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Abstract
Compared with the interval model, the ellipsoidal convex model can describe the correlation of the uncertain parameters through
a multidimensional ellipsoid, and whereby excludes extreme combination of uncertain parameters and avoids over-conservative
designs. In this paper, we attempt to propose an efficient multi-objective optimization method for uncertain structures based on
ellipsoidal convex model. Firstly, each uncertain objective function is transformed into deterministic optimization problem by
using nonlinear interval number programming (NINP) method and a possibility degree of interval number is applied to deal with
the uncertain constraints. The penalty function method is suggested to transform the uncertain optimization problem into
deterministic non-constrained optimization problem. Secondly, the approximation model based on radial basis function (RBF)
is applied to improve computational efficiency. For ensuring the accuracy of the approximation models, a local-densifying
approximation technique is suggested. Then, the micro multi-objective genetic algorithm (μMOGA) is used to optimize design
parameters in the outer loop and the intergeneration projection genetic algorithm (IP-GA) is used to treat uncertain vector in the
inner loop. Finally, two numerical examples and an engineering example are investigated to demonstrate the effectiveness of the
present method.

Keywords Uncertainty structures . Multi-objective optimization . Ellipsoidal convex model . Local-densifying approximation
technique

1 Introduction

Uncertainties of material properties, manufacturing errors,
and bound conditions are often involved in engineering
structure optimization problems; however, these uncertain
parameters are treated as deterministic parameters in tradi-
tional optimization problems (Lagaros et al. 2005; Liu
et al. 2008; Lin et al. 2010; Xia et al. 2018), which will
induce non-economical structural design. Therefore, the
effective uncertain optimization methods should be devel-
oped for uncertain structure optimization problems. In

order to deal with uncertain optimization problems, the
probability model (Rackwitz and Fiessler 1978; Liang
et al. 2007; Tsai et al. 2013; Bobby et al. 2017) is applied
to describe the uncertainty of the parameters. In this model,
the uncertainty is described by random parameter for
which the probability distribution should be known.
Unfortunately, it is difficult to get accurate probability dis-
tribution in actual engineering problem. Furthermore, the
probability distribution is very sensitive to the optimization
results. The literature (Ben-Haim and Elishakoff 1990) has
shown that even small deviations of probability distribu-
tions of the uncertain parameters may cause large errors of
the computational results.

Although the precise probability distribution is difficult
to be obtained, a small quantity of information on the un-
certain parameters could be confirmed according to the
practical engineering experiences. To remedy the deficien-
cies of the traditional probability method, therefore, non-
probability convex model (Ben-Haim 1994; Adduri and
Penmetsa 2007; Jiang et al. 2011) has been well-
developed based on the limited knowledge of the uncertain
parameters. The frequently used convex models are the
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interval model and the ellipsoidal convex model. In the
interval model, the fluctuation of the uncertain parameter
is expressed by an interval (Qiu and Elishakoff 1998; Du
2007; Jiang et al. 2008a). Furthermore, uncertain parame-
ters vary independently and may reach their extreme values
simultaneously, which would induce an over-conservative
description of the system variability. Comparing to the in-
terval model, the ellipsoidal convex model can describe the
correlation of the uncertain parameters through a multidi-
mensional ellipsoid (Luo et al. 2009; Liu and Zhang 2014),
which excludes extreme combination of uncertain parame-
ters and avoids over-conservative designs. Thus, the uncer-
tain optimization method based on the ellipsoidal convex
model seems more significant in practical engineering ap-
plication (Kang and Luo 2010).

Simultaneously, many uncertain optimization problems
involve more than one objective, which are treated as un-
certain multi-objective optimization (U-MOO) problems.
On the best knowledge of the authors, Stancu-Minasian
(Stancu-Minasian 1984) seems the first attempt to study
the stochastic multi-objective programming problem
which opens the door for U-MOO research. Kaushik
(Kaushik 2007) presented a methodology for reliability-
based multi-objective optimization of large-scale engineer-
ing systems based on two first-order reliability method. Liu
et al. (Liu et al. 2017) proposed a multi-objective optimi-
zation method based on interval model to obtain the Pareto
optimal set (Deb 2001) of the uncertain multi-objective
optimization problems; however, these works all focus on
the U-MOO problem containing the independent uncertain
parameters, namely, not considering the correlation of the
uncertain parameters. Yet in practice, engineering prob-
lems often present correlations between uncertain parame-
ters, hence the interest of exploring the ellipsoidal convex
model in the context of U-MOO.

It should be noted that the uncertain multi-objective op-
timization method based on the ellipsoidal convex model
generally belong to the two-loop nesting optimization
problem. Furthermore, the objective and constraint func-
tions do not have straightforward mathematical expres-
sions in many engineering problems. They are treated as
black-box functions (i.e., complex finite element models)
whose evaluation is very time-consuming. When such
models are involved, it will lead to extremely low efficien-
cy and influence the practicability of the uncertain multi-
objective optimization method. For this reason, the approx-
imation techniques (Queipo et al. 2005) have been widely
applied to alleviate the computational burden, based on
which the approximation value of the objective and con-
straint functions could be obtained quickly. Among
existing approximation techniques, polynomial (Jin et al.
2001), radial basis function (RBF) (Fang et al. 2005), and
Kriging (Simpson et al. 2001; Hawchar et al. 2018;

Dubourg et al. 2011) are the most widely used and a series
of prominent work in this filed has been carried out and
reported. Simultaneously, in order to improve the accuracy
of approximation model and the computational efficiency,
Li et al. (Li et al. 2013) developed an adaptive Kriging
approximation model to achieve the interval-based uncer-
tain multi-objective optimization. Zhao et al. (Zhao et al.
2010) proposed a local-densifying approximation tech-
nique to improve the efficiency of uncertain optimization.
The results show that the local-densifying approximation
technique can procure a higher accuracy of the approxi-
mate model with fewer sample points. Hence, to push the
U-MOO method based on ellipsoidal convex model into
practical applications, its computational efficiency and cor-
responding efficient algorithms with approximation tech-
nique should be both developed.

