can be achieved. In
Table 12, for Δβstep = 0.2 and Δβstep = 0.3, the final critical
region widths are the same. Thus similar numbers of LSF calls
and analysis results are obtained with small fluctuation due to
randomness. Compare the sample numbers of BIS-FC for the
two different thresholds 0.03 and 0.025. It can be observed
that as the reliability index for ζ = 0.03 is larger than that for
ζ = 0.025, less samples are needed for LSF analysis. It con-
forms to the analysis in section 3.2.3 that with larger reliability

index β̂ smaller critical region is needed even in the nonlinear
situation.

4.6 Example 6

In this example, a multiple-MPP problem is studied to verify
the proposed BIS-FC method. The LSF is defined as

G ¼ min G1;G2ð Þ
G1 ¼ u2−0:1⋅u21 þ 2:7
G2 ¼ u1 þ 0:3⋅u22 þ 3

�
ð49Þ

Table 12 The reliability analysis results of different methods in Example 5 (ζ = 0.025)

Methods Δβstep k Ncalls P̂ f EBIS EMCS

Crude MCS – – 108 0.01260 – –

FORM – – 11 0.00842 – 33.18%

BIS – – 6442 0.01261 – 0.08%

M-ISMa – – 707/1505/2974/5911b 0.01230 2.38% 2.46%

BIS-FC 0.1 8 11 + 539 0.01290 2.30% 2.38%

0.2 6 11 + 1038 0.01268 0.56% 0.63%

0.3 4 11 + 1002 0.01265 0.32% 0.40%

a The accuracy level for stopping condition is Cr = 2%. The results are from Ref. (Yun et al. 2018)
b The reliability analysis results are the same with the four different sample sizes

Fig. 15 The critical region definition for multiple-MPP situation in
Example 6

Table 13 The reliability analysis results of different methods in
Example 6

Methods Ncalls R̂ EBIS EMCS

Crude MCS 106 0.994080 – –

BIS 2069 0.994085 – 0.00005%

BIS-FC 320 0.994110 0.0025% 0.0030%
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where u1 and u2 are independent standard normal variables.
The failure region is defined as G < 0.

As shown in Fig. 15, the LSF (the blue dashed line) has two
MPPs. LSF is probabilistic concave atMPP1 and probabilistic
convex at MPP2. Set Δβ0 =Δβstep = 0.2, and the stopping
criteria as γE = 0.001 and γε = 0.0001. The convergence is
achieved after three iterations. With the critical region defini-
tion for multiple MPP situation developed in section 3.1.2, the
final critical region is obtained with the two tangent lines (the
solid red lines) at the twoMPPs and their parallel lines (the red
dashed lines) respectively. The BIS samples are labeled as
black dots, only a small portion of which are located in the
critical region (labeled as blue stars) and analyzed with LSF.
The rest of the BIS samples are identified as assured failure or
safe, unimportant failure or safe, directly according to the
algorithm developed in section 3.2.1, based on which reliabil-
ity can be calculated. The results are compared with the crude
MCS and BIS, which are listed in Table 13. And the iteration
process is listed in Table 14. The results show that BIS-FC can
effectively enhance the computational efficiency of BIS by
reducing Ncalls from 2069 to 320. Meanwhile, the analysis
accuracy can be maintained with very small estimation error

(EBIS = 0.0025%). This example demonstrates the applicabili-
ty of BIS-FC in solving multiple-MPP problems, and the ef-
ficiency and accuracy are also verified.

4.7 Example 7

In this example, a practical engineering problem is studied.
The reliability constraint is that the minimal first-order fre-
quency of the frame structure of the micro satellite TT-3,
which was launched in 2015 (Li et al. 2017), should be no
smaller than the threshold, and the LSF is defined as:

g ¼ F ρ; e1; e2ð Þ−78:2 ð50Þ
where e1 and e2 denote the Young’s modulus of aluminum and
steel respectively, and ρ represents the density of aluminum. F
is the system response of first-order frequency, which is cal-
culated by finite element analysis (FEA) with the software
ABAQUS (Fig. 16). The three input variables are independent
random with the probabilistic models in Table 15. As five
minutes are needed for one single FEA simulation, the com-
putational burden of the crude MCS cannot be afforded. Thus

