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Abstract

One goal of uncertainty characterization is to develop a probability distribution that is able to properly characterize uncertainties
in observed data. Observed data may vary due to various sources of uncertainty, which include uncertainties in geometry and
material properties, and measurement errors. Among them, measurement errors, which are categorized as systematic and random
measurement errors, are often disregarded in the uncertainty characterization process, even though they may be responsible for
much of the variability in the observed data. This paper proposes an uncertainty characterization method that considers mea-
surement errors. The proposed method separately distinguishes each source of uncertainty by using a specific type of probability
distribution for each source. Next, statistical parameters of each assumed probability distribution are estimated by adopting the
maximum likelihood estimation. To demonstrate the proposed method, as a case study, the method was implemented to char-
acterize the uncertainties in the observed deflection data from the tip of a cantilever beam. In this case study, the proposed method
showed greater accuracy as the amount of available observed data increased. This study provides a general guideline for
uncertainty characterization of observed data in the presence of measurement errors.

Keywords Uncertainty characterization - Uncertainty modeling - Measurement error - Systematic measurement error - Random
measurement error - Maximum likelihood estimation

1 Introduction

Uncertainty is ever-present in both the design and manage-
ment phases of engineered systems. Decades of research and
development in reliability engineering, design under uncer-
tainty, statistical model calibration and validation, and other
areas have emphasized the importance and value of consider-
ation of uncertainties (Yao etal. 2011; Lee et al. 2018; Romero
2010; Lopez and Sarigul-Klijn 2010). Uncertainty characteri-
zation, also called uncertainty modeling, is the science of
quantitative characterization of uncertainties in engineering
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applications (Agarwal et al. 2004; Helton et al. 2006;
Ghanem et al. 2008). One of the main activities in uncertainty
characterization is to characterize uncertainty in data.
Uncertainty in data means that the true value of a quantity of
interest is unknown.

In general, uncertainty in data is characterized or quantified
by a probability distribution (e.g., a probability density func-
tion (PDF)), which is assigned based upon the information
(e.g., expert experience) or evidence (e.g., observed data)
about the likelihood of what the true value might be (Lin
et al. 2014; Soundappan et al. 2004; Guo and Du 2007). The
ways of characterizing the uncertainty in data are broadly
classified as parametric or nonparametric methods
(McFarland and Mahadevan 2008; Cho et al. 2016).
Parametric methods consist of two procedures. First, the para-
metric method assumes a certain type of parameterized prob-
ability distribution for the given data. Then, statistical param-
eters of the assumed probability distribution are estimated.
Often, expert knowledge is used when assuming a type of
probability distribution. However, due to a lack of knowledge,
an incorrect assumption about the type of probability distribu-
tion may be made, causing an erroneous result. On the other
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hand, nonparametric methods do not specify a certain type of
probability distribution. Instead, the probability distribution is
determined directly from the data. Histograms or kernel den-
sity estimations are popular examples of nonparametric
methods (Cho et al. 2016; McFarland and Mahadevan
2008). Though nonparametric methods make fewer assump-
tions and have more flexibility than parametric methods, a
probability distribution characterized by a nonparametric
method can be highly biased to the given data; thus, it may
not be suitable in situations where limited data is available. To
reflect situations found in real-world applications, where only
limited data might be available, this research proposes a para-
metric method to characterize uncertainty in the data.

The true value of a quantity of interest is usually estimated
by measurement or observation data. To improve the estimate
of the true value of interest, repeated measurements in the
same experimental conditions are often conducted. These
multiple measurements are said to display various sources of
uncertainty, such as variability due to physical uncertainties or
measurement errors. Variability refers to the multiple values
that result from physical uncertainties, such as manufacturing
tolerances, different experimental settings, and other issues
(Jung et al. 2016; Karniadakis and Glimm 2006; Jung et al.
2015). For example, measurements of the deflection at the tip
of a cantilever beam vary due to geometric differences (e.g.,
height, length, and width of the cantilever beam) or material
differences (e.g., heterogeneous elastic modulus of the canti-
lever beam) of each cantilever beam. Most existing works in
uncertainty characterization are focused on how to quantify
the variability in a quantity of interest through a probability
distribution, with a limited amount of observed data; in these
prior studies, the measurement errors are ignored.

Measurement errors, or observational errors, refer to the
difference between the measured values of a quantity and its
true value (Easterling 2001; Wilson and Smith 2013).
Carrying out a perfect, error-free experiment is impossible.
Whether its degree is large or small, a measured value always
includes measurement error. The factors contributing to mea-
surement errors are open-ended. In general, most prior studies
have been conducted with a focus on eliminating sources of
measurement error, for example, making effort to maintain the
same experimental conditions, continuous calibrations of
measurement instruments, or using expensive instruments to
minimize random errors in the measured values. In many
cases, however, it may not be possible to invest large expenses
in experiments. Even when funding is available, results from
expensive equipment still can contain measurement errors.

Most existing works in uncertainty characterization are fo-
cused on how to quantify the variability in a quantity of inter-
est through a probability distribution, with a limited amount of
observed data while measurement errors are ignored.