This paper aims to develop an efficient multi-objective
optimization method based on the ellipsoidal convex mod-
el. In the following contents, four sections are included.
The uncertain multi-objective optimization problem based
on ellipsoidal convex model is introduced in Section 2. In
Section 3, the solutions of the uncertain multi-objective
optimization method are proposed and the local-
densifying approximation technique is presented in order
to improve computation efficiency. Three numerical exam-
ples are investigated to demonstrate the effectiveness of the
present method in Section 4. Finally, some conclusions are
summarized in Section 5.

2 Statement of the problem

Generally, a multi-objective problem is described as follows:

Subject to min
X

f i Xð Þ; ⋅i ¼ 1; 2; :::; s gk Xð Þ≤vk ; ⋅k

¼ 1; 2; :::;mX∈Ωn
X ð1Þ

where X is an n-dimension design vector. f and g stand for the
objective function and constraint function with the total num-
ber of s and m, respectively. vk represents an allowable value
of the kth constraint. In the process of solving above multi-
objective problem, there often exists a set of optimal solutions,
no solutions fromwhich can be said to be better than any other
without any further information. This set is known as the non-
dominated set or the Pareto optimal set and its corresponding
tradeoff in objective space is known as the Pareto optimal
frontier which are made up of the Pareto optimal points
(Deb 2001).

When the objective function fi and constraint gk contain
correlated uncertain variables, the ellipsoidal convex model
could be used to describe the variables and the corresponding
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uncertain multi-objective optimization problem can be
expressed as follows:

min
X

f i X ;Uð Þ; ⋅i ¼ 1; 2; :::; s Subject togk X ;Uð Þ≤vIk
¼ vlok ; v

up
k

� �
; ⋅k ¼ 1; 2; :::;mX∈Ωn

X; ⋅U∈Ω
p
U

¼ Uj U−Ucð ÞTGU U−Ucð Þ≤ε2
n o

U

¼ U 1;U 2; :::;Up
� �

; ⋅Uq∈UI
q ¼ Ulo

q ;U
up
q

h i
; ⋅q

¼ 1; 2; :::; p ð2Þ

where U is a p-dimension uncertain vector which is re-
stricted within the multi-ellipsoid Ωp

U. It is noted that for
each single uncertain variable Uq which is called the mar-
ginal interval variable in this paper, its possible values will

constitute an interval denoted by UI
q ¼ Ulo

q ;U
up
q

h i
whose

superscripts I, lo, and up denote interval, lower, and upper
bounds of interval, respectively. GU represents the charac-
teristic matrix of the multi-ellipsoid convex model, which
is a real positive-definite symmetric matrix. Uc denotes the
center point of the ellipsoid. vIk represents allowable inter-
val that can be defined by the engineering requirement.
Considering the fluctuation of uncertain vector U, the tra-
ditional optimization methods have limitations to solve
such uncertain optimization problems. In the following
sections, an uncertain multi-objective optimization method
based on ellipsoidal convex model will be suggested to
solve the above problem.

3 An efficient uncertain multi-objective
optimization method based on ellipsoidal
convex model

3.1 Treatments of the uncertain objective functions

Because of the existence of the uncertain vector U, for
each specific X, the possible values of the objective func-
tion or a constraint will form an interval instead of a real
number. According to nonlinear interval number program-
ming (NINP) method (Jiang et al. 2008b), hence, the or-
der relation ≤mw is applied to compare the interval of
objective function, which is used to qualitatively deter-
mine whether an interval is better than another interval.
It should be noted that the order relation A≤mwB implies
that the interval number B is better than A but not that B is
larger than A, namely, the interval B is better than A only
if the midpoint and radius of B are both smaller than A.
By using this order relation ≤mw, the midpoint and radius
value of the interval are chosen as the objective function.
Therefore, the objective function fi in Eq. (2) can be

transformed into deterministic optimization problem as
follows:

min
X

c f i X;Uð Þð Þ;w f i X;Uð Þð Þð Þ ð3Þ

where.

c f i X;Uð Þð Þ ¼ 1

2
f loi Xð Þ þ f upi Xð Þ� �

w f i X;Uð Þð Þ ¼ 1

2
f loi Xð Þ− f upi Xð Þ� �

i ¼ 1; 2; :::; s
where c and w are the midpoint and radius value of the

interval. f loi Xð Þ and f upi Xð Þ are used to describe the bounds

of the objective function fi. The bounds f
lo
i Xð Þ and f upi Xð Þ in

Eq. (3) can be calculated as follows:

f loi Xð Þ ¼ min
U

f i X;Uð Þ; ⋅ f upi Xð Þ ¼ max
U

f i X;Uð Þ i

¼ 1; 2; :::; s ð4Þ

where the vector X is considered as a constant and the
lower and upper bounds of the objective function fi can
be obtained.

