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Abstract
In recent years, the importance of computationally efficient surrogatemodels has been emphasized as the use of high-fidelity simulation
models increases. However, high-dimensional models require a lot of samples for surrogate modeling. To reduce the computational
burden in the surrogate modeling, we propose an integrated algorithm that incorporates accurate variable selection and surrogate
modeling. One of the main strengths of the proposed method is that it requires less number of samples compared with conventional
surrogate modeling methods by excluding dispensable variables while maintaining model accuracy. In the proposed method, the
importance of selected variables is evaluated using the quality of the model approximated with the selected variables only.
Nonparametric probabilistic regression is adopted as the modeling method to deal with inaccuracy caused by using selected variables
during modeling. In particular, Gaussian process regression (GPR) is utilized for the modeling because it is suitable for exploiting its
model performance indices in the variable selection criterion. Outstanding variables that result in distinctly superior model performance
are finally selected as essential variables. The proposed algorithm utilizes a conservative selection criterion and appropriate sequential
sampling to prevent incorrect variable selection and sample overuse. Performance of the proposed algorithm is verified with two test
problems with challenging properties such as high dimension, nonlinearity, and the existence of interaction terms. A numerical study
shows that the proposed algorithm is more effective as the fraction of dispensable variables is high.
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Abbreviations
n Dimension of input
X Training input
X∗ New input
f∗ Posterior output with zero mean function
f* Best estimation for f∗
g∗ Posterior output with explicit basis function
cov(g∗) Covariance of g∗
y Training output (noisy response)
mi(xi) Mean function of GPR in xi-y plane
c(x|X) Posterior variance in a specified point x
m Number of observations

h(x) Basis function of GPR
k(x) Covariance function of GPR
cov(f∗) Covariance of f∗
g* Best estimation for g∗
β; β̂ Coefficients of basis function and their

estimation
θ; θ̂ Hyperparameters of covariance function

and their estimation
σ2; σ̂2 Noise variance and its estimation
ki(xi, x´;θ) Covariance function of GPR

with xi-y plane and hyperparameter θ
ε Gaussian noise
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1 Introduction

In these days, performances of engineering designs are eval-
uated using computer simulations instead of physical testing
to save cost and time for design development. As the simula-
tion models become more complex, their computational cost
has soared significantly. For the reason, surrogate modeling
has been utilized to replace the time-consuming simulation
models. However, for high-dimensional problems, building a
surrogate model itself is a computationally expensive task
since the number of samples for surrogate modeling highly
depends on the dimensionality (Jin et al. 2002). The dimen-
sionality issue can be effectively relieved by selecting and
using essential variables that have great influence on the out-
put response when we create surrogate models (Shan and
Wang 2010). Therefore, for high-dimensional problems, var-
iable selection is necessary to create an accurate surrogate
model with given computational resources.

Many variable selection methods use samples produced
by experimental design methods to identify the degree of
relationship between variables and the output responses.
More accurate and efficient variable selection is possible
when the sample has high quality, i.e., orthogonality and
space-filling property. To find effective sample location, ex-
perimental design has been extensively studied: input-
domain-based criterion (Jin et al. 2003; Joseph et al.
2015; Joseph and Hung 2008; Pronzato and Walter 1988;
Stein 1987), information-based criterion (Beck and Guillas
2016; Ko et al. 1995), and uncertainty-based criterion of
posterior variance of the Gaussian process regression
(GPR) model (Gorodetsky and Marzouk 2016). Some var-
iable selection methods are paired with a specific experi-
mental design to maximize their performance. For example,
analysis of variance (ANOVA) that is the most classical
variable selection method is mostly utilized in combination
with the design of experiment (DOE) (Hayter 2012). Moon
et al. introduced a two-stage variable selection method in
combination with their own sampling technique based on
Gram-Schmidt orthogonalization (Moon et al. 2012). Once
the sample location is determined, output response at each
sample is computed, and relevance between variables and
output responses is measured. As a measure of the rele-
vance, influence diagnostic scores such as information gain,
Akaike information criterion (AIC), Bayesian information
criterion (BIC), and linear/nonlinear coefficients (Qi and
Zhang 2001; Helton et al. 2006) have been used. In addi-
tion, Sobol’ indices, which is a global sensitivity analysis
method, was developed to measure the influence of mutu-
ally interacting input variables on the output in highly non-
linear problems (Homma and Saltelli 1996; Sobol 2001). A
better index compared with Sobol’ indices when applied in
strong interaction properties is also developed (Saltelli et al.
2009). To consider random variables, statistical sensitivity

has been developed by several studies (Lee et al. 2011; Cho et
al. 2014; Cho et al. 2016). After the relevance or influence
measure is evaluated, essential variables can be determined
according to the measure.

