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Abstract
Bayesian optimization (BO) is a global optimization method that has the potential for design optimization. However, in
classical BO algorithm, the variables are considered as continuous. In real-world engineering problems, both continuous
and discrete variables are present. In this work, an efficient approach to incorporate discrete variables to BO is proposed. In
the proposed constrained mixed-integer BO method, the sample set is decomposed into smaller clusters during sequential
sampling, where each cluster corresponds to a unique ordered set of discrete variables, and a Gaussian process regression
(GP) metamodel is constructed for each cluster. The model prediction is formed as the Gaussian mixture model, where
the weights are computed based on the pair-wise Wasserstein distance between clusters and gradually converge to an
independent GP as the optimization process advances. The definition of neighborhood can be flexibly and manually defined
to account for independence between clusters, such as in the case of categorical variables. Theoretical results are provided
in concert with two numerical and engineering examples, and two examples for metamaterial developments, including one
fractal and one auxetic metamaterials, where the effective properties depend on both the geometry and the bulk material
properties.
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1 Introduction

Designing materials is to identify structures at micro- and
nanoscales to achieve the desirable properties. The major
process of design is to establish structure-property relation-
ships, based on which design optimization can be performed.
Simulation tools at multiple scales (from atomistic to con-
tinuum) have been developed to accelerate this process.
Nevertheless, the major technical challenges of efficiency
and accuracy still exist. The first one is searching in high-
dimensional design space to find the global optimum of
material compositions and structural configurations. The
second one is the uncertainty associated with the high-dimen-
sional structure-property relationships, which are usually
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constructed as surrogate models or metamodels. Particu-
larly, aleatory uncertainty can be linked to natural ran-
domness of materials (e.g., grain sizes and grain shapes in
polycrystalline materials). Epistemic uncertainty is mainly
due to approximations and numerical treatments in surro-
gates and simulation models. Methods of searching globally
for optimal and robust solutions are needed.

Bayesian optimization (BO) is a metamodel-based
methodology to seek for the global optimal solution under
uncertainty in the search space with sequential sampling.
Compared to other bio-inspired global optimization algo-
rithms, such as ant colony systems, particle swarm, and
genetic algorithm (GA), it has the advantage of maintain-
ing the global search history by constructing a metamodel
to approximate the objective function. Typically the meta-
model is based on the Gaussian process (GP) method, and
actively updated as more samples are collected. However,
in current formulation of GP, input variables are restricted
to be continuous. In real-world engineering problems, input
design variables and parameters can be categorical or dis-
crete. For example, binary variables can be used to enable or
disable a design feature. The number of features has integer
values. Therefore, extending BO method to accommodate
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discrete variables is an important topic for solving real-
world problems.

Another major issue that prohibits the BO and GP frame-
work is its lack of scalability in searching the high-dimen-
sional space when the number of input variables is large.
The required number of sample points grows exponentially
as O(sd) with respect to the dimension of search space d,
where s is the number of sampling point for each dimension.
The phenomenon is referred to as the curse-of-dimensional-
ity in the literature. As a result, the size of the covariance
matrix in GP also grows exponentially with respect to the
dimensionality, creating the computational bottleneck in
computing the inverse of the covariance matrix.

In this paper, a new BO method is proposed for con-
strained mixed-integer optimization problems to incorporate
discrete design variables into the BO algorithm. In the pro-
posed method, the large dataset of samples is decomposed
into smaller clusters, where each cluster corresponds to a
unique combination of discrete variable values, which is
referred to as a discrete tuple. A GP is then constructed
within each cluster. During the search and metamodel
update processes, the mean and variance predictions are for-
mulated as a Gaussian mixture model, where the weighted
average predictions are combined from those of neighboring
clusters, based on the pair-wise distance between the main
and the neighboring clusters. The neighborhood of each
cluster is constructed only once during the initialization.

Because of the decomposition approach, the number of
sampling points to construct each cluster is significantly
reduced compared to the whole dataset, and the GP thus is
faster to construct for each cluster. This approach, however,
leads to an undesirable effect of sparsity within each GP
cluster. As a result, the posterior variance might be slightly
overestimated. To circumvent the sparsity effect of the
decomposition approach, a weighted average scheme is
adapted to “borrow” the sampling points from neighboring
clusters, where the discrete tuples of the neighbors slightly
differ from the discrete tuple of the original cluster. The
definition of neighborhood is completely controlled by
users, and neighbors can be added or removed accordingly.

The unique advantage of the proposed method is that
the optimization problem of both continuous and discrete
variables and the acceleration of GP for high-dimensional
problems are solved simultaneously. Theoretical results
are provided and discussed in concert with computational
metamaterials design applications.

In the remainder of the paper, Section 2 provides a lit-
erature review for BO methodology, its extension, such as
constrained and mix-integer optimization problems, and its
applications. Section 3 describes the proposed constrained
mixed-integer BO algorithm using Gaussian mixture model,
including theoretical analysis of algorithmic complexity as
well as lower and upper bounds of the predictions. The

methodology is demonstrated with applications in com-
putational design of metamaterials. Metamaterials are an
emerging class of engineered materials that exhibit inter-
esting and desirable macroscopic properties, which can be
tailored, because of their engineered geometric structures
rather than the material composition.

In Section 4, the proposed method is verified using an
analytical function that is modified based on a discrete
version of the Rastrigin function, an engineering example
of welded beam design, where the discrete variables encode
the material selection and design configuration of the
beam. In the first engineering example of Section 5.1, we
focus on designing high-strength and low-weight fractal
metamaterials, where the effective material properties, such
as effective Young’s modulus, are obtained using finite
element method (FEM). In the second engineering example
of Section 5.2, the method is demonstrated using an
auxetic metamaterials for polymers, where the effective
negative Poisson’s ratio is optimized. Section 6 includes the
discussion of the limitations in the proposed approach, and
Section 7 concludes the paper, respectively.

2 Related work

Here, we conduct a literature review on related BO work
and its design applications. In Section 2.1, the widely
used acquisition functions for BO are introduced. The
constrained optimization problem in BO is reviewed in
Section 2.2. In Section 2.3, the mixed-integer optimization
problem in BO and its related work is discussed. In
Section 2.4, the applications of GP in design optimization is
provided.

2.1 Acquisition function

BO is a metamodel-based optimization framework that
uses GP as the metamodel. The major difference between
BO- and GP-based optimization is the sampling strategy to
construct the metamodel.

The significant extension of BO is the implementation of
the so-called acquisition function that dictates the location
of the next sampling design site. This acquisition function
reconciles the trade-off between exploration (navigating to
the most uncertain region) and exploitation (driving the
solution to the optimum) in the optimization process.

Given the objective function y = f (x), the acquisition
function a(x; {xi , yi}Ni=1, θ) depends on previous N obser-
vations or samples {xi , yi}Ni=1 and GP hyperparameters θ

and must be defined to strike a balance between exploration
and exploitation. In exploration, the acquisition function a

would lead to the next sampling point in an unknown region
where the posterior variance σ 2(x) is large. In exploitation,
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the acquisition function a would result in the next sampling
point where posterior meanμ(x) is large for a maximization
problem (or small for minimization).

There are mainly three types of acquisition functions:
probability of improvement (PI), expected improvement
(EI), and upper confidence bound (UCB). They are defined
as follows.

Let xbest = argmax
xi

f (xi ) be the best sample achieved

so far during sequential sampling for a maximization
problem, φ(·) and �(·) be the probability density function
and cumulative distribution function of the standard
normal distribution respectively. The PI acquisition function
(Mockus and Mockus 1991) is defined as

aPI(x; {xi , yi}Ni=1, θ) = �(γ (x)), (1)

where

γ (x) = μ(x; {xi , yi}Ni=1, θ) − f (xbest)

σ (x; {xi , yi}Ni=1, θ)
(2)

indicates the deviation away from the best sample.
The EI acquisition function (Mockus 1975; Huang et al.

2006) is mathematically expressed as

aEI(x; {xi , yi}Ni=1, θ) = σ(x; {xi , yi}Ni=1, θ) · (γ (x)�(γ (x))

+φ(γ (x)) (3)

Recently, Srinivas et al. (2009, 2012) proposed a new form
of UCB acquisition function,

aUCB(x; {xi , yi}Ni=1, θ) = μ(x; {xi , yi}Ni=1, θ)

+ κσ(x; {xi , yi}Ni=1, θ), (4)

where κ is a hyperparameter describing the exploitation-
exploration balance.

2.2 Constrained BO

Constrained BO is a natural and important extension
of the classical BO method. Constrained optimization
problems based on engineering model and simulation
can be classified as two types: known and unknown
constraints. The known constraints, or a priori constraints,
are the ones known before the simulation, and thus can
be evaluated independently without running simulations.
On the other hand, the unknown constraints are the ones
that are unpredictable without running the simulation, and
thus can be only incorporated once the simulation is
over, e.g., no solution because of numerical divergence.
Generally speaking, the unknown constraints are more
difficult to assess because it involves handling the
classification problem, satisfied or violated, with respect to
the optimization problem.

Digabel and Wild (2015) summarized and provided a
systematic classification and taxonomy for constrained opti-
mization problem. Gardner et al. (2014) proposed a penal-
ized acquisition function approach to limit the searching
space for the next sampling location. Gelbart et al. (2014)
suggested an entropy search criterion to search for the next
sampling point under the formulation of the EI acquisi-
tion function. Hernández-Lobato et al. (2015, 2016) intro-
duced a predictive entropy search and predictive entropy
search with constraints, respectively, which maximizes the
expected information gained with respect to the global max-
imum. Rehman and Langelaar (2017) modeled constraints
as a simple model and incorporated probability of feasibil-
ity measure to alternate the EI acquisition function. Li et al.
(2018) proposed a sequential Monte Carlo approach with
radial basis function as surrogate model to solve for the
constrained optimization problem.