In order to facilitate the calculation of Eq. (3), a linear
combination method is applied to transform Eq. (3) into as
follows:

min
X

f di Xð Þwhere f di Xð Þ
¼ 1−βið Þ c f i X;Uð Þð Þ þ γið Þ=ϕi

þ βi w f i X;Uð Þð Þ þ γið Þ=φii

¼ 1; 2; :::; s ð5Þ

where 0 ≤ βi ≤ 1 is a weighting factor which imply the deci-
sion makers’ preference. γi is a number to make c(fi(X,U)) +
γi and w(fi(X,U)) + γi non-negative. The parameters ϕi and φi

are two normalization factors, which could be calculated as
follows:

ϕi ¼ min
X

c f i X;Uð Þð Þ þ γið Þφi

¼ min
X

w f i X;Uð Þð Þ þ γið Þ: ð6Þ

In practical applications, the parameters γi, ϕi, and φi could
be chosen according to the same order of magnitude of each
individual objective function.

3.2 Treatments of the uncertain constraints

According to the interval mathematics (Jiang et al. 2008b;
Moore 1979), the possibility degree can be used to quanti-
tatively represent an extent that one interval is superior or
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inferior to another. For intervals AI and BI, there exist a total
of six possible positional relations as shown in Fig. 1 (Jiang

et al. 2008b), and based on these a possibility degree
P(AI ≤ BI) is constructed:

P AI ≤BI� � ¼

0 Alo≥Bup

0:5⋅
Bup−Alo

Aup−Alo ⋅
Bup−Alo

Bup−Blo Blo≤Alo < Bup≤Aup

Blo−Alo

Aup−Alo þ 0:5⋅
Bup−Blo

Aup−Alo Alo < Blo < Bup≤Aup

Blo−Alo

Aup−Alo þ
Aup−Blo

Aup−Alo ⋅
Bup−Aup

Bup−Blo þ 0:5⋅
Aup−Blo

Aup−Alo ⋅
Aup−Blo

Bup−Blo Alo < Blo≤Aup < Bup

Bup−Aup

Bup−Blo þ 0:5⋅
Aup−Alo

Bup−Blo Blo≤Alo < Aup < Bup

1 Aup < Blo

∂

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð7Þ

Here, intervals AI and BI are treated as random variables ~A
and ~B with uniform distributions, and the probability for ran-

dom variable ~A smaller than ~B is regarded as P(AI ≤ BI). In Eq.
(7), P(AI ≤ BI) = 0 or 1 means that interval AI is absolutely
larger or smaller than BI.

In this section, the possibility degree is applied to deal with
the uncertain constraints. Based on the possibility degree, the
constraints in Eq. (2) could be expressed as:

P gIk X;Uð Þ≤vIk
� �

≥λk

where gIk X;Uð Þ ¼ glok Xð Þ; gupk Xð Þ� �
; vIk ¼ vlok ; v

up
k

� �
k ¼ 1; 2; :::;m

ð8Þ

where the possibility degree P gIk X;Uð Þ≤vIk
� �

means the in-

terval gIk X;Uð Þ is smaller than the given interval vIk . λk is a
predetermined possibility degree level of the kth constraint
and the value of possibility degree P gIk X;Uð Þ≤vIk

� �
must be

larger than λk. The bounds glok Xð Þ and gupk Xð Þ can be calcu-
lated as follows:

glok Xð Þ ¼ min
U

gk X;Uð Þ gupk Xð Þ ¼ max
U

gk X;Uð Þ ð9Þ

Through Eq. (9), the uncertain vector U is eliminated, and
the transformed constraints Eq. (8) become deterministic. λk
can be adjusted to control the feasible field of X.

3.3 Deterministic optimization problem

In order to transform the above Eq. (2) into deterministic non-
constrained optimization problem, the penalty function meth-
od is applied for the constrains. Thus, a multi-objective and
non-constraint deterministic optimization problem can be fi-
nally formulated as follows:

min
X

f pi Xð Þ; i ¼ 1; 2; :::; s ð10Þ

where

f pi Xð Þ ¼ f di Xð Þ þ σi ∑
m

k¼1
μ P gIk X;Uð Þ≤vIk

� �
−λk

� �þ ψ

� �
¼ 1−βið Þ c f i X;Uð Þð Þ þ γið Þ=ϕi þ βi w f i X;Uð Þð Þ þ γið Þ=φi

þ σi ∑
m

k¼1
μ P gIk X;Uð Þ≤vIk

� �
−λk

� �þ ψ

� �

where f pi Xð Þ is penalty function and σi stands for the penalty
factor which is usually specified as a large value. μ and ψ can
be expressed as follows:

μ P gIk X;Uð Þ≤vIk
� �

−λk
� �
¼ max 0;− P gIk X;Uð Þ≤vIk

� �
−λk

� �� �� �2 ð11Þ

ψ ¼ max 0; U−Ucð ÞTGU U−Ucð Þ−ε2
� 	� 	� 	2

ð12Þ

According to the above mathematical transformation, the
primal U-MOO problem as Eq. (2) is converted into the non-
constraint deterministic optimization problem as Eq. (10);

AI
BI

Alo AupBlo Bup

AI
BI

Alo AupBlo Bup

Case 1 Case 2

AI

BI

Alo AupBlo Bup

AI
BI

Alo AupBlo Bup

Case 3 Case 4

AI

BI

Alo AupBlo Bup

AI
BI

Alo Aup Blo Bup

Case 5 Case 6

Fig. 1 Six positional relations between intervals A and B
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however, it belongs to the two-loop nesting optimization prob-
lem. When the simulation models are time-consuming in prac-
tical engineering application, the expensive computational cost
will be resulted. Hence, the approximate model technique will
be used to improve the optimization efficiency in this paper.