Previous studies have attempted to characterize the uncer-
tainty, especially by the sources of physical uncertainties
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while eliminating the measurement errors or considering them
independently, using various estimation methods. Estimation
methods are broadly classified into likelihood and Bayesian
methods. As an example of using likelihood methods,
Raudenbush et al. describes the maximum likelihood method
with the Laplace approximation (Raudenbush et al. 2000).
Also, the expectation-maximization algorithm is a widely
used likelihood method for parameter estimation
(McLachlan and Krishnan 2007). Meanwhile, the Bayesian
method infers the target parameters by calculating the poste-
rior distribution. Since the direct evaluation of the posterior is
not easy, various approximation methods are developed. Blei
et al. reviewed the variational approximation method that
finds the closest distribution to the target from the defined
family of distributions (Blei et al. 2017). Sampling-based
method such as the Markov chain Monte Carlo simulation is
also well-known approximation for the Bayesian approach
(Doucet et al. 2015). Although many estimation techniques
are available for various cases, most of them assume that the
variabilities by the sources of physical uncertainties and mea-
surement errors are independent when they formulate the like-
lihood function or the Bayesian posterior, which is not always
the case.

This study proposes a method to characterize the uncertain-
ty of observation data in the presence of systematic and ran-
dom measurement errors, which are considered as dependent
to the observed data. The proposed method develops a prob-
ability distribution able to characterize the variability that
arises due to physical uncertainties in the observed data.
Meanwhile, the uncertainties that arise due to measurement
errors are also characterized using probability distributions,
which are dependent to the observed data. Statistical parame-
ters of each probability distribution are estimated using the
maximum likelihood method. As a case study for the pro-
posed method, a cantilever beam problem posed by Sandia
National Laboratories is introduced that includes an observa-
tional data set suitable for characterization with a probability
distribution (Romero et al. 2017; Romero and Weirs 2018;
Kim et al. 2018). The case study aims at characterizing the
uncertainty in the observed deflection at the tip of a cantilever
beam by using the proposed method. In this study, the uncer-
tainties that arise from the systematic and random measure-
ment errors are assumed to follow a uniform distribution (or
an interval) and a normal distribution, respectively.

The remainder of this paper is organized as follows.
Section 2 provides an overview of measurement errors
through a simple introduction of the cantilever beam problem
proposed by Sandia National Laboratories. Section 3 explains
how the maximum likelihood method is adopted to estimate
statistical parameters of each probability distribution and to
explain the variability that arises from physical uncertainty
sources and two measurement errors. In Section 4, the uncer-
tainties in the observed data of the tip deflection are
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characterized by the proposed method, and a discussion of the
results is provided. Finally, the paper’s conclusions and sug-
gestions for future work are provided in Section 5.

2 Measurement errors observed
in engineering problems

Section 2 introduces the research topics of this study.
Section 2.1 explains measurement errors, which include sys-
tematic and random measurement errors. To help the reader
understand measurement errors in observed data, a brief dis-
cussion on uncertainty and variability is included. Section 2.2
introduces the cantilever beam problem posed by Sandia
National Laboratories, which is used as a case study in this
research. The case study aims to apply the proposed technique
to characterize the uncertainty in the observed data at the tip
deflection of a cantilever beam.

2.1 Overview of measurement errors

Before discussing measurement errors in earnest, the termi-
nology used to describe uncertainty and variability should be
clarified. When it is said that there is “uncertainty” in a quan-
tity, it means we do not know the value of the quantity with
certainty. To estimate an unknown value of a quantity of in-
terest, experiments are established to obtain observed or mea-
sured data. In observed data, “variability” exists due to various
factors, including physical uncertainties and measurement er-
rors (Zhang and Mahadevan 2000). The physical uncertainty
is due to the natural inherent uncertainty in the material and
geometric properties (e.g., inherent uncertainty in the elastic
modulus and manufacturing tolerances). In general, physical
uncertainty is considered aleatory uncertainty, which means
irreducible uncertainty. In this case, the goal is to quantify the
uncertainty well using a probability distribution in the uncer-
tainty characterization process. However, one challenge in
accurately characterizing the physical uncertainty is the exis-
tence of statistical uncertainty and measurement errors. In
general, statistical uncertainty is caused by a limited amount
of observed data. Most prior studies have focused on dealing
with statistical uncertainty; however, measurement errors are
often neglected or assumed to be absent. Methods for dealing
with statistical uncertainty in uncertainty characterization are
beyond the scope of this paper. This paper focuses on how to
deal with measurement errors in the process of uncertainty
characterization.

