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Abstract
Airfoil design for stationary gas turbines is a challenging task involving both aerodynamic and structural aspects. The paper
describes a multidisciplinary optimization process for axial compressor airfoils which is able to find optimal designs w.r.t.
multiple objectives and constraints starting from a reference design and very few specifications of the new compressor. The
process allows to simultaneously execute arbitrarily many instances of design evaluation processes independently from each
other, which speeds it up, not just due to parallelization, but also because fast-running low-fidelity evaluation may take
the design lead at an early design stage, whereas high-fidelity evaluation processes simultaneously contribute with more
reliable results on the actual performance. For consistency of aerodynamic and structural analysis, an innovative method for
direct loaded-to-unloaded design transformation is incorporated. Additionally, the process accounts for design robustness
by utilizing production tolerances as an optimization objective. Therefore, a procedure is developed which allows to find the
production tolerance which may be allowed without violating any constraints. An application example demonstrates that the
proposed optimization process incorporating automatic detection of failure-critical eigenmode bands is able to shift them
such that structurally reliable, robust, and simultaneously aerodynamically efficient designs are obtained.

Keywords Multidisciplinary design optimization · Robustness · Production tolerance assessment ·
Loaded-to-unloaded transformation · Structural analysis · Aerodynamic analysis

1 Introduction

The design of airfoils has to take into account multiple
aerodynamic and structural constraints, where design
improvements have to balance multiple contradictory
objectives. Therefore, the development process is expensive
w.r.t. both time and computational resources, which
led to increasing efforts in developing multi-objective,
multidisciplinary, and multi-fidelity optimization processes
during the last two decades. Although the complexity of
such processes has continuously increased, there is still
potential for improvement w.r.t. speed, design quality, and
flexibility. For example, Diener et al. (2016) or Pierret
et al. (2007) execute aerodynamic and structural design
evaluations successively where one discipline has to wait for
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the other to finish. Such kind of process is ineffective due
to idling of those analysis parts which are currently not in
action. This also concerns the work of Buske et al. (2016)
who executed several slave processes in parallel, where
again complete computational fluid dynamics (CFD) and
finite element analyses (FEA) are performed in sequential
order. The effectiveness of such serial approaches is harmed
in two ways: first, licenses are not fully exploited due to
idle time of waiting subprocesses, and second, inclusion of
time-consuming evaluation tools from some disciplines may
degrade the performance of other algorithms. In contrast to
this, the process proposed here is able to run an arbitrary
number of instances of different evaluation processes
simultaneously by coupling them through response surface
models (RSMs) as suggested by Hartwig and Bestle (2016).
This allows different processes to run at their own speed
without slowing down others.

Another issue of many of the latest multidisciplinary
airfoil design processes is the absence of loaded-to-
unloaded transformation. In consequence, the results
of aerodynamic and structural assessment may not be
consistent in regards to the underlying design geometry.
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Astrua et al. (2012) and Joly et al. (2014) assume that
differences between structural results based on loaded
or unloaded geometry would be negligible. However,
the results in this paper prove different which is in
agreement with the understanding of Buske et al. (2016),
who use an iterative loaded-to-unloaded transformation
method described by Goerke et al. (2012). This method
being industrial standard is, however, considerably time
consuming. Therefore, an alternative approach is suggested
here which is much faster and easier to implement, because
it is directly incorporated into the FE analysis.

One of the key components in practical optimization is
design evaluation w.r.t. robustness, because without this the
obtained designs are likely to be located at the boundaries
of the design space set by design constraints. This may
cause many produced parts to violate constraints due to
uncertainties in manufacturing and operating conditions.
Production tolerances may also deteriorate the performance
(objectives) to such an extent that other nominal designs
being less sensitive may outperform deterministically found
optimal designs on average. In the past, many authors
have developed design processes incorporating design
robustness w.r.t. objectives by simultaneously minimizing
their mean value and variance such as Motta and Afonso
(2016) or Flassig et al. (2008), who consider robustness
w.r.t. constraints via a failure rate. Although Dow and
Wang (2015) assess production tolerances as a more
constructive measure than the failure rate, considerations
are only qualitative. All these approaches lack a clear
measure which can be communicated to suppliers in order
to ensure design robustness during production. For this
reason, the present paper introduces a strategy for assessing
that production tolerance which just avoids violation of
constraints as an additional objective. This tolerance is
supposed to be maximized in order to minimize production
costs.

The content of this paper will primarily focus on the
structural design evaluation part of the coupled structural-
aerodynamic process, which implements methods suggested
by Martin and Bestle (2016) and Martin and Bestle (2018)
in order to identify failure-critical eigenmode shapes and
assign corresponding eigenfrequency bands bounded by
upper and lower uncertainty limits. Due to this feature
and the correlation between eigenmode shape and risk of
failure, the proposed process is capable of risk-specific
eigenfrequency tuning in order to avoid harmful resonances
in forced responses. To the authors’ best knowledge, this
is unique and the only comparable process was reported
by Blocher and Fernández (2014) where risk of forced
response and failure is assessed via the prediction of
stress levels using time consuming, unsteady, coupled flow-
structure analyses for all relevant operating and installation
conditions.