3.4 The construction of the approximation models

In this section, the local-densifying approximation technique
based on radial basis function (RBF) is used to solve the above
uncertain multi-objective optimization problem. In the optimi-
zation process, Latin Hypercube Design (Queipo et al. 2005)
is applied to obtain the initial samples of the design vector X
and uncertain vector U. Then, the RBF is applied to construct
the approximation models of the uncertain objective functions
and constraints. Thus, Eq. (2) can be transformed as follows:

min
X

~f i X;Uð Þ; i ¼ 1; 2; :::; s Subject to~gk X;Uð Þ≤vIk
¼ vlok ; v

up
k

� �
; k ¼ 1; 2; :::;mX∈Ωn

X; U∈Ωp
U

¼ Uj U−Ucð ÞTGU U−Ucð Þ≤ε2
n o

Uq∈UI
q

¼ Ulo
q ;U

up
q

h i
; q ¼ 1; 2; :::; p ð13Þ

where ~f i and ~gk are approximation models of the objective
function and the kth constraint, respectively. They are both
explicit functions with respect toX and U. Based on the inter-
val mathematics and penalty function method, Eq. (13) can be
transformed into the following optimization problem:

min
X

~f pi Xð Þ; i ¼ 1; 2; :::; s ð14Þ

where

~f pi Xð Þ ¼ ~f di Xð Þ þ σi ∑
k

�
¼ 1mμ P ~gIk X;Uð Þ≤vIk

� �
−λk

� �
þψÞ ¼ 1−βið Þ c ~f i X;Uð Þ� �þ γi

� �
=ϕi þ βi wð ~f i X;Uð Þ� �þ

γiÞ=φi þ σi ∑
m

k¼1
μ P ~gIk X;Uð Þ≤vIk

� �
−λk

� �þ ψ

� �
: F o r t h e

above approximation U-MOO problem, the bounds of objec-
tive functions and constraints are usually most concerned.
While the local-densifying method is an updating strategy of
samplingmethod focusing the limited sample resources on the
local regions we concerned, namely more samples are expect-
ed to be densified into the local regions where the minimal and
maximal responses of objective and constraints occur. If the
approximation model precision of local regions where the
bounds of objective functions and constraints could be guar-
anteed, the optimization results can be more reliable.
Therefore, the local-densifying approximation technique is
used to ensure the approximation models have small

approximate errors in the bounds. When the approximation
bounds of the objective function and constraints are obtained
in each iterative step, the RBF approximation models are re-
constructed using local densified samples for the next iteration
until the stopping criteria are reached.

3.5 Iterative mechanism

Because the above uncertain multi-objective optimization prob-
lem belongs to the two-loop nesting optimization problem, the
micro multi-objective genetic algorithm (μMOGA) (Liu et al.
2008) is used to optimize design vectorX in the outer loop and
the intergeneration projection genetic algorithm (IP-GA) (Liu
and Han 2003) is used to compute the bounds of the objective
functions and constraints in the inner loop. The flowchart of the
U-MOO method with local-densifying approximation tech-
nique is shown in Fig. 2 and the iterative process of the algo-
rithm can be considered as follows:

(1) Obtain the initial samples by Latin Hypercube Design
within the hybrid space Ω and calculating the response
values fi(X,U) and gk(X,U). Giving allowable error δ >
0 and making the iterative step a = 1.

Ω ¼ X;Uð Þ=Xlo≤X≤Xup; U−Ucð ÞTGU U−Ucð Þ≤ε2
n o

ð15Þ

(2) Construct the approximation model of objective func-
tions and constraints with the samples and obtaining
the approximate optimization problem as Eq. (14). The
micro multi-objective genetic algorithm and the inter-
generation projection genetic algorithm are used to solve
the approximate optimization problem as Eq. (14) and
obtain the Pareto optimal set of approximate penalty

functions ~f
að Þ
pi

X zð Þ� �n o
, z = 1, 2, ..., t, where ~f

að Þ
pi

X zð Þ� �
represents the zth Pareto solution of the Pareto optimal
set in step a.

According to the Pareto optimal set ~f
að Þ
pi

X zð Þ� �n o
, the re-

sponse interval of the objective functions

~f
lo
i X zð Þ� �

; ~f
up
i X zð Þ� �h i

and constraints ~glok X zð Þ� �
; ~gupk X zð Þ� �� �

can be obtained:

~f
lo

i X zð Þ
� 	

¼ ~f i X zð Þ;U zð Þ
~f
lo

i

 !
; ~f

up

i X zð Þ
� 	

¼ ~f i X zð Þ;U zð Þ
~f
up

i

 !

~g
lo

k X zð Þ
� 	

¼ ~gk X zð Þ;U zð Þ
~g
lo

k

 !
; ~g

up

k X zð Þ
� 	

¼ ~gk X zð Þ;U zð Þ
~g
up

k

 ! :

ð16Þ
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Thatmeans the approximate objective function and constraints
achieve the minimum and maximum at the combinations

X zð Þ;U zð Þ
~f
lo
i

� �
, X zð Þ;U zð Þ

~f
up
i

� 	
, X zð Þ;U zð Þ

~glok

� 	
, and X zð Þ;U zð Þ

~gupk

� 	
,

respectively.