Measurement errors, or observational errors, are the cause of
the difference between measured values of a quantity and its
true value. (Here, the true value denotes the variability in a
quantity that results only from the abovementioned physical
uncertainty sources.) Measurement errors can be categorized
into two types: (1) systematic measurement error and (2)

random measurement error (Easterling 2001; Ferson and
Ginzburg 1996; Liang and Mahadevan 2011; Ling and
Mahadevan 2013). Systematic measurement error, also known
as measurement bias, is introduced by inaccuracy factors that
occur during the observation or measurement process. For ex-
ample, when a particular sensor is used in all the replicate tests,
or when all the replicate tests are conducted in a certain exper-
imental setting (e.g., a higher temperature than a normal con-
dition), then all measurements may have a similar biased error.
On the other hand, random measurement error is caused by
poor precision factors. Human errors, like fluctuations in the
experimenter’s interpretation of the instrumental readings, are
one example. As another example, measurements may be gath-
ered from a sensor that is picked randomly from a population of
sensors; in this case, multiple measurements may have inaccu-
racy that is described by a distribution of error. The major
difference between the two types of measurement errors is that
a particular source of a systematic measurement error will affect
all the replicate measurements in the same way. In contrast, a
source of random measurement error will randomly affect the
measurements. Generally, for this reason, the uncertainties that
arise due to systematic measurement errors and random mea-
surement errors are characterized by a uniform distribution and
a normal distribution, respectively.

Figure 1 helps to describe systematic and random measure-
ment errors. Each data set of the green-, blue-, and red-shaded
part in Fig. 1 denotes ten repeated experiments. In Fig. 1a, the
data in the upper part (the green-shaded part) describe the true
variability or the value of the quantity of interest. If there is no
measurement error in the experiments while the inherent uncer-
tainties exist, the observed data should appear like the data in
the upper part of Fig. 1a. The green probability distribution of
the right-hand side exhibits the mother population of the quan-
tity of interest; this can be quantified or characterized after a
perfect uncertainty characterization process. On the other hand,
the sample data in the lower part (the blue-shaded part) of Fig.
la describe that each datum is biased due to systematic error.
Note that each datum has not been biased with the same mag-
nitude of error—this is an important clarification. In Fig. 1b, the
data (the red-shaded part) describe the observations that result
from a situation with both systematic and random errors. For
example, in the third observation from the left, the datum (the
upper red point) is observed slightly deviated from the datum
(the lower blue point) that exhibits only systematic error. (Note
that random measurement error does not affect the average,
only the variability around the average.) In the presence of
systematic and random measurement errors, the observed data
will be like the data shown in Fig. 1b. The goal of this research
is to characterize the variability in the true value (the green
probability distribution in Fig. 1a) by using the observed data
and subtracting the systematic and random measurement errors.

Figure 2 explains the probability density functions of sys-
tematic and random measurement errors. This paper follows
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Fig. 1 Illustration of measurement errors: Observed data with systematic measurement error (a) and with systematic and random measurement errors (b)

the way of characterizing the measurement errors that is de-
scribed in the document provided by Sandia Laboratories
(Romero et al. 2017). First, systematic measurement errors,
which bias the measurement from the true value, emerge from
a source of measurement error that is effectively the same in
all the replicate tests. This is described by a uniform distribu-
tion defined by a lower bound and an upper bound (Fig. 2a).
One of the two bounds is set to “0,” which means there is no
bias from the true value. The other bound denotes the maxi-
mum amount of bias «, relative to the measured value (x). For
a negative systematic error (Fig. 2a, a negative systematic
error biases the true value to a smaller measured value), the
upper bound is set to “0” and the lower bound is set to —«
relative to the measured value (x), and vice versa for a positive
systematic error ([0, ax]). Second, random measurement er-
rors are characterized to follow normal distributions due to the
multiple sources of random errors (central limit theorem).
Random measurement error, which follows the normal distri-
bution with “0” mean and [x standard deviation, is added to
the value biased by the systematic measurement error. Note
that the random measurement error can cause either an in-
crease or a decrease of the true value.

a
—
=
>
¥
N
1 59
- po———===- T *
ax I ]
| ]
| ]
| ]
[} 1
+ L
-0X 0 Cays
_ x (—ax < egys < 0)
p(esyslx) - )ax y
0 otherwise

Figure 3 describes the PDFs of the true value with mea-
surement errors (x + e). First, the gray-shaded PDFs (p(x)) in
the upper part of Fig. 3 denote the PDF of the true value (x)
without any measurement error. The proposed method aims to
obtain p(x). Suppose that x; and x, are arbitrarily sampled
from p(x). Depending on the randomly sampled values (x;
and x,), the PDFs of e are defined using the method explained
in Fig. 2 (p(esys|x), p(eran/x)). Then, the PDFs of the true value
with two measurement errors (x + egys, X + €y are formulated
as the bottom parts of Fig. 3a, b, respectively. In Fig. 3a, two
uniform distributions are defined by the lower bounds (x;
—axy, Xy — axp) and upper bounds (x;, x,) for two samples
x1 and x,. This explains that an observation x; with systematic
measurement error can be observed from the left blue-shaded
uniform distribution. Therefore, an uncertainty characteriza-
tion process is required to eliminate the biased effect from the
systematic measurement error to obtain the gray-shaded true
population p(x). In Fig. 3b, two normal distributions are de-
fined by means (x;, x,) and standard deviations (3x;, G,x2)
for two samples, x; and x,. An observation x; with a random
measurement error can be observed from the left red-shaded
uniform distribution. Therefore, an uncertainty
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Fig. 2 Probability density function of measurement errors: a Systematic measurement error and b random measurement error
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Fig. 3 Probability density function (PDF) of the true value (x) of the quantity of interest, with measurement errors (e): a PDF of x and systematic error

(esys) and b PDF of x and random error (ern)

characterization process is required to eliminate the random
effect that arises from random measurement error to obtain the
gray-shaded true population p(x). For a case where both sys-
tematic and random measurement errors exist, p(x + efx) can
be defined by integrating e, and e, into e.