2.3 Mixed-integer Bayesian optimization

The BO extension to mixed-integer problems is rather
limited, partly because mixed-integer problems carry
difficulties from both discrete and continuous optimization
problems. Another approach is that the discrete optimization
can be converted to continuous optimization, using simple
rounding operation. The approach is not mathematically
rigorous, but is still widely accepted in practice. Here, we
review several contributions in term of methodology to
incorporate discrete variables.

Davis and Ierapetritou (2009) combined a branch-and-
bound approach with BO method to solve the mixed-integer
optimization problems.

Müller et al. (2013, 2014, 2016) introduced three algo-
rithms, which are Surrogate Optimization-Mixed Inte-
ger (Müller et al. 2013), Surrogate Optimization-Integer
(Müller et al. 2014), and Mixed-Integer Surrogate Opti-
mization (Müller 2016), which differ in the perturbation
sampling strategies and utilize GP as the surrogate model,
to solve for the mixed-integer nonlinear problems. Hemker
et al. (2008) compared the performance of a GA, the implicit
filtering algorithm, and a branch-and-bound approach for-
mulated on BO algorithm to solve for a set of constrained
mix-integer problems in groundwater management.

For mixed-integer extension for GP, van Stein et al.
(2015) proposed a distributed kriging approach, where the
dataset is decomposed for continuous variables using k-
mean algorithm, and the optimal weights are computed
based on the inverse posterior variance of each cluster. Gra-
macy and Lee (2008a, b, 2010) developed a treed GP that
is naturally extensible to handle discrete variables. In the
case of discrete variables, the GP is one-hot encoded by the
binary combination of the discrete variables. Storlie et al.
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(2011) developed the adaptive component selection shrink-
age operator (ACOSSO) method extended from Lin and
Zhang (2006a, b), which uses the smoothing spline ANOVA
decomposition to decompose the total variance to multi-
variate functions. Qian et al. (2008) and Zhou et al. (2011)
approached the mixed-integer problem from the covari-
ance kernel of GP, proposing the exchange correlation, the
multiplicative correlation, and the unrestricted correlation
functions to handle discrete variable that is reminiscent
of categorical regression. Swiler et al. (2014) compared
three above methods and concluded that GP with special
correlation kernel (Qian et al. 2008; Zhou et al. 2011)
performs most consistently among the test functions.

2.4 GP-based design optimization

GP, also known as kriging, has been widely applied in con-
structing surrogates or metamodels for design optimization.
Simpson et al. (2001), Queipo et al. (2005), Martins and
Lambe (2013), Sóbester et al. (2014), and Viana et al. (2014)
provided comprehensive reviews on the use of kriging and
other surrogate models for multi-disciplinary design opti-
mization. More recently, Li et al. (2008) proposed a kriging
metamodel assisted multi-objective GA to solve multi-
objective optimization problems. Jang et al. (2014) used
dynamic kriging to solve a design optimization in fluid-solid
interaction. Zhang et al. (2014) also used kriging to approx-
imate the pump performance and optimize two objective
functions with respect to four design variables. Kim et al.
(2017a) optimized and verified a fluid dynamic bearings
simulation using kriging approach. Kim et al. (2017b)
applied multi-fidelity kriging and optimized film-cooling
hole arrangement. Liu et al. (2017) employed surrogate-
based parallel optimization method to reduce the compu-
tational time for a computational fluid dynamics problem
with six design variables. Song et al. (2017) used a gradient-
enhanced hierarchical kriging to optimize drag on airfoils at
a specified angle of attack. Zhou et al. (2017, 2018) devel-
oped a multi-fidelity kriging scheme to approximate the lift
coefficient as a function ofMach number and angle of attack
in airfoils with computational fluid dynamics analysis.

In the above work, design variables are all continuous.
Compared to these GP-based optimization, BO formulation
provides a more generic and robust searching procedure.

3 Proposedmixed-integer Bayesian
optimization

The proposed mixed-integer BO based on distributed GP
provides an efficient searching method for large scale
design problems, where design variables can be either

continuous or discrete. The discrete variables include both
categorical and integer variables, regardless of the existence
of order relations. Let x = (x(d), x(c)) be the design
variables, where x(d) ∈ D are discrete variables in n-
dimensional space D and x(c) ∈ R

m−n are continuous
variables in (m − n)-dimensional space R

m−n. Together,
they form a vector of design variables in the m-dimensional
space X . Let f (x) be the objective function. The design
optimization problem solves the maximization problem

x∗ = argmax
x∈X

f (x), (5)

subject to some inequality constraints

gi(x) ≤ 0, i = 1, · · · , ic (6)

where ic is the number of inequality constraints.
Here, the notation for the rest of the paper is as follows.

μl(x) is used to denote the posterior mean of the lth cluster
at the query point x. μ̂ is the prediction formed by Gaussian
mixture model of all the clusters. μ̄l is the mean of the lth
cluster.

In the proposed mixed-integer BO, the large dataset
of observations is decomposed into smaller local clusters,
where each cluster is used to construct a local GP. Because
the large dataset has been decomposed and the number of
data points has reduced, the prediction within each cluster is
not as accurate, and can be improved by “borrowing” from
neighboring dataset under a weighted average scheme. The
large dataset with continuous and discrete variables can be
decomposed to finitely many clusters, according to the tuple
of discrete variables. In each cluster, the data points share
the same discrete variable values. The classical GP approach
is then applied to the dataset in each cluster to construct a
GP model.

Because of the decomposition scheme, the number of
data points within each cluster is reduced, compared to the
number of data points of the whole dataset. This leads to a
sparser dataset within a cluster, and the posterior variance
is enlarged. To improve the prediction, the datasets from
neighboring clusters are initially “borrowed” to improve
the prediction on the tuple of continuous variables x(c) ∈
R

m−n, where the “borrowed” data points are gradually
eliminated as the optimization process converges via the
weight computation algorithm. On the other hand, the
sparsity induced by the decomposition scheme reduces the
cost of computing the inverse of the covariance matrix. In
this weighted average scheme, the weights are computed
and penalized based on the pair-wise Wasserstein distance
between clusters, as well as the posterior variance of the
cluster to obtain a more accurate predictions to aid in the
convergence of the optimization process.



Constrained mixed-integer Gaussian mixture... 2135

Figure 1 presents an overview of the workflow for the
proposed mixed-integer BO method in this paper. First, ini-
tial samples, typically obtained from Monte Carlo or Latin
hypercube sampling, are used to construct the metamodel,
where a local GP is associated with each individual cluster.
Next, a next sampling point is located within each clus-
ter according to its acquisition functional value. Then, a
global sampling point for all clusters is determined among
the collection of all the next sampling points from each
cluster. The objective function is then called to evaluate
at the global sampling location. A local GP is updated
at the cluster corresponding to the global sampling point.
A new local sampling point is located within the same
cluster, and the process repeats until some optimization
criteria are met.

The following subsections are organized as follows.
Section 3.1 briefly reviews the GP formulation. Section 3.2
discusses the enumeration algorithm for clusters and the
discrete tuple. Section 3.3 describes the definition of cluster
neighborhood that is used to form a Gaussian mixture
model. Section 3.4 details the weight computations for
each individual cluster in the Gaussian mixture model.
Section 3.5 presents the computation of posterior mean
and posterior variance of the Gaussian mixture model.
Section 3.6 describes the penalized scheme to incorporate
constraints into the acquisition function. Section 3.7
analyzes the theoretical bounds and computational cost of
the proposed mixed-integer BO method.

Fig. 1 Overall workflow of the proposed mixed-integer Bayesian
optimization

3.1 Gaussian process

We follow the notation introduced by Shahriari et al. (2016)
to briefly introduce GP formulation for continuous vari-
ables. GP(μ0, k) is a nonparametric model that is charac-
terized by its prior mean μ0 : X �→ R and its covariance
kernel k : X × X �→ R. Define fi = f (xi ) and
y1:N as the unknown function values and noisy observa-
tions, respectively. In the GP formulation, it is assumed
that the f = f1:N are jointly Gaussian and y = y1:N are
normally distributed given f ; then, the prior distribution
induced by the GP can be described as

f |X ∼ N (m, K), y|f , σ 2 ∼ N (f , σ 2I ), (7)

where the elements of mean vector and covariance matrix
are described by mi := μ0(xi ) and Ki,j := k(xi , xj ).

Equation 7 describes the prior distribution induced by the
GP, where X is the sampling location, and f is the objective
function. In the GP formulation, y is the noise-corrupted
stochastic output of f (x) with the variance of σ 2, at the
sampling location X. The objective function f is assumed
to be a multivariate normal distribution function with mean
m(x) and covariance K(x).

Let N be the number of sampling locations, and DN =
{xi , yi}Ni=1 be the set of observations. The covariance
kernel k is a choice of modeling the correlation between
input locations xi . Covariance functions where length-scale
parameters can be inferred through maximum likelihood
function is known as automatic relevance determination
kernels. One of the most widely used kernels in this kernel
family is the squared-exponential kernel,

K i,j = k(xi , xj ) = θ20 exp

(
− r2

2

)
, (8)

where r2 = (x − x′)�(x − x′), � is a diagonal matrix of
(m − n) × (m − n), and θi is the length scale parameter.

The posterior Gaussian for the sequential BO is character-
ized by the mean

μN+1(x) = μ0(x) + k(x)T (K + σ 2I )−1(y − m), (9)

and the variance

σ 2
N+1(x) = k(x, x) − k(x)T (K + σ 2I )−1k(x), (10)

where k(x) is the vector of covariance terms between x and
x1:N .

3.2 Clustering and enumeration algorithm

Assuming that the discrete variables are independent of each
other, a clustering and enumeration algorithm is devised
to automatically decompose the large dataset to smaller
clusters based on the discrete tuple and tag a cluster with
a unique index from the enumeration scheme. For the case
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when some discrete variables are dependent on others,
the neighborhood can be manually changed to reflect the
knowledge. The set of discrete variables for each cluster
is represented as a discrete tuple where each element is a
positive integer.