(3) Based on the real model, computing the corresponding
interval f loi X zð Þ� �

; f upi X zð Þ� �� �
and glok X zð Þ� �

; gupk X zð Þ� �� �
at the

combinations X zð Þ;U zð Þ
~f
lo
i

� �
, X zð Þ;U zð Þ

~f
up
i

� 	
, X zð Þ;U zð Þ

~glok

� 	
, and

X zð Þ;U zð Þ
~gupk

� 	
, respectively.

f loi X zð Þ
� 	

¼ f i X zð Þ;U zð Þ
~f
lo

i

 !
; f upi X zð Þ

� 	
¼ f i X zð Þ;U zð Þ

~f
up

i

 !

glok X zð Þ
� 	

¼ gk X zð Þ;U zð Þ
~g
lo

k

 !
; gupk X zð Þ

� 	
¼ gk X zð Þ;U zð Þ

~g
up

k

 ! ð17Þ

Fig. 2 The flowchart of uncertain
multi-objective optimization
method with local-densifying
approximation technique

2194 X. Liu et al.



(4) Calculate the maximum error Δmax:

Δmax ¼ max Δzf g; z ¼ 1; 2; :::; t

Δz ¼ max

j f
lo
i X zð Þ� �

−~f
lo

i X zð Þ� �
f loi X zð Þ� � j; j f

up
i X zð Þ� �

−~f
up

i X zð Þ� �
f upi X zð Þ� � j;

j g
lo
k X zð Þ� �

−~g
lo

k X zð Þ� �
glok X zð Þ� � j; j g

up
k X zð Þ� �

−~g
up

k X zð Þ� �
gupk X zð Þ� �

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

ð18Þ

(5) If Δmax ≤ δ, then {X(z)} is selected as the final optimal
design vector and the iteration terminates. Otherwise,

X zð Þ;U zð Þ
~f
lo
i

� �
, X zð Þ;U zð Þ

~f
up
i

� 	
, X zð Þ;U zð Þ

~glok

� 	
, a n d

X zð Þ;U zð Þ
~gupk

� 	
will be added to the sample point space,

which is used to construct the new approximate models
of objective functions and constraints. Set a = a + 1 and
turn to step (2).
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Fig. 3 The optimization results of
different iterative steps (numerical
example 1)
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4 Numerical examples and discussion

In this section, two numerical examples and one engineering
example will be investigated. The computational efficiency
and optimization accuracy of the present method are tested
by the first two ones. In order to exhibit the applicability of
the algorithm to practical engineering problem, the present
method is also used to optimize occupant restraint system in
full vehicle frontal impact.

4.1 Numerical example 1

A numerical example with two objective functions and three
constraints is given as:

f 1 X;Uð Þ ¼ U 1 X 1 þ X 2−7:5ð Þ2 þ U 2
2 X 2−X 1 þ 3ð Þ2=4a

f 2 X;Uð Þ ¼ U3
1 X 1−1ð Þ2=4þ U2

2 X 2−4ð Þ2=2
Subject to g1 X;Uð Þ ¼ U1 X 1−2ð Þ=2þ U 2X 2−2:5≤ −1; 1½ �

g2 X;Uð Þ ¼ U1X 2 þ U2X 1−3:85≤ −1; 1½ �
g3 X;Uð Þ ¼ U1 X 1−0:6ð Þ=4þ U2X 2−0:3≤ 1; 3½ �

X ¼ X 1;X 2ð ÞT; 0≤X 1≤3; 0≤X 2≤3; U−Ucð ÞTGU U−Ucð Þ≤0:002
ð19Þ

where X is the design vector. U = (U1,U2)
T stands for the

uncertain vector whose intervals are denoted by:

U 1∈ 0:9; 1:1½ �;U 2∈ 0:9; 1:1½ � ð20Þ

Uc = (1.0, 1.0)T denotes the center point of the ellipsoid.

GU ¼ 1 0:29
0:29 1

� �
is the characteristic matrix to describe the

level of the uncertainty. In the optimization process, the pos-
sibility degrees of inequality constraints λ1, λ2, and λ3 are
both set to 0.6. The weighting factors β1 and β2 are both set
to 0.5. In principle, the parameter γi should make c(fi(X,U)) +
γi and w(fi(X,U)) + γi non-negative. The parameters ϕi and φi

should be calculated as Eq. (6). In practical applications, the

parameters γi, ϕi, and φi could be chosen according to the
same order of magnitude of each individual objective func-
tion. Therefore, the corresponding computation parameters
are set as listed in Table 2. For the inner IP-GA and outer
μMOGA, the population size are both set to 5.0. The proba-
bility of crossover are set to 0.5 and 0.6, respectively. The
maximum generations are both specified as 100. In the fol-
lowing text, the above problem will be analyzed based on
three cases.

