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Abstract
The objective of this paper is to look for structural designs arising from topological optimization procedures that aim at
maximizing the loading capacity regarding incipient plastic collapse. The mechanical problem is described by limit analysis
(LA) formulation that allows a direct determination of the load that produces the plastic collapse phenomenon without
information about the load history. In case of proportional loading processes, LA consists of computing a critical load
factor such that the structure undergoes plastic collapse when the reference load is amplified by this factor. In this case,
LA can be cast mathematically as a convex constrained optimization problem. The design optimization is formally stated
as the maximization of the collapse load factor subject to a fixed quantity of available material. The design is controlled by
solid isotropic microstructure with penalization (SIMP) technique. In the particular case of the chosen objective function,
the solution of the adjoint problem in sensitivity analysis coincides with the Newton–Raphson update vector obtained at
the convergence of the procedure developed to solve the LA optimization problem, fact that reduces the numerical cost of
gradient calculations. In order to keep the implementation straightforward, the optimality conditions are solved by a classical
heuristic element-by-element density updating algorithm, well known in the literature. The set of tested examples brings
encouraging results with structures being stressed to ultimate bearing states. Implementation was kept as simple as possible,
leaving the field open to further investigations. Numerical tests show that, despite having similar geometries, plastic collapse
factor obtained with compliance optimal designs are lower than those obtained with present formulation.

Keywords Limit analysis · Topology optimization · Elastoplasticity

1 Introduction

Structural topology optimization is a continuous developing
area due to the valuable benefits it brings at the early
stages of design. Most approaches in the literature, however,
are restricted to linear elastic models, leaving aside more
complex material behaviors due to the relatively high costs
to solve the state equation and corresponding sensitivity.
Concerning plastic behavior, several authors (Zhang et al.
2017; Alberdi and Khandelwal 2017; Li et al. 2017a; Wallin
et al. 2016) adopt classical incremental elastoplasticity to
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search for the topology of a structure that maximizes the
dissipated energy. Amir (2017), using the same incremental
basis, proposes alternative ways to treat stress-constrained
problem, replacing them with a global measure of the
accumulated plastic deformation. All these approaches have
in common incremental formulations demanding relatively
high computational costs to be used within optimization
procedures.

According to the concept of limit state, a loaded structure
made of a material that shows an upper bound on its strain–
stress curve presents limited strength. Consequently, the
load supported is also limited to a maximum value, such
that any additional load increment produces plastic collapse.
The plastic collapse is a phenomenon characterized by the
development of kinematically admissible plastic strain rates
under constant stress distribution (Cohn and Maier 1977;
Feijóo and Zouain 1987; Lubliner 1990; Kamenjarzh 1996).
Limit analysis (LA) deals with the direct determination
of the maximum load amplitude, stress distribution, and
corresponding plastic velocity fields at the incipient plastic
collapse condition. Under processes of proportional loading,
the main target of LA is to compute the critical loading
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factor such that plastic collapse takes place when the
reference load is amplified by this load factor (Christiansen
1981, 1996; Borges et al. 1996; Zouain et al. 2014;
Fusch et al. 2015). Since LA formulation does not involve
information of the load history, it is the most suitable
alternative for incipient plastic collapse analysis, mainly
when only the limit stress field is required (Fusch et al.
2015; Kammoun and Smaoui 2015).

The variational characterization of plastic collapse
allows to formulate LA under proportional loads as
convex constrained optimization principles, namely the
kinematical, statical, and mixed principles of limit analysis
(Rockafellar 1970; Frémond and FRIAA 1982; Zouain
et al. 1993; Christiansen 1996; Borges et al. 1996). The
finite element method (FEM) can be chosen for the
spatial discretization of these principles, leading to finite
dimensional optimization problems solvable by mathemati-
cal programming algorithms. Among them, one can
mention the procedures presented in Christiansen (1980,
1981); Andersen et al. (1998), the interior point algorithms
proposed by Zouain et al. (1993, 2002); Borges et al. (1996);
Pastor and Loute (2005); Krabbenhoft and Damkilde (2002)
and the second-order cone programming, recently adopted
by Makrodimopoulos and Martin (2007), to cite a few.

