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Abstract
Applied optimization problems often include constraints. Although the well-known derivative-free global-search DIRECT
algorithm performs well solving box-constrained global optimization problems, it does not naturally address constraints. In
this article, we develop a new algorithm DIRECT-GLce for general constrained global optimization problems incorporating
two-step selection procedure and penalty function approach in our recent DIRECT-GL algorithm. The proposed algorithm
effectively explores hyper-rectangles with infeasible centers which are close to boundaries of feasibility and may cover
feasible regions. An extensive experimental investigation revealed the potential of the proposed approach compared with
other existing DIRECT-type algorithms for constrained global optimization problems, including important engineering
problems.

Keywords DIRECT-type algorithm · DIRECT-type constraint-handling · Nonconvex optimization · Derivative-free
optimization

1 Introduction

Many real-world problems in engineering and applied
sciences can be formulated as nonlinear programming
global optimization problems (Biegler and Grossmann
2004; Floudas 1999; Pintér 1996; Shan and Wang 2010b).

In this paper, we are seeking the global solution of the
general nonlinear programming problem:

min
x∈D

f (x)

s.t. g(x) ≤ 0,
h(x) = 0,

(1)
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where f : R
n → R, g : R

n → R
m, h : R

n → R
r

are (possibly nonlinear) continuous functions and D =
[a, b] = {x ∈ R

n : aj ≤ xj ≤ bj , j = 1, . . . , n}.
The feasible region consisting of points that satisfy all the
constraints is denoted by Dfeas = D ∩ �, where � =
{x ∈ R

n : g(x) ≤ 0 and h(x) = 0}. We also assume that
all functions are Lipschitz-continuous (with unknown Lips-
chitz constants) but can be nonlinear, nondifferentiable, and
nonconvex.

The original DIRECT algorithm (Jones et al. 1993),
as well as various modifications (Liu and Cheng 2014;
Paulavičius et al. 2014, 2018; Paulavičius and Žilinskas
2013, 2014; Sergeyev and Kvasov 2006), addresses
optimization problems only with bounds on the variables.
The first DIRECT-type approach for problems with general
constraints was proposed by one of the original DIRECT
authors (Jones 2001). A few years later, the comparison
of three different constraint handling strategies withing the
DIRECT framework was carried out (Finkel 2005). The
first three strategies revealed disadvantages of handling
infeasible hyper-rectangles and opened many ways for
researchers to improve existing and create new strategies.
Only in recent years, several promising extensions of the
original DIRECT algorithm have been proposed (Basudhar
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et al. 2012; Costa et al. 2017; Liu et al. 2017; Pillo et al.
2010, 2016) for general engineering global optimization
problems.

In this paper, we introduce the extension for general
engineering optimization problems to our recently proposed
DIRECT-GL (Stripinis et al. 2018) algorithm, which is
based on a new strategy (compared to the most of DIRECT-
type methods) for the selection of the extended set of
potentially optimal hyper-rectangles (POH). The proposed
DIRECT-GLce algorithm uses an auxiliary function
approach, that combines information on the objective and
constraint functions and does not require any penalty
parameters. The DIRECT-GLce algorithm works in two
phases, where during the first phase, the algorithm handles
infeasible initial points, while in the second phase seeks to
find a feasible global solution. A separate phase for handling
infeasible initial points is especially useful when the feasible
region is small compared to the design space. When feasible
solutions are located, the efforts may be switched to finding
better feasible solutions.

The rest of the paper is organized as follows. In
Section 2, we briefly review existing extensions of original
DIRECT algorithm for generally constrained optimization.
In Section 3, we review the existing DIRECT-type
approaches based on the exact L1 penalty function schemes.
The description of the new DIRECT-GLce algorithm is
given in Section 4. In Sections 5 and 6, we compare our
algorithm with filter-based DIRECT, EPGO, DF-EPGO,
and eDIRECT-C on 80 test problems and 4 engineering
instances. Finally, we conclude the paper in Section 7.

2 DIRECT-typemethods for general
optimization problem

In this section, we review and summarize existing DIRECT-
type methods for (1) optimization problems.

The first DIRECT-type approach for problems with
general constraints was presented in Jones (2001). The
author extended the original DIRECT algorithm to handle
nonlinear inequality constraints by using an auxiliary
function that combines information on the objective and
constraint functions in a special manner.

The second DIRECT-type approach is based on the
neighborhood assignment strategy (NAS) (Gablonsky
2001). The idea of this strategy is to change the value of the
objective function at the infeasible point x̄ /∈ Dfeas with the
objective value attained in the feasible point from the neigh-
borhood of x̄. Such a strategy does not allow the DIRECT
algorithm to move beyond the feasible region. As the NAS
strategy does not use all the available information, such as

constraint violations, it is slower in general compared to
other approaches and should be used only for optimization
problems with hidden constraints.

Another strategy is based on the exact L1 penalty
functions (Fletcher 1987). An exact L1 penalty approach is
a transformation of the original constrained problem (1) to
the form:

min
x∈D

f (x) +
m∑

i=1

max{pigi(x), 0} +
r∑

i=1

pi+m|hi(x)|, (2)

where pi are penalty parameters. Comparison in Finkel
(2005) showed promising results. The biggest drawback
is the requirement for the users to set penalty parameters
for each constraint function. In practice, choosing penalty
parameters is very important task and can have a huge
impact on the performance of the algorithm (Finkel 2005;
Liu et al. 2017; Paulavičius and Žilinskas 2014, 2016).
Recently, two new approaches based on penalty functions
were proposed: EPGO (Pillo et al. 2010) and DF-EPGO
(Pillo et al. 2016). The main feature of these algorithms
is an automatic update rule for the penalty parameter
and under the weak assumptions; the penalty parameters
are updated only a finite number of times. Another
recently proposed DIRECT-type approach filter-based
DIRECT (Costa et al. 2017) aims to minimize the constraint
violations and the objective function value simultaneously.
While other strategies work only with one general set of
all hyper-rectangles, filter-based DIRECT algorithm adapts
filter methodology from Fletcher and Leyffer (2002) and
splits the main set into three separate sets. The filter
strategy prioritizes the selection of potentially optimal
candidates: first, hyper-rectangles with feasible center
points are selected, followed by those with infeasible but
nondominated center points, and finally by those that have
infeasible and dominated center points.

A metamodel-based (Forrester and Keane 2009; Shan
and Wang 2010a, b) constrained DIRECT-type global
optimization algorithm (eDIRECT-C) was recently also
proposed in Liu et al. (2017). One of the main differences
and features of the algorithm is employed Voronoi diagrams
for partitioning the design space in Voronoi cells. Voronoi
cells have irregular boundaries and eDIRECT-C generates
a set of random points to describe the cells. In order to speed
up the convergence, the algorithm employs a pure greedy
search on the objective metamodel f̂. Also eDIRECT-C
separately handles feasible and infeasible cells.