4.1.1 The computational efficiency and optimization errors

In this case, the computational efficiency and optimization er-
rors of presented method are discussed. The number of initial
samples is 10, which are used to construct the approximation
models for the uncertain objectives and constraints. The num-
bers of samples in different iterative steps are listed in Table 1.
According to the optimization results of different iterative steps
as shown in Fig. 3, the Pareto optimal set of approximate pen-

alty functions ~f p1 and
~f p2 is far from the actual penalty function

f p1 and f p2 at the beginning steps. The maximal bound error of

the uncertain objective functions and constraints has reached
79.18%, which means the approximation models of the uncer-
tain objective functions and constraints are relatively coarse.
With increasing of the sampling points, the approximate pen-
alty functions are close to the actual penalty function. In step 3,
the maximal bound error of the uncertain objective functions
and constraints is equal to 1.76% which is less than allowable
error δ = 5%. It shows that the maximal bound error decreases
obviously with the increasing of the local-densifying samples
and the optimization results could achieve a high accuracy after
several iterative steps.
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Fig. 4 The optimization results based on different models

Fig. 5 Pareto optimal points under different possibility degree levels
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The comparison of the proposed method with the uncer-
tain multi-objective optimization method based on interval
model (Liu et al. 2017) is also illustrated in Fig. 4. When
using the ellipsoid convex model to describe the correlation
of the uncertain parameters, the range of penalty function 1
varies from 8.15 to 17.54 and penalty function 2 varies from
1.11 to 2.8; however, when using the interval model to de-
scribe the uncertainty of the parameters, the range of penalty
function 1 varies from 8.287 to 19.083 and penalty function
2 varies from 1.057 to 3.697. The results demonstrate that
the domain of Pareto optimal solutions obtained by ellipsoid
convex model is narrower than the domain obtained by in-
terval model. It is because the uncertain multi-objective op-
timization method in reference (Liu et al. 2017) uses the
interval model to describe the uncertainty of the parameters,
namely, uncertain parameters vary independently and may
reach their extreme values simultaneously, which would in-
duce an over-conservative description of the system variabil-
ity. In proposed method, the correlation of uncertain vari-
ables is fully considered through a multidimensional ellip-
soid. Comparing to the interval model, the ellipsoidal con-
vex model can describe the correlation of the uncertain pa-
rameters, which excludes extreme combination of uncertain
parameters and avoids over-conservative designs. Thus, the
uncertain optimization method based on the ellipsoidal

convex model seems more significant in practical engineer-
ing application.

4.1.2 The influence of different possibility degree levels

In order to analyze the influence of different possibility degree
levels, the possibility degree levels λ1, λ2, and λ3 are varied
between 0.2 and 1.0 in steps of 0.2. The other computation
parameters remain unchanged. The corresponding optimiza-
tion results under different possibility degree levels are illus-
trated in Fig. 5. It can be found that Pareto optimal set of the
penalty functions are divided into several levels with different
possibility degree levels. It is because that possibility degree
level stands for the strength of the constraint. With the possi-
bility degree levels increasing, the feasible field of Pareto op-
timal set will become smaller. The optimization results also
indicate that the design objective and possibility degrees of
the constraints are always contradictive. Thus, the possibility
degree levels of the constraints should be regulated according
to actual engineering problems.

4.1.3 The influence of different penalty parameters

In order to analyze the influence of different penalty pa-
rameters, the penalty factors σ1 and σ2 are both set to 106

a b

Fig. 6 The optimization results in
step 3 (penalty factors )

a b

Fig. 7 The optimization results in
step 3 (penalty factors )
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and 108. The other computation parameters remain un-
changed. The corresponding optimization results of the
third iterative step under different penalty factors are il-
lustrated in Figs. 6 and 7. When the penalty factors σ1 and
σ2 are both set to 106 and 108, the maximal bound error of
the uncertain objective functions and constraints have
reached 28.41% and 61.77% in step 3, respectively. It also
indicates that the approximation models of the uncertain
objective functions and constraints are relatively coarse
and three iterative steps cannot guarantee the desired ac-
curacy of the optimization results. When the penalty fac-
tors σ1 and σ2 are both set to 107, however, the maximal
bound error of the uncertain objective functions and con-
straints is 1.76% in step 3 as shown in Fig. 3, which
demonstrate that the approximation models are close to
the actual numerical models and the optimization result
is also consistent with the accuracy requirement.
According to the above computational results, it can be
found that the selection of penalty factors will directly
affect the superiority and inferiority of the optimization
results. An appropriate penalty factor will be helpful to
solve the optimization problem.

4.2 Numerical example 2

Then the benchmark problem of the cantilever as shown in
Fig. 8 is considered which is modified from the numerical
example in reference (Du 2007). The maximum von Misses
stress σmax and the cantilever tube volume Vare considered as
objective functions. The four parameters t, θ1, θ2, and L2 are
treated as design variables. The external forces F1, F2, and P,
torsion T, length L1, and diameter d are treated as the uncertain
variables, whose correlation is described through a multidi-
mensional ellipsoid GQ. The area A, bending moment M,
and moment of inertia I are limited in the allowable
intervals, respectively. Therefore, the uncertain multi-
objective optimization problem of cantilever tube can be for-
mulated as follows:

σmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P þ F1sinθ1 þ F2sinθ2

A
þ Md

2I

� �2

þ 3
Td
4I

� �2
s

V ¼
π d2− d−2tð Þ2
h i

4
⋅L1

Subject to

A ¼ π

4
d2− d−2tð Þ2
h i

≤ 800; 1000½ �
I ¼ π

64
d4− d−2tð Þ4
h i

≤ 1:1� 105; 1:2� 105
� �

M ¼ F1L1cosθ1 þ F2L2cosθ2≤ 5:5� 105; 6� 105
� �

5:0mm≤ t≤8:0mm; 0≤θ1≤10∘; 2∘ ≤θ2≤15∘; 50mm≤L2≤70mm
Q−Qcð ÞTGQ Q−Qcð Þ≤1:5� 105

ð21Þ
where Q = (F1, F2, T, P, L1, d)