For an integer variable where order relation exists, the
discrete variable can simply be represented as a positive
integer, e.g., 1 ≤ 2. For a categorical variable where order
relation does not exist, such as the type of cross section
(square or circular), colors (red or blue), type of materials
(aluminum or copper), and configuration settings, positive
integers can still be used. The choice of using tuple of
positive integers as a general representation does not affect
the clustering and enumeration scheme, but would affect the
construction of neighborhood for each cluster, depending on
the nature of discrete variables.

Suppose that the input x = (x(d), x(c)) = (x1, · · · ,

xn, xn+1, · · · , xm) includes n discrete and m−n continuous
variables. If pi is denoted as the total number of possible
values for discrete variable xi, 1 ≤ i ≤ n, then the number

of clusters is L =
n∏

i=1
pi . Due to the complexity of possible

combinations, each cluster is assigned a unique index in
such a way that the map between their discrete variables and
cluster index is one-to-one. The index is calculated based
on the total ordering of tuples. Without loss of generality,
assume that each discrete variable xi is bounded by 1 ≤
xi ≤ pi , i.e., xi ∈ {1, · · · , pi} for 1 ≤ i ≤ n. Then,
the relation of lexicographical order, denoted as ≺, can be
defined for a pair of tuples on the set of all tuples as

(a1, · · · , an) ≺ (b1, · · · , bn), (11)

if and only if ∃k : 1 ≤ k ≤ n : (∀j : 1 ≤ j < k : ai =
bi) andak < bk , and 1 ≤ ai, bi ≤ pi for all i. With the
definition of lexicographical order ≺, the cluster index l for
the tuple (a1, · · · , an) can now be calculated as

l =
n−1∑
i=1

(ai − 1)
n∏

j=i+1

pj + an. (12)

Because the index of cluster is uniquely defined based on
the tuple of discrete variables, the tuple describing the set
of discrete variables can be reconstructed using the index
of the cluster, with the quotient and remainder algorithm
recursively shown in Algorithm 1. It describes how to con-
struct the set of discrete variables from the cluster index l.

The implementation of Algorithm 1 can be based on
existing functions such as MATLAB function ind2sub().
Equation 12, which is a reverse operation of Algorithm
1, can also be implemented using MATLAB function
sub2ind().

3.3 Construction of neighborhood

Consider a cluster with index l, with the tuple of discrete
variables (a1, · · · , an), the neighbors of the lth cluster B(l)

is the collection of clusters that share most of similarity
with the original cluster. Intuitively, the neighborhood is
constructed based on the belief of whether there exists a
relationship between two clusters.

For example, for integer variables, the discrete tuples of
the neighboring clusters may differ in one or a few different
integer variables compared to that of the original cluster.
In the same manner, for categorical variables, the discrete
tuples of the neighboring clusters may differ in one or a few
categorical variables compared to that of the original cluster.
Based on this description, a possible choice to define the
neighborhood B(l) of the lth cluster can be mathematically
expressed as

B(l) = {(a∗
1 , · · · , a∗

n) | d
(
(a∗

1 , · · · , a∗
n), (a1, · · · , an)

)
≤ dth}, (13)

where d
(
(a)ni=1, (a

∗)ni=1

)
is some metric on a discrete

topological spaceD, and dth is a user-defined threshold. The
metric d(·, ·) can be any lp-norm, for example, Manhattan
distance (l1-norm), or a counting metric of how many
discrete (integer and categorical) variables are different
between two tuples. It is noted that the metric d(·, ·) does
not have to strictly obey the definition of mathematical
norm. In the special case when this metric is set to zero, i.e.,
d

(
(a)ni=1, (a

∗)ni=1

) = 0, it means that all the clusters are
considered to be completely independent of each other. The
construction of neighborhood only occurs once during the
initialization.
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Furthermore, it should be emphasized that the neighbor-
ing list can be manually changed to reflect the physics-
based knowledge from the users, or manually constructed
to reflect the dependency of the discrete variables. In the
case of categorical variables where independence is usually
observed, one can simply remove the neighboring cluster
from the corresponding categorical variable, as the neigh-
borhood can be manually changed during the initialization
phase of the optimization process.

It is recommended to define the neighborhood carefully,
as the neighborhood definition has an impact on both
convergence rate, and whether the optimization would be
trapped at local optimum. The safest setting is to assign
dth = 0, where clusters are assumed to be completely
independent of each other. Small values of dth, e.g., dth = 1
or dth = 2, might be beneficial, depending on the specific
applications. Large value is not recommended.

Figure 2 shows an example of constructing clusters for
two discrete variables (x1, x2), where 1 ≤ x1 ≤ 4 and
1 ≤ x2 ≤ 3. According to Algorithm 1, the tuple p is (4, 3),
cluster 1 is associated with (1,1), cluster 2 is associated
with (1,2), cluster 4 is associated with (2,1), etc. The cluster
index is denoted as an italic number on the top right corner
of the square. Consider cluster 8, which is associated with
the discrete tuple (3,2). If the Manhattan distance is chosen
to define the neighborhood, then the choice of dth = 0 in
(13) would make every cluster the only neighbor of itself,
e.g., the neighbor of cluster 8 is cluster 8. The choice of
dth = 1 would include clusters 5, 7, 8, 9, and 11 in cluster
8’s neighborhood. Similarly, the choice of dth = 2 would
include clusters 2, 4, 5, 6, 7, 8, 9, 10, 11, and 12 in cluster
8’s neighborhood.

3.4Weight computation

The weight of each cluster’s prediction is determined by
the Wasserstein distance between the Gaussian posterior

Fig. 2 An example of cluster enumeration and neighborhood definition

of the main cluster with that of the neighboring clusters.
Combined together, they form a Gaussian mixture model to
predict a response at a query point x.

Consider a query point x in the lth cluster, which has
the continuous tuple x(c) = (xn+1, · · · , xm). Denote the
neighborhood of the lth cluster as B(l) = {l∗}, where the
cardinality of |B(l)| = k, i.e., there are k neighbors in the
lth cluster neighborhood.

Each of the neighboring cluster l∗ can form its own
predictionN (μl∗ , σ 2

l∗) from the continuous tuple, including
N (μl, σ

2
l ) for lth cluster. However, the prediction must

be adjusted by accounting for the bias, i.e., Biasl∗ [μl∗ ] =
E[μl∗ − μl] = μ̄l∗ − μ̄l as the difference between the
posterior means of two clusters, and the variance σ 2

l∗ .
The weight wl∗ associated with the prediction from the

l∗ cluster should be larger with smaller bias (μ̄l∗ − μ̄l)

and smaller posterior variance σ 2
l∗ . The necessity of bias

correction is explained later in Theorem 4. The Wasserstein
distance between two univariate Gaussian N (μl∗ , σ 2

l∗) and
N (μl, σ

2
l ) is provided by Givens et al. (1984) as

W2

(
N (μl∗ , σ

2
l∗),N (μl, σ

2
l )

)
= ‖μl − μl∗‖2

+
∥∥∥∥
√

σ 2
l −

√
σ 2

l∗

∥∥∥∥
2

(14)

Here, we propose a deterministic way to compute the
numerical weights based on the pair-wise Wasserstein
distance, which eventually converges to an independent
GP as the optimization process advances. It is easy to see
that the W2-distance of the lth cluster’s prediction to itself
is zero, as W2 is a distance. The weights are computed
according to an inverse W2-distance with a term σ 2

l from the
lth cluster, as

wl∗ ∝
[
σ 2

l + W2

(
N (μl∗ , σ

2
l∗),N (μl, σ

2
l )

)]−1
. (15)

In (15), wl∗ are computed based on two factors, the W2-
distance, and the σ 2

l prediction of the lth cluster. As
the optimization process advances, the posterior variance
approaches zero, i.e., σ 2

l → 0. As a result, the weight
scheme converges to a single GP prediction of the
corresponding lth cluster.

3.5 Prediction using weighted average of k -nearest
neighboring clusters

We model the prediction of a query point using a Gaussian
mixture distribution, where the weights are computed on
the statistical Wasserstein distance. To predict an unknown
query point x = (xd , xc) = (x1, · · · , xn, xn+1, · · · , xm),
we first find the cluster in which x belongs to, and its
neighboring clusters. Assume that x belongs to the lth
cluster, and there are k-neighboring clusters.
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The principle for weight computation is as follows. As
the bias increases, the contributed weight of the prediction
wl∗ from the l∗th cluster to lth cluster is reduced to
a smaller value. As the bias or the pair-wise distance
between clusters increases, the contributed weights also
decrease. The weight vector is normalized at every step,
and eventually converges to a single GP prediction with the
weight vector of [0, · · · , 1, · · · , 0], where 1 is located as the
lth cluster.

Since x is located within the lth cluster, the weight from
the lth cluster is the highest, i.e., if l∗ = l, then μl∗ + μ̄l −
μ̄l∗ = μl , which is the GP prediction for the lth cluster. The
posterior mean of the proposed method is written as

μ̂ =
∑

l∗∈B(l)

wl∗ (μl∗ + μ̄l − μ̄l∗) , (16)

where the sum is taken over the list of neighboring cluster
from the main cluster lth. μ̄l and μ̄l∗ denote the means of the
l-th and l∗-th clusters, respectively. w∗ denotes the weight
corresponding to the l∗th cluster, which is computed once
the discrete tuple x(d) of the query point x = (x(d), x(c)) is
determined. The posterior variance of the proposed method
is calculated as

σ̂ 2 =
∑

l∗∈B(l)

w2
l∗σ

2
l∗ , (17)

where σ 2
l∗ denotes the posterior variance associated with the

continuous tuple x(c) of the query point x = (x(d), x(c)).
The prediction scheme for mean μ̂(x) and variance

σ̂ 2(x) for an arbitrary location x using Gaussian mixture
model can be summarized in Algorithm 2.

3.6 Constrained acquisition function
inmixed-integer Bayesian optimization

The acquisition function is adopted from Gardner et al.
(2014) for inequality constraints, and further extended to
accommodate discrete and continuous variables to solve for
the constrained mixed-integer optimization problems.