The summary of discussed and proposed algorithms is
presented in Table 1.
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Table 1 Summary of the main algorithmic characteristics of DIRECT-type methods for (1) optimization problem

Step/Algorithm DIRECT-L1 eDIRECT-C filter-based DIRECT DIRECT-GLce

Selection of potentially
optimal hyper-rectangles
(POH)

Original DIRECT
strategy

Novel DIRECT-type
constraint-handling
technique that sepa-
rately handles feasible
and infeasible cells

Modified strategy, uses
three sets: one from fea-
sible, one from infeasi-
ble nondominated, and
one from infeasible dom-
inated points

Uses two-step selec-
tion procedure from
DIRECT-GL algo-
rithm (Stripinis et al.
2018)

Partitioning scheme Original DIRECT
trisection strategy

Based on Voronoi
diagrams for parti-
tion the design space
in Voronoi cells

Trisection strategy using
the rules of “preference
point” and “preference
order” described in def-
inition 5 (Costa et al.
2017)

Original DIRECT
trisection strategy

Local minimization
procedure

− In MATLAB implemen-
tation uses fmincon

− Only in the version:
DIRECT-GLce-min

Input parameters Balance parameter ε,
penalty parameters pi

Balance parameter ε,
acceptable constraint
violation εϕ

Balance parameter ε,
filter control parame-
ters, acceptable con-
straint violation εϕ

Acceptable constraint
violation εϕ

3 Experimental investigation of the exact L1
penalty strategy within DIRECT-GL
algorithm

In Stripinis et al. (2018), the comparison of DIRECT-GL
algorithm against the original DIRECT as well as several
other well-known DIRECT-type approaches was carried out
on a class of well-known box-constrained global optimiza-
tion test problems from Hedar (2005). The results revealed,
that for simpler (lower dimensional and unimodal) prob-
lems the original DIRECT algorithm performs well, but
for more challenging (higher dimensional and multimodal)
problems, DIRECT-GL performs significantly faster com-
pared to other tested DIRECT-type approaches. Motivated
by the potential of the DIRECT-GL algorithm, we integrate
the exact L1 penalty function strategy within DIRECT-GL
and call the extended algorithm DIRECT-GL-L1. In the
first implementation, for each constraint, the penalty param-
eters for L1 functions are kept fixed during the optimization
process. Analogously to Paulavičius and Žilinskas (2014),
we use three different penalty parameters (p = 10, p =
102, and p = 103) for all constraint functions. Algo-
rithmic comparison was carried out using a collection of
56 generally constrained test problems. Key characteristics
of the used optimization test problems are summarized in
Appendix B, Table 11. Description of all test problems used
in this and subsequent section in a Matlab format is provided
in the online resource (Stripinis and Paulavičius 2018). Note
that problem G12* has the global minimum point in the
center of the feasible region; thus, we have modified bound
constraints in the same way as in Liu et al. (2017). Since all
the global minima f ∗ are known for all collected test problems
in advance, tested algorithms were stopped either when a

point x̄ was generated such that the percent error as follows:

pe ≤ εpe, (3)

where,

pe =
{

f (x̄)−f ∗
|f ∗| , f ∗ �= 0,

f (x̄), f ∗ = 0,

often εpe = 10−4, or when the number of function
evaluations exceeds the prescribed limit of 106.

Experimental results are presented in Table 2 (the best
results are given in bold). Here, in the second column (label),
we report the name of the problem, while in the third
one—the dimensionality (n) of the problem. In the fourth
column (cons. type), we specify type of constraints: linear
(L) or nonlinear (NL). Next, in the consecutive columns,
the total number of function evaluations are reported using
four different algorithms: DIRECT-GL-L1, DIRECT-L1,
DIRECT-GLc, and DIRECT-GLce, accordingly. Note
that the DIRECT-GLc and DIRECT-GLce algorithms are
extensions of the DIRECT-GL-L1 algorithm and fully
described in Section 4.

The exact L1 penalty function approach integrated
within DIRECT-GL (DIRECT-GL-L1 algorithm) gives
on average (aver.(overall)) significantly better results
compared to DIRECT-L1. However, none of tested fixed
penalty parameters for L1 penalty function can ensure
the convergence to the feasible solution for all tested
problems. Contrary to DIRECT-L1 which works better
using smaller penalty parameters (p = 10), the better
performance of DIRECT-GL-L1 is achieved when larger
penalty parameter values are used. When larger penalty
values (p = 103) are used, the DIRECT-L1 algorithm fails
for 67.9% (38/56) cases, while DIRECT-GL-L1 fails only
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Table 2 The number of function evaluations solving optimization problems described in Table 11 and using different algorithms

Cons. DIRECT-GL-L1 DIRECT-L1 DIRECT-GLc DIRECT-GLce

# Label n type p = 10 p = 102 p = 103 p = 10 p = 102 p = 103

1 Bunnag 1 4 L 1,067 1,067 1,067 9,789 15,903 15,903 1,059 7,271

2 Bunnag 2 4 L 5,341 5,341 5,341 156,317 > 106 > 106 3,663 18,733

3 Bunnag 3 5 L 5,873 5,873 5,873 36,389 > 106 > 106 5,675 45,483

4 Bunnag 4 6 L 9,433 12,475 12,531 8,935 > 106 > 106 5,779 42,467

5 Bunnag 5 6 L 29,211 29,211 29,211 > 106 > 106 > 106 23,079 91,445

6 Bunnag 6 10 L > 106 > 106 > 106 > 106 > 106 > 106 > 106 567,027

7 Bunnag 7 10 L > 106 > 106 > 106 > 106 > 106 > 106 > 106 60,775

8 G01 13 L 11a 11a 11a 7a 7a 7a > 106 787,405

9 G02 20 NL > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106

10 G04 5 NL 43a 43a 1,799 33a 33a 675 5,907 21,355

11 G06 2 NL 75a 119a 289a 51a 97a 297a 3,461 6,017

12 G07 10 NL > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106

13 G08 2 NL 179a 471 471 327a 589 589 471 1,507

14 G09 7 NL 70,935a 136,009 88,995 106 106 106 40,879 89,301

15 G10 8 NL 11a 11a 11a 57a 57a 205a > 106 561,857

16 G12* 3 NL 85 85 85 111 111 123 85 85

17 G16 5 NL 154,361 153,101 155,553 > 106 > 106 > 106 129,901 183,779

18 G18 9 NL 116,767 120,457 120,481 334,065 105,881 291,835 449,643 381,387

19 G19 15 NL > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106

20 G24 2 NL 1,277 1,277 1,277 7,865 140,241 > 106 709 2,963

21 Genocop 9 4 L 27a 27a 27a 13a 13a 13a 3,191 11,583

22 Genocop 10 4 L 4,515 4,509 4,509 14,093 > 106 > 106 4,331 26,293

23 Genocop 11 4 L 49,811 52,145 52,153 > 106 > 106 > 106 41,351 467,887

24 Gold.&Price 2 NL 135a 447 487 119a 447 1,809 441 2,765

25 Himmelblau 5 NL 95a 95a 4,525a 67a 67a 3,243a 5,305 22,835

26 Horst 1 2 L 789 1,051 1,051 287a 3,689 273,019 967 4,169

27 Horst 2 2 L 437a 703 703 265a 10,829 > 106 433 2,625

28 Horst 3 2 L 495 495 495 289 289 289 495 495

29 Horst 4 3 L 2,201 2,809 2,809 33,101 > 106 > 106 2,021 7,535

30 Horst 5 3 L 1,695a 3,013 3,761 4,503a > 106 > 106 2,041 7,263

31 Horst 6 3 L 543a 4,195 11,251 333a 9,351a > 106 4,085 11,215

32 Horst 7 3 L 1,213 1,677 1,677 581 12,341 > 106 1,129 7,931

33 hs021 2 L 125 125 125 89 89 89 125 125

34 hs021mod 7 L 11a > 106 > 106 7 > 106 > 106 > 106 344,979

35 hs024 2 L 581 837 837 7a 7a 7a 555 2,813

36 hs035 3 L 2,027 2,027 2,027 1,529 1,495 1,463 1,929 6,473

37 hs036 3 L 1,443 1,443 1,443 727 727 727 1,443 1,443

38 hs037 3 L 11a > 11a 963 7a 7a 7a 739 7,179

39 hs038 4 L 9,417 4,301 4,283 7,401 5,885 5,557 8,867 8,875

40 hs044 4 L 20,845 27,017 59,485 138,947 > 106 > 106 5,047 26,065

41 hs076 4 L 8,929 8,935 8,935 30,037 149,679 155,061 3,509 15,763

42 s224 2 L 295a 943a 737 7a 333 223 823 1,309

43 s231 2 L 337 337 337 999 1,029 1,003 331 331

44 s232 2 L 11a 75a 1,145 19a 57a > 106 1,069 5,601

45 s250 3 L 33a 75a 2,651 25a 49a 9,431 3,891 7,333

46 s251 3 L 11a 11a 963 7a 7a > 106 733 7,101

47 T1 2 NL 1,221 1,921 1,921 3,345 8,229 8,229 1,373 2,933
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Table 2 (continued)