Especially, the number of samples used in variable selec-
tion—the efficiency of variable selection—is an important
factor that should be carefully taken care in high-
dimensional problems. Researchers (Székely et al. 2007,
Cook 2000, Zhao et al. 2013) developed new influence diag-
nostic scores for efficient variable selection using a small
number of samples. To ensure more stable result even with a
few samples, there have been researches using the model-
based method. Welch et al. utilized the likelihood of GPR as
the criteria for variable screening (Welch et al. 1992). In the
method, essential variables are detected by adding candidate
variables one by one to the GPR model, and the variable
which causes the highest improvement of the likelihood is
selected. It was successfully applied to a 20-dimensional prob-
lem with less than 50 samples. Gaussian process (GP) classi-
fication (Rasmussen, 2006) calculates posterior using prior
and given pre-labeled samples and makes small posterior
smaller and large posterior larger. Hence, GP classification
classifies relevant and irrelevant variables more distinctively.
Recently, Wu et al. developed partial metamodel-based opti-
mization utilizing radial basis function model with sensitive
variables, which finally aims to obtain the optimal point with a
reduced number of function evaluations (Wu et al. 2018). The
method enhances the efficiency of the interwoven process of
metamodeling and optimization by decomposing the space
and focuses on the search area near the optimal point.

Throughout the literature survey, several aspects are found
to be improved. First, several variable selection methods re-
quire well-positioned samples using delicate experimental de-
sign (Jin et al. 2003; Joseph et al. 2015; Joseph and Hung
2008; Pronzato and Walter 1988; Stein 1987; Beck and
Guillas 2016; Ko et al. 1995; Gorodetsky and Marzouk
2016), or are coupled with specific experimental design
methods (Hayter 2012; Moon et al. 2012). However, we may
encounter samples that are not well-located. Second, the rele-
vance measure that cannot identify the effect of interaction
terms of variables on output response (Qi and Zhang 2001)
could cause faulty variable selection in highly nonlinear prob-
lems. To capture the interaction term using Sobol’ indices,
enormously large number of samples (e.g., millions) could be
required (Homma and Saltelli 1996; Sobol 2001). Statistical
sensitivity method has the same drawback of requiring too
many samples (Cho et al. 2014; Cho et al. 2016; Lee et al.
2011). Third, variable selection through influence diagnostic
scores could produce a different selection of variables due to
the fluctuation of influence diagnostics scores depending on
the number of samples or locations of samples (Székely et al.
2007; Cook 2000; Zhao et al. 2013). Fourth, GP classification
(Rasmussen, 2006) requires pre-labeled samples—the
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predetermined data to which group they belong in classifica-
tion (Guyon and Elisseeff 2003; Li et al. 2017; Chandrashekar
and Sahin 2014). Finally, somemodeling methods sacrifice the
model accuracy, and the sensitivity analysis is performed with
the intermediate metamodel to boost the optimization efficien-
cy (Wu et al. 2018).

Therefore, this paper proposes an integrated variable selec-
tion and surrogate modeling algorithm that can cope with afore-
mentioned difficulties—high dimensionality and nonlinearity,
insufficient samples, arbitrary sample quality, the existence of
interaction terms, and unlabeled data. The proposed method
carries out the variable selection and surrogate modeling simul-
taneously without sensitivity analysis using as less number of
samples as possible. In the proposed method, GPR is adopted
for the surrogate modeling method, and variable subsets are
evaluated with conservative multi-criteria. Variables that result
in distinctly superior model performance are selected as the
essential model inputs. Sequential adaptive sampling is carried
out to avoid sample overuse. A conservative stopping criterion
is developed to prevent premature stop of variable selection
loop. For variable selection, two kinds of machine learning tech-
niques are utilized for the proposed algorithm, clustering (Jain
et al. 1999; Bouguettaya et al. 2015) and the Wrapper method
(Kohavi and John 1997) since there is a functional similarity
between data-driven modeling and physics-based modeling
framework (Sun and Sun 2015; Solomatine and Ostfeld 2008;
Bessa et al. 2017). Clustering is adopted to avoid ambiguous
selection criteria because it can bisect data into distinctly differ-
ent groupswithout a label. Especially agglomerative hierarchical
clustering is adopted for the problem characteristic (Bouguettaya
et al. 2015). The Wrapper method is also utilized due to its
fitness for a variable selection in high uncertainty circumstances
caused by a small number of samples. The Wrapper method
determines the influence of a certain variable by the model per-
formance formulated with the variable.

The organization of remaining parts of this paper is as
follows. Section 2 reviews previous related researches. In
Section 3, the proposed method is described in detail with an
illustrative example. Section 4 presents two test examples to
verify the performance of the proposed method. All results are
summarized in Section 5.

2 Technological background

In this section, Sobol’ indices and GPR model are briefly
revisited. Sobol’ indices and GPR are utilized as a benchmark
to check variable selection accuracy and as surrogate model-
ing method, respectively, in this study. Specifically, the GPR
model performances—marginal loglikelihood and integrated
posterior variance—are core indices for variable selection cri-
terion in the proposed method, and integrated posterior vari-
ance is also used for the experimental design criteria.