Fig. 16 The FEA model of the
TT-3 frame structure with
ABAQUS

Table 15 The probabilistic models of the random variables in
Example 7

Random variables Mean Standard deviation Distribution type

ρ(g/cm3) 2.69 0.09 Normal

e1(GP) 68.9 2.398 Normal

e2(GP) 200 6.778 Normal

Table 14 The iteration process of the proposed BIS-FC method in
Example 6

k ΔN kð Þ
C R̂

kð Þ
E kð Þ
BIS

1 156 0.99443 0.0350%

2 90 0.99417 0.0087%

3 74 0.99411 0.0025%
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only FORM and the original BIS are used for reliability anal-
ysis and comparison. The MPP is searched based on the HL-
RF algorithm with 52 function calls. It is worth noting that
there are two symmetrical MPPs with the same reliability
index 2.72 and the LSF is probabilistic concave at both
MPPs. Set Δβ0 =Δβstep = 0.2, and the stopping criteria as
γE = 0.001 and γε = 0.0001. The results are shown in Table 16.

As shown in Fig. 17, the convergence is achieved after four
iterations, and the final critical region is defined with green
hyperplanes, wherein the samples are labeled as red circles.
Compared to the original BIS, only 301 samples out of the
original 3147 BIS samples are analyzed with LSF, which can
significantly reduce the computational cost by 89%.
Meanwhile, the relative error compared to the original BIS is
only 0.003%. Thus the efficiency and accuracy of the pro-
posed method is well verified in this practical engineering
application example.

5 Conclusion

In this paper, an improved reliability analysis approach BIS-
FC is proposed for both single and multiple MPP situations
based on the β-spherical importance sampling (BIS) frame-
work with the innovative concept of critical region by combi-
nation with FORM. Unlike the traditional BIS which simply

samples the area outside the β-sphere and the modified IS
algorithms which improve the efficiency by only analyzing
samples with large contributive weights measured by the sam-
ple occurrence probability, the proposed method identifies the
critical region which contains samples with both high occur-
rence probability and high misjudgment risk due to the line-
arization assumption of FORM. According to the concave or
convex features of the nonlinear LSF at the MPP, the critical
region can be defined by the hyper-tangent plane of LSF at the
MPP and its parallel hyperplanes in the specified direction.
For multiple-MPP situation, the critical region definition can
be directly applied to each MPP and the total critical region
can be easily obtained. This definition can effectively cover
samples near MPP which have high risk of misjudgment due
to the LSF nonlinearity as the hyperplanes move along the
LSF gradient direction. Since the MPP can be conveniently
obtained with the existing well-developed FORM methods
and the gradient information is just the byproduct, the pro-
posed critical region can be easily constructed without com-
plex computation. Thus the proposed BIS-FC has the great
advantage of easy implementation.

As BIS-FC needs only conduct LSF analysis for samples in
the critical region, it can greatly reduce the computational cost
compared to the original BIS. Meanwhile, the analysis accu-
racy can be greatly enhanced compared to FORM by analyz-
ing samples which are of highmisclassification risk nearMPP.
With the iterative process to gradually enlarge the critical re-
gion and improve the estimation accuracy, a good balance of
accuracy and efficiency can be obtained. The estimation error
level can be controlled by setting the stopping condition of the
error tolerance, and BIS-FC can infinitely approach until the
final convergence to the original BIS, which guarantees the
capability of BIS-FC regarding accuracy convergence. Thus
iterative process can be flexibly controlled according to the
user’s preference and the computational resources available.

Fig. 17 The (a) critical region definition and (b) iterative process of Example 7

Table 16 The reliability analysis results of different methods in
Example 7

Method Ncalls R̂ EBIS

FORM 52 0.99350 0.385%

BIS 52 + 3147 0.99734 –

BIS-FC 52 + 301 0.99732 0.003%

56 W. Yao et al.



The effectiveness of the proposed method is testified with six
numerical examples (including convex and concave, single
and multiple MPP situations) and one practical engineering
application example, and the efficiency and accuracy of BIS-
FC are verified. The comparison with the existing methods, as
well as the algorithm parameters and LSF nonlinearity effects
on the estimation are also comprehensively discussed. As an-
alyzed in section 3.2 and empirically studied in the examples,
BIS-FC may sacrifice its efficiency when the LSF is highly
nonlinear and the reliability index of MPP is small, which still
needs further study in the future.
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