Cons. DIRECT-GL-L1 DIRECT-L1 DIRECT-GLc DIRECT-GLce

# Label n type p = 10 p = 102 p = 103 p = 10 p = 102 p = 103

48 T1 3 NL 75,105 16,625 16,333 66,137 > 106 > 106 26,643 8,297

49 T1 4 NL 180,383 189,595 277,587 127,087 > 106 > 106 192,951 47,431

50 T1 5 NL 310,195a 520,803 616,925 > 106 > 106 > 106 253,805 78,257

51 T1 6 NL 394,497 708,017 698,917 > 106 > 106 > 106 239,697 135,843

52 T1 7 NL > 106 > 106 > 106 > 106 > 106 > 106 > 106 221,603

53 T1 8 NL > 106 > 106 > 106 > 106 > 106 > 106 > 106 206,365

54 T1 9 NL > 106 > 106 > 106 > 106 > 106 > 106 > 106 370,913

55 T1 10 NL > 106 > 106 > 106 > 106 > 106 > 106 > 106 635,847

56 zecevic2 2 L 545 815 815 1,533 2,961 7,079 1,081 2,763

Aver.(overall) 516,137 418,516 312,676 636,793 682,036 705,836 240,727 153,341

Aver.(n ≤ 3) 443,498 241,614 42,175 526,485 409,504 494,361 2,283 4,331

Aver.(n ≥ 4) 580,337 547,705 520,763 705,260 879,914 853,840 433,021 273,510

Aver.(L cons.) 398,612 308,194 158,096 528,508 612,280 650,601 125,135 78,962

Aver.(NL cons.) 692,335 558,644 520,906 764,540 752,595 754,704 406,577 260,058

Median 352,346 40,678 7,404 > 106 > 106 > 106 4,208 13,673

# unsolved (total) 28 21 15 34 37 38 12 3

# unsolved (infes.sol.) 19 11 5 17 12 7 0 0

# unsolved (> 106) 9 10 10 17 25 31 12 3

aThe final solution lies outside the feasible region

for 28.6% (16/56) cases accordingly. Also, larger penalty
parameter values reduce the chance of obtaining a solution
from the infeasible region. On the other hand, larger penalty
values can bias the algorithm away from the boundary of the
feasible region where the solution is often located.

Another important feature, that even for low-dimensional
test problems (n ≤ 3) DIRECT-L1 with (p = 103)

fails for 36% (9/25) cases, but the DIRECT-GL-L1
algorithm have none such cases at all. Moreover, the
smallest dimensionality when DIRECT-L1 exceeds the
maximal number of function evaluation is equal to n = 2,
while using DIRECT-GL-L1 the lowest dimensionality
when the algorithm failed to converge withing the budged
is equal to n = 7. When solving problems with linear
(L) constraints using DIRECT-L1, the maximal number of
function evaluation is exceeded for 51.5% (17/33) cases,
while for DIRECT-GL-L1, this happens for 9.1% (3/33)
cases accordingly. Even more, using the DIRECT-L1
algorithm with all three different penalty parameters, the
median value is more than 106, which means that more
than half of test problems were not solve in allowed time,
while much better (smaller) median values were obtained
using the DIRECT-GL-L1 approach. To sum up, while
lower penalty values give a better performance for the
DIRECT-L1 algorithm, larger penalty values suit better
within the DIRECT-GL-L1 scheme.

In recent years, performance (Dolan and Moré 2002) and
data profiles (Moré and Wild 2009) have become a popular
and widely used tool for benchmarking and evaluating
the performance of several algorithms (solvers) when run
on a large problem set. Thus, in this section, we also
compare the performance of the algorithms using both these
tools with the convergence test (3). Benchmark results are
generated by running a certain algorithm s (from a set of
algorithms S under consideration) for each problem p from
a benchmark set P , and recording the performance measure
of interest, which could be, for example, the number of
function evaluations, the computation time, the number of
iterations or the memory used. In our case, the number of
function evaluations criterion is used.

Performance profiles asses the overall performance of
algorithms (solvers) using a performance ratio (rp,s) as
follows:

rp,s = tp,s

min{tp,s : s ∈ S} , (4)

where tp,s > 0 is the number of function evaluations
required to solve problem p by the algorithm s and
min{tp,s : s ∈ S} is the smallest number of function
evaluations by any algorithm on this problem. Then, the
performance profile (ρs(α)) of an algorithm s ∈ S is given
by the cumulative distribution function for the performance
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ratio as follows:

ρs(α) = 1

|P| size{p ∈ P : rp,s ≤ α}, α ≥ 1, (5)

where |P| is the cardinality of P . Thus, ρs(α) is the
probability for an algorithm s ∈ S that a performance ratio
rp,s for each p ∈ P is within a factor α of the best possible
ratio.

The performance profiles seek to capture how well the
certain algorithm s performs compared to other algorithms
in S on the set of problems from P . In particular, ρs(1)

gives the fraction of the problems in P for which algorithm
s is the winner, i.e., the best according to the tp,s criterion.
In general, algorithms with high values for ρs(α) are
preferable.

On the other hand, performance profiles do not provide
the percentage of problems that can be solved with a given bud-
get of function evaluations. The data profiles are designed to
provide this information. The data profile defined in a such
way is shown as follows:

ds(α) = 1

|P| size{p ∈ P : tp,s ≤ α}, (6)

and shows the percentage of problems that can be solved
with α function evaluations.

Figure 1 shows the performance and data profiles of
DIRECT-GL-L1 and DIRECT-L1 algorithms on the
whole set of optimization problems described in Table 11.
The data profiles show that DIRECT-GL-L1 algorithm
outperforms DIRECT-L1 with all penalty parameter values
for all sizes of the computational budget. Moreover, the
performance differences between the DIRECT-GL-L1
and DIRECT-L1 algorithms tend to be larger when the
computational budget is bigger. The performance profiles
reveal that all three DIRECT-GL-L1 algorithm variations

solve ≈ 30% with the best efficiency, while only ≈ 10%
using any of DIRECT-L1 variations.

4 DIRECT-GLce algorithm for generally
constrained global optimization problems

4.1 Handle the case with infeasible initial regions

In this section, we present a new way to handle hyper-
rectangles with infeasible centers. In the first extension
of DIRECT-GL-L1, we consider a situation when initial
sampling points are infeasible and finding at least one
feasible point can be costly. In such a situation of DIRECT-
type algorithms, DIRECT-GL-L1 and DIRECT-L1 are
likely to fail in finding feasible points in a reasonable
number of function evolutions. For such a situation, we
employ an additional procedure into DIRECT-GL-L1
scheme, which samples the search space and minimizes not
the original objective function, but the sum of constraint
violations, i.e.,

min
x∈D

ϕ(x), (7)

where,

ϕ(x) =
m∑

i=1

max{pigi(x), 0} +
r∑

i=1

pi+m|hi(x)|, (8)

until a feasible point x ∈ Dfeas
εϕ

is found, where,

Dfeas
εϕ

= {x : 0 ≤ ϕ(x) ≤ εϕ, x ∈ D}. (9)

Penalty parameters pi are simply set to 1 and εϕ is a
very small acceptable constraint violation. The authors of
the eDIRECT-C algorithm use a very similar idea, but
for treating the constraints equally, they recommend to

Fig. 1 Data profiles (left) and performance profiles (right) of DIRECT-GL-L1 and DIRECT-L1 algorithms on the whole set of optimization
problems described in Table 11
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normalize every constraint function. And in the same step,
they sample the search space and minimize the sum of
normalized constraint violations ϕN(x), i.e.,

min
x∈D

ϕN(x). (10)

In Table 3, we present the impact of this procedure on
the selected subset of test problems (from Tables 10 and 11)
having a small feasible region (the best results are given in
bold). For problems G03, G05, and G10, the L1 penalty-
based approaches can fail to produce a feasible solution
within 106 function evaluations, but using (7) or (10), we
avoid such a situation.