2.2 Engineering application: cantilever beam problem

In 2017, Sandia National Laboratories posed a cantilever
beam problem for dealing with uncertainties in model calibra-
tion, model validation, risk assessment, and safe design
(Romero et al. 2017). Proper uncertainty characterization of
measurements is crucial for addressing those engineering ap-
plications. For this reason, characterizing the uncertainties in
measurement of a system response is presented as one funda-
mental task among various specific questions and tasks posed
in the problem. Analysts are asked to characterize the uncer-
tainty in the provided measurement data of the system re-
sponse or the output. As a case study, this paper adopts this
uncertainty characterization problem posed by Sandia
National Laboratories.

The subject of the problem is a cantilever beam horizontal-
ly protruding from a rigid, unyielding vertical wall (Fig. 4). As
the quantity of interest is a system response, the problem seeks
to define the cantilever beam’s deflection (x) at the free end of
the beam when a vertical downward loading (P = P,) is ap-
plied at the same point. For repeated measurements, samples
are randomly selected from a population of rectangular canti-
lever beams, of which the geometric (length (L), height (H),

and width (W)) and material properties vary among the popu-
lation. In particular, the material properties examine the elastic
modulus. In the problem, it is tentatively assumed that the
beam is made of a homogeneous isotropic material, which
denotes that the same value of the elastic modulus can be
attributed to the beam’s deflection through the entire beam.
(Note that there is no dependency or statistical correlation
among the geometric and material properties.) Due to some-
what large variations in the geometric and material properties,
the randomly selected beam shows the variability in the ob-
served system response (D).

In the problem, the observed data (D) are further subject to
two measurement errors that arise during the pickup and usage
of a measuring sensor. Here, a measuring sensor is randomly
picked from a population of sensors, and the selected sensor is
repeatedly used for a set of data. When the chosen sensor has

-~J

Fig. 4 Scheme of the deflection at the tip of a cantilever beam (Romero
et al. 2017)
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biased accuracy described by a distribution or range of error,
then all the measurements of each set produced from that
sensor may have similar biased error; this is called systematic
measurement error. Meanwhile, random measurement errors
may exist both inside the set of data and across the sets of data.
For example, detachment of the chosen sensor for reuse in
four different beams may cause random measurement errors
through the entire data in a set. Also, the chosen sensor for
each set of data can have random measurement errors, since
they are randomly picked up from a sensor population where
variability in accuracy may exist.

Section 4 presents the estimated results of the probability
density functions for the variability and two measurement
errors in observed deflections (D). For the data (D) of the
beam’s deflection, the authors intentionally generated sample
data. The details are summarized in Section 4. In the next
section, the proposed method for characterizing uncertainties
in the presence of measurement errors is described.

3 Proposed methods: uncertainty
characterization by maximum likelihood
estimation

Section 3 introduces the method proposed in the research de-
scribed in this paper. Section 3.1 explains the overall scheme
to characterize uncertainties in the observed data using the
proposed method. Section 3.2 summarizes the mathematical
formulation of the maximum likelihood estimation.
Section 3.3 provides a discussion on the estimation error due
to a Gaussian assumption in this study.

3.1 Scheme of uncertainty characterization
under measurement errors

The goal of this research is to estimate the statistical parame-
ters of the probability distribution (p(x)) that describes the
variability and uncertainties in the deflection (x) at the tip of
a cantilever beam using the observed data set (D). The ob-
served data (D = {d, ..., dy}) denote a set of datum (d;). The
method of maximum likelihood estimates the values of the
statistical parameters that maximize the likelihood function,
given the observations. The overall steps for the proposed
method are outlined in Table 1. Table 1 involves detailed
mathematical formulation before the likelihood function is
formulated. Later, Section 3.2 explains the detailed mathemat-
ical formulation of estimating the unknown statistical param-
eter by maximizing the likelihood function. For simplicity in
notation, the random variable of the probability distribution
p(x) can be understood as x by its value. For example, p(x) is
not distinguished by the subscript x, as in p(x), unless it is
necessary. For example, p(x) is a probability distribution for
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the random variable x, but p,(x) is the probability distribution
for the random variable y.