First, the constraint is checked using an indicator
function I(x) for all ic constrained inequalities, as

I(x) =
{
1 if ∀1 ≤ i ≤ ic : gi(x) ≤ 0,
0 if ∃1 ≤ i ≤ ic : 0 ≤ gi(x).

(18)

The constrained acquisition function can be considered
as the product of the classical acquisition function. As a
result, the acquisition function is assigned to have zero
value for infeasible region. The penalized approach can be
implemented directly into the auxiliary optimizer, which is
used to maximize the acquisition function in BO.

In distributed GP, an input xnext = (x1, · · · , xn, xn+1,
· · · , xm) is comprised of both discrete and continuous vari-
ables. For each cluster corresponding to a unique set of dis-
crete tuple (x1, · · · , xn), a distinct next sampling point associ-
ated with each cluster is located bymaximizing the acquisition
function on the tuple of continuous variables (xn+1, · · · ,

xm) for each iteration, in the same manner as classical BO.
These next sampling points are retained within the respec-
tive clusters. However, only the sampling point correspond-
ing to the maximal value of acquisition function among all
clusters is chosen, and a new sampling point within that clus-
ter is located and updated for the corresponding cluster. The
sampling procedure repeats until the optimization criterion
is met. In other words, the next sampling point is chosen as

xnext = argmax
l∗

argmax
(xn,xn+1,··· ,xm)

al∗(x; {xi , yi}Ni=1, θ) ·I(x),

(19)

where the l∗th cluster corresponds to the tuple of discrete
variables (x1, · · · , xn), and I(x) is the constraint indicator
function.

Equation 19, which describes the searching procedure for
the next sampling point by maximizing the penalized acqui-
sition function, is explained as follows. Two loops are con-
structed to search for the global sampling point. In the inner
loop which searches for the local sampling point within
each cluster, the penalized acquisition function is the objec-
tive function. Maximizing this penalized acquisition func-
tion using an auxiliary optimizer yields the local sampling
point for each cluster. In the outer loop, the cluster with
the maximized acquisition function value is determined.
The discrete tuple corresponding to the cluster index, which
contains the sampling point with the maximum value for
the acquisition function, is reconstructed using Algorithm
1. In other words, the sampling location x is decomposed
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to two parts: the inner loop searches for the continuous
tuple, whereas the outer loop yields the discrete tuple. The-
oretically, once the functional evaluation is over, only the
cluster that contains the last sampling location needs to be
updated. Practically, all the clusters need to update their cor-
responding sampling locations xnext after certain number of
iterations, in order to avoid trapping in local optimum.

The tuple of continuous variables is found by maximizing
the acquisition function, whereas the tuple of discrete
variables is assigned according to the cluster index. For the
EI and PI acquisition functions, xbest is modified to be the
best point achieved so far among all clusters. For the UCB
acquisition function, no modification is needed, assuming
the hyperparameter κ is uniform for all clusters. It is
noted that the balance between exploration and exploitation
is preserved locally within each cluster and thus is also
preserved globally for all the clusters.

3.7 Theoretical bounds and computational cost

Here, we provide the theoretical lower and upper bounds for
predictions and algorithm complexity under the formulation
of Gaussian mixture model in Theorem 1 and Theorem
2. Theorem 3 proves that under the formulation of the
proposed method, the largest weight is associated with the
main cluster. Theorem 4 explains the necessity of translation
in mean prediction so that the expected value of the mean is
the same with the expected mean in the main cluster.

Theorem 1 The Gaussian mixture posterior mean μ̂ =∑
l∗∈B(l)

wl∗ (μl∗ + μ̄l − μ̄l∗) is bounded by

min
l∗

(
μ̂l∗ + μ̄l − μ̄l∗

) ≤ μ̂ ≤ max
l∗

(
μ̂l∗ + μ̄l − μ̄l∗

)
(20)

Proof The proof for the posterior mean is straightforward,
noting that wl∗ ≥ 0, ∀l∗ and

∑
wl∗ = 1.

Theorem 2 The Gaussian mixture posterior variance σ̂ 2 =∑
l∗∈B(l)

w2
l∗σ

2
l∗ is bounded by

(
∑
l∗

w2
l∗σl∗)

2 ≤ σ̂ 2 ≤ max
l∗

σ 2
l∗ (21)

Proof For the right-hand side of the variance inequality,
observe that

σ̂ 2 =
∑
l∗

w2
l∗σ

2
l∗ ≤

∑
l∗

wl∗σ
2
l∗ ( because w2

l∗ ≤ wl∗)

≤ (
∑
l∗

wl∗)max
l∗

σ 2
l∗

≤ max
l∗

σ 2
l∗ ( because

∑
l∗

wl∗ = 1) (22)

For the left-hand side of the variance inequality, recall the

Jensen’s inequality: ρ
(∑

i aixi∑
i ai

)
≤

∑
i aiρ(xi )∑

i ai
, where ρ(·) is

a convex function. Substituting w2
l∗ → ai , σl∗ → xi and

ρ(x) = x2 into the Jensen’s inequality, we have(∑
l∗ w2

l∗σ∑
l∗ w2

l∗

)2

≤
∑

l∗ w2
l∗σ

2
l∗∑

l∗ w2
l∗

or

(∑
l∗

w2
l∗σl∗

)2

≤
(∑

l∗
w2

l∗

) (∑
l∗

w2
l∗σ

2
l∗

)
(23)

Now, note that
∑
l∗

w2
l∗ ≤ ∑

l∗
wl∗ = 1. We obtain the

left-hand side of the inequality.

Theorem 3 The largest weight is associated with the lth
cluster.

Proof Based on the weight formula,

wl∗ ∝
[
σ 2

l + W2

(
N (μl∗ , σ

2
l∗),N (μl, σ

2
l )

)]−1
, (24)

it is easy to see that the Wasserstein distance between a
cluster with itself is zero.

Thus, the right-hand side is always less than σ 2
l , i.e.,

σ 2
l + W2

(
N (μl∗ , σ

2
l∗),N (μl, σ

2
l )

)
≥ σ 2

l . (25)

Inversing the last inequality completes the proof. The
equality occurs when l∗ = l.

Theorem 4 The expectation of the posterior mean μ̂ =∑
l∗∈B(l)

wl∗ (μl∗ + μ̄l − μ̄l∗) is μ̄l , i.e., E[μ̂] = μ̄l .

Proof Take the expectation of (9) for any lth cluster over the
continuous domain, and note that E[y − m] = 0, the mean
of the posterior is recovered to the mean of the cluster, i.e.,

E[μl(x)] = μ0(x) = μ̄l(x). (26)

Equation 26 holds for any lth under the GP formulation. In
the similar manner, taking the expectation of the posterior
mean μ̂ from the proposed method over the continuous
domain, we arrive at

E[μ̂] = ∑
l∗∈B(l)

wl∗E [μl∗ + μ̄l − μ̄l∗]

= ∑
l∗∈B(l)

wl∗ [E[μl∗ ] + E[μ̄l] − E[μ̄l∗ ]]
= ∑

l∗∈B(l)

wl∗ [μ̄l∗ + E[μ̄l] − μ̄l∗]

= ∑
l∗∈B(l)

wl∗ [μ̄l]

= μ̄l,

(27)

where the second equality is formed by distributing the
expectation operator under linear combination rule. The
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third equality follows (26) as described above. The fourth
equality is formed by canceling two identical terms μ̄l∗ .

A major problem of GP is its scalability, which orig-
inates from the computation of the inverse of correlation
matrices. The dataset decomposition has a favorable com-
putational aspect in which the scalability is alleviated. Here,
we analyze the computational cost based on the assump-
tion that the size of each cluster is roughly equal. Denote
the number of data points for the whole dataset as N , and
the number of clusters as k. The computational cost to com-
pute all covariance matrices is reduced by a factor of k2,
as k covariance matrices are involved, and each covari-
ance matrix has the computational complexityO

(
N
k

)3
, thus

resulting in the total cost of kO
(

N
k

)3 = 1
k2
O

(
N3

)
. Simi-

larly, the cost of storing covariance matrices is also reduced

by a factor of k, since kO
(

N
k

)2 = 1
k
O(N2). However,

the computational cost of predicting the posterior mean μ

and posterior variance σ 2 stays the same, since kO
(

N
k

) =
O(N).

The decomposition approach in the proposed mixed-
integer BO has a computational advantage to mitigate the
scalability problem in GP, even though it is not completely
eliminated.

4 Analytical examples

In this section, the proposed mixed-integer BO is compared
with the genetic algorithm (GA) with various settings.

The settings for the GA are described as follows. To
verify the robustness of the proposed method, three GA
settings are chosen. In the first setting, the population
size and the elite count parameters are set to be 50 and
3, respectively. In the second setting, the population size
and the elite count parameters are set to be 150 and 10,
respectively. In the third setting, they are 1500 and 10,
respectively. Other parameters are left to be the default
values in MATLAB function ga().

In Section 4.1, a discrete modification of the multi-modal
Rastrigin function is used as a benchmark function, where
two variables are discrete and the other two are continuous.
In Section 4.2, a welded beam design optimization with two
discrete and four continuous variables is used to evaluate
the performance of the proposed mixed-integer BO method
where discrete variables come from the configuration
and material of the beam. In Section 4.3, a pressure
vessel design optimization with four continuous variables
is benchmarked. In Section 4.4, a speed reducer design
optimization function with one discrete and six continuous
variables is utilized. In Section 4.5, a modification of
discrete sphere function is devised to demonstrate the

proposed mixed-integer BO method on high-dimensional
optimization problems, with 5 discrete and 50 and 100
continuous variables.

4.1 Discrete Rastrigin function

In this example, the proposed method is applied on the
discrete version of the Rastrigin function, which is an ana-
lytical function for testing different optimization methods.
To evaluate the effectiveness of the proposed mixed-integer
BO method, the optimization performance is compared
against GA optimization performance.