2.1 Sobol’ indices

Sobol’ indices is a global sensitivity index based on variance
decomposition with Monte Carlo simulation. If the number of
samples is enough, Sobol’ indices can identify the accurate
influence of input on output response for any type of functions
such as highly nonlinear and high-dimensional problems with
interaction terms. The basic concept of Sobol’ indices is to
decompose total variance to each variance caused by individual
input and combinations of inputs (Homma and Saltelli 1996;
Sobol 2001). When I is the unit interval [0, 1], In is the n-
dimensional unit hypercube, and let us consider a function
f(x) with x = [x1, x2,⋯, xn] ∈ In which can be formulated as

f xð Þ ¼ f x1; x2;⋯; xnð Þ ¼ f 0 þ ∑
n

i¼1
f i xið Þ

þ ∑
n

i< j
f ij xi; x j
� �þ⋯

þ f 12⋯n x1; x2;⋯; xnð Þ ð1Þ

where n is the input dimension. Equation (1) is called ANOVA
representation of f(x) if

∫10 f ij:::h xi; x j;⋯; xh
� �

dxidx j⋯dxh ¼ 0 for 1≤ i < j < ⋯

< h≤n: ð2Þ

Equation (2) satisfies

f 0 ¼ ∫ f xð Þdx; ð3aÞ
f i xið Þ ¼ ∫ f xð Þ∏

a≠i
dxa− f 0; ð3bÞ

f ij xi; x j
� � ¼ ∫ f xð Þ ∏

a≠i; j
dxa− f 0− f i xið Þ− f j x j

� �
; ð3cÞ

and so on. The total variance of f is defined as

D ¼ ∫ f 2 xð Þdx− f 02 ð4Þ
which can be calculated as the sum of partial variances as

D ¼ ∑
n

i
Di þ ∑

n

i< j
Dij þ⋯þ D12⋯n ð5Þ

where the partial variance is calculated as

Dij⋯h ¼ ∫ f 2ij⋯hdxidx j⋯dxh for 1≤ i < j < ⋯ < h≤n ð6Þ

Using (5) and (6), Sobol’ indices is defined as

Sij⋯h ¼ Dij⋯h

D
for 1≤ i < j < ⋯ < h≤n ð7Þ
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2.2 Gaussian process regression

GPR is one of the most commonly used methods for data-
driven modeling (Sun and Sun 2015). Although neural net-
work (NN) is more widely used in data-driven modeling
framework, GPR is better suited for computationally expen-
sive cases that cannot provide a large number of samples.
There are more reasons why GPR is chosen as a modeling
method in this study. The first reason is that GPR is a well-
formulated regression method that can cope with noise that
results from the effect of removed variables on the original
function value. Since the proposed algorithm uses a selective
variable subset, the modeling method should be able to handle
the noise. The second reason is that the marginal loglikelihood
and posterior variance of GPR can be utilized as the variable
selection measure.

GPR formulas are constructed as following procedure
(Quiñonero-Candela and Rasmussen 2005; Rasmussen
2006; Bastos and O’Hagan 2009; Oakley and O’Hagan
2004). Random function f(x) with zero mean and covariance
function kwith a hyperparameter set θ in a specified point x is
expressed as

f xð Þ∼GP 0; k x; x
0
;θ

� �� �
: ð8Þ

Assume that there are given m training data, that is,
X = [x1, x2,⋯, xm]

T ∈ℝm × n is a set of training inputs of m
observations where each xi ∈ℝn is the ith training input.
Training output y is a noisy version of f(X) defined by y =
f(X) + ε where f(X) is the latent function values of Gaussian
process since the true noisy-free function value cannot be
known, and ε(i) is an independent and identically distributed
Gaussian noise. When the signal noise variance is σ2, the joint
distribution of y and posterior prediction f∗ on new input X∗

follows multivariate normal distribution as

y
f*

� �
∼N 0; K X;Xð Þ þ σ2I K X;X*ð Þ

K X*;Xð Þ K X*;X*ð Þ
� �� 	

ð9Þ

where I is the identity matrix and K is defined with X ¼
xif gvi¼1 and XX ¼ xx j


 �w
j¼1 as

K X;XXð Þ ¼
k x1; xx1ð Þ ⋯ k x1; xxwð Þ

⋮ ⋱ ⋮
k xv; xx1ð Þ ⋯ k xv; xxwð Þ

2
4

3
5: ð10Þ

Based on Bayesian approach, the posterior prediction out-
put f∗ on the new input points X∗ can be obtained with con-
ditioning given training data as

f*jX; y;X*∼N f*; cov f*ð Þ
� �

ð11Þ

with the posterior mean as

f* ¼ E f*jX*;X; yð Þ ¼ K X*;Xð Þ K X*;Xð Þ þ σ2I
� 
−1

yð12aÞ

and posterior covariance as

cov f*ð Þ ¼ K X*;X*ð Þ−K X*;Xð Þ K X;Xð Þ þ σ2I
� 
−1

K X;X*ð Þ:
ð12bÞ

Next, a function g(x) of nonzero mean which incorporates
f(x) with polynomial function h(x)Tβ is considered as

g xð Þ ¼ h xð ÞTβþ f xð Þ ð13Þ

where h(x)∈Rp×1 is a basis function consisting of p polynomi-
al basis such as 1, x1, x2,..., xn, x1

2, x2
2,..., xn

2. We obtain the
posterior output on the new input X∗ conditioning training
data as

g*jX; y;X*∼N g*; cov g*ð Þ
� �

ð14Þ

where the posterior mean is

g* ¼ H*
Tβ̂þK*

T K þ σ2I
� 
−1

y−HTβ̂
� �

; ð15aÞ

and posterior covariance is

cov g*ð Þ ¼ cov f*ð Þ þ H*−H K þ σ2I
� 
−1

K*

� �T

H K þ σ2I
� 
−1

HT
� �−1

H*−H K þ σ2I
� 
−1

K*

� �

ð15bÞ

where H = [h(x1), h(x2),⋯]T, H∗ = [h(x1∗), h(x2∗),⋯]T, K∗ =
K(X∗,X), and K =K(X,X) with cov(f∗) in (12b).