First, step 1 explains how the observed data include the true
variability and the two measurement errors (1). In step 2, a
Gaussian distribution is assumed for describing the true vari-
ability of experimental observations. With the Gaussian as-
sumption, the mean (u,) and standard deviation (o,) become
unknown parameters to be estimated (2). This paper concludes
by introducing only the Gaussian case. However, when using
a parametric approach, it should be noted that wrong assump-
tion on the type of probability distribution may cause estima-
tion error. Further discussion on the estimation error is provid-
ed in Section 3.3. In step 3, based on the information given in
Section 2.2, a uniform and a normal distribution is formulated
for the probability distributions of the systematic and random
measurement errors, respectively. Then, the probability distri-
bution of the integrated measurement error (e) can be formu-
lated as shown in (6). In (7) of step 4, the probability distribu-
tions of the observed deflection datum (d) and the integrated
error (e) become equal when the given x is considered a con-
stant value. Finally, the marginal distribution of the observed
deflection (d) is formulated as (8). The following section pre-
sents how to develop the likelihood function and how to find
the values of the unknown parameters that maximize the like-
lihood function.

3.2 Mathematical formulation of the maximum
likelihood estimation

Using (8), the likelihood function (L) for the given data set
(D=1{d,, ..., dy}) can be formulated as

L(D) = [1p(d:) = T1Ip(d, bop(x)dx ©)

Since the true deflection (x) is assumed to follow a
Gaussian distribution, as shown in (2), (9) is reformulated into

L(Dlp,0) = Ianp(anX)N(Mx7 oy)dx (10)

Using the logarithm, the log-likelihood function can be
formulated as

In(L (Dl 7)) = Zn(lp(d, )N (1, 0:)dx) (11)

By computing derivatives of (11) with respect to y, and o,
and equating to zero, respectively, 1, and o, are obtained as

1 T xp(dalx)N (1, 0)dx

= - 12
TONY ,[,Oop(d,,|x)N(ux,0x)dX 12
) LTS ) p(dalx)N (o) dx

TTNY [ p(d,|x)N (11, o) dx 13)



Uncertainty characterization under measurement errors using maximum likelihood estimation: cantilever beam... 329

Table 1

Steps for uncertainty characterization by maximum likelihood estimation

Step 1. Set the observed random variable (d) equal to the sum of the true variability (x) and the measurement errors (e), which are composed of

systematic (esys) and random (ey,,) measurement errors.
d=Xx+e=x+egys+ ey

@

Step 2. Formulate p(x) to follow a Gaussian distribution with unknown statistical parameters (the mean (11,) and standard deviation (o) will be

estimated).

— )
P(x) = N(py, 01) = 5—exp (* o L )

@

Step 3. Formulate the probability distribution of measurement error (e) for given x, p(elx). The probability distribution of the ey and ey, for a given x is

given as (3) and (4).
1
p(esys |)C) =9 ax (*OOCSesySSO)
0 otherwise

_n\2
Pleanl) = N(0, fx) = 1 exp(~ L))

©)

@)

By defining the integrated error as e = egys + eyan, the probability distribution of e for a given x can be presented as the convolution of the ey and

€ran-

p(e‘ x)= Ip(e - esys‘ x)p(esys‘ x)desys (®)
0 d—x—egys ?
p(e|x) = %J.,m. m X €Xp <_ ( 2(‘&[)); ) )desys

(6)

Step 4. Formulate the marginal probability distribution (p(d)) of the observed deflection datum ().
Using the relationship in (1), formulate the marginal probability distribution of the observed deflection datum (d) for a given x.

0
pd\x(d‘x) :pe\x(d_x‘x) = é'[*())( N(esys‘d_xv [3x)desys

()]

Using the sum and product rule, the marginal distribution p(d) is expressed as

p(d)= | p(d| x)p(x)dx

®)

Step 5. Formulate the likelihood function about the given observed data (D). (This is further explained in Section 3.2.)

Step 6. Find the value of 1, and o, that maximizes the likelihood function. (This is further explained in Section 3.2.)

By substituting (2) and (7) into N (i, o,) and p (d,|x),
respectively, in (12) and (13), the estimate of 1, and 0,2 can
be obtained. Note that i, and o, should be obtained by itera-
tive updates, since (12) and (13) are not explicit equations
about u, and o,.

3.3 Discussion on estimation error by the Gaussian
assumption

In this study, the type of distribution for a quantity (x) in
interest is assumed to follow a Gaussian distribution.
However, when the true type is the non-Gaussian distribution,
the estimation error (e(x)) due to the incorrect assumption on
the distribution type is as follows:

e(x) = p(x|0)-N(x|n, o)

Subject to E[x] = pand Var[x] = o* (14)

where O is the parameter vector of the true distribution. (14)
implies that the estimation error (e(x)) between the incorrectly
assumed distribution and true type of distribution may exist;
the estimated mean () and variance (o) will be identical.
Hence, if the true distribution is not much biased and
unimodal, the estimation error will be small. In contrast, if
the true type of probability distribution for x is multimodal
and highly biased, the Gaussian assumption might be
irrelevant.