The first part of the paper will explain the general struc-
ture of the underlying optimization process. The second part
shares details about the parameter model, while the third
part describes the optimization problem with details on ob-
jectives and constraints. Further, new methods of robust de-
sign evaluation by assessing production tolerances and the
loaded-to-unloaded transformation strategy are introduced.
Finally, optimization results are generated and discussed.

2 Optimization process

The foundation of compressor design process presented
here has been developed over 15 years in close cooperation
with an aero engine manufacturer and adapted to the
specific features of stationary gas turbines within the project
mentioned in the acknowledgments at the end of the paper.
It accounts for industrial needs identified in intensive
discussions and is supposed to deliver robust designs (for
annulus and airfoils) based on a reference design and some
new design targets discussed within this paper. The final
design shall be most efficient w.r.t. aerodynamics, have
maximum reliability by ensuring structural integrity and
reducing the risk of critical forced response, and minimize
production costs by maximizing manufacturing tolerances.
In the first phase of the design process in Fig. 1a.

The geometry of the annulus, the segmentation of stages,
and the number of blades/vanes per stage are determined
in a meanline-based optimization process (Keskin 2007)
coupled with a throughflow-based process, Rühle and
Bestle (2010) and Pöhlmann and Bestle (2012). In order
to meet the pressure and temperature requirements gained
from the combined meanline-throughflow optimization, a
first guess of the airfoil geometries is calculated by the
knowledge-based autoblading process superposing airfoil
profiles on multiple 2D stream tubes as defined by Wu
(1952) and Cumpsty (2004). The design parameter model
presented in Section 3 is fitted to this initial airfoil to set
proper bounds for the subsequent blading process to search
for optimal designs within these bounds.

The present paper focused on the second phase of
the compressor design which is the blading in Fig. 1b.
During this blade optimization, the 3D compressor blades
will be evaluated simultaneously by a low-fidelity quasi-
2D aerodynamic code (approx. 10-s CPU time), a high-
fidelity 3D RANS CFD (approx. 8 h) and FEM analysis
(approx. 30 min). Due to the different runtimes of
the three disciplines, in a classic optimization process
with sequential design evaluation, the faster processes
would be idling most of the time while the slow 3D
RANS calculation is carried out. Therefore, the maximum
number of design assessments to solve optimization
problem using a classic optimization process is limited
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Fig. 1 Pre-blading process (a) and multidisciplinary blade optimization process (b)

by the slowest subprocess (3D RANS), even when using
parallelization and simultaneous evaluation of several
designs. To overcome these limitations, a surrogate-based
optimization process has been developed as described
in Hartwig and Bestle (2016), which decouples design
evaluation by the three disciplines from each other and
also from the optimization, where a genetic algorithm (GA)
explores the design space by proposing promising designs,
based on excessive exploration of the response surfaces
built-up in the involved disciplines.

To be more precise, the blade optimization in Fig. 1b
starts with an initial design of experiments (DoE) where the
samples are written into a working directory. From there,
they can be picked up individually by independent standby
slave processes for design evaluation, which are multiple
instances of analysis processes referring to different
and/or equivalent disciplines. The corresponding results are
generated at a discipline-dependent, individual speed and
written to discipline-specific databases (DB). Because of the
simultaneous execution of different disciplines (each with a
different number of instances due to different runtime), the
specific databases may not necessarily contain results for
the same set of designs taken from the working directory.
Thus, individual response surface models (RSMs) have to
be built up by the master process from the actually available
design points in the data bases and associated results.

The optimizer then searches for new designs based on
these RSMs only as suggested by Hartwig and Bestle (2016)
who showed such an approach find optimal solutions faster
due to the ability to decouple processes and subsystems. A
multi-objective genetic algorithm (MOGA) has been chosen
for this task, since it is capable of solving complex multi

objective problems, and even more important, is able to over-
coming local minima. It may be worthwhile to mention that
even a single discipline, e.g., CFD, may deliver several
RSMs depending on the number of associated objectives and
constraints. Here, RSMs are generated using PLS-Kriging
as described by Hartwig and Bestle (2017) which reduces
design space dimension by combining Kriging with partial
least squares in order to identify the principle components
of the response behavior. Response surfaces are then only
generated w.r.t. these most-influencing design parameters.

Since accuracy of the RSMs built from the designs gen-
erated by the initial DoE is low, the process in Fig. 1b iter-
atively suggests new designs in two ways simultaneously.
First, it is a space-filling algorithm (distance maximization
to previously evaluated design points) to uncover possibly
new regions of local minima and to improve accuracy of
the surrogate models globally. Second, samples from the
Pareto front of optimal designs with respect to the actual
optimization objectives (objective minimization and con-
straint fulfillment) are selected to improve RSM accuracy
locally. New designs are written to the common working
directory and continuously picked up by the slave processes
to be evaluated. The evaluated results are stored in the cor-
responding databases and an RSM update will be triggered
including the new designs. The RSM-based optimization
will then be carried out again using the improved surro-
gate models until the resulting Pareto front does not change
significantly anymore.