For the parameter estimation, β can be estimated with σ2

and θ as

β̂ θ;σ2
� � ¼ HT K þ σ2I

� 
−1
H

� �−1
HT K þ σ2I

� 
−1
y ð16Þ
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where σ2 is the noise variance and θ is a hyperparameter vector
of covariance function. The marginal likelihood is the integral
of the likelihood times prior over the function values as

p yjXð Þ ¼ ∫p yj f ;Xð Þp f jXð Þd f : ð17aÞ

Since solving (17a) is intractable, plausible analytic solu-
tions to solve (17a) have been suggested (Quiñonero-Candela
and Rasmussen 2005; Rasmussen 2006; Bastos and O’Hagan
2009). In this study, we propose to use optimization to obtain
the marginal likelihood with hyperparameters as

θ̂; σ̂̂2
n o

¼ argmax
θ;σ2

p yjXð Þ ð17bÞ

where the loglikelihood with m observations can be approxi-
mated as (Rasmussen 2006)

logp yjXð Þ ¼ −
1

2
y−Hβ̂

� �T
K þ σ2I
� �−1

y−Hβ̂
� �

−
m
2
log2π−

1

2
logjK þ σ2Ij:

ð17cÞ

Hence, (17b) can be solved using (16) and (17c).
Predictive posterior variance c(x|X) is the same as cov(g∗) in

(15b) except for replacingX∗with specified single design input
x∗. Then, the integrated posterior variance can be calculated as

IVAR ¼ ∫
x*∈χ

c x*jXð Þdμ ð18Þ

where μ is the PDF of x in space χ. This indicates μ-weighted
integration over the design space χ. Through this process, two
model performance indices for variable selection, marginal
loglikelihood in (17c) and integrated posterior variance in
(18), are obtained.

3 Proposed method

The main concept of the proposed method is that the marginal
likelihood and integrated posterior variance are used as vari-
able selection criteria. As mentioned in Introduction, the mar-
ginal likelihood was used as a variable screening criterion by
Welch et al. (Welch et al. 1992), and the integrated posterior
variance was reported as the model uncertainty measure by
Gorodetsky et al. (Gorodetsky and Marzouk 2016). Hence,
the marginal likelihood and the integrated posterior variance
can be good measures to check the importance of input vari-
ables. Moreover, the integrated posterior variance is utilized
for the sequential experimental design criteria at the same
time. The following sections explain the proposed algorithm.
Section 3.1 shows the basic concept of the proposed method
and Sections from 3.2 to 3.5 explain the proposed algorithm in
detail. Section 3.6 summarizes the proposed algorithm with a
flowchart and Section 3.7 illustrates the proposed process with
a simple mathematical example.

Fig. 1 a–c The concept of GPR
and essential variable selection
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3.1 Basic concept of the proposed algorithm

The proposed algorithm distinguishes between essential and
unnecessary variables using the Wrapper method (Kohavi and
John 1997). The Wrapper method actually creates a surrogate
model with a selected variable subset and determines the im-
portance of variables based on the model performance of the
surrogate model. When the performance of a GPRmodel with
a certain variable set is clearly superior to models with other
variable sets, variables in the set are significantly relevant to
the output response and selected as essential variables. The
model performance is quantified with (17c) and (18) after
the GPR model is built.

Figure 1 visualizes the main concept of the proposed algo-
rithm. Since the functional change almost depends on x1 and
x2 has little effect as shown in Fig. 1a, x2 is dispensable for the

function. Figure 1b, c shows the function f when it is
projected on x2-y and x1-y plane, respectively. The devia-
tion of the GPR model with x2 in Fig. 1b is much larger than
the one in Fig. 1c. Hence, it can be seen that f is a function
of mainly x1, not x2.

The intuitive concept of the proposed algorithm can be
more comprehensively explained using (17c) given in the
form of normal distribution. The first term of (17c) explains
the L2-norm which is a discrepancy between true observation
y andHβ. The last term of (17c) is the log-determinant of the
GPR model that means how much data is scattered from the
regression. BecauseHβ is formulated with low-order polyno-
mials, it is not enough to explain highly nonlinear and noisy
response. Therefore, the covariance function handles the re-
maining elaborate scatter of data. If the data is largely
scattered from the prediction, the marginal likelihood be-
comes small, and the variance becomes large. This is why
the marginal likelihood and the integrated variance can be
indicators that show whether the data can be well described
with essential variables. These two indicators with various
variable subsets can be divided distinctly into superior and
inferior groups. The validity of two GPR model performances
for the variable selection will be demonstrated in Section 3.7
in more detail using an illustrative mathematical example.