4.1.1 Problem statement

The DACE toolbox (Nielsen et al. 2002) for classical GP
is extended to include the proposed distributed GP and
Bayesian optimization. In this section, the hybrid Bayesian
optimization is to find the global minimum on a tiled
version of the Rastrigin function on 25 clusters, where each
cluster corresponds to two discrete variables. The input
x = (i, j, x, y) is comprised of four variables, in which
the first two are discrete and the last two are continuous, as
illustrated in Fig. 3. The original two-dimensional Rastrigin
function is f (x, y) = 20 + [x2 − 10 cos (2πx) + y2 −
10 cos (2πy)], where −5.12 ≤ x, y ≤ 5.12. The tiled
Rastrigin function is constructed based on a tiled domain of
the Rastrigin function, where each domain is characterized
by a discrete tuple (i, j), and the continuous domain is
translated to −0.75 ≤ xtiled, ytiled ≤ 0.75 for all clusters.
Figure 3 illustrates the construction of the tiled Rastrigin

Fig. 3 Tiled Rastrigin function comprising of 25 clusters, where each
cluster corresponds to a square of dimension 1.50 × 1.50 and a tuple
(i, j). The cluster index is denoted within the square bracket [·],
whereas the tuple is within the parenthesis (·, ·) in each square
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function, and its relationship with the original Rastrigin
function. The relationship between the tiled and original
Rastrigin can simply be described by an affine function,

xorig = −3.50 + 1.75(i − 1) + xtiled;
yorig = −3.50 + 1.75(j − 1) + ytiled, (28)

where −0.75 ≤ xtiled, ytiled ≤ 0.75.

4.1.2 Numerical results

In this example, to find the minimum of the Rastrigin
function, we flip the sign of tiled Rastrigin and use the UCB
acquisition function to locate the maximum of the negative
tiled Rastrigin function. The covariance matrix adaptation
evolution strategy (CMA-ES) (Hansen et al. 2003) method
is employed to find the next sampling point within each
cluster by locating the point with the maximum acquisition
function. The parameters are set as follows: κ = 5,
dpenalty = 10−4, Nshuffle = 15, where Nshuffle is the number
of steps which CMA-ES is reactivated with different initial
positions to search for the next sampling point on each
local GP in order to avoid trapping in the local minima.
To construct the initial GP response surface, 5 random data
points are sampled from each cluster.

Because the global minimum of the original Rastrigin
function is at (x = 0, y = 0) with the functional evaluation
f (0, 0) = 0, the hybrid Bayesian optimizer on the tiled
Rastrigin function is expected to converge to cluster 13,
as illustrated in Fig. 3. The neighbor list of cluster 13
includes clusters 8, 12, 13, 14, and 18. Figure 4 compares
the numerical performance between the proposed mixed
integer BO and the GA with three different settings.

Figure 4 presents the performance of the proposed
method (solid line) with five different settings, and the GA
method (dash line) with three different settings. For the
proposed mixed-integer BO, the threshold distance dth is

Fig. 5 Welded beam design problem (Datta and Figueira 2011)

changed. The proposed mixed-integer BO performs best
with small dth parameter, which measures the dissimilarity
between discrete tuples.

4.2Welded beam design problem

To verify the result of the proposed method, an analytical
engineering model for welded beam design is adapted from
Deb and Goyal (1996), Gandomi and Yang (2011), Rao
(2009), and Datta and Figueira (2011), as shown in Fig. 5,
with some slight modifications.

4.2.1 Problem statement

The low-carbon steel (C-1010) beam is welded to a rigid
base to support a designated load F . The thickness of the
weld h, the length of the welded joint l, the width of the
beam t , and the thickness of the beam b are the design
continuous variables. Two different welding configurations
can be used, four-sided welding and two-side welding (Deb
and Goyal 1996). The bulk material of the beam can be
steel, cast iron, aluminum, or brass, which is associated
with different material properties. The stress, deflection,
and buckling conditions are derived from Ravindran et al.
(2006), where the constant parameters are as follows: L =
14inch, δmax = 0.25 inch, and F = 6, 000lb. The input x is
comprised of (w, m, h, l, t, b), where w and m are discrete
variables and h, l, t , and b are continuous variables. We

Fig. 4 Performance comparison
between the GA and the
proposed mixed-integer BO for
the tiled Rastrigin function
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note that h, t , and b are commonly considered as discrete
variables in multiples of 0.0625 in, as well as continuous
variables, bounded between lower and upper bounds.

Under this formulation, the objective is to minimize

f (w,m, h, l, t, b) = (1+C1)(wt +l)h2+C2tb(L+l) (29)

subject to the five inequality constraints:

shear stress(τ ) : g1 = 0.577σd − τ(x)≥0 (30a)

bending stress in the beam(σ ) : g2 = σd − σ(x)≥0 (30b)

buckling load on the bar(Pc) : g3 = b − h≥0 (30c)

deflection of the beam : g4 = Pc(x) − F ≥0 (30d)

side constraints : g5 = δmax − δ(x)≥0 (30e)

where

σ(x) = 6FL

t2b
, δ(x) = 4FL3

Et3b
, Pc(x)

= 4.013tb3
√

EG

6L2

(
1 − t

4L

√
E

G

)
(31a)

τ =
√

(τ ′)2 + (τ ′′)2 + 2τ ′τ ′′ cos θ, τ ′ = F

A
,

τ ′′ = F(L + 0.5l)R

J
(31b)

w = 0 :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A = √
2hl

J = √
2hl

[
(h+t)2

4 + l2

12

]
R = 1

2

√
l2 + (h + t)2

cos θ = l
2R

, (31c)

w = 1 :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A=√
2h(t + l)

J =√
2hl

[
(h+t)2

4 + l2

12

]
+√

2ht
[

(h+l)2

4 + t2

12

]
R= max

{
1
2

√
l2+(h+ t)2, 1

2

√
t2 + (h+ l)2

}
cos θ = l

2R

(31d)

where w is the binary variable to model the type of weld,
w = 0 is used for two-sided welding and w = 1 is used
for four-sided welding. C1(m), C2(m), σd(m), and E(m),
G(m) are material-dependent parameters (Deb and Goyal
1996; Gandomi and Yang 2011) listed in Table 1. The lower
and upper bounds of the problem are 0.0625 ≤ h ≤ 2,
0.1 ≤ l ≤ 10, 2.0 ≤ t ≤ 20.0, and 0.0625 ≤ b ≤ 2.0 (Datta
and Figueira 2011).

Fig. 6 Convergence plot of the cost function in the welded beam
design, with all clusters are neighbors, showing different combinatorial
of discrete and categorical variables are attempted

4.2.2 Numerical results

Here, the input vector is encoded as x = (w, m, h, l, t, b),
where w ∈ {0, 1}, where w = 0 and w = 1 correspond
to the two-sided and four-sided welding, respectively; m ∈
{1, 2, 3, 4} corresponds to steel, cast iron, aluminum, and
brass, respectively.

In this example, there are 8 clusters, because there are
two choices forw and four choices form. The neighborhood
B(·) is considered as universal, i.e., the neighborhood for
each cluster includes all clusters, such that they are all aware
of others.

The bounds for hyperparameters θ for the GP in each
cluster are set as follows: θ = (0.1, 0.1, 0.1, 0.1), θ =
(20.0, 20.0, 20.0, 20.0). Every four iterations, the sampling
point location in each cluster is computed again to avoid
trapping in local minima. CMA-ES (Hansen et al. 2003) is
used as an auxiliary optimizer for maximizing the acquisi-
tion function. There are two random sampling points in each
cluster to initialize the GP construction. The EI acquisition
function is used.

Figure 6 shows the convergence plot of the cost func-
tion in the welded beam design, where the circle, cross,
triangle, and square corresponds to steel, cast iron, alu-
minum, brass, respectively. The optimal cost value f (x)

evolves at iterations 0, 1, 2, 3, 5, and 132, with the val-
ues of 20.1995, 5.0605, 3.7949, 3.2436, 1.7420, and 1.6297,
respectively, with the last one being four-sided welded.

Table 1 Material-dependent
parameters and constants in the
welded beam design problem

Constants Description Steel Cast iron Aluminum Brass

C1 Cost per volume of the welded material ($/in3) 0.1047 0.0489 0.5235 0.5584

C2 Cost per volume of the bar stock ($/in3) 0.0481 0.0224 0.2405 0.2566

σd Design normal stress of the bar material (psi) 30 · 103 8 · 103 5 · 103 8 · 103
E Young’s modulus of bar stock (psi) 30 · 106 14 · 106 10 · 106 16 · 106
G Shear modulus of bar stock (psi) 12 · 106 6 · 106 4 · 106 6 · 106
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Compared to Datta and Figueira (2011), where the optimal
value is f (x) = 1.9553, our obtained result f (x) = 1.6297
is smaller, because in our formulation h, t , and b are con-
tinuous variables, in contrast to Datta and Figueira (2011)
with h, t , and b as discrete variables. Furthermore, the
convergence occurs relatively fast, as the optimization algo-
rithm exploits the most promising cluster by maximizing
the acquisition function. This behavior can be explained
by the fact that in this welded beam design example, dif-
ferent materials have significantly different cost objective
functional value, which aids the optimization convergence.

To further demonstrate the effectiveness of the proposed
method, we compare with GA. Two versions of the pro-
posed method are used. In the first version, every cluster are
considered as independent, leaving no neighbor in the neigh-
borhood, whereas in the second version, all the clusters are
considered as neighbors.