Writing the results into discipline-specific databases
offers a superior way of parallelization where instead of
executing, e.g., CFD and FEA in series on multiple CPUs
(central processing unit), arbitrary and nonconforming
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numbers of CFD and FEA may run in parallel. The advan-
tage is that despite the scaling capacity of the solver, not
only the calculations are parallelized, but also pre- and post-
processing. Here, three parallel FEA processes evaluating
three different designs simultaneously, each using only a
single CPU, are able to process more samples from the
working directory per hour than a single FEA process
running on 20 CPUs. Additionally, not only less CPUs are
required, but also fewer licenses. In case all designs in
the working directory have been analyzed, the slaves idle
in standby until new designs are written to the working
directory. This happens especially for the fast-running
quasi-3D (Q3D) evaluation process w.r.t. aerodynamics,
whereas specific picking strategies had to be developed for
the long-running CFD and FEA processes to balance local
and global search, see Hartwig and Bestle (2016).

3 Geometry and design parameterization

The geometry model is based on Dutta (2011) where airfoil
profiles are defined on 21 sections and the spaces in
between are interpolated by using piecewise cubic splines.
Each section is defined on a x-rθ -stream-surface, Fig. 2,
identified by normalized average radius

r̃ = r̄ − r̄Hub

r̄T ip − r̄Hub
, (1)

where r̄ = (rL + rT ) /2 results from streamline radii rL
and rT at the leading and trailing edge, respectively, which
are both obtained from the meanline-throughflow process.
The section geometry within each section layer is defined
by superposing the dimensionless thickness distribution

t̃ (r̃, c̃) =
{

t(r̃,c̃)−RL(r̃)
tmax(r̃)−RL(r̃)

for 0 ≤ c̃ ≤ c∗ (r̃)
t(r̃,c̃)−RT (r̃)
tmax(r̃)−RT (r̃)

for c∗ (r̃) < c̃ ≤ 1

}
(2)

with the dimensionless camber-line-angle distribution

β̃ (r̃, c̃) = β (r̃, c̃) − βL (r̃)

βT (r̃) − βL (r̃)
. (3)

They are determined by describing the leading- and trailing-
edge radius distributions RL (r̃) and RT (r̃), the maximum-
thickness distribution tmax (r̃), inlet and outlet blade angle
distributions βL (r̃) and βT (r̃), and normalized chord
coordinate c̃ ∈ [0, 1]. The fillet of the airfoil is defined
through a fillet radius RF and the connection height hF ,
where both are limited by the blade height H . Furthermore,
lean and tilt can be applied via the parameters’ theta-shift
θS (r̃) and axial-shift x̃S (r̃), respectively.

The tip clearance is no optimization parameter and must
be pre-selected for the loaded geometry, because the paramet-
rized designs are hot geometries fully loaded at design speed
and will be transformed to the actual respective unloaded
cold geometry before structural assessment. The tip clearance
is created by extrapolation of the airfoil beyond the tip, fol-
lowed by a cut off at a defined distance from the casing. The
airfoil root is currently also not part of the optimization pro-
cess, but pre-defined. Alternatively, it may be received from
an optimization, as described by Schörner and Bestle (2012),
and incorporated into the structural evaluation process.

For optimization, the distribution functions in Fig. 2b
depending on r̃ and x̃ have to be replaced by discrete design
parameters. Therefore, the radial distributions of tmax , θS ,
and x̃S are represented by cubic Bézier-splines as shown
in Fig. 3a, and the radial distributions of RL, RT , βL,
and βT are parameterized with quadratic Bézier-splines.
The camber angle β̃ (r̃, c̃) is represented by a Bézier-spline
surface of quadratic order in r̃-direction and cubic order
in c̃-direction (Fig. 3b), and t̃ (r̃, c̃) is represented by a
piecewise quadratic B-spline surface (Fig. 3c). Since the
root of the airfoil shall not be shifted by axial- and theta-
shift modifications, the first control point of x̃S (r̃) and
θS (r̃) is fixed at position [0, 0], respectively. Additionally,
the control points of β̃ and t̃ with the same grid position
in r̃-direction are shifted simultaneously, which reduces the
number of design parameters without influencing the design
freedom of the spline surfaces too much. According to the
degrees of freedom (DoF) of each control point (in Fig. 3:
line ≡ 1 DoF, rectangle ≡ 2 DoF, cube ≡ 3 DoF) and
the parameters for the fillet definition R̃F = RF /H and
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Fig. 2 Geometry model with a section plane, b section parameterization, and c fillet model on a schematic representation of an airfoil with heightH
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̃
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Fig. 3 Bézier- and B-spline representation of a geometry parameters with only radial dependence, b camber-line angle, and c thickness distribution

h̃F = hF /RF , see Fig. 2c, the total number of design
parameters is NP = 57. In order to restrict the change
of spline control points, upper and lower (p̆i) bounds
are set for each optimization parameter pi as indicated by
box sizes in Fig. 3. The initial setting of the control points
referring to an existing reference blade or a design derived
from AutoBlading is received by spline-fitting, see Fig. 1a.

4 Robust design problem

The optimization of an airfoil design has to account for mul-
tiple objectives fi to be minimized and inequality con-
straints hi ≤ 0. In the following, the focus will be on
the relevant structural objectives and constraints; aerody-
namic constraints such as proper flow turning or bounds on
Mach number will not be explained any further and may be
found, e.g., in Dutta (2011). Thereafter, the consideration of
design robustness within the optimization problem will be
explained.