3.2 Variable selection algorithm

The subset selection process of the proposedmethod consists of
three core methods: (1) the Wrapper method, (2) agglomerative
hierarchical clustering, and (3) forward greedy search. As men-
tioned in Section 3.1, the Wrapper method is used to measure

Fig. 2 a–d The concept of agglomerative hierarchical clustering

(a)

(b)

(c)

1st x1 x2
x3 x20

…

All variables

x1, x12

x12
…

x2, x12
x20, x12

…

x1, x20, x12 x2, x20, x12 x19, x20, x12
…

2nd

3rd

Fig. 3 a–c The concept of the proposed variable selection algorithm with a 20-dimensional example
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the importance of variable sets. For the clustering method, ag-
glomerative hierarchical clustering (Bouguettaya et al. 2015) is
used to detect essential variables as shown in Fig. 2.

In this study, the number of the final clusters is set to two
for data bisection, and Euclidean distance and single linkage
are adopted as the distance metric and for linkage criterion,
respectively. Single linkage criterion is the metric between
two groups of A and B expressed as

Linkage ¼ min dist a; bð Þ : a∈A; b∈Βð Þ ð19Þ

where dist(a,b) is Euclidian distance between a and b.
Agglomerative hierarchical clustering links the closest data

or clusters sequentially based on the linkage metric in (19)
until the number of the clusters becomes 2.

Forward greedy search is a subset selection algorithm
based on exhaustive search, which means that it finds the
best subset by selecting variables one by one sequentially.
Figure 3 shows the concept of the proposed variable se-
lection algorithm combining three methods using a 20-
dimensional example. As shown in Fig. 3a, forward
greedy search is utilized to generate candidate variable
sets in each iteration. For each variable, the Wrapper
method is used to score the subset importance based on
GPR model performances as shown in Fig. 3b, and ag-
glomerative hierarchical clustering is used to distinguish
the outstanding variable set which is x12 in Fig. 3b. In the
second iteration, the forward greedy search is again ap-
plied to test all the combinations of two-variable sets with
the selected x12. In this way, the variable selection process
continues until the GPR model obtained with selected
variables only satisfies predefined accuracy.

Different from general greedy forward search that iden-
tifies the best subset using optimization, the proposed al-
gorithm utilizes clustering as shown in Fig. 3b, c.
Clustering can bisect data into definitely two different clus-
ters. If there exists only one subset in the best cluster, it is
classified as an important variable set. In addition, two
model performance measures are utilized in the proposed
method so that the important variable set which has the
maximum of marginal loglikelihood and minimum of inte-
grated posterior variance at the same time is selected. This
conservativeness reduces the possibility of faulty variable
selection.

Last but not least, the proposed algorithm utilizes two-
variable addition when a definitely outstanding variable set
does not exist due to strong interaction terms as shown in

Fig. 4 a–c Two-variable addition method for variable selection

Fig. 5 Outlier detection in the normalized space ofGPRmodel performances

Variable selection using Gaussian process regression-based metrics for high-dimensional model approximation... 1445



Fig. 4. This two-variable addition is necessary for two rea-
sons: (1) there are some variables that have high sensitivities
when combined with other variables such as interaction terms,
and (2) there can be two variables with similar sensitivities,
and one variable cannot be distinguished from the other as an
outstanding one. After performing two-variable addition, if
there exists an outstanding set such as x12 ∪ [x1, x5] as shown
in Fig. 4a, the variables in the set are classified into the impor-
tant variable set. However, if there is no outstanding com-
bination of two variables as shown in Fig. 4b even after
two-variable addition, appearances of all the variables
that belong to the best cluster (the box of Fig. 4b) are
counted. If a variable repeatedly appears in the subsets of
the best cluster as shown in Fig. 4c, it is classified as an essen-
tial one (x20 in Fig. 4b, c). If there is still no outstanding
variable set even after clustering using two-variable addition,
the algorithm performs sequential sampling to increase
the accuracy of GPR model. Even if two-variable addition
method can be easily extended to three or n-variable addition
method, the number of variables to be added is restricted to 2
since the computational cost exponentially increases as the
number increases.

Since the proposed method starts with a relatively small
number of initial samples, it is possible that the wrong vari-
ables could be selected. In other words, a lack of samples or
sample quality makes GPR model performance indices unsta-
ble which leads to fluctuation of variable importance ranking.
Therefore, to avoid possible erratic results, a definitely out-
standing variable must be selected that will be performed after
outlier detection of the model performance in the proposed
method.

3.3 Outlier detection

High deviation in the scatter plot of marginal loglikelihood
and integrated variance means that the input sample quality
or amount is not enough to select an outstanding variable.
As shown in Fig. 5, if there exist outliers, one model per-
formance index is improved while the other becomes
worse at the outlier points. These outliers can be estimated
using deviation from the regression line to the candidate
outlier point, and if the deviation is larger than a target
number, the point is identified as an outlier. In this study,
the target number is set to 0.15 from the 2nd order regres-
sion in the normalized space as shown in Fig. 5. Outliers
are detected when a GPR model is not accurate enough to
be used for variable selection. Hence, once outliers are
encountered, a sequential sampling that will be explained
in the next section needs to be performed to increase the
accuracy of the model.