The performance comparison is presented in Fig. 7,
showing that both variants of the mixed-integer BO clearly
outperforms the GA in the welded beam design problem.
The solution obtained from the GA is [0, 1, 0.24920115,
5.30060037, 7.12520087, 0.25345267], where the objec-
tive function is evaluated at 2.04016262. On the other
hand, from the first variant (none is neighbor) of the pro-
posed method, the solution obtained is [1, 1, 0.16934934,
5.61720010, 4.90884889, 0.27985016], where the objective
function is evaluated at 1.68206763. From the second vari-
ant (all are neighbors) of the proposed method, the solution
obtained is [1, 1, 0.16934934, 5.61720010, 4.90884889,
0.27985016], where the objective function is evaluated at
1.66457625. The convergence plots of these two variants
are very similar. The asymptotic value using the second
variant is slightly better than that using the first variant.
However, we note that as the optimization process advances,
the prediction converges to a single GP prediction, and
thus both variants are similar at the later stage of search.

Fig. 8 Pressure vessel design optimization problem (Cagnina et al. 2008)

The proposed mixed-integer method clearly outperforms
the GA in all settings.

4.3 Pressure vessel design problem

Here, the proposed mixed-integer BO method is applied to
solve the pressure vessel design optimization problem. The
objective of this problem is to minimize the cost of a storage
tank with 3·103 psi internal pressure shown in Fig. 8, where
the minimum volume is 750 ft3. The shell is made by joining
two hemispheres and forming the longitudinal cylinder with
another weld. The design variables are listed as follows: x1
is the thickness of the hemisphere, x2 is the shell thickness,
x3 is the inner radius of the hemisphere, x4 is the length of
the cylinder.

The objective function that accounts for the cost is

f (x) = 0.6224x1x3x4 + 1.7781x2x
2
3 + 3.1661x2

1x4

+19.84x2
1x3, (32)

where the imposed constraints are

g1(x) = −x1 + 0.0193x3 ≤ 0,

g2(x) = −x2 + 0.009541x3 ≤ 0, (33a)

g3(x) = −πx2
3x

2
4 − 4

3
x3
3 + 1296000 ≤ 0,

g4(x) = x4 − 240 ≤ 0, (33b)

Fig. 7 Performance comparison
between the GA and the
proposed mixed-integer BO for
the welded beam design
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and 0.00625 ≤ x1, x2 ≤ 0.61875, 10.0 ≤ x3, x4 ≤ 200.0.
All variables are considered as continuous in this example.

Figure 9 shows the performance comparison between
the proposed mixed-integer BO and the GA with various
settings in terms of number of functional evaluations. Again,
the BO clearly shows its advantage in term of convergence
speed for continuous variables. The optimal input is
[0.193114320, 0.0954997100, 10, 76.2478356], where the
corresponding objective functional value is 125.02822748.

4.4 Speed reducer design problem

Figure 10 shows the design optimization problem of a speed
reducer (Cagnina et al. 2008). Seven design variables are
described as follows: x1 is the face width, x2 is the module
of teeth, x3 is the number of teeth on pinion, x4 is the
length of the first shaft between bearings, x5 is the length
of the second shaft between bearings, x6 is the diameter of
the first shaft, x7 is the diameter of the second shaft. x3 is
the discrete variable, whereas the rest of the variables are
continuous. The problem is 7-dimensional, one discrete and
six continuous. With the formulation of the problem, there
are 12 local GPs corresponding to 12 discrete values of x3.

In iteration 148, the mixed-integer BO converges to
the global minimum of f (x∗) = 2996.29614837, where
x∗ = [3.50000447, 0.7, 17, 7.30566156, 7.8, 3.35022572,
5.28668406]. The result is comparable with Cagnina et al.
(2008), where particle swarm optimization is employed,
yielding the optimal f (x∗) = 2996.348165, where x∗ =
[3.5, 0.7, 17, 7.3, 7.8, 3.350214, 5.286683].

To evaluate the effect of initial sample size, the mixed-
integer BO is performed with different number of initial
samples. Figure 11 shows the convergence plot of the
GA and the mixed-integer BO, each with various settings.
In terms of the number of functional evaluations, the
mixed-integer BO clearly shows the advantages with faster
convergence, compared to the GA. The effect of initial

Fig. 10 Speed reducer design optimization problem (Cagnina et al.
2008) from NASA

samples is also shown in Fig. 11. It is observed that the
proposed mixed-integer BO converges relatively fast
after the initial sampling stage. Thus, for low-dimensional
problems, it may not be necessary to sample extensively at
the initial sampling stage. The balance between exploration
and exploitation is well-tuned by the acquisition function,
which is GP-UCB (Srinivas et al. 2012) in this case.

4.5 High-dimensional discrete sphere function

To evaluate the performance of the proposed mixed-integer
BO in high-dimensional problems, two discrete sphere
functions with 5-dimensional discrete variables and 50-
dimensional and 100-dimensional continuous variables,
respectively, are used to benchmark. The discrete sphere
function is

f (x(d), x(c)) = f (x1, · · · , xn, xn+1, · · · , xm)

=
n∏

i=1

|xi |
⎛
⎝ m∑

j=n+1

x2
j

⎞
⎠ (34)

Fig. 9 Performance comparison
between the GA and the
proposed mixed-integer BO for
the pressure vessel design
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Fig. 11 Performance
comparison between the GA and
the proposed mixed-integer BO
with different initial samples for
the speed reducer design

where 1 ≤ xi ≤ 2(1 ≤ i ≤ n) are n integer variables
and −5.12 ≤ xj ≤ 5.12(n + 1 ≤ j ≤ m) are m − n

continuous variables. Again, GA is used to compare against
the proposed mixed-integer BO method. The global optimal
of this function is f (x∗) = 0, where x∗ = [1, 1, 1, 1, 1,
0, . . . , 0]. The number of clusters in this example is 2× 2×
2 × 2 × 2 = 32, where each cluster corresponds to a local
GP. Figure 12 shows the convergence plot of the proposed
mixed-integer BO with different number of initial samples
and GA with different settings for the (50+5)D discrete
spherical function, where 5 variables are discrete and 50
variables are continuous.

As seen in Fig. 12, the proposed mixed-integer BO
quickly identifies the discrete tuple (1, 1, 1, 1, 1) that corre-
sponds to the minimal response, with respect to the discrete
tuple. The rest of the convergence plot focuses on the
optimization of the continuous variables. The GA with pop-
ulation size of 50 and elite count of 3 performs on par
with the proposed mixed-integer BO, whereas other GA set-
tings converge much slower. The mixed-integer BO with 2

initial samples converges relatively fast at the beginning.
However, the convergence at the later stage stagnates over
a long period. On the contrary, the mixed-integer with 20
initial samples converge very fast right after the initial sam-
pling stage. One of the reasons is that the local GP is able
to approximate the objective function more accurately with
more initial samples, compared to the one with less initial
samples.

Similarly, Fig. 13 shows the convergence plot of the
proposed mixed-integer BO with a different number of
initial samples and GA with different settings for (100+5)D
discrete spherical function, where 5 variables are discrete.
The mixed-integer with 2 initial samples converges poorly,
whereas other variants perform better. One of the reasons
is that with the low initial sample size, the discrete
tuple is incorrectly identified as (1,1,1,1,2), as opposed to
(1,1,1,1,1). The other variants of the proposed mixed-integer
BO are able to identify the correct tuple immediately after
the initial sampling stage. Thus, it may be beneficial to have
sufficient number of initial samples.

Fig. 12 Performance
comparison between the GA and
the proposed mixed-integer BO
with different initial samples for
(50+5)D discrete spherical
function
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Fig. 13 Performance
comparison between the GA and
the proposed mixed-integer BO
with different initial samples for
(100+5)D discrete spherical
function

5Metamaterials design examples

In this section, we demonstrate the applicability of the pro-
posed method to the design of metamaterials, in which prop-
erties can be tailored depending on the geometric design of
the structures. In Section 5.1, a mechanical metamaterial is
considered, where the objective is to design a low-weight
and high-strength unit cell. In Section 5.2, an auxetic meta-
material unit cell is considered. The proposed BO method
is applied to minimize the negative Poisson’s ratio.

5.1 An example of designing high-strength
low-weight fractal metamaterials

Motivated by the recent experimental work of Meza et al.
(2014) in designing high-strength and low-weight metama-
terials at nano-scale for ceramic systems where the effec-
tive mechanical strength can be enhanced by hierarchical
structure. We demonstrate the proposed methodology in
searching for high-strength and low-weight metamaterials
for multiple classes of materials.

Particularly, our metamaterials are constructed with
fractal geometry. Fractal geometry has the special property
of self-similarity at different length scales. A parametric
design and optimization approach for fractal metamaterials

is demonstrated here. In this example, the goal is to
maximize the effective strength of the structure.

The effective strength is defined as the ratio between
the effective Young modulus and the volume of material
with the assumption of homogenized material for the bulk
properties. The material selection, including Ashby chart, is
formulated as an inequality constraint to limit the searching
space of materials.

5.1.1 Parametric design of fractal truss structures

Mathematically, fractals can be constructed iteratively using
the so-called iterated function systems (IFSs). An IFS is a
finite set of contraction mappings {fi}Ni=1 on a complete
metric space X (Barnsley 2014). Starting from an initial set
P0, the fractal can be constructed iteratively as Pk+1 =
∪N

i=1fi(Pk). Geometrically, the IFSs fi can be expressed
in terms of rotation, translation, scaling, and other set topolog-
ical operations, such as complement, union, or intersect.

In this example, the fractal truss structures are con-
structed from the 2D profiles shown in Fig. 14c. They are
based on the square shape, even though in principle they
can be constructed from any arbitrary polygon such as tri-
angle and hexagon. Figure 14c presents the first three levels
of IFS construction. The IFSs are inspired by the projection

Fig. 14 Truss design parameters
on the unit square: a–c Iterated
function systems of truss designs
on unit square, levels 0–2,
respectively. d Truss options on
fractal level 0 unit square
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of Keplerian 3D fractals onto its corresponding 2D plane.
Here, the IFS operators include the translation matrix
T = diag {±d/2, ±d/2, 1} and the scaling matrix S =
diag {1/2, 1/2, 1}. The rotation is not considered. Physi-
cally, the first four IFSs simply scale the design of previous
fractal level by 1/2, and translate them to the northwest,
northeast, southwest, and southeast, respectively. The fifth
IFS scales the design of previous fractal level by one half
and deletes other features that overlap within the region.