4.1 Structural constraints

In order to ensure structural integrity and producibility
of the optimized designs, several constraints have to
be taken into account by the optimization process and
therefore assessed by using FEA (details on the utilized
FE model are described by Martin and Bestle 2016).
For example, minimum life may be guaranteed by
limiting the overall maximum von Mises stress σmax

by the minimum strain limit Rp02 (Tmax) occurring at
the maximum possible temperature Tmax during operating
conditions, i.e., σmax/Rp02 − αp02 ≤ 0, where 0 < αp02 <

1 is a safety factor. The risk of crack initiation is limited
by analogously enforcing that the maximal von Mises
stresses at the leading edge σmax

L and trailing edge σmax
T are

bounded by as and
.

The lifetime of airfoil designs may be maximized by
minimizing the risk of high-cycle fatigue (HCF). Therefore,
as a first criterion the alternating von Mises stresses σa,i of

the ith eigenmode calculated with the finite element method
(FEM) shall not exceed the endurance limit σ ∗

a

(
σm,i

)
which

can be identified from the Haigh diagram (Nicholas 2006)
by using the mean vonMises stress σm,i of the ith eigenmode
assessed with FEM. The definition of an upper limit La to
the alternating stress ratio yields the following constraints
for the first eleven eigenmodes:

σa,i

σ ∗
a

(
σm,i

) − La ≤ 0 , i = 1, 2, ..., 11. (4)

Additionally, the risk of forced eigenmode excitation
by engine orders within the working-speed range of the
compressor should be minimized. However, uncertainties
in operating conditions, e.g., in temperature and fixation
conditions of the airfoils, make it impossible to predict
eigenfrequencies f E

i accurately resulting in eigenfrequency
bands between an upper limit and a lower limit f̆ E

i .
These limits can be calculated from the extrema in operating
and installation conditions. For hammer-foot roots, the
extrema are no contact to neighboring airfoil roots at hot
and full contact at cold conditions, Hecker et al. (2011).
Risk of resonance due to forced vibration may then be
assessed by an intersection measure 0 ≤ Intij ≤ 1 of

the intersection between eigenfrequency bands and

engine orders f A
j = nNj (n=̂ engine speed [rpm]; Nj =̂

number of installations) within the working-speed range
as introduced by Martin and Bestle (2016), where

a value of zero means no intersection within speed range
and one means full intersection. Since risk of failure also
correlates with the eigenmode shape due to the location
of stress concentrations, intersections may be penalized
individually by factors wE

i ≥ 0 associated with eigenmode
type and wA

j ≥ 0 accounting for the strength of the source
of excitation. The final forced response criterion, called
mode-resonance factor, then reads as

MRFi :=
∑
j

Intij

(
wA

j + wE
i

)
. (5)

Intersection-free designs require MRFi = 0, which may
be also expressed by an inequality constraint MRFi ≤ 0;
else MRFi > 0 correlates with the risk of forced response
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vibrations. In order to assign correct penalty factors, Martin
and Bestle (2018) developed methods for mode-shape
classification based on neural networks. The cornerstone is
the ability to compare displacement fields of different airfoil
geometries by projecting them onto an uniform standard
using Kohonen maps (self-organizing neural networks),
Martin and Bestle (2016).

Not only forced response, but also self-induced excita-
tion, i.e., flutter, is relevant for HCF. Therefore, four more
generic criteria are applied. The first two define a lower
limit F̆i on the Strouhal-number St (Strouhal 1878) describ-
ing the frequency of eddy shedding in the Kármán-vortex
street, i.e.,

F̆i − 2πcmax | r̃=0.75 f̆ E
i | n=̂100%

w1 | r̃=0.75
≤ 0 , i = 1, 2, (6)

where cmax | r̃=0.75 and w1| r̃=0.75 are the chord length and
relative speed of attack at 75% blade height, respectively,
and f̆ E

i | n=̂100% is the lower limit of the first and second
eigenfrequency at 100% engine speed. The other two
criteria are experience based and classified by the industrial
partner of the research project.

In order to ensure that found airfoil designs can be
manufactured, the leading- and trailing-edge radii RL/T ≥
R̆ are bounded by a minimum producible radius R̆. The radii
are additionally limited by RL/T ≥ αtmax , 0 < α < 1,
in order to reduce risk of crack initiation due to erosion
by requiring a minimal thickness. Both constraints may be
summarized as

RL/T ≥ max
{
R̆, αtmax

}
. (7)

Because of the dependence on maximum blade thickness
tmax and the rather indirect control of the RL/T (r̃)-
distribution via spline control points, these distributions are
calculated first in the design process and then immediately
analyzed whether they violate the constraints (7) or not. If a
distribution fails this check, the corresponding design would
not be analyzed by slave processes, but a high penalty value
of 9999 is assigned to all objectives and constraints.

4.2 Robust design objectives

As the design space P ⊂ R
NP is limited by several

inequality constraints hi (p) ≤ 0 mentioned above, optimal
designs are likely to be located at the borders of the
constrained design space where some hi = 0, Flassig
(2011). Consequently, parameter uncertainties w.r.t. such a
nominal design, e.g., due to production variances, will result
in a large number of parts to fail the constraints and also
deteriorate the predicted performance. In order to minimize
design sensitivity to production variances, design robustness
must be part of the optimization problem. In the following,
the maximum possible production tolerance for a nominal

design pnom will be introduced as a suitable robustness
objective.