Calculation of the estimation error (e(x)) in (14) is not
available since the true type of probability distribution is un-
known for real problems. However, if the type of the true
probability distribution happens to be known later, the estima-
tion error (e(x)) and even the true distribution can be readily
obtained for some cases by transforming the estimated mean
and variance from the proposed method. For example, if the
log-normal distribution is known to be the true type of a prob-
ability distribution for x, the estimation error (e(x)) can be
expressed as

e(x) = Log(x|m, v)-N (x|1, 0

Subject toE[x] = pand Varlx] = o* (15)

where the estimated mean () and variance (0?) are the same
as those of the log-normal distribution. The transformation of
the mean and variance to m and v, the parameters for the log-
normal distribution, gives the accurate estimation for the true
distribution. The transformation from the mean (1) and vari-
ance (o) to statistical parameters of a log-normal distribution
refers:

0.2
m:e"p(”+7 (16)

V= (exp(al)—l)exp(Zu + 02)
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Meanwhile, there is a case that the mean (1) and variance
(6) cannot be uniquely transformed to the statistical parame-
ters of the true type of probability distribution. In this case, by
substituting p(x) in (9) to the form of the true distribution, the
mathematical derivations from step 2 to (13) in Section 3.2
can be re-derived.

In summary, for avoiding the estimation error, it is impor-
tant to identify the true type of probability distribution for a
quantity in interest. However, it is difficult to realize the true
type of probability distribution for real-application problems.
When the number of given data is sufficient, the methods such
as goodness-of-fit test are available. Therefore, at first, it is
recommended to use the Gaussian assumption, and after to
modify the assumed type of probability distribution to appro-
priate one as the sufficient number of data is provided.

4 Results: estimating statistical parameters

To check the effectiveness of the proposed method introduced
in the previous section, a case study is formulated based upon
the cantilever beam problem posed by Sandia National
Laboratories. The true mean and standard deviation of a
beam’s deflection (x) are set to “0.1631” and “0.0153,” respec-
tively. (The unit for the deflection is omitted since it does not
matter in developing the discussion.) The method of moments
without considering the measurement errors in the observed
data is devised to check the effect by the proposed method.
Two sub-cases are formulated to check whether the proposed
method well estimates the true mean and standard deviation of
the beam’s deflection: (1) large systematic measurement error
case and (2) large random measurement error case.

Case 1: large systematic measurement error case To generate
the observed data (D), including the two measurement errors,
the maximum amounts of bias « for systematic measurement
error and Jx standard deviation for random measurement are
provided as “—0.1” (a large negative systematic error) and
“0.02x” (a small random error), respectively (refer to (3) and
(4)). Increasing numbers (N= {3, 4, 5, 10, 25, 50}) of the

a No. of samples: 4 b No.
307 30
25 true estimation estimation
20 /

— —~

B 15 Na)

U U

0.12

014 016 0.18
Deflection, x

02 022

0.12

0.14
Deflection, x

observed data are sampled to examine the statistical uncertain-
ty that is due to a lack of data.

Figure 5 represents the estimated probability distributions
with N= {4, 25, 50} numbers of data. The red probability
distribution refers the true probability distribution of the ob-
served beam’s deflection without measurement errors. The
blue and blue-dotted probability distribution is estimated by
the proposed method and the method of moments without
considering the measurement errors, respectively. The ob-
served data shown in Fig. 5 are data including the measure-
ment errors. For large number of data (N =25, 50), Fig. 5b, ¢
shows that the proposed method estimates the probability dis-
tribution closer to the true one. On the other hand, for small
numbers of data (N=4), the method of moments estimates
closer to true Fig. 5a). This is because of the randomness in
generated observed data. Therefore, 30 iterative studies are
conducted for each number of sampled data. Figure 6 repre-
sents the estimated mean (u,) and standard deviation (o)
using repeatedly sampled (observed) deflection data. Each
blue dot denotes an estimation with N numbers of sampled
data. The upper parts (Fig. 6a, c) show the estimated results by
the method of moments without considering measurement
errors; the lower figures (Fig. 6b, d) show the estimated results
using the proposed method. In common for all figures in Fig.
6, as the amount of observed data increases, the variations of
the estimated results get narrower; this is because the larger
amount of data alleviates the degree of statistical uncertainty
that is present due to a lack of data. By comparing Fig. 6a, b, it
can be confirmed that the proposed method restores the biased
results that are seen from the results found without the pro-
posed method. However, by comparing Fig. 6b, d, the esti-
mated standard deviation using the proposed method shows
no significant effect due to small degree of random measure-
ment error in observed data. Thus, it cannot be confirmed
whether the proposed method inadequately estimates the un-
known parameters or not. In case 2, uncertainty characteriza-
tion is performed for the observed data with a large random
measurement error.

Case 2: large random measurement error case To generate the
observed data (D), including the two measurement errors, the

Cc

. of samples: 25 No. of samples: 50

30

estimation

p(x)

016 018 02 022 012 014 016 0.18

Deflection, x

02 022

Fig. 5 Estimated probability distributions with the number of data, N: a N=4, b N=25, and ¢ N=50
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Fig. 6 Case 1: estimated mean (u,) and standard deviation (o,) with increasing numbers (V) of observations (3/4/5/10/25/50) (a—d)

maximum amounts of bias « for systematic measurement er-
ror and (x standard deviation for random measurement are
provided as “—0.05” (a small negative systematic error) and
“0.1x” (a large random error), respectively. Increasing num-
bers (N={3,4,5, 10,25, 50}) of data are sampled to examine
the statistical uncertainty that is due to a lack of data. For each
number of sampled data, 30 iterative studies are conducted for
checking the inaccuracy due to the randomness in generated
observed data. To check the effectiveness of the proposed
method, the method of moments is devised without consider-
ing the measurement errors in the observed data.