T stands for the uncertain vector
whose intervals are denoted by:

F1∈ 3000N; 3050N½ �; F2∈ 3000N; 3050N½ �; T∈ 81N �m; 89N �m½ �
P∈ 12000N; 13000N½ �; L1∈ 110mm; 130mm½ �; d∈ 40mm; 43mm½ �:

GQ ¼

2 −0:25 0:36 −0:67 0:26 0:28
−0:25 2 −0:12 0:29 1 0:35
0:36 −0:12 1 0:45 0:34 1:3
−0:67 0:29 0:45 2 0:23 0:29
0:26 1 0:34 0:23 2 0:63
0:28 0:35 1:3 0:29 0:63 1

0
BBBBBB@

1
CCCCCCA
:

ð22Þ

Qc = (3025, 3025, 85, 12500, 120, 41.5)T denotes the cen-
ter point of the ellipsoid. The characteristic matrix GQ is de-
scribed as follows.

GQ ¼

2 −0:25 0:36 −0:67 0:26 0:28
−0:25 2 −0:12 0:29 1 0:35
0:36 −0:12 1 0:45 0:34 1:3
−0:67 0:29 0:45 2 0:23 0:29
0:26 1 0:34 0:23 2 0:63
0:28 0:35 1:3 0:29 0:63 1

0
BBBBBB@

1
CCCCCCA
:

ð23Þ

In the optimization process, the possibility degrees of in-
equality constraints λ1, λ2, and λ3 are both set to 0.6. The
weighting factors β1 and β2 are both set to 0.5. The corre-
sponding computation parameters are set as listed in Table 2.
For the inner IP-GA and outer μMOGA, the population sizes
are both set to 5.0. The probability of crossover are set to 0.5
and 0.6, respectively. The maximum generations are specified
as 100 and 200, respectively. In the following text, the above
problem will be analyzed based on three cases.

4.2.1 The computational efficiency and optimization errors

In this case, the local-densifying approximation technique is
used to improve the optimization efficiency for the cantilever
tube design problem. The numbers of samples in different
iterative steps are listed in Table 3 and the process of the

Fig. 8 A cantilever tube
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local-densifying approximation technique is shown in Fig. 9.
In step 1, the 50 initial samples are adopted to construct the
approximation models. The maximal bound error of the un-
certain objective functions and constraints is 10.96%, which
means the accuracy of approximation models of the uncertain
objective functions and constraints need to be further im-
proved. With increasing of the sampling points, the Pareto
optimal set based on actual function model are close to the
solution set with the local-densifying approximation tech-
nique. In step 3, the bound error of the uncertain objective
functions and constraints is 4.73% which is less than

allowable errors = 5%. It shows that the optimization results
could satisfy the design requirement.

4.2.2 The convergence performance

To analyze the convergence performance of the present meth-
od, the maximum generations is specified as 100 for inner IP-
GA and different maximum generations with 100, 200, 300,
and 400 are investigated for outer μMOGA, respectively. The
other computation parameters remain unchanged. The Pareto
optimal set of the penalty functions under different maximum
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Fig. 9 The optimization results of
different iterative steps (numerical
example 2)
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generations are shown in Fig. 10. It can be found that the
Pareto optimal set of the penalty functions has exhibited a
better convergence performance when the generation number
of outer μMOGA is 200. Comparing with the results of gen-
eration number 200, the results of generation number 100 has
greater fluctuation, and it implies that 100 generations are not
enough to reach the fine optimums. For generation number
from 300 to 400, the optimization results are nearly equal to
the ones of generation number 200. It is because that genera-
tion number 200 is enough to obtain the stable global opti-
mums for this problem and the present method has a better
convergence performance.

4.2.3 The influence of different characteristic matrixes

In this case, three different characteristic matrixes GQ1
, GQ2

,
and GQ3

as listed in Table 4 are adopted to test the difference
of optimization results. The other computation parameters re-
main unchanged. As shown in Fig. 11, it can be found that the
value of the penalty functions varies with the change of the
characteristic matrix. It is because that the characteristic ma-
trix stands for the uncertain level of the correlated uncertain
variables. The different levels of uncertainty will inevitably
lead to the change of the optimization results. Therefore, a
characteristic matrix should be specified beforehand accord-
ing to the practical problem and engineers’ experience.

4.3 Application to the uncertain optimization
of occupant restraint system

Occupant restraint system is an important part of the vehicle
safety design. When the car crash occurs, the occupant re-
straint system could avoid secondary collisions so as to protect
the safety of occupant. Hence, the presented method is applied
to uncertain optimization of occupant restraint system in full
vehicle frontal impact. The simulation model of occupant re-
straint system is established in MADYMO software as shown
in Fig. 12. The model consists of dummy model, seat model,
safety belt, and simplified model of the driver space with
toeboard and windshield.