Typically, the robustness of a nominal design pnom

w.r.t. constraints is described by the failure rate, i.e.,
the percentage of designs in a set of samples D :={
p�
1 , ...,p�

NS

}
of NS random points in the neighborhood

(pnom ± �p) of pnom failing at least one constraint hi ≤ 0.
However, the failure rate is a rather problematic robustness
measure as the examples in Fig. 4a demonstrates. Let the
gray boxes be infeasible design regions A and B where
at least one constraint fails. Then the sample causes the
same failure rate in both cases, but obviously the parameter
tolerances �pA

2 and �pB
2 , within which variations do not

fail at all, are totally different. 3A more practical approach
for robust design assessment, however, should not even
analyze such tolerances in the design space, but analyze
if real geometry variations within a specific production
tolerance ±s⊥ violate any constraints, see Fig. 4b. In
case no constraints are violated, pnom may considered to
be robust within the specific tolerance ±s⊥. Hence, the
goal should not be to minimize the failure rate, but to
maximize the largest possible production tolerance. While
using failure rate as a robustness measure is justified for
mass-produced parts with little overall profit losses in case
of failure, the maximum possible production tolerance is
the only valid requirement to suppliers of expensive and
safety-critical parts. Its computation does not require any
assumption on probabilistic parameter distributions, since
any part produced within this tolerance must be valid.
Hence, applying uniform distributions to the parameter
variations is sufficient.

Actually, sampling and assessing only geometry varia-
tions within a defined production tolerance may be difficult
because of the complex shape of that region P in the design
space P , which is associated with all possible geometry
variations of the nominal design S (pnom) within the toler-
ance band �(pnom, s⊥), see gray regions in Fig. 4b, c. In
order to identify a subset P ⊆ D of designs p�

j , the asso-

ciated shape S
(
p�

j

)
(white curve in Fig. 4b) is generated

as a CAD model (computer-aided design) and checked, if
it lies within the tolerance band �(pnom, s⊥) (gray band
in Fig. 4b) of the nominal shape S (pnom) (black curve in
Fig. 4b). Only for these sample points p�

j ∈ P constraint
violation is checked.

The goal is to find the maximal possible production
tolerance ±smax⊥ , where disturbed designs p�

j ∈ P do
not violate any further constraint than the nominal design
pnom. This may be achieved with the following iterative
procedure:

1. Define s⊥ := �s⊥ as the minimal feasible tolerance
step that can be manufactured, e.g., �s⊥ = 0.01mm.
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Fig. 4 Robustness assessment with a) failure rate and b) production tolerance ±s⊥

2. Create a sampleD of design points within a sufficiently
large range (pnom ± �p).

3. From all designs p�
j ∈ D, identify those where the

associated airfoil shape is contained in the tolerance

hull, i.e., S
(
p�

j

)
∈ �(pnom, s⊥), in order to receive a

design subset P being feasible w.r.t. the actual value of
production tolerance s⊥.

4. Calculate the number of variations p�
j ∈ P that violate

additional constraints compared to pnom, i.e.,

�NV (pnom, s⊥) :=∣∣∣{p�
j ∈ P

∣∣∣∃i : hi (pnom) ≤ 0 ∧ hi

(
p�

j

)
> 0

}∣∣∣ . (8)

5. In case �NV (pnom, s⊥) = 0, increase tolerance as
s⊥ := s⊥ + �s⊥ and continue from step 2; else
maximum tolerance smax⊥ = s⊥ − �s⊥ is obtained.

In order to minimize the risk of incomplete sampling in step
2, the minimum distance of any p�

j ∈ P from the borders
of the sampling neighborhood should be at least some user-
defined lower gap value ε̆S , see Fig. 4c; else ±�p has to be
adapted. Equivalently, in order to keep the sampling density
reasonably high, the closest sample points p�

j ∈ P to each
of the sampling borders should have a distance below some
user-defined upper gap value . Due to the adaption of
the gaps ε̆S and in each iteration step, the method here
does not rely on arbitrarily chosen sampling ranges for the
parameters in contrast to the commonly applied failure rate.

The calculated tolerance smax⊥ presents a valuable
criterion for design robustness; however, it will not be
incorporated directly because of its discrete nature (smax⊥ =

k�s⊥, k ∈ N). In order to smooth the measure, it is assumed
that the failure rate within the set of samples P for the next,
but non-robust tolerance step smax⊥ + �s⊥, is a measure
of how much of this non-robust tolerance step might be
possible. The assumption is reasonable, because the failure
rate of the design variations within the assessed tolerance
±smax⊥ is zero. Therefore, the failure rate

FR := �NV

(
pnom, smax⊥ + �s⊥

)
|P| (9)

is calculated and a continuous minimization objective for
maximizing the production tolerance is defined as

s̃max⊥ := − (
smax⊥ + (1 − FR) �s⊥

)
. (10)