Figure 14 illustrates the square basis with three design
options: (1) diagonal truss, (2) inner square truss, and (3)
perpendicular truss. The diagonal truss option enables edges
connecting nodes 4, 8, 12, 16, and 20 and nodes 0, 6, 12,
18, and 24. The inner square truss option enables edges
connecting nodes 2, 6, 10, 15, 22, 18, 14, and 8. The
perpendicular truss option enables edges connecting nodes
2, 7, 12, 17, and 22 and nodes 10, 11, 12, 13, and 14. In the
example of Fig. 14c, only the inner square truss option is
enabled. In the construction process, the options are enabled
by setting the truss control parameters to 0 or 1, respectively.
The fundamental adjacency matrix of fractal level 0 is built
to indicate whether a pair of nodes are connected. With the
design of level 0 unit cell, the IFSs are applied recursively to
create the more complicated geometry at the desired level.
Once the profile is constructed, additional offset operations
are applied to generate thickness of the 2D truss elements
for a full 3D structure. Figure 15a shows a complete 2D
fractal face. With the square face defined, a complete 3D
fractal unit cell is built with six of the faces, as shown in
Fig. 15b.

5.1.2 Constitutive material model and the finite element
analysis

A general anisotropic material has 21 independent elastic
constants to describe the stress-strain (σ -ε) relationship.
To simplify the materials constitutive model, we assume
isotropic and linear elastic materials behavior at small strain
regime, where σ -ε relationship for bulk material properties

can be obtained via Young’s modulus E and Poisson’s ratio
ν, i.e.,

σij = E

1 + ν

(
εij + ν

1 − 2ν
εkkδij

)
, (35)

where i and j can be either x, y, or z, and δij is the
Kronecker delta of i and j . The material properties E and
ν, as well as material ρ, are taken as inputs to describe the
linear elastic regime in the FEM simulation to obtain stress.

In simulations, we are concerned with an uniaxial com-
pression. Therefore, to simplify the terminology, we refer
to the component of effective stiffness tensor in the load-
ing direction as effective Young’s modulus. It is noteworthy
that the effective stiffness tensor of the designed fractal
truss structure is not the same as the bulk material stiffness
tensor. Two displacement boundary conditions are imposed
on the unit cube. One is the fixed boundary condition for
both translation and rotation, and the other is the constant
displacement on the opposite side of the cube. The stress is
obtained by taking the maximum nodal stress in the active
direction. The effective Young’s modulus is calculated as
the ratio of the maximal nodal stress σ33 at the desig-
nated engineering strain ε = 0.01. The quadratic tetrahedral
element (C3D10 in ABAQUS) is utilized for the FEM sim-
ulation. The total number of elements is between 5000 and
10,000. The exact number varies with respect to the finite
element simulation. The size of the cube is around 1 mm
(10−3 m).

The dimension of the design space is 9, in which 4
discrete and 5 continuous variables are combined to create
an input x = (x1, x2, x3, x4, x5, x6, x7, x8, x9). The discrete
variables include fractal level, the diagonal, inner square,
and perpendicular truss options. The fractal level x1 is an
integer of either 0, 1, or 2, whereas each of the truss options
x2, x3, and x4 is a binary variable from design space, taking
a value of 0 or 1. The continuous variables include thickness
x5 = t of the truss, the extrusion depth x6 = et of the unit
face, the material bulk density x7 = ρ, bulk elastic Young’s
modulus x8 = E, and bulk Poisson’s ratio x9 = ν.

Fig. 15 Design of fractal unit
cube. a The 2D fractal profile
with a fractal level of 2 and only
inner square truss option
enabled. b The unit cube is
composed of six identical fractal
faces, and each face is designed
by truss options, thickness, and
extrusion depth



2148 A. Tran et al.

Three constraints are imposed as follows. Thickness and
extrusion depth are limited to a constant that is related to the
fractal level to preserve the fractal geometry of the structure.
The higher the fractal level is, the smaller is the constant.
Similarly, the material bulk density, Young’s modulus, and
Poisson’s ratio are bounded within a physical limit, where
values are taken from Table 3.1 of Bower (2011) for woods,
copper, tungsten carbide, silica glass, and alloys. As a result,
the imposed constraints are

T ≤ x5 ≤ T , x6 ≥ T , (36a)

x5 ≤ 7 · x6, x6 ≤ 7 · x5, (36b)

where T = 10−6 is the threshold for manufacturability and
T is the threshold for the truss thickness as

T =
{

1
2·2x1+1 , ifx3 = x4 = 2,
1

2·2x1 , otherwise.
(37)

We expect the simulations to converge on the high-strength
and low-density type of materials. However, Ashby chart
indicates a high correlation between compressive strength
and density among all types of materials. To circumvent this
problem, another constraint is introduced to limit the search
region, based on the upper bound of longitudinal wave speed
as

√
E/ρ = √

x8/x7 ≤ 104.25 m/s.

5.1.3 Simulation and results

Figure 16 shows an example of von Mises stress during the
uniaxial compression of the architected metamaterial cell,
as described in Section 5.1.2. In the simulation settings and
its post-process, only σzz is concerned.

The lower bounds of continuous variables (x5, x6, x7,

x8, x9) are (2 ·10−6, 2 ·10−6, 0.4 ·10+3, 9 ·10+9, 0.16). The
lower bounds of x7, x8, and x9 correspond to the density of
wood, bulk Young’s modulus of wood, and Poisson’s ratio

of silica glass, respectively. The upper bounds of continuous
variables (x5, x6, x7, x8, x9) are (0.5 · 10−3, 0.5 · 10−3, 8.9 ·
10+3, 650 · 10+9, 0.35). The upper bounds of x7, x8, and x9
correspond to the density of copper, bulk Young’s modulus
of tungsten carbide, and Poisson’s ratio of a general alloy,
respectively.

To initialize the optimization process, two random inputs
are sampled to construct the GP model for each cluster. The
number of clusters in this example is 2×2×2×3 = 24. The
EI acquisition is used to locate the next sampling location
x. The CMA-ES (Hansen et al. 2003) is used as an auxiliary
optimizer to maximize the penalized acquisition function.
The optimization process is carried out for 170 iterations, as
shown in Fig. 17. At iterations 0, 1, 2, 11, 14, 26, and 148,
better objective function values of 1.9723, 2.7827, 10.4725,
12.1207, 22.1071, 23.3766, and 36.8316 ·106 GPa/kg are
identified, respectively. The relatively fast convergence plot
demonstrates the effectiveness of the proposed BO method
for the mix-integer optimization problems. Due to the
expensive computational cost of the FEM simulation, the
number of iterations is limited to 200.

5.2 Design optimization of fractal auxetic
metamaterials

In the second example, we study the auxetic metamaterial
with application in flexible and stretchable devices. Inspired
by the experimental work of Cho et al. (2014) in designing
auxetic metamaterials using fractal cut, and its subsequent
numerical and experimental work by Tang and Yin (2017)
in developing shape-programmable materials, we use
auxetic metamaterials to demonstrate the proposed BO
methodology. The goal of this example is to minimize the
effective Poisson’s ratio, which is negative and evaluated
through a FEM simulation.

Fig. 16 An example of von
Mises stress of the structure
under loading condition
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Fig. 17 Convergence plot of the
objective function, which is the
ratio between the effective
Young’s modulus and the weight
of the cell, i.e., Eeff/m

5.2.1 Parametric design of auxetic metamaterials

Here, a parametric design of the unit cell, where the frac-
tal level is fixed at 2, is devised. The cut motif α and β

for one level of the auxetic cell is shown in Fig. 18. Basi-
cally, this cut motif controls the free rotational hinges of the
architected structure, such that the deformation energy dis-
sipates through rotational motion, rather than translational
motion. The principle of cut design is based on the connec-
tivity of the rotating units, where the connectivity depends
on the cut patterns, which in turn determines the maxi-
mum stretchability of the designed specimen. For further
details about the fractal cut and its rotating mechanisms,
readers are referred to the work of Cho et al. (2014) and
Tang and Yin (2017). To create a fractal cut, a simple IFS
is imposed on the cut to create subsequent level, with the
scaling ratio of 1/2, and is then translated to four corners.

To tailor the negative Poisson’s ratio, the shape of the cut
is modeled as splines, where the coordinates of the control
points are considered as inputs. The choice of α and β cut
is formulated using discrete variables. The dimension of
this problem is 18, in which 2 discrete and 16 continuous
variables are used. The parametric input x includes x1 and
x2 as discrete variables, which takes the value of either

Fig. 18 Cut motif α and β in designing auxetic metamaterials by
fractal cuts

1 (α-motif) or 2 (β-motif) for level 1 and level 2 cuts,
respectively. The first 4 continuous variables x3, x4, x5, and
x6 are used to describe the shape of the large center cut of
level 1. The next 4 continuous variables x7, x8, x9, and x10
describe the shape of two small side cuts of level 1. In the
same manner, the last 8 continuous variables are used to
model the large center cut and two small side cuts of level
2. Figure 19 shows an example of the parametric design
implementation of the designed auxetic metamaterials in
the ABAQUS environment. The solid dots represent the
control points of the cut. (Color is available on the electronic
version. The blue solid dots denote the level 1 control points,
whereas the red solid dots denote the level 2 control points.)