Figure 7 represents the estimated mean (u,) and standard
deviation (o,) using observed (sampled) deflection data. The
upper parts (Fig. 7a, ¢) show the estimated results without the
proposed method; the lower figures (Fig. 7b, d) show the
estimated results using the proposed method. In common with
case 2, as the amount of observed data increases, the variations
of the estimated results get narrower; this is because the larger

0.2

True Mean

) 0.15 ____§>_—_g—“_i“__t_nf_“'"“j

3 4 5 10 25 50 N
b Without Considering e
0.2 : : ' , K
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amount of data alleviates the degree of statistical uncertainty
that is present due to a lack of data. Figure 7c shows that the
larger degree of random measurement error results in larger
estimations of standard deviation. On the other hand, Fig. 7d
shows that the proposed method adequately estimates the
standard deviation by eliminating the effect by random mea-
surement error.

5 Summary and concluding remarks

This paper proposed a method for uncertainty characterization
that includes consideration of measurement errors. Maximum
likelihood estimation was utilized to estimate the unknown sta-
tistical parameters of the probability density function. Before that,
the likelihood function was formulated, based on assumptions
about the type of probability distributions applicable to the ob-
served data, which include the variability, systematic
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Fig. 7 Case 2: estimated mean (u,) and standard deviation (o,) with increasing numbers (V) of observations (3/4/5/10/25/50) (a—d)
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measurement error, and random measurement error. The pro-
posed method was adopted for a case study. In the case study,
the proposed method produced accurate estimations when mea-
surement errors existed in the observations. Accurate characteri-
zation of uncertainty in the data through the use of the proposed
method will be helpful for various engineering problems that
require consideration of uncertainty, especially when it is doubt-
ful if the observations have measurement errors.

To expand the use of the proposed method, it will be chal-
lenging to determine the value of statistical parameters for the
probability distribution of the systematic and random mea-
surement errors. For example, in this study, the maximum
amounts of bias « for systematic measurement error and (x
standard deviation for random measurement are considered
given information. However, information about those param-
eters may not available in real-world applications.

This paper follows the method for characterizing the mea-
surement errors that is outlined in a document provided by
Sandia Laboratories; specifically, the systematic and random
measurement errors are assumed to follow a uniform distribu-
tion and a normal distribution, respectively. However, the pro-
posed method also can be used in cases where different as-
sumptions about the type of the measurement errors’ proba-
bility distributions are made. If the type of probability distri-
bution of the measurement errors is modified, the mathemat-
ical formulations in Section 3 would need to be reformulated.
However, the general scheme of the proposed method would
remain: (1) assume certain types of probability distributions
for the measurement errors, (2) formulate probability distribu-
tions of the measurement errors, (3) formulate the likelihood
function about the given observed data, and (4) obtain the
optimal value of the statistical parameters of the assumed
probability distributions.

Funding information This work was partially supported by the
Technology Innovation Program (10048305, Launching Plug-in Digital
Analysis Framework for Modular System Design) of the Ministry of
Trade, Industry & Energy (MI, Korea). This work was also supported
by a grant from the Institute of Advanced Machinery and Design at Seoul
National University (SNU-IAMD).

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

References

Agarwal H, Renaud JE, Preston EL, Padmanabhan D (2004) Uncertainty
quantification using evidence theory in multidisciplinary design op-
timization. Reliab Eng Syst Saf 85:281-294

Blei DM, Kucukelbir A, McAuliffe JD (2017) Variational inference: a
review for statisticians. J] Am Stat Assoc 112:859-877

Cho S-g et al (2016) Nonparametric approach for uncertainty-based mul-
tidisciplinary design optimization considering limited data. Struct
Multidiscip Optim 54:1671-1688

Doucet A, Pitt M, Deligiannidis G, Kohn R (2015) Efficient implemen-
tation of Markov chain Monte Carlo when using an unbiased like-
lihood estimator. Biometrika 102:295-313

@ Springer

Easterling RG (2001) Measuring the predictive capability of computa-
tional methods: principles and methods, issues and illustrations
SAND2001-0243, Sandia National Laboratories

Ferson S, Ginzburg LR (1996) Different methods are needed to propagate
ignorance and variability. Reliab Eng Syst Saf 54:133-144

Ghanem RG, Doostan A, Red-Horse J (2008) A probabilistic construc-
tion of model validation. Comput Methods Appl Mech Eng 197:
2585-2595

Guo J, Du X (2007) Sensitivity analysis with mixture of epistemic and
aleatory uncertainties. AIAA J 45:2337-2349