4.3 Formulation of the optimization problem

Typical design objectives for compressor blade design are
the pressure loss �pt at design-point operation conditions
as well as off-design losses ωOD . In the presence of
manufacturing uncertainties, their influence has to be
considered in a probabilistic manner which is typically
done by minimizing mean and variance of each objective,
since smaller variance is associated with lower sensitivity
to design variations, Flassig (2011). Such a split of each
deterministic objective into two equivalent robust design
criteria, however, harms the optimization performance by
doubling the number of objectives. Therefore, they are
here combined to 95%-percentiles P 95∗ , Du et al. (2004),
which define a specific objective value where 95% of the
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observations result in lower values. As a statistical measure,
their computation requires a relevant sample size to be
evaluated within a defined parameter range±�p about each
nominal design pnom. For comparability, the sampling range
�p has to be the same for all nominal designs. With the
percentile and the production tolerance (10) the final robust
optimization problem reads as

(11)

where all aerodynamic and structural constraints mentioned
above are summarized in vectors hAero and hFEM, respec-
tively.

5 Loaded-to-unloaded transformation

Design optimization is typically based on a parameterization
of the loaded geometry during regular operating conditions
inducing airfoil deformations due to centrifugal and pressure
loads as well as high-temperature deformations. However, in
order to correctly determine associated stress, strain, eigen-
frequencies, and eigenmodes, the finite element analysis
has to start from the unloaded configuration at room
temperature conditions. In order to ensure consistency
between loaded and unloaded geometries during the
combined aerodynamic and structural design optimization
(11), a proper loaded-to-unloaded transformation has to
be performed, where the unloaded geometry has to be
determined such that, after applying nominal loads and
temperatures, the geometry will deform to the original
loaded geometry. The often used current approach described
by Goerke et al. (2012) aims at finding the unloaded
geometry iteratively as follows:

1. Starting with the known loaded geometry L0 in Fig. 5a,
assume unloaded geometry U1 ≡ L0 to be identical as
a first guess; set i = 1.

2. Apply the load and temperature conditions to Ui

resulting in a corresponding loaded geometry Li .
3. Subtract the difference �i := Li − Ui from the desired

loaded geometry L0 to obtain a better guess Ui+1 of the
unloaded geometry.

4. Set i := i + 1 and proceed with steps 2 and 3 until
absolute error |Li − L0| ≤ ε is below an user-defined
tolerance ε; finally Ui is the desired estimate of the
unloaded geometry associated with H0.

This iterative procedure accounts for nonlinearities due
to the stepwise nonlinear FE analyses, but is rather time
consuming due to the stepwise extraction of displacements
from FE results, their subtraction from the CAD geometry
L0, the import of the new CAD model (unloaded geometry)
into the FE tool, and the subsequent preprocessing (mesh
generation and load application) and FE analysis.

For design optimization, a faster, non-iterative approach is
desired to be directly integrated into the FE solver. A rather
simple approach may be to reverse the load (pressure pSS

and pPS on suction and pressure side as well as centrifugal
load dFC in Fig. 5b) and temperature conditions (�T ). This
is straight forward for the pressure loads (−pSS) and
(−pPS), which are actually negligible as shown by Janke
et al. (2016), and the temperature conditions (−�T ), see
Fig. 5c. The only way to reverse the centrifugal load for a
finite volume element dV is a negative material density (−ρ)

which is applicable in Abaqus. Alternative sign changes of
quantities r or dV would either be not applicable, change
the model geometry, or distort other distributed loads. As
airfoils are slender structures, reversing centrifugal loading
may lead to nonlinear buckling instability which, however,
can be suppressed by performing linear deformation analy-
sis only. The discrepancy in the loaded geometry eigenfre-
quencies based on linear and nonlinear unloaded-geometry
estimates is sufficiently small (< 3Hz) for the first 10

Fig. 5 Loaded-to-unloaded transformation: iterative approach (a) vs. reversing the actual loading (b) in the new approach (c)
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eigenfrequencies of the first, last, and middle rotor of an
industrial gas-turbine compressor as shown by black mark-
ers in Fig. 6. In contrast, the error is highly significant
if no loaded-to-unloaded transformation is considered by
applying loads and temperature conditions directly to the
loaded geometry (white markers for loaded to addition-
ally loaded=̂L2L+). Also the maximal stress error being
less than 2MPa is small compared to an error of about
80MPa without loaded-to-unloaded transformation. Since
the geometry variation between the test rows is larger than
variations to be expected during optimization of a specific
row, the method may be regarded as reliable.

Contrary to the iterative approach, the suggested
linear loaded-to-unloaded transformation can be directly
implemented as a first calculation step in the FE analysis
(displacement field has to be set as load free before
proceeding with the further FE calculations) and requires
only a negligible additional computational effort of less
than 5s in our application. Thus, with the negative density,
loaded-to-unloaded transformation becomes applicable to
automated design optimization.