3.4 Sequential sampling criterion for GPR model

In the proposedmethod, Latin hypercube sampling (LHS) that
is a moderate level of sampling is utilized for initial sample
generation in GPR modeling. However, there are two cases
where the proposed algorithm performs sequential sampling
in addition to the initial samples: (1) when an outlier exists in
the model performances and (2) when accuracy of the model
built with the current subset does not meet the target value,
whichmeans all of the important variables are not selected yet.
For sequential sampling criterion, the method of a previous
research (Gorodetsky and Marzouk 2016) that minimizes in-
tegrated posterior variance (IVAR) for GPR sampling is
adopted in this study. In their research, it was explained that
the IVAR criterion is equivalent to an expected integrated
mean squared error (IMSE) of the posterior mean. The inte-
grated posterior variance can be calculated using (18).
According to the IVAR criterion, a new point xa for sequential
sampling can be obtained as

xa ¼ argmin
x∈U

∫c xjXð Þdμ≈ argmin
x∈U

1

N
∑
N

i¼1
c xjXð Þ ð20Þ

whereU is the feasible design space andN is the number ofMonte
Carlo samples. If the integration in (20) is computationally expen-
sive, xb can be used to find a new sample point instead of (20) as

xb ¼ argmax
x∈U

c xjXð Þ ð21Þ

which searches for a point of the highest posterior variance.

3.5 GPR model accuracy measure

To build a GPR model with reduced dimension as ex-
plained in Section 2.2, X, an n ×m matrix of current input
samples where n denotes the number of sample and m
denotes the dimension, is reduced to selected columns as
X =X(:, subset) where subset denotes the selected variables.
At the end of each iteration, the accuracy of the GPR
model built with the subset is calculated using cross val-
idation error (CVE) with the normalized root mean
squared error (n–rmsecve) that is expressed as

n−rmsecve ¼ 1

ymax−yminð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N samp
∑
i¼1

N samp

ei2

s
;

ei ¼ yi− f̂ ∼i xið Þ

ð22Þ
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where ymax and ymin are the maximum and minimum out-
put of the true training output, respectively, Nsamp is the

number of training samples, f̂ ∼i is the response from the
surrogate model built without the ith sample, and yi is the true
output evaluated at the ith sample. As a stop criterion of the
algorithm, n–rmsecve in (22) is utilized. However, to avoid pre-
mature convergence, two more samples are sequentially added
to build additional GPR models once the GPR model
satisfies the accuracy condition (n–rmsecve < 0.05). Then,
if all three GPR models satisfy the target accuracy, the
algorithm stops.

When additional test samples are available, (22) ismodified as

n−rmse ¼ 1

ymax−yminð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N samp
∑
i¼1

N samp

ei2

s
; ei ¼ yi− f̂ xið Þ ð23Þ

where f̂ is the response from the surrogate model built with all
samples. Note that different from (22), ymax and ymin represent the
maximum and minimum of the test output, respectively, and
Nsamp is the number of test samples in this case.

3.6 Overall algorithm

The overall process and pseudocode in Matlab form of the
proposed algorithm explained in Sections 3.2~3.5 are present-
ed in this section, and its flowchart is shown in Fig. 6.

Step 1: Generate (2n + 1) initial samples using LHS
where n is the problem dimension.
Step 2: Construct candidate variable subsets using for-
ward greedy search. In the initial iteration, the candidate
variable subsets are (x1), (x2),...(xn). Continue to construct
candidate variable subsets including selected variables.
Step 3: Using the constructed subsets in Step 2 and given
samples, build GPR models and evaluate their model
performances using the Wrapper method.
Step 4: Carry out outlier detection using the model per-
formances obtained in Step 3. If outliers are detected,
perform sequential sampling and return to Step 2.
Step 5: Perform clustering in the normalized space of two
GPR model performances using the agglomerative hier-
archical clustering.
Step 6: If there is no outstanding variable set identified
after the clustering, perform two-variable addition in Step
2. If there is no outstanding variable set even after the
two-variable addition, perform sequential sampling and
return to Step 2.
Step 7: Evaluate the accuracy of the GPR model built
with the selected variables and check the stopping crite-
rion by Section 3.5.
Step 8: If the model satisfies the stopping criterion, then
stop. Otherwise, repeat Steps 2 to 7 until the model accu-
racy is satisfied.

Fig. 6 Flowchart of the proposed algorithm

Fig. 7 a and b A monotonic
relationship between two GPR
model performances and Sobol’
indices
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3.7 An illustrative mathematical example
for the proposed algorithm

For a better understanding of the proposed method and valid-
ity check of GPR model performances for variable selection,
an illustrative example is utilized in this section given by

f xð Þ ¼ 200x12 þ 250x2x3 þ 90x42 þ 60x52

þ 10x6; xi∈ 0; 1½ � for all i ¼ 1; :::; 6:

ð24Þ

This example includes an interaction term of x2x3 for which
the two-variable addition explained in Section 3.5 is required.
The number of initial samples is 600, which is 100 times the
problem dimension, to remove the necessity of sequential
sampling.