Helton JC, Johnson JD, Sallaberry CJ, Storlie CB (2006) Survey of
sampling-based methods for uncertainty and sensitivity analysis.
Reliab Eng Syst Saf 91:1175-1209

Jung BC, Park J, Oh H, Kim J, Youn BD (2015) A framework of model
validation and virtual product qualification with limited experimen-
tal data based on statistical inference. Struct Multidiscip Optim
51(3):573-583

Jung BC, Yoon H, Oh H, Lee G, Yoo M, Youn BD, Huh YC (2016)
Hierarchical model calibration for designing piezoelectric energy
harvester in the presence of variability in material properties and
geometry. Struct Multidiscip Optim 53:161-173

Karniadakis GE, Glimm J (2006) Uncertainty quantification in simulation
science. J Comput Phys 217:1-4. https:/doi.org/10.1016/j.jcp.2006.
06.009

Kim T, Lee G, Kim S, Youn BD (2018) Expectation-maximization meth-
od for data-based estimation of the cantilever beam end-to-end prob-
lem. In: 2018 AIAA Non-Deterministic Approaches Conference. p
1666

Lee G, Yi G, Youn BD (2018) Special issue: a comprehensive study on
enhanced optimization-based model calibration using gradient infor-
mation. Struct Multidiscip Optim 57(5):2005-2025

Liang B, Mahadevan S (2011) Error and uncertainty quantification and
sensitivity analysis in mechanics computational models. Int J
Uncertain Quantif 1(2):147-161. https://doi.org/10.1615/Int.J.
UncertaintyQuantification.v1.i2.30

Lin G, Elizondo M, Lu S, Wan X (2014) Uncertainty quantification in
dynamic simulations of large-scale power system models using the
high-order probabilistic collocation method on sparse grids. Int J
Uncertain Quantif 4(3):185-204

Ling Y, Mahadevan S (2013) Quantitative model validation techniques:
new insights. Reliab Eng Syst Saf 111:217-231

Lopez I, Sarigul-Klijn N (2010) A review of uncertainty in flight vehicle
structural damage monitoring, diagnosis and control: challenges and
opportunities. Prog Aerosp Sci 46:247-273

McFarland J, Mahadevan S (2008) Error and variability characterization
in structural dynamics modeling. Comput Methods Appl Mech Eng
197:2621-2631

McLachlan G, Krishnan T (2007) The EM algorithm and extensions, vol
382. Wiley, Hoboken

Raudenbush SW, Yang M-L, Yosef M (2000) Maximum likelihood for
generalized linear models with nested random effects via high-order,
multivariate Laplace approximation. J] Comput Graph Stat 9:141—
157

Romero VJ (2010) Data & model conditioning for multivariate system-
atic uncertainty in model calibration, validation, and extrapolation.
In: 12th AIAA Non-Deterministic Approaches Conference,
Orlando, FL, AIAA Paper. p 2010

Romero VJ, Weirs VG (2018) A class of simple and effective UQ
methods for sparse replicate data applied to the cantilever beam
end-to-end UQ problem. In: 2018 AIAA Non-Deterministic
Approaches Conference. p 1665

Romero V, Schroeder B, Glickman M (2017) Cantilever beam end-to-end
UQ test problem: handling experimental and simulation uncer-
tainties in model calibration, model validation, and risk assessment,
Sandia National Laboratories document SAND2017-4689 O, ver-
sion BeamTestProblem32.docx


https://doi.org/10.1016/j.jcp.2006.06.009
https://doi.org/10.1016/j.jcp.2006.06.009
https://doi.org/10.1615/Int.J.UncertaintyQuantification.v1.i2.30
https://doi.org/10.1615/Int.J.UncertaintyQuantification.v1.i2.30

Uncertainty characterization under measurement errors using maximum likelihood estimation: cantilever beam... 333

Soundappan P, Nikolaidis E, Haftka RT, Grandhi R, Canfield R (2004) Yao W, Chen X, Luo W, van Tooren M, Guo J (2011) Review of

Comparison of evidence theory and Bayesian theory for uncertainty uncertainty-based multidisciplinary design optimization methods
modeling. Reliab Eng Syst Saf 85:295-311 for aerospace vehicles. Prog Aerosp Sci 47:450-479

Wilson BM, Smith BL (2013) Taylor-series and Monte-Carlo-method ~ Zhang R, Mahadevan S (2000) Model uncertainty and Bayesian updating
uncertainty estimation of the width of a probability distribution in reliability-based inspection. Struct Saf 22:145-160
based on varying bias and random error. Meas Sci Technol 24:
035301

@ Springer



	Uncertainty...
	Abstract
	Introduction
	Measurement errors observed in engineering problems
	Overview of measurement errors
	Engineering application: cantilever beam problem

	Proposed methods: uncertainty characterization by maximum likelihood estimation
	Scheme of uncertainty characterization under measurement errors
	Mathematical formulation of the maximum likelihood estimation
	Discussion on estimation error by the Gaussian assumption

	Results: estimating statistical parameters
	Summary and concluding remarks
	References