6 Optimization results of a test case

In order to improve the capabilities of automated design, the
strategy proposed in this paper combines an efficient RSM-
based multidisciplinary optimization process with direct
loaded-to-unloaded transformation and a new strategy for
assessing production tolerance to gain design robustness.
Additionally, the automated identification of critical eigen-
mode shapes from Martin and Bestle (2018) is included to
reduce the risk of high-cycle fatigue. All these methods now
have to prove to deliver valid and efficient designs for a
rather challenging test case driving optimization to its limits.
To concentrate on the proposed approaches, the pre-blading
part of the process in Fig. 1a is skipped and instead an exist-
ing airfoil design from an industrial gas turbine is chosen
as initial design for the blading process. However, a much

cheaper material (normal construction steel with compara-
tively low yield strength) is applied which causes violation
of all structural constraints, whereas the design fulfills the
aerodynamic ones. The design space is chosen rather restric-
tive where also human experts according to their experience
would most likely feel comfortable with (degree of the
splines is unlikely to deliver radically new design features).
The ranges of the controls points in Fig. 3 are set to be ±0.1
for r̃ and c̃, ±2◦ for βL and βT , ±2mm for tmax , ±0.1mm
for RL and RT , ±10◦ for θS , ±10mm for x̃S , and ±0.2 for β̃

and t̃ . Initially higher ranges were tested, but did not lead to
better designs, since optimal designs were located in a closer
range about the initial design. Thus, it was decided to use
tighter ranges for the sake of better design space exploration
within the promising ranges.

Before analyzing the results, some details on the practical
application of some of the introduced methods shall
be given. First, the suggested approach for evaluating
production tolerances requires the buildup of CAD models

to obtain S
(
p�

j

)
(for each p�

j ∈ D about each nominal

design pnom) and the evaluation of the constraints hi

(
p�

j

)
(for each p�

j ∈ P). Since this may be computationally
expensive, RSMs of the optimization process (Fig. 1) are
utilized to assess the production tolerance which cuts down
the computation time from days to a few hours for a
single nominal design. This makes it applicable to at least
a few selected nominal designs. Nonetheless, due to lack
of computational resources (number of available CPUs and
licenses), further reduction of the computational effort is
required for complete evaluation of production tolerances
during design optimization. This is achieved by avoiding

generation of CAD model S
(
p�

j

)
for each sample p�

j .

Instead the spline distributions of the parameters p�
j are

evaluated for intersections with (pnom
i ± s⊥) in order to

identify subset P ⊂ D. However, this is only possible
for parameters pi which are directly related to s⊥ and
are decoupled from others, namely RL, RT , and tmax .

1 2 3 4 5 6 7 8 9 10
10-2

100

102

front (L2L+)

front (L2U)

middle (L2L+)

middle (L2U)

rear (L2L+)

rear (L2U)

Fig. 6 Error of first 10 eigenfrequencies with linear loaded-to-unloaded transformation (L2U) and without (L2L+) for first, middle, and last rotor
of an industrial gas turbine



1944 I. Martin et al.

Thus, only geometry changes symmetric to the camber
line are considered at the current state. Because splines
can be evaluated much faster than CAD models can be
build up, the suggested production tolerance assessment
becomes applicable to the optimization process (assessing
1000 nominal designs takes about 2–3 h).

For the probabilistic assessment of the objectives P 95
�pt

and P 95
ωOD

in (11), these design parameters are sampled within
�pi = 0.05mm, which is a well achievable production
tolerance for airfoil designs. The sampling size for all
objectives in (11) is set to be 1000 using Latin-hypercube
sampling (McKay et al. 1979), because in the present
application the deviation of the calculated objectives based
on 1000 samples compared to those based on 5000 samples
is less than 3% and saves quite some time.

For mode shape specific tuning of eigenfrequency bands,
the mode-resonance factor (5) has been introduced. In
the present application, the first 15 eigenmodes of each
design are evaluated in order to identify essential eigenmode
shapes, namely 1B, 1T, 2B, 2T, 1C, 1H, 1S, 3T, 3B, 2H,
2C, where B denotes bending mode, T torsion mode, C
chord-wise mode, H higher-order mode, S stiff-wise mode,
and the number is related to the order of the respective
mode. The associated penalty factors are wE =[150, 140,
130, 120, 110, 100, 100, 100, 100, 100, 50]T . The engine
orders Nj of interest are the first five engine orders, i.e.,
Nj = 1, ..., 5, with penalty factors wA

j = 100, the number
of airfoils installed on the next two upstream stators (rotors)
penalized with wA

j = 100, the number of airfoils installed

on the next downstream stator (rotor) penalized with wA
j =

50, and the difference between number of airfoils of the
closest upstream and downstream stator (rotor) penalized
with wA

j = 25.
Tuning eigenmodes directly by considering each of

the MRFi as an individual objective or constraint, would
harm the performance of the optimization algorithm.
Therefore, all the constraints hi ≤ 0 in (11) (including all
MRFi ≤ 0) are considered indirectly via a quadratic penalty
strategy

C :=
∑

i

wi

si
(max {0, hi})2 (12)

with weight factors wi and scale factors si controlling the
influence of constraint violations. During optimization the
weights are scaled in such a way that, based on the last 100
design evaluations, the constraint hi violated most times is
assigned with wi := 2, the one violated least times with
wi := 1, and all others accordingly in between. The scales si
are calculated based on the DoE such that (max {0, hi}) /si
for each constraint hi and all DoE samples equals
one.