A previous research (Campolongo et al. 2007) developed a
new sensitivity index and compared it with Sobol’ indices.
Similarly, wewill show that there exists a monotonic relationship
between GPR model performances and Sobol’ indices using the
illustrative example. As shown in Fig. 7a, b, there are monotonic
relationships between the Sobol’ indices and loglikelihood and

Sobol’ indices and integrated variance, respectively. This vali-
dates that two GPR model performances can replace Sobol’ in-
dices, which is very computationally expensive to obtain for
variable selection.

Clustering results of successive iterations are shown in Fig. 8.
It can be easily seen in Fig. 8a that x1 is selected as an essential
variable in the 1st iteration. In the 2nd iteration as shown in
Fig. 8b, no one outstanding variable set exists due to the strong
interaction between x2 and x3. Therefore, two-variable addition is
performed, and x2 and x3 are included in the important variable
set as shown in Fig. 8c. In the 3rd iteration, x4 is added to the
important variable set as shown in Fig. 8d. This variable selection
process is summarized in Fig. 9. At the end of the 3rd iteration,
the GPR model built with the subset (x1,x2,x3,x4) satisfies the
target accuracy, that is, n-rsmecve < 0.05, and thus the algorithm
stops. Since the influence of x5 and x6 is ignorable as shown in
Fig. 10, the GPR model with only four variables can replace the
original 6-dimensional model without loss of accuracy.

This example intentionally eliminates the possibility of se-
quential sampling by using a sufficiently large number of initial
samples which means there will be no outlier detected during the
process. To test the proposed algorithm in the case of a small

Fig. 9 Variable selection process
and model accuracy in each
iteration

Fig. 8 a–d Variable selection
process for illustrative example in
(24)
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number of initial samples, 13(= 2n + 1) initial samples by uni-
form random sampling and LHS are generated in 6-dimensional
space as shown in Fig. 11a, b, respectively. From Fig. 11, it can
be seen that LHS shows better space-filling capability compared
with uniform random sampling meaning that sample quality by
LHS is better than the one by uniform random sampling.

Figure 12a–c is the results generated from uniform random
sampling and Fig. 12d is the result generated from LHS.
Figure 12a shows there exists an outlier due to the poor sample
quality whereas there is no outlier in Fig. 12c with the same
samplingmethod since sufficient samples are used. It can be seen
that sequential sampling reduces the deviation in Fig. 12a as
shown in Fig. 12b and thus removes the outlier. This means that
sequential sampling can alleviate instability of model perfor-
mances caused by poor sample quality. This test also verifies
the importance of initial sampling which is the reason why
LHS is used in this study. As shown in Fig. 12d, there is no
outlier in the GPRmodel generated using 13 samples with LHS.

4 Numerical examples

The usefulness of the proposed algorithm can be quantified by
the accuracy of variable selection, final model accuracy, and the
number of final samples used. The proposed algorithm is tested
with two examples that have different properties. These

Fig. 11 Experimental design of a
uniform random sampling and b
LHS

Fig. 12 Normalized GPR performances generated by a uniform random 13 samples, b uniform random 13 samples + 1 sequential sample, c uniform
random 600 samples, and d Latin hypercube 13 samples

Fig. 10 Sobol’ indices of illustrative example in (24)
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examples verify the excellent performance of the proposed algo-
rithm with high model accuracy and with a small number of
samples.

4.1 Mathematical example

Welch et al. performed variable screening for a 20-dimensional
and highly nonlinear mathematical example given by (Welch
et al. 1992)

f xð Þ ¼ 5x20
1þ x1

þ 5 x4 þ x20ð Þ2 þ x5 þ 40x193−5x19

þ 0:05x2 þ 0:08x3−0:03x6

þ 0:03x7−0:09x9−0:01x10

−0:07x11 þ 0:25x132−0:04x14

þ 0:06x15−0:01x17−0:03x18; xi∈ −0:5; 0:5½ � for all i
¼ 1;…; 20: ð25Þ

fromwhich it can be seen that there exist interaction terms aswell
as nonlinear terms. The Sobol’ indices of variables of this exam-
ple obtained using one million samples are shown in Fig. 13. As
shown in Fig. 13, x12 is the most important variable, and x12, x4,
x20, x19, x1, and x5 could be selected as essential variables.

The result of the proposed algorithm is summarized in Fig. 14
and Table 1. From the figure, it is shown that x12, x20, x19, x4, x5,
and x1 are sequentially selected which is identical with the result
of the Sobol’ indices. It can also be seen that the variables with
low Sobol’ indices such as (x1, x5) are identified later than the
ones with high indices such as (x4, x12, x19, x20). n–rmsecve of the
GPR model built with the selected variables is lower than 0.05
with 54 samples; however, 55th and 56th samples are used to
avoid premature convergence of model accuracy. Hence, total
samples used are 56, which is only 0.0058% of those of the
Sobol’ indices, while the variable selection results are identical
verifying that the proposed method selects essential variables
accurately and efficiently.