By the second extension to DIRECT-GL-L1, we
transform problems (2) to (11) as follows:

min
x∈D

f (x) + ξ(x, f feas
min ),

ξ(x, f feas
min ) =

{
0, x ∈ Dfeas

εϕ

ϕ(x) + 	, otherwise,

(11)

i.e., instead of the exact L1 penalty approach, we introduce
an auxiliary function ξ(x, f feas

min ) which depends on the
sum of constraint functions and only one parameter 	 =
|f (x) − f feas

min |, which is equal to absolute value of the
difference between the best feasible function value found
so far f feas

min and the objective value at an infeasible center
point. The main purpose of the parameter 	 is to forbid
the convergence of the algorithm to infeasible regions by
penalizing objective value obtained at infeasible points. In
such a way, formulation (11) does not require any penalty
parameters and determine the convergence of the algorithm
to a feasible solution. The value of ξ(x, f feas

min ) is updated
when a smaller value of f feas

min is found. The new algorithm
with these two extensions is called DIRECT-GLc. Note that
this comes with a slight performance overhead, compared
to DIRECT-GL-L1, which uses the fixed penalty values
during the entire minimization process.

Since at the beginning of the search the difference bet-
ween f feas

min and the global solution f ∗ can be large, therefore
the value of ξ(x, f feas

min ) can be increased too much. We take

into account this by modifying (11) to (12) as follows:

min
x∈D

f (x) + ξ̃ (x, f feas
min ),

ξ̃ (x, f feas
min ) =

⎧
⎨

⎩

0, x ∈ Dfeas
εϕ

0, x ∈ Dinf
εcons

ϕ(x) + 	, otherwise,

(12)

where Dinf
εcons

= {x : f (x) ≤ f feas
min , εϕ < ϕ(x) ≤ εcons, x∈ D}

and εcons is a small tolerance for constraint function sum,
which automatically varies during the optimization process.
More detailed behavior of εcons is described in algorithm 1,
lines 19–28. With the introduction of this modification, the new
DIRECT-GLce algorithm divides more hyper-rectangles
with the center points lying close to the boundaries of
the feasible region, i.e., potential solution. A geometrical
illustration of εcons parameter is shown in Fig. 2.

Experimental performance using both introduced meth-
ods are presented in Table 2. No constraint violation was
allowed in this experiment and the parameter εϕ was set
to 0. First, it is easy to notice that for the low-dimensional
test problems (n ≤ 3), the number of function evalua-
tions is most often smaller for DIRECT-GLc algorithm
46.3% (26/56), also DIRECT-GL-L1 algorithm looks
more promising with bigger penalty parameters solving
the same test problems. εcons parameter in DIRECT-GLce
algorithm requires more function evaluations for simpler
test problems (low dimension and with linear constrains)
comparing with other algorithms, but solving more compli-
cated test problems DIRECT-GLce is much more promis-
ing. The main advantage of εcons parameter can be seen
solving higher dimensional and nonlinear (NL) test prob-
lems, where DIRECT-GLce outperforms other methods
in average function evaluations and solved problems. Also
looking in a general context, DIRECT-GLce requires less
function evaluations and fails to solve only three test prob-
lems from which for two, the algorithm reached the region
of the global solution and only for one 20-dimensional test
problem, the algorithm was not able to locate the region.

Table 3 The number of function evaluations needed by algorithms to find a feasible point

# Label n m + r a DIRECT-GLce DIRECT-GL-L1 DIRECT-L1

ϕ(x) ϕN (x) p = 10 p = 102 p = 103 p = 10 p = 102 p = 103

8 G01 13 9 0.0111% 4,050 4,270 4,340 4,036 4,340 4,626 4,244 4,776

11 G06 2 2 0.0066% 102 102 1,431 575 122 1,521 547 112

12 G07 10 8 0.0003% 927 1,628 847 1,318 1,660 449 531 813

15 G10 8 6 0.0010% 3,394 1,813 > 106 > 106 > 106 > 106 > 106 > 106

1e G03 10 1 0.0000% 1,381 1,381 4,037 3,393 1,413 > 106 > 106 > 106

2e G05 4 5 0.0000% 6,329 5,658 8,635 5,507 6,331 > 106 > 106 > 106

ais the estimated ratio between the feasible region and the search space
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(a) (b) (c)

Fig. 2 Geometric interpretation of DIRECT-GLce algorithm on T1 (n = 2) test problem in (a) the sixth iteration, (b) the seventh iteration, (c)
the eighth iteration

Figures 3, 4, and 5 show the data and performance
profiles for all the algorithms in the interval [1, 10]. The data
profiles from Fig. 3 display that introduced DIRECT-GLc
and DIRECT-GLce algorithms significantly outperform
all previously tested exact L1 penalty function-based
approaches, and the performance differences increase even
more when the computational budget is bigger. The
performance profiles in Fig. 3 reveal that DIRECT-GLc
algorithm has the most wins, and it can solve about
50% of the problems with the highest efficiency. The
difference is even bigger for simpler problems (with
linear constraints or n ≤ 3), where the probability
that DIRECT-GLc is the optimal solver is close to 0.6
(see, Figs. 4, and 5). However, solving more challenging
problems (with nonlinear constraints and n ≥ 4)
DIRECT-GLce outperforms other algorithms, and the

performance difference increases as the performance ratio
increases. Also, if we choose being within a performance
ratio of 10 of the best algorithm, then DIRECT-GLce is
also the most effective algorithm, with the exception for
simpler problems (n ≤ 3), where DIRECT-GLc is the
leader.

4.2 Algorithmic steps

The complete description of the DIRECT-GLce algorithm
is given in algorithm 1 and additionally is presented in
a flowchart in Fig. 6. The input for the algorithm is
one (or few) stopping criteria: required tolerance (εpe),
the maximal number of function evaluations (FEmax),
and the maximal number of DIRECT-GLce iterations
(Kmax). After termination, DIRECT-GLce returns the

Fig. 3 Data profiles (left) and performance profiles (right) of DIRECT-GLce, DIRECT-GLc, DIRECT-GL-L1, and DIRECT-L1 algorithms
on the whole set of optimization problems described in Table 11
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Fig. 4 Performance profiles of DIRECT-GLce, DIRECT-GLc, DIRECT-GL-L1, and DIRECT-L1 algorithms solving problems with linear
(left) and nonlinear (right) constraints from Table 11

found objective value f feas
min and the solution point xfeas

min
together with algorithmic performance measures: the
final tolerance—percent error (pe), the total number of
function evaluations (fe), and the total number of iterations
(k).

DIRECT-GLce uses the new two-step-based strategy
for the selection of potentially optimal hyper-rectangles,
which is presented in Stripinis et al. (2018). The
DIRECT-GLce performs the selection twice in each itera-
tion. First, the globally enhanced set of potentially optimal
candidates is determined and fully processed (sampled and
partitioned) (see, algorithm 1, lines 11–16; second, the
locally enhanced set is identified and fully processed, see,
lines 32–45).

The algorithm operates in two phases, which depends on
whether a feasible point in Dfeas is already found or not (see,
lines 6–10). If it is not yet found, the algorithm minimizes
only sum of constraint violation (8) and attempts to find a
feasible point. After such a point is found, the algorithm
switches to the second phase and minimizes problem
(12). Lines 19–28 are controlled by constraint tolerance
parameter εcons determining infeasible points which will not
be penalized at all. In the proposed strategy, the number of
such points (the cardinality of the set Dinf

εcons
), cannot exceed

10 × n3, if this happens, εcons should be reduced. In the
opposite case when the cardinality of the set Dinf

εcons
is zero,

εcons should be increased. We set the boundaries for the rate
of change 10−4 ≤ εcons ≤ 10.