The weighted sum C is added to each objective, which
causes the optimization algorithm not just to minimize
theobjectives but also the degree of violation of the
constraints. Thus, the optimization problem solved by the
optimization algorithm reads as

(13)

The optimization of the compressor blade using a NSGA-
II algorithm starts with an initial DoE of 3000 designs
to feed the RSMs. Additionally about 2000 designs were
evaluated during optimization to update the RSMs. Finally,
none of the resulting designs is admissible, because either
smax⊥ = 0 in (10) or at least one hi > 0 in (12). Obviously the
design task is too challenging w.r.t. the chosen material to
obtain a fully valid and producible design. However, low-
ering the expectation by allowing that a less critical eigen-
mode intersects with a higher engine order yielding values
MRFi > 0 in (5), and picking from these designs the one with
the largest production tolerance being smax⊥ = 0.004mm
results in a design with appropriate aerodynamic turning
and similar but slightly lower aerodynamic efficiency than
the reference design. In conclusion, a human expert would
now have to decide if the loss in aerodynamic efficiency
is acceptable, or if the forced response of a less criti-
cal eigenmode harms the intended service life, or whether
the challenging production tolerance negates the savings
realized by the cheaper material.

A more detailed comparison of the structural dynamic
characteristics between the reference and optimal design
is given in Fig. 7 which shows essential eigenmode bands
that have been identified together with others located
among the essential ones. For the reference design, the
Campbell diagram in Fig. 7a shows multiple intersections
of engine orders (dashed-dotted lines) with eigenmode
bands (brackets between dotted and solid lines) within
the engine speed range (94–105%) where the intersections
with 2C (2nd-order chord-wise bending mode), 1H/2H
(1st and 2nd higher-order mode), and 3T (third torsion
mode) are considered to be service life relevant. The
optimization process is able to deliver a design with only
one remaining intersection (3H) being less critical, Fig. 7b.
Thus, the penalty strategy (12) and eigenmode classification
procedure are able to drive optimization away from failure-
critical force responses through the MRF criterion (5). On
a first glance, this change in structural dynamic behavior
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Fig. 7 Comparison of reference and optimal design in Campbell diagram for a reference and b optimal design, and c w.r.t. geometry (∗unknown
mode)

seems to result from an increased thickness and bow as
shown in Fig. 7c. As a consequence, also the critical von
Mises stress peaks at the airfoil surface as well as at
the leading and trailing edges (Fig. 8a) are reduced to
acceptable levels, as can be seen in Fig. 8b.

In order to better see the geometry changes, Fig. 9 shows
the changes in the parameter distributions. The maximum
thickness �tmax in Fig. 9a is increased towards the root
which is the main reason for the reduced stress level and
elevated eigenfrequency bands. The changes �RL, �RT of
the leading- and trailing-edge radii are negligible, hence, do
not significantly contribute to the reduction of the stresses
at leading and trailing edge. The increase of axial-shift �x̃S

and theta-shift �θS (bow) may be driven by both structural
as well as aerodynamic criteria, but the increased metal

angles at the leading (�βL>0) and trailing edge (�βT >

0) have certainly aerodynamic reasons. As �βT is larger
than �βL to the most extent along r̃ , the curvature of
the blade has actually been decreased by the optimization.
Because the optimal as well as the reference design fulfill
the required aerodynamic turning, the reference design
must already have suffered flow separation to a larger
extent than the optimal design. The fact that both designs
have similar aerodynamic efficiency means that the optimal
design loses the potential gain in favor of structural integrity.
A geometrical reason for the loss in gain might be the
reduced β̃ and t̃ towards the leading edge, see Fig. 9b, c,
whereas both remain nearly unchanged towards the trailing
edge. The result is a higher shock wave compression for the
optimal design.

max

min

PS SSPS SS
a) b)

Fig. 8 Von Mises stress distributions of a reference design (black arrows mark critical stress peaks at leading and trailing edge) and b optimal
design on pressure (PS) and suction (SS) side
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a)

b) c)

[°] [°] [mm] [mm] [mm] [mm] [°]

Fig. 9 Differences in geometry parameter distributions between the optimal robust design and the reference design for a one-dimensional
distributions, b normalized chamber-line-angle distribution, and c normalized thickness distribution

7 Conclusions

The multidisciplinary optimization process proposed in this
paper aims at performance improvement by diminution
of shortcomings of existing processes with respect to
efficient use of computing resources, quality of results,
and robustness of the resulting designs. It introduces a
flexible process structure based on discipline-specific RSMs
to decouple different design evaluations from each other
and from optimization. Thereby, an arbitrary number of
instances may be executed in parallel to effectively use
license and computer resources. As the process couples
structural and aerodynamic design goals, consistency
between both disciplines is ensured by permanent loaded-
to-unloaded transformations of the airfoil geometry, where
the proposed new and extremely fast strategy uses negative
pressures, temperature changes, and density in order to
reverse centrifugal loads. It is directly implemented in
the FE analysis with little effort. Additionally, a method
for automatically detecting failure-critical eigenmodes and
associated uncertainty bands is incorporated to avoid high-
cycle fatigue. In order to obtain optimization results with
practical relevance for manufacturing, design robustness is
addressed by determining a production tolerance which just
ensures no violation of constraints. Application to a rather
challenging design task demonstrates that the optimization
process incorporating all the suggested methods is able to
deliver results that reveal new opportunities for the design

engineer to choose between design efficiency, service
life, and manufacturing costs associated with production
tolerances and type of blade material.
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