It should be noted that the GPR model generated using the
proposed method is much more accurate than the surrogate
model of full dimensions especially when the number of sam-
ples used is small as shown in Fig. 15. The full-dimension
surrogate model requires more than 150 maximin LHS sam-
ples to satisfy the model accuracy criterion while the proposed
method requires only 56 LHS samples. n–rmse in Fig. 15 is

Fig. 13 Sobol’ indices of the example in (25)

Fig. 14 Sequential variable selection process of (25)

Fig. 15 Comparison of model accuracy between conventional and
proposed methods of (25)

Table 1 Variable selection results of (25)

Iteration Selected variables n–
rmsecve

# of samples

1 12 0.2107 41

2 20,12 0.2043 41

3 19,20,12 0.1001 51

4 4,19,20,12 0.0640 51

5 1,5,4,19,20,12 (stop criteria check) 0.0486 54

6 1,5,4,19,20,12 (stop criteria check) 0.0466 55

7 1,5,4,19,20,12 (stop criteria check) 0.0441 56

The italic font indicates the stop criteria check step
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calculated with additionally generated 100 test samples. In
conclusion, the more accurate surrogate model is generated
in this example using the proposed algorithm with less num-
ber of samples by removing unnecessary variables.

4.2 Engineering example

Cho et al. carried out statistical variable screening using 11
functions with 44 variables which are nine vehicle safety per-
formances and two noise, vibration, and harshness (NVH)
performances as listed in Table 2 (Cho et al. 2016). Six vari-
ables (x1~x5 and x8) are common variables for all 11 functions,
and two variables (x6 and x7) are for safety only, and the other
36 variables are for NVH. All the 44 input variables corre-
spond to the steel plate thickness of each part of the vehicle
NVHmodel. As shown in Fig. 16, many variables inG11 have
very similar and low Sobol’ indices meaning that the indices
are not easily distinguishable. For the reason, G11 is selected
among 11 functions to validate the proposed algorithm.

The result of the proposed method is summarized in
Table 3. In 13 iterations, 13 variables among 44 are selected
as essential variables. This result is identical with variable
selection by the Sobol’ indices as shown in Table 4. The total
number of samples used is 105 which is very efficient consid-
ering that conventional surrogate models with full dimension
would use at least 132 samples (3n) as the initial sample.

The accuracy of the GPR model built with the selected
variables is compared with the full-dimensional model in
Fig. 17. Since the variables are not highly correlated and the
original model is very accurate with only 100 samples in this
example, the accuracy of the full-dimensional model is similar
to the one of the reduced GPRmodel. However, since users do
not know how many samples are required for the model in

Table 2 Function definition

Mode Function Value

Safety Full frontal impact G1 Chest G

G2 Crush displacement

40% offset impact G3 Brake pedal

G4 Footrest

G5 Left toepan

G6 Center toepan

G7 Right toepan

G8 Left instrument panel

G9 Right instrument panel

NVH G10 Torsion mode

G11 Vertical bending mode

Fig. 16 Sobol’ indices for G11 of
engineering example

Table 3 Variable selection results of the engineering example

Iteration Selected variables n–
rmsecve

# of
samples

1 22 0.1415 89

2 24,22 0.1254 89

3 18,24,22 0.1167 90

4 21,18,24,22 0.1006 92

5 1,21,18,24,22 0.0888 92

6 10,1,21,18,24,22 0.0760 92

7 9,19,10,1,21,18,24,22 0.0771 92

8 11,9,19,10,1,21,18,24,22 0.0667 103

9 12,11,9,19,10,1,21,18,24,22 0.0559 103

10 3,12,11,9,19,10,1,21,18,24,22 0.0554 103

11 16,23,3,12,11,9,19,10,1,21,18,24,22
(stop criteria check)

0.0443 103

12 16,23,3,12,11,9,19,10,1,21,18,24,22
(stop criteria check)

0.0445 104

13 16,23,3,12,11,9,19,10,1,21,18,24,22
(stop criteria check)

0.0460 105

The italic font indicates the stop criteria check step

1452 K. Lee et al.



advance, the proposed method can be regarded as a meaning-
ful preprocess for general-purpose-use.

5 Conclusion

In this paper, we present an efficient variable selection method-
ology to overcome the curse of dimensionality in surrogate
modeling. GPR is used for the surrogate modeling, and marginal
loglikelihood and integrated posterior variance are used as mea-
sures to select essential variables according to theWrapper meth-
od. Variables that induce high marginal loglikelihood and low
integrated posterior variance in surrogate modeling are selected
as essential variables. To find essential variables systematically,
the greedy forward search has been modified and utilized.
Agglomerative hierarchical clustering is adopted to distinguish
essential variables and the others clearly. When essential vari-
ables cannot be identified clearly due to a limited number of
samples in each algorithm loop, adaptive samples are sequential-
ly added to increase the accuracy of GPR models. Major contri-
bution of the proposed algorithm is that it effectively reduces
required number of samples for surrogate modeling when the
fraction of dispensable variables is high since the number of
samples depends only on essential variables in the proposed
method. Another advantage is that the algorithm is less depen-
dent on the initial sample quality since sequential sampling is
utilized. In addition, it can carry out both variable selection and
surrogate modeling simultaneously. The proposed algorithmwas

verified with two numerical examples with high dimensions and
challenging properties. A numerical study shows that with a
much smaller number of samples variable selection accuracy is
almost the same with the Sobol’ indices, and the GPR model
shows similar or better accuracy than the conventional full-
dimension model.
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