Fig. 5 Performance profiles of DIRECT-GLce, DIRECT-GLc, DIRECT-GL-L1, and DIRECT-L1 algorithms solving n ≤ 3 (left) and n ≥ 4
(right) problems from Table 11
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Fig. 6 Flowchart of the DIRECT-GLce algorithm

5 Comparison with other DIRECT-type
approaches for constrained global
optimization

In this section, we present an exhaustive comparison of
the newly proposed DIRECT-GLce algorithm with other
existing DIRECT-type algorithms devoted to (1) problems.

5.1 Comparison with eDIRECT-C algorithm

First, we perform comparison against the recently
proposed eDIRECT-C (Liu et al. 2017) algorithm.
Authors compared their eDIRECT-C vs. CORBA (Regis

2014), ConstrLMSRBF (Regis 2011), CiMPS (Kazemi
et al. 2011), and DIRECT-L1 (Finkel 2005) algorithms.
The numerical experiments revealed the potential of
eDIRECT-C algorithm for expensive constrained problems
in terms of the convergence speed, the quality of final
solutions, and the success rate. We use two versions of
DIRECT-GLce: the first is presented in Section 4, while
the second version is based on DIRECT-GLce and is
enriched with a local minimization procedure (let us call the
algorithm DIRECT-GLce-min).

To perform the comparison as fair as possible, we use
the same 13 test problems from Liu et al. (2017). Key
characteristics of these constrained global optimization test
problems (G01–G13) are listed in Appendix B, Tables 11
and 10. Note that several of these test problems: G03,
G05, G11, and G13 contain equality constraints, which we
transform (by the same strategy as in Liu et al. (2017)) into
two inequality constraints as follows:

h(x) = 0 →
{
h(x) − εh ≤ 0
−h(x) − εh ≤ 0,

(13)

where εh > 0 is set to 10−4. The stopping criterion is
the same relative error (3) as we used in the previous
analysis. In these experiments, allowed constraint violation
εϕ = 0 was used. In Liu et al. (2017), the maximal allowed
number of function evaluations was set to 1000. According
to the authors, eDIRECT-C was developed primarily for
expensive constrained global optimization problems, in
which a simulation of the problem may require several
hours or even days. Thus, the eDIRECT-C algorithm
requires much more running time than the other compared
methods, especially this is the case for higher dimensional
problems. On the contrary, in Section 4, we showed that
our approach works faster compared to DIRECT-L1, and
the difference increases for larger problems. Thus, we use
the maximum limit equal to 106 function evaluations for
our algorithm. The obtained results are given in Table 4
(as usual, the best results are given in bold). Here, fmin

is the minimal objective function value found by the
corresponding algorithm; feval is the number of objective
function evaluations required by an algorithm to reach the
solution within specified accuracy; and SR (success rate)
records the number of success runs among the total ten
runs. Note that our approach is deterministic and there is no
requirement to run our algorithm several times.

First, observe that DIRECT-GLce algorithm solves
11/13 of test problems while eDIRECT-C solves only
8/13. When we combine DIRECT-GLce with the local
search procedure in DIRECT-GLce-min algorithm, the
hybridized algorithm outperforms eDIRECT-C by both cri-
teria: the number solved problems 12/13 and the qua-
lity of the final solution. Moreover, the incorporated local
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Table 4 Comparison of different algorithms for 13 test problems (see Tables 11 and 10 for the description) from Liu et al. (2017)

# Label Criteria eDIRECT-C DIRECT-GLce DIRECT-GLce-min

fmin −14.9998 −14.9991 −15.0000

8 G01 feval 148 787,405 4,153

SR 1 − −
fmin −0.2480 −0.2246 −0.3148

9 G02 feval >1,000 > 106 > 106

SR 0 − −
fmin −30,665.5385 −30,663.5708 −30,665.5387

10 G04 feval 65 21,355 25

SR 1 − −
fmin −6, 961.8137 −6,961.1798 −6,961.8139

11 G06 feval 35 6,017 129

SR 1 − −
fmin 24.3062 24.3332 24.3062

12 G07 feval 152 > 106 1,161

SR 1 − −
fmin −0.0958 −0.0958 −0.0958

13 G08 feval 154 1,507 115

SR 1 − −
fmin 785.6795 680.6928 680.6301

14 G09 feval >1,000 89,301 41

SR 0 − −
fmin 7,049.2484 7,049.8749 7,049.2480

15 G10 feval 105 561, 857 3,607

SR 1 − −
fmin −1.0000 −0.9999 −1.0000

16 G12 feval 52 85 17

SR 1 − −
fmin −0.9989b −1.0004 −1.0004

1e G03 feval 145 251,547 251,547

SR 0 − −
fmin 5,145.8149b 5,126.5089 5,126.4967

2e G05 feval 413 6,861 5, 629

SR 0 − −
fmin 0.7499 0.7499 0.7499

3e G11 feval 33 1, 929 447

SR 1 − −
fmin 0.6472 0.0539 0.0539

4e G13 feval >1,000 458,239 100,171

SR 0 − −
No. of unsolved pr. 5 2 1

bReported result do not satisfying the stopping criterion (3)

minimization procedure into DIRECT-GLce-min signifi-
cantly reduces the total number of function evaluations
compared to DIRECT-GLce, but eDIRECT-C required

the smallest number of function evaluations on the average.
On the other hand, authors in Liu et al. (2017) stated that
eDIRECT-C requires much more running time compared
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Table 5 Comparison between algorithms on 20 test problems from Costa et al. (2017)

to other algorithms used in the comparison; therefore, the
number of function evaluations criterion alone does not
represent the real performance of the algorithms very well.

5.2 Comparison with filter-based DIRECT algorithm

In the second part, we compare the proposed algorithms
with the filter-based DIRECT algorithm (Costa et al. 2017).
Note that in this comparison, we omit two other DIRECT-
type algorithms based on the exact penalty functions: EPGO,
DF-EPGO, as comparison with them was already carried out
in Costa et al. (2017).

We consider the same 20 global optimization test
problems (P01(x)–P16) see Tables 10 and 11 in Appendix B
for the detailed description) used in Costa et al. (2017) and
collected from Birgin et al. (2010). In order to provide as fair
as possible comparison, in the same vein as in Costa et al.
(2017), we have performed algebraic manipulation aiming
to reduce the number of variables and equality constraints:

– Test problems P02(a), P02(b), and P02(c) after reformu-
lation contain 5 variables and 10 inequality constraints.
In the original problem formulation, there were 9 vari-
ables, 4 equality, and 2 inequality constraints.

– Test problem P02(d) after reformulation contains 5
variables and 12 inequality constraints. In the original
problem formulation, there were 10 variables, 5
equality, and 2 inequality constraints.

– Test problem P05 after reformulation contains 2
variables, 2 equality, and 2 inequality constraints. In
the original problem formulation, there were 3 variables
and 3 equality constraints.

– Test problem P09 after reformulation contains 3
variables and 9 inequality constraints. In the original
problem formulation, there were 6 variables, 3 equality,
and 3 inequality constraints.