5.2.2 Constitutive material model and the finite element
analysis

The study of Tang and Yin (2017) has demonstrated that
the effective Poisson’s ratio νeff is indeed a function of
strain ε. In this work, we assume that the base material is
natural rubber reinforced by carbon black. The Mooney-
Rivlin constitutive model is used to describe the hyperelastic
material behavior, where the suitable energy function W is
expressed as

W = C10(I 1 − 3) + C01(I 2 − 3) + 1

D1
(J − 1)2, (38)

where J is the elastic volume ratio and I1, I2, and I3 are the
three invariants of Green deformation tensor defined in term
of principal stretch ratios λ1, λ2, λ3, i.e.,

I1 =
3∑

i=1

λ2i , I2 =
∑

i,j=1;i �=j

λiλj , I3 =
3∏

i=1

λi, (39)

and I 1 = I1J
−2/3, I 2 = I2J

−4/3. The materials parameter
is adopted from Shahzad et al. (2015), where C10 = 0.3339
MPa, C01 = −3.37 · 10−4, and D1 = 1.5828 · 10−3.
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Fig. 19 An implemented
example of auxetic
metamaterials by fractal cuts.
The solid dots present the
control points of the cut. (Color
is available on the electronic
version. Blue dots correspond to
level 1, whereas red dots
correspond to level 2)

The initial size of the square is 20 cm × 20 cm, and
the thickness of the specimen is 1 mm. The specimen is
then deformed in a uniaxial tension configuration in y-
direction, where the displacement is fixed at 10 cm in one
direction. The configuration for the simulation is plane-
strain configuration, where displacement in the extrusion
direction (z-direction) is fixed as zero.

In the deformed configuration, we extract the displace-
ment in x-direction to infer the engineering transverse
strain, and compute the effective Poisson’s ratio as the ratio
between transverse and longitudinal engineering strains.

The element used in this FEM simulation is the eight-
node brick element (C3D8R, C3D6, and C3D4). The FEM
is developed in the ABAQUS environment. The number of
elements for each simulation is approximately 5000.

In this example, several constraints are imposed on the
design variables, which are

x5 ≤ 0.010 − t, x8 ≤ x4 − t, x16 ≤ x12 − t (40a)

0 ≤ x6 ≤ x8, 0 ≤ x7 ≤ x5, x4 ≤ x2 ≤ 0.010,

0 ≤ x3 ≤ x1 (40b)

where t = 0.0015m is the smallest thickness of the
specimen. Two other constraints include the implementation
of convexity for the large center cut of level 1 and level 2.
Figure 20 presents an example of deformed configuration
after the simulation converges.

5.2.3 Simulation and results

The lower bounds of the continuous variables are (0.25; 3.5;
0.50; 1.75; 8.0; 0.25; 4.0; 0.50; 0.25; 3.5; 0.50; 1.75; 4.0;
0.25; 3.0; 0.50)·10−3. The upper bounds of the continuous

variables are (2.00; 6.5; 1.75; 3.00; 9.5; 1.50; 8.0; 1.75; 2.00;
6.5; 1.75; 3.00; 5.5; 1.50; 4.0; 1.75)·10−3.

Two random initial sampling points are created within each
cluster. Because the fractal level is fixed at 2, where each
fractal level corresponds to one cut motif α or β, 4 clusters
are created during the initialization. The initial hyperparam-
eters θi for all i are set at 0.2. The lower and upper bounds
for the hyperparameters θi for all i are (0.01, 20).

The optimization process is carried out for 790 iterations.
Figure 21 shows the convergence plot of the optimiza-
tion process, where the best objective function value νeff is
updated in iterations 0, 4, 24, 26, 30, 45, 63, 66, 69, 78, 81,
84, 513, 582, and 647, with the value of −0.6603, −0.6605,
−0.6628, −0.6628, −0.6902, −0.6941, −0.7143, −0.7410,
−0.7517, −0.7576, −0.7627, −0.7784, −0.7785, −0.7802,
and −0.7804, respectively. The proposed BO shows rela-
tively fast convergence for mid-level dimensionality d =
16, thus demonstrating the effectiveness in tackling mix-
integer nonlinear optimization problems.

Fig. 20 An example of uniaxial tension simulation of plane-strain
configuration in designing auxetic metamaterials using fractal cut
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Fig. 21 Convergence plot of the
objective function, which is the
effective Poisson’s ratio νeff. The
best objective function value is
updated at iterations 0, 4, 24, 26,
30, 45, 63, 66, 69, 78, 81, 84,
513, 582, 647, sequentially

6 Discussion

One of the advantages of the proposed BO algorithm is
its extension to incorporate discrete variables for nonlinear
mixed-integer optimization problems. The discrete variables
include both categorical and integer variables, thus can
be applied with or without the notion of order. The
neighborhood of each cluster is built once during the
initialization of the process and can be customized to adapt
to specific user-defined requirements. Additionally, because
the neighborhood can be modified and/or defined manually,
the independence between clusters can be achieved by
removing the corresponding clusters. Such independence
is quite common in the case of categorical variables.
However, the optimization performance of the proposed
method does not depend on the enumeration of the clusters.
We emphasize that if the cluster is ceased to exist, then it
can be manually removed, and the cluster indices can be
reenumerated manually by a slight modification of (12) and
Algorithm 1.

The weight computation scheme is devised in such a way
that asymptotically, the weight prediction converges to a
single GP prediction, by imposing a weight vector which
has 0 everywhere, except for a single 1 that corresponds to
the corresponding cluster.

It is recommended to choose the neighbors carefully. One
way to do so is to set a small threshold discrete distance
dth, which measures the dissimilarity between clusters based
on the discrete tuples, e.g., dth ≤ 1, and manually remove
clusters that are known to be independent beforehand at the
end of initialization. The safest setting is dth = 0, which
assumes clusters are completely independent of each other.
This setting has some negative effect on the convergence
rate, but would eventually reach the global optimal solution,
and would not be trapped at local optima.

The initial sample size plays a role in the performance of
the proposed mixed-integer BO method. It has been shown

that for some low-dimensional problems, the initial sample
size does not affect the optimization performance. However,
for high-dimensional problems, the initial sample size does
impact the optimization performance. Too many initial
samples at the beginning would prevent the optimization
from quick convergence. However, with moderate amount
of initial samples, and thus a more accurate local GP, the
mixed-integer BO converges faster, compared with fewer
initial samples. As a general rule of thumb, the total initial
sample size is recommended at between 5d and 10d , where
d is the dimension of the problem, including both discrete
and continuous variables.

Here, the scalability of GP for high-dimensional prob-
lems is alleviated, but not completely eliminated. It is
noted that the decomposition approach and weighted aver-
age approach have been adopted (Nguyen-Tuong and Peters
2008; Nguyen-Tuong et al. 2009a, b, 2010; van Stein
et al. 2015; Tran et al. 2018) for continuous variables.
The decomposition method for continuous variables is typ-
ically referred to as local GP. This approach is promising
in tackling the scalability problem. Particularly, in one of
our previous studies (Tran et al. 2018), we have shown that
the local GP is computationally one-order cheaper, com-
pared to the classical GP, while maintaining a reasonable
approximation error.

Nevertheless, further research is required to develop an
efficient and robust decomposition scheme for both discrete
and continuous variables.

One of the limitations in the proposed approach is the
scalability with respect to discrete variables. Because of the
decomposition scheme, the number of the clusters is the
number of the combinatorial possibilities, i.e., the product
of the number of choices for each discrete variable, and
thus resulting in the sparsity problem in each cluster. To
mitigate the undesirable sparsity effect, a Gaussian mixture
model that combines all the predictions from neighboring
clusters is used to exploit some useful information from the
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neighborhood. As mentioned previously, the mixed-integer
optimization problem, in general, is difficult, because it
combines the difficulties for both discrete and continuous
optimization. Particularly, some discrete and combinatorial
optimization problems are NP-complete, such as the travel-
ing salesman problem, knapsack problem, and graph color-
ing problem, to name a few. Another extension is to model
the weights as stochastic variables, so that the metaheuristic
methodologies can be applied (Bianchi et al. 2009).

The clustering and enumeration algorithm described in
Algorithm 1 is based on the assumption of the independence
of discrete variables. Algorithm 1 does not work if the
discrete variables are dependent. However, in the case that
discrete variables are dependent on each other, manual
neighborhood definition of clusters can be introduced
manually, and the proposed BO algorithm is functional
with the demonstrated efficiency. However, the users must
declare the neighborhood of each cluster manually. Strictly
speaking, the computational efficiency of the proposed
algorithm only depends on the number of clusters, not on
the number of discrete variables. If all discrete variables are
completely independent of each other, as demonstrated in
the above examples, then the number of clusters is equal
to the product of the number of choices for each discrete
variable, i.e., L = ∏

pi .
Another practical limitation for the proposed BO algo-

rithm for engineering models and simulations is its sequen-
tial nature of sampling and search. Each run of simulations
usually demands a considerable amount of computational
time. In practice, for high-fidelity and dedicated simula-
tions, one should resort to multi-fidelity or batch-parallel
BO for further improvement.

7 Conclusion and future work

In this paper, we propose a new BO algorithm to solve
the nonlinear constrained mixed-integer design optimization
problems. In this algorithm, the large dataset is decomposed
according to the discrete tuples, in which each discrete
tuple corresponds to a unique GP model. The prediction
for mean and variance is formulated as a Gaussian mixture
model, in which the weights are computed based on the pair-
wise Wasserstein distance between clusters. Constraints,
which are formulated as a set of inequalities, are included
during the optimization process. Theoretical bounds and
algorithmic complexity are provided to demonstrate the
computational efficiency compared to the classical GP.

The proposed algorithm is demonstrated with two fractal
metamaterial design examples, where the mechanical prop-
erties are tailored by the hierarchically designed architect.
In the first example, the algorithm is used to search for
the fractal metamaterial with high-strength and low-density

properties, where material selection is considered. In the
second example, the algorithm is utilized to design an aux-
etic metamaterial for flexible and stretchable devices, where
the effective Poisson’s ratio is chosen as the objective func-
tion. For both computational material design examples,
constraints are imposed to limit the design space. The pro-
posed algorithm shows a promising performance in solving
engineering problems, where high dimensionality is often
an issue.

While several limitations exist, such as scalability for dis-
crete and continuous variables, further research extensions
can be made to improve the current methodology, including
metaheuristic methodologies for stochastic combinatorial
optimization.
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