To ensure protection performance of occupant restraint sys-
tem, the head injury index () and the chest injury index ()
(Viano and Arepally 1990) are adopted as objective functions.
The chest deflection , axial pressure of left thigh , and axial
pressure of right thigh are considered as constraint functions.
During the design process, the protection performance of oc-
cupant restraint system could be improved by adjusting D-ring
position , anchor position , and belt extensibility . Thus, the
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Fig. 12 The numerical model of occupant restraint system
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above three parameters are chosen as design variables.
Considering the errors of manufacture process, the initial
strain of belt and stiffness of driver’s seat are treated as uncer-
tain variables. Therefore, the U-MOO problem of occupant
restraint system can be obtained as follows:

min
X

f HIC X;Uð Þ; f C3ms
X;Uð Þ� �

Subject to

g1 X;Uð Þ≤75 mm

g2 X;Uð Þ≤10 kN
g3 X;Uð Þ≤10 kN
U−Ucð ÞTGU U−Ucð Þ≤0:006

X ¼ X 1;X 2;X 3ð ÞT; 0:82m≤X 1≤0:92m; −0:01m≤X 2≤0:02m; 0:06
≤X 3≤0:15

ð24Þ
where U = (U1,U2)

T stands for the uncertain vector whose
intervals are denoted by:

U 1∈ −0:05; 0:0½ �; U 2∈ 0:9; 1:0½ �: ð25Þ

Uc = (−0.025, 0.95)T denotes the center point of the ellip-

soid and GU ¼ 1 0:29
0:29 1

� �
is the characteristic matrix.

In the optimization process, the possibility degrees of in-
equality constraints λ1, λ2, and λ3 are both set to 0.6. The
weighting factors β1 and β2 are both set to 0.5. The penalty
factors σ1 and σ2 are both set to 1000. The allowable error δ is
set to 10%. The other computation parameters are set as listed
in Table 2. For the inner IP-GA and outer μMOGA, the

population size are both set to 5.0. The probability of cross-
over are set to 0.5 and 0.6, respectively. The maximum gen-
erations are both specified as 100.

The number of initial samples is 80, which are used to
construct the approximation models for the uncertain objec-
tive and constraint. Through ten local-densified samples, the
final optimization results as shown in Fig. 13 are obtained,
which satisfy the design requirement. It can be found that
the maximum error of the objective functions and constraints
is 6.69%, which is less than the allowable error 10%. Eight
solutions are chosen from the Pareto optimal set as listed in
Table 5. Indeed, the Pareto set provide designer with a large
number of optimal solutions and the attitude of the designer
will also influence the selection of the Pareto optimal set. Take
Table 5 as an example, the decision-maker could choose the
eighth solution if the head injury index is most cared. While if
the decision-maker emphasizes the chest injury index, the first
solution would be considered. Thus the designer should make
a tradeoff between head injury index and chest injury index. It
should be noted that each solution stands for a different com-
promise among design objectives, no solutions from which
can be said to be better than any other without any further
information. This set is known as the non-dominated set or
the Pareto optimal set.

5 Conclusion

This paper suggests an efficient multi-objective optimization
method for uncertain structures based on ellipsoidal convex
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Fig. 13 The optimization results
with local-densifying
approximation technique

Table 1 The number of samples in different iterative steps (numerical
example 1)

Iterative step Number of local-densified samples Total samples

Step1 0 10

Step2 6 16

Step3 2 18

Table 2 The computation parameter setting

Parameters The normalization factors The penalty
factors

The allowable
error

(i = 1,2) (i = 1,2) (i = 1,2) (i = 1,2)

Value 0.0 1.0 1.0 107 5%
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model. In the method, the correlated uncertain variables can be
described by the ellipsoidal convex model. By using nonlinear
interval number programming (NINP) method, the uncertain
objective functions can be converted into deterministic optimi-
zation problem. To deal with uncertain constraints, the possi-
bility degree of interval is applied to make the inequality con-
straints satisfied with a possibili ty degree level.
Simultaneously, the approximation models based on radial ba-
sis function (RBF) is applied to replace the actual objective
functions and constraints, and the local-densifying

approximation technique is used to improve the efficiency
and accuracy of the optimization. Considering the original op-
timization problem belongs to the two-loop nesting optimiza-
tion problem, the intergeneration projection genetic algorithm
and the micro multi-objective genetic algorithm are employed
as inner and outer optimization solvers, respectively. The sim-
ulation results of two test functions demonstrate that the pres-
ent method can efficiently find the Pareto optimal set. The
present method is also applied to solve the uncertain multi-

objective optimization problem of vehicle occupant restraint
system. The fine optimization results exhibit the applicability
of the present method to practical engineering problems. It
should be noted that the accuracy of the optimization results
is guaranteed by the local-densifying approximation technique.
When the high nonlinear simulation models are involved, the
approximation models need to be reconstructed through more
local-densifying iterations. It will influence computational ef-
ficiency and the engineering practicability. Hence, wewill con-
sider this above-mentioned problem in our future work.

Table 3 The number of samples in different iterative steps (numerical
example 2)

Iterative step Number of local-densified samples Total samples

Step1 0 50

Step2 5 55

Step3 4 59

Table 4 The different characteristic matrixes (numerical example 2)

Table 5 Pareto solutions of the uncertain optimization of occupant restraint system

No. D-ring position Anchor position Belt extensibility Penalty function Penalty function

1 0.85099 − 0.00947 0.07065 554.86695 202.85361

2 0.85587 − 0.00865 0.06572 534.24264 203.60507

3 0.86047 0.00680 0.06607 513.14039 204.43037

4 0.85656 0.00768 0.06343 509.75890 204.57206

5 0.85656 0.00868 0.06009 500.08591 205.07248

6 0.86985 0.01150 0.06106 491.12555 207.68296

7 0.88139 0.00821 0.06009 487.51864 209.37131

8 0.88109 0.01202 0.06009 485.47547 210.28589
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