– Test problem P12 after reformulation contains 1
variable and 2 inequality constraints. In the original
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Table 6 The best solutions obtained by the algorithms for problem E01

xi , gi eDIRECT-C DIRECT-GLce DIRECT-GLce-min

x1 3.5000 3.5003 3.5000

x2 0.7000 0.7000 0.7000

x3 17.0000 17.0000 17.0000

x4 7.3000 7.3001 7.3000

x5 7.7153b 7.8000 7.8000

x6 3.3502 3.3505 3.3502

x7 5.2867 5.2867 5.2867

g1(x) −0.0739 −0.0740 −0.0739

g2(x) −0.1980 −0.1981 −0.1980

g3(x) −0.4992 −0.4992 −0.4992

g4(x) −0.9046 −0.9015 −0.9015

g5(x) −4.78 × 10−6 −8.77 × 10−5 −1.40 × 10−13

g6(x) 2.53 × 10−6c −7.11 × 10−5 −3.57 × 10−14

g7(x) −0.7025 −0.7025 −0.7025

g8(x) 0.0000 −2.25 × 10−5 −2.89 × 10−14

g9(x) −0.5833 −0.5833 −0.5833

g10(x) −0.0513 −0.0513 −0.0513

g11(x) −6.48 × 10−7 −0.0108 −0.0109

fmin 2994.4711a 2996.5498 2996.3481

feval 118 110,387 233

aResult is outside the feasible region
bVariable bound constraint violation
cConstraint is violated

Table 7 The best solutions obtained by the algorithms for problem E02

xi , gi eDIRECT-C DIRECT-GLce DIRECT-GLce-min

x1 1.0000 1.1001 1.1000

x2 0.6250 0.6250 0.6250

x3 51.8135 56.9978 56.9948

x4 84.5786 50.9916 51.0013

g1(x) −2.89 × 10−14 −1.31 × 10−14 −6.17 × 10−14

g2(x) −0.1307 −0.0813 −0.0813

g3(x) −0.1046 −76.9749 −4.77 × 10−8

g4(x) −155.4215 −189.0084 − 188.9988

g5(x) 0.1000b −7.05 × 10−5 −1.41 × 10−13

g6(x) −0.0250 −0.0250 − 0.0250

fmin 7006.7816a 7164.3701 7163.7395

feval 412 129,097 73

aResult is outside the feasible region
bConstraint is violated
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Table 8 The best solutions obtained by the algorithms for problem E03

xi , gi eDIRECT-C DIRECT-GLce DIRECT-GLce-min

x1 0.0517 0.0518 0.0517

x2 0.3567 0.3602 0.3569

x3 11.2882 11.1026 11.2934

g1(x) 0.0012b −1.20 × 10−5 −3.80 × 10−10

g2(x) −2.61 × 10−6 −2.73 × 10−6 −1.68 × 10−10

g3(x) −4.0568 −4.0574 −4.0510

g4(x) −0.7277 −0.7253 −0.7276

fmin 0.0127a 0.0127 0.0127

feval 292 20,845 11

aResult is outside the feasible region
bConstraint is violated

problem formulation, there were 2 variables and 1
equality constraints.

– Test problem P14 after reformulation contains 3
variables and 4 inequality constraints. In the original
problem formulation, there were 4 variables, 1 equality,
and 2 inequality constraints.

– Test problem P16 after reformulation contains 2
variables and 6 inequality constraints. In the original
problem formulation, there were 5 variables and 3
equality constraints.

In Costa et al. (2017), the authors stopped considered
algorithms when the point x̄ was generated such that the
percent error (p̃e) was as follows:

p̃e = |f (x̄) − f ∗|
max{1, |f ∗|} < 10−4, (14)

or when the number of iterations exceeds the prescribed
limit of 200. Note that although all considered algorithms
belong to DIRECT-type class, the cost of one iteration

can vary significantly. Therefore, we stopped our tested
algorithms either when (14) was satisfied or when the
maximal number of function evaluations equal to 200,000
was reached. In the same vein as in Costa et al. (2017)
allowed constrain violation εϕ was set to 10−4. The
obtained experimental results are presented in Table 5. Our
algorithms (DIRECT-GLc and DIRECT-GLce) give on
average (aver.(overall)) significantly better results compared
to filter-based DIRECT and failed to locate solution point
with required tolerance (14) only for 3/20 of test problems
(highlighted in red color in the colored version), and none
of those three problems was solved by the filter-based
DIRECT algorithm among with two others. However, for
simpler test problems, i.e., lower dimensionality cases (n ≤
3) and on problems with linear (L) constraints filter-based
DIRECT is a very promising option. The completely different
behavior for harder test problems, i.e., higher dimensionality
cases (n ≥ 4) and on problems with nonlinear (NL) constraints
where our approaches give much better results. Finally,
our enriched version with a local minimization procedure

Table 9 The best solutions obtained by the algorithms for problem E04

xi , gi eDIRECT-C DIRECT-GLce DIRECT-GLce-min

x1 0.7887 0.7840 0.7887

x2 0.4083 0.4218 0.4083

g1(x) −1.52 × 10−12 −2.43 × 10−5 −1.52 × 10−12

g2(x) −1.4641 −1.4488 −1.4641

g3(x) −0.5359 −0.5512 −0.5359

fmin 263.8958 263.9158 263.8958

feval 26 21,331 11
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DIRECT-GLce-min failed only on P02(b) test problem,
where the algorithm converged to a local minimum point
and gave the best results based on all used comparison
criteria.

6 Comparison on four engineering problems

In this section, we conclude our experimental investigation
by applying the algorithms from the previous section to four
important real-world engineering problems. The detailed
description of these engineering problems can be found
in Liu et al. (2017), while in Appendix A, we provide
the short description and mathematical formulations. The
same stopping rule (3) as in the previous section is used.
No constraint violation was allowed in this experiments
and the parameter εϕ was set to 0. Note that some of
the problems contain integer variables; thus, by the same
analogy to Liu et al. (2017), we regard them as continuous
ones.

Tables 6, 7, 8, and 9 list the best found solutions and
the total number of function evaluations using each of
the algorithms solving four engineering problems. We note
that using the eDIRECT-C algorithm sometimes obtained
solution is better compared to ours, but in all these cases, the
reported solution point violates constraints of the problem.
Possibly, this is within constraint violation tolerances
allowed by the authors of eDIRECT-C, but our algorithms
provide final solutions without any constraint violation. As
we tried to maintain the same number of decimals across the
manuscript, we acknowledge that some provided rounded
solution points can slightly violate constraints. For the
NASA speed reducer design problem (E01) (see, Table 6),
the variable bounds for x5 are 7.8 ≤ x5 ≤ 8.3; however,
the value of x5 from the reported optimal solution point for
eDIRECT-C algorithm is equal to x5 = 7.71532.

A similar situation is when solving the pressure vessel
design problem (E02). The variable x1 is bounded within
1 ≤ x1 ≤ 1.375, but the fifth constraint function g5(x) :
1.1 − x1 ≤ 0 reduces the feasible interval to 1.1 ≤ x1 ≤
1.375. However, the value of x1 for the reported optimal
solution point using eDIRECT-C is equal to x1 = 1.

Once again, we notice the similar situation solving
tension spring design problem (E03). The reported optimal
solution point for eDIRECT-C algorithm violates the

constrain g1(x) : 1 − x3
2x3

71875x4
1

≤ 0. At the solution point, the

feasible value of the first constraint should be nonpositive,
but the reported value is g1(x) = 0.0012 > 0.

Only in three-bar truss design problem (E04) reported
optimal solution point for eDIRECT-C algorithm did not

violate any constraint. Our DIRECT-GLce-min version
obtained the identical solution point. In overall view, our
algorithms for all engineering problems are able to locate
solution points which meet the stopping rule (3) and satisfy
all the constraints.

7 Conclusions, challenges, and further work

In this paper, we introduced a new strategy for constrained
optimization problems in the DIRECT-type algorithmic
framework. Two well-known weaknesses of DIRECT-L1
algorithms were addressed in the proposed approaches.
First, we have demonstrated that the exact L1 penalty
function based new DIRECT-GL-L1 algorithm gives
on average significantly better results compared to
DIRECT-L1. Moreover, the performance differences
between DIRECT-GL-L1 and DIRECT-L1 algorithms
tend to be larger when solving harder problems.

Next, instead of the exact L1 penalty approach, we
introduced an auxiliary function-based approach in the
DIRECT-GLc and DIRECT-GLce algorithms, which
does not require any penalty parameters. The proposed
DIRECT-GLc and DIRECT-GLce algorithms signifi-
cantly outperform all previously tested exact L1 penalty
function-based approaches, and the performance differences
increases when the computational budget is larger. The
DIRECT-GLc algorithm has the most wins, and it can
solve about 50% of the problems with the highest effi-
ciency. However, solving more challenging problems (with
nonlinear constraints and n ≥ 4), DIRECT-GLce out-
performs other algorithms, and the performance difference
increases as the performance ratio increases. Also, solv-
ing higher-dimensional test problems, DIRECT-GLce out-
performs the original DIRECT-L1 algorithm in running
speed.

To improve the solution accuracy and improve the
efficiency solving high-dimensional problems, we have
enriched DIRECT-GLce with a local minimization proce-
dure and called the new algorithm DIRECT-GLce-min.
The further experimental investigation revealed the advan-
tage of the DIRECT-GLce and DIRECT-GLce-min
algorithms over most test problems and four engineer-
ing problems comparing with recent relevant approaches
DIRECT-L1, filter-based DIRECT, and eDIRECT-C.

One of the most significant challenges of the parti-
tioned based DIRECT-type approaches is dealing with
optimization problems with equality constraints. Proposed
DIRECT-GLce showed promising results solving such
problems, but effectiveness strongly depends on the allowed
equality constraints violation.
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Finally, as global optimization problems are computa-
tionally expensive, one of the primary upcoming goals is to
develop and investigate a parallel version of our algorithm.
There are very few works devoted to the parallelization
of the DIRECT-type methods. One of the primary motiva-
tions stems from the fact that the set of potentially optimal
hyper-rectangles in our algorithms is larger (compared to
DIRECT); thus, we can expect better efficiency compared
to existing parallel DIRECT-type approaches.
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Appendix A: Themathematical formulations
of engineering problems

NASA speed reducer design problem (Liu et al. 2017; Ray
and Liew 2003). The overall weight subject to constraints
on bending stress of the gear teeth, surface stress, and
transverse deflections of the shafts and stresses in the shafts
is minimized. This problem has 7 design variables and
11 constraints. The optimization problem is formulated as
following:

min f (x)=0.7854x1x
2
2(3.3333x2

3 +14.9334x3−43.0934)

−1.508x1(x
2
6 + x2

7) + 7.4777(x3
6 + x3

7)

+0.7854(x4x
2
6 + x5x

2
7)

s.t. g1(x) = 27
x1x

2
2x3

− 1 ≤ 0, g2(x) = 397.5
x1x

2
2x2

3
− 1 ≤ 0,

g3(x) = 1.93x3
4

x2x3x
4
6

− 1 ≤ 0, g4(x) = 1.93x3
5

x2x3x
4
7

− 1 ≤ 0,

g5(x) = ((
745x4
x2x3

)2+16.9×106)0.5

110x3
6

− 1 ≤ 0,

g6(x) = ((
745x5
x2x3

)2+157.5×106)0.5

85x3
7

− 1 ≤ 0,

g7(x) = x2x3
40 − 1 ≤ 0, g8(x) = 5x2

x1
− 1 ≤ 0,

g9(x) = x1
12x2

− 1 ≤ 0, g10(x) = 1.5x6+1.9
x4

− 1 ≤ 0,
g11(x) = 1.1x7+1.9

x5
− 1 ≤ 0

where 2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤
28, 7.3 ≤ x4 ≤ 8.3, 7.8 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9, 5 ≤
x7 ≤ 5.5.

Pressure vessel design problem (Kazemi et al. 2011;

Liu et al. 2017). The total cost of material, forming,

and welding of a cylindrical vessel is minimized. This
problem has four design variables and six constraints The
optimization problem formulated as following:

min f (x) = 0.6224x1x3x4 + 1.7781x2x
2
3 + 3.1661x2

1x4

+19.84x2
1x3

s.t. g1(x) = −x1 + 0.0193x3 ≤ 0,
g2(x) = −x2 + 0.00954x3 ≤ 0,
g3(x) = −πx2

3x4 − 4
3πx3

3 + 1296000 ≤ 0,
g4(x) = x4 − 240 ≤ 0, g5(x) = 1.1 − x1 ≤ 0,
g6(x) = 0.6 − x2 ≤ 0

where 1 ≤ x1 ≤ 1.375, 0.625 ≤ x2 ≤ 1, 25 ≤ x3 ≤
150, 25 ≤ x4 ≤ 240.

Tension/compression spring design problem (Kazemi

et al. 2011; Liu et al. 2017). The weight subject to
constraints on minimum deflection, shear stress, surge fre-
quency, and limits on outside diameter is minimized. This
problem has three design variables and four constraints.
The optimization problem formulated as following:

min f (x) = x2
1x2(x3 + 2)

s.t. g1(x) = 1 − x3
2x3

71875x4
1

≤ 0,

g2(x) = x2(4x2−x1)

12566x3
1 (x2−x1)

+ 2.46
12566x2

1
− 1 ≤ 0,

g3(x) = 1 − 140.54x1
x3x

2
2

≤ 0, g4(x) = x1+x2
1.5 − 1 ≤ 0

where 0.05 ≤ x1 ≤ 0.2, 0.25 ≤ x2 ≤ 1.3, 2 ≤ x3 ≤ 15.

Three-bar truss design problem (Liu et al. 2017; Ray
and Liew 2003). The volume subject to stress constraints
is minimized. This problem has two design variables and
three constraints. The optimization problem formulated as
following:

min f (x) = 100(2
√

2x1 + x2)

s.t. g1(x) =
√

2x1+x2√
2x2

1+2x1x2
2 − 2 ≤ 0,

g2(x) = x2√
2x2

1+2x1x2
2 − 2 ≤ 0,

g3(x) = 1
x1+

√
2x2

2 − 2 ≤ 0

where 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1.

https://dx.doi.org/10.5281/zenodo.1218981
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Table 10 Key characteristics of the optimization test problems with equality constraints

(#) Label Source n C. type Variable bounds (D) Optimum (f ∗)

1e G03 (Liu et al. 2017) 10 NL [0, 10]n − 1.0005

2e G05 (Liu et al. 2017) 4 NL [10, 1,200]2 × [− 0.55, 0.55]2 5126.4967

3e G11 (Liu et al. 2017) 2 NL [− 1, 1]n 0.7499

4e G13 (Liu et al. 2017) 5 NL [− 2.3, 2.3]2 × [− 3.2, 3.2]3 0.0539

5e P01 (Birgin et al. 2010) 5 NL [− 5, 5]n 0.0293

6e P02(a) (Birgin et al. 2010) 9 NL [0, 100] × [0, 500]8 − 400.0000

7e P02(b) (Birgin et al. 2010) 9 NL [0, 600] × [0, 500]8 − 600.0000

8e P02(c) (Birgin et al. 2010) 9 NL [0, 100] × [0, 500]8 − 750.0000

9e P02(d) (Birgin et al. 2010) 10 NL [0, 300]2 × [0, 100] × [0, 200] ×
[0, 100] × [0, 300] × [0, 100] ×
[0, 200]2 × [0, 3]

− 600.0000

10e P03(a) (Birgin et al. 2010) 6 NL [0, 1]4 × [10(−5), 16]2 0.3888

11e P05 (Birgin et al. 2010) 3 NL [0, 9.422] × [0, 5.903] × [0, 267.42] 201.1600

12e P09 (Birgin et al. 2010) 6 L [10(−5), 3] × [10(−5), 4]2 × [0, 2]2 × [0, 6] − 13.4020

13e P12 (Birgin et al. 2010) 2 NL [0, 2] × [0, 3] −16.7390

14e P13 (Birgin et al. 2010) 3 NL [10(−5), 34] × [10(−5), 17] × [100, 300] 189.3500

15e P14 (Birgin et al. 2010) 4 L [10(−5), 3] × [10(−5), 4] × [0, 2] × [0, 1] − 4.51420

16e P15 (Birgin et al. 2010) 3 NL [10(−5), 12.5] × [10(−5), 37.5] × [0, 50] 0.0000

17e P16 (Birgin et al. 2010) 5 L [0, 1.5834] × [0, 3.625] × [0, 1] × [0, 3] × [0, 4] 0.7049

Appendix B: Test problems with linear
and nonlinear constraints

Table 11 Key characteristics of the constrained global optimization test problems

(#) Label Source n C. type Variable bounds (D) Optimum (f ∗)

1 Bunnag 1 (Vaz and Vicente 2009) 4 L [0, 3]n 0.1117

2 Bunnag 2 (Vaz and Vicente 2009) 4 L [0, 4]n − 6.4049

3 Bunnag 3 (Vaz and Vicente 2009) 5 L [0, 3] × [0, 2] × [0, 4] × [0, 4] ×
[0, 2]

− 16.3657

4 Bunnag 4 (Vaz and Vicente 2009) 6 L [0, 1]5 × [0, 20] − 213.0470

5 Bunnag 5 (Vaz and Vicente 2009) 6 L [0, 2] × [0, 8] × [0, 2] × [0, 1] ×
[0, 1] × [0, 2]

− 11.0000

6 Bunnag 6 (Vaz and Vicente 2009) 10 L [0, 1]n − 268.0146

7 Bunnag 7 (Vaz and Vicente 2009) 10 L [0, 1]n − 39.0000

8 G01 (Liu et al. 2017) 13 L [0, 10]9 × [0, 100]3 × [0, 10] − 15.0000

9 G02 (Liu et al. 2017) 20 NL [0, 10]n − 0.8036

10 G04 (Liu et al. 2017) 5 NL [78, 102] × [33, 45] × [27, 45]3 − 30665.5386

11 G06 (Liu et al. 2017) 2 NL [13, 100] × [0, 100] − 6961.8138

12 G07 (Liu et al. 2017) 10 NL [−10, 10]n 24.3062

13 G08 (Liu et al. 2017) 2 NL [0, 10]n − 0.0958

14 G09 (Liu et al. 2017) 7 NL [− 10, 10]n 680.6300

15 G10 (Liu et al. 2017) 8 NL [100; 10,000]×[1,000; 10,000]2×
[10; 1,000]5

7049.2480

16 G12* (Liu et al. 2017) 3 NL [0.2, 10]n −1.0000

17 G16 (Suganthan et al. 2005) 5 NL [704.4148, 906.3855] ×
[68.6, 288.88] × [0, 134.75] ×
[193, 287.0966] × [25, 84.1988]

−1.9051
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Table 11 (continued)

(#) Label Source n C. type Variable bounds (D) Optimum (f ∗)

18 G18 (Suganthan et al. 2005) 9 NL [0, 10]n − 0.8660

19 G19 (Suganthan et al. 2005) 15 NL [0, 10]n 32.6555

20 G24 (Suganthan et al. 2005) 2 NL [0, 3] × [0, 4] − 5.5080

21 Genocop 9 (Vaz and Vicente 2009) 3 L [0, 10]n − 2.4714

22 Genocop 10 (Vaz and Vicente 2009) 4 L [0, 3] × [0, 10] × [0, 10] × [0, 1] − 4.5280

23 Genocop 11 (Vaz and Vicente 2009) 6 L [0, 5] × [0, 8] × [0, 5] × [0, 1] ×
[0, 1] × [0, 2]

− 11.0000

24 Goldstein & Price (Na et al. 2017) 2 NL [− 2, 2]n 3.5389

25 Himmelblau (Cagnina et al. 2008) 5 NL [78, 102] × [33, 45] × [27, 45]3 − 31025.5602

26 Horst 1 (Horst et al. 1995) 2 L [0, 3] × [0, 2] − 1.0625

27 Horst 2 (Horst et al. 1995) 2 L [0, 2.5] × [0, 2] −6.8995

28 Horst 3 (Horst et al. 1995) 2 L [0, 1] × [0, 1.5] − 0.4444

29 Horst 4 (Horst et al. 1995) 3 L [0.5, 2] × [0, 3] × [0, 2.8] −6.0858

30 Horst 5 (Horst et al. 1995) 3 L [0, 1.2] × [0, 1.2] × [0, 1.7] −3.7220

31 Horst 6 (Horst et al. 1995) 3 L [0, 6] × [0, 5.0279] × [0, 2.6] − 32.5784

32 Horst 7 (Horst et al. 1995) 3 L [0, 6] × [0, 3] × [0, 3] − 52.8769

33 hs021 (Vaz and Vicente 2009) 2 L [2, 50] × [− 50, 10] − 99.9599

34 hs021mod (Vaz and Vicente 2009) 7 L [2, 50] × [− 50, 50] × [0, 50] ×
[2, 10]×[− 10, 10]×[− 10, 0]×
[0, 10]

4.0400

35 hs024 (Vaz and Vicente 2009) 2 L [0, 5]n − 1.0000

36 hs035 (Vaz and Vicente 2009) 3 L [0, 3]n 0.1111

37 hs036 (Vaz and Vicente 2009) 3 L [0, 20] × [0, 11] × [0, 15] − 3300.0000

38 hs037 (Vaz and Vicente 2009) 3 L [0, 42]n − 3456.0000

39 hs038 (Vaz and Vicente 2009) 4 L [−10, 10]n 0.0000

40 hs044 (Vaz and Vicente 2009) 4 L [0, 5]n − 15.0000

41 hs076 (Vaz and Vicente 2009) 4 L [0, 1] × [0, 3] × [0, 1] × [0, 1] − 4.6818

42 s224 (Vaz and Vicente 2009) 2 L [0, 6] × [0, 11] − 304.0000

43 s231 (Vaz and Vicente 2009) 2 L [− 10, 10]n 0.0000

44 s232 (Vaz and Vicente 2009) 2 L [0, 100]n − 1.0000

45 s250 (Vaz and Vicente 2009) 3 L [0, 20] × [0, 11] × [0, 42] − 3300.0000

46 s251 (Vaz and Vicente 2009) 3 L [0, 42]n − 3456.0000

47 T1 (n = 2) (Finkel 2005) 2 NL [− 4, 4]n − 3.4641

48 T1 (n = 3) (Finkel 2005) 3 NL [− 4, 4]n − 4.2426

49 T1 (n = 4) (Finkel 2005) 4 NL [− 4, 4]n − 4.8989

50 T1 (n = 5) (Finkel 2005) 5 NL [− 4, 4]n −5.4772

51 T1 (n = 6) (Finkel 2005) 6 NL [− 4, 4]n − 6.0000

52 T1 (n = 7) (Finkel 2005) 7 NL [− 4, 4]n − 6.4807

53 T1 (n = 8) (Finkel 2005) 8 NL [− 4, 4]n − 6.9282

54 T1 (n = 9) (Finkel 2005) 9 NL [− 4, 4]n − 7.3484

55 T1 (n = 10) (Finkel 2005) 10 NL [− 4, 4]n − 7.7460

56 zecevic2 (Vaz and Vicente 2009) 2 L [0, 10]n − 4.1249

57 P03(b) (Birgin et al. 2010) 2 NL [10(−5), 16]n 0.3888

58 P04 (Birgin et al. 2010) 2 NL [0, 6] × [0, 4] − 6.6666

59 P06 (Birgin et al. 2010) 2 NL [0, 115.8] × [10(−5), 30] 376.2900

60 P07 (Birgin et al. 2010) 2 NL [− 2, 2]n − 2.8284

61 P08 (Birgin et al. 2010) 2 NL [− 8, 10] × [0, 10] − 118.7000

62 P10 (Birgin et al. 2010) 2 NL [0, 1]n 0.7417

63 P11 (Birgin et al. 2010) 2 NL [0, 1]n − 0.5000
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