The literature associated with topology optimization of
continuum media and limit analysis concepts is scarce.
The work of Kammoun and Smaoui (2014) is the single
journal paper devised by the authors on this subject. In that
research work, the density field is not set as a design variable
but as a new one in a modified limit analysis problem.
Solving, therefore, a new optimization problem where it
is sought simultaneously to find the stress and density
fields that minimizes the structural mass while maintaining
static equilibrium. This is done using LA static formulation
modified to a conic format.

With this motivation in mind, this work proposes a
topology optimization problem that uses the LA concept and
the solid isotropic microstructure with penalization (SIMP)
approach for the design control. The problem is formulated
as the maximization of the plastic collapse load for a fixed
available material.

The strategy chosen to solve the LA problem combines
the mixed FEM framework, discussed in Borges et al.
(1996) and Zouain et al. (2014), and the numerical
procedure proposed by Zouain et al. (1993, 2002) and
Borges et al. (1996). Analytical sensitivity expressions are
derived and, due to the specific mathematical structure
of the posed problem, gradient calculations reduce to
simple vector products of already-available data. Moreover,
classic element-by-element update heuristics based on
the density optimality conditions are chosen to achieve the
solution.

The manuscript follows a straightforward sequential
presentation: limit analysis concept, formulation, and
discretization procedure are shown in Section 2. The
optimum design problem is presented in Section 3 and
sensitivity analysis in Section 4. The chosen numerical
algorithm is discussed in Section 5 while a set of examples
are tested in Section 6. Final remarks are found in Section 7.

2 Limit analysis

Let � ⊂ IRn (n = 2, 3) an open domain with boundary
∂� occupied by a body B. Traction forces t are applied
over �t ⊂ ∂�, while homogeneous (null) velocity boundary
conditions are imposed on �u ⊂ ∂�, �u ∪�t = ∂�, �u ∩
�t = �. The bilinear form 〈F , w〉 denotes the external
power produced by the body forces b and traction forces t

over a virtual velocity field w ∈ V :

〈F , w〉 :=
∫

�

b · w d� +
∫

�t

t · w d�. (1)

Every stress field σ ∈ W ′ in equilibrium with the
external generalized force F must satisfy the Principle of
Virtual Power. Thus, S(F ) denotes the subset of all the
stress fields in equilibrium with the external forces:

S(F ) :=
{
σ ∈ W ′

∣∣∣∣
∫

�

σ · Dw d� = 〈F , w〉 ∀w ∈ V

}
,

(2)

being D = ∇s the infinitesimal strain operator and Dw ∈
W the virtual strain rate field.

The body B is composed by an ideally elastic–plastic
material such that stresses satisfy the plastic admissibility
condition F(σ (x)) � 0 everywhere in �. Those points
whose stress is situated on the yield surface F(σ (x)) =
0 may undergo plastic deformations. The corresponding
plastic strain rate dp follow the flow rule :

dp = λ̇N, N = ∂F
∂σ

(3)

with the complementarity conditions

F(σ (x)) � 0 λ̇ � 0 λ̇F(σ (x)) = 0 (4)

It is said that the body B develops state of incipient
plastic collapse, or is in plastic limit state, if there is a stress
field σ ∈ W ′ related to a purely plastic strain rate field
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dp ∈ W and a velocity field v ∈ V , such that the following
conditions are satisfied:

i The velocity and plastic strain rate are compatible; in
other words, dp = Dv v ∈ V ;

ii Then stress field is in equilibrium with the external
forces amplified by the load factor α ∈ IR+ , that is,
σ ∈ S(αF );

iii The stress field is plastically admissible, which means,
F(σ (x)) � 0 ∀x ∈ �;

iv The stress and plastic strain rates are related by the
constitutive equation, defined by the plastic flow law
(3)–(4);

Tools of convex analysis (subdifferentiability and duality
principles Rockafellar 1970; de Saxcé and Bousshine 1998)
allow to show that the solution of the system (i to iv) is also
the solution of the so-called static, kinematical, and mixed
formulations of limit analysis (Christiansen 1981, 1996;
Zouain et al. 1993, 2014; de Saxcé and Bousshine 1998),
the latter expressed by the following saddle point problem:

α = sup
σ∈W ′

inf
v∈V

{∫
�

σ · Dvd�

∣∣∣∣ 〈F , v〉 = 1
F(σ (x)) � 0 ∀x ∈ �

(5)

It is worth emphasizing that domain � represents the
deformed (spatial) configuration at the onset of plastic
collapse.

Important differences distinguish LA from classical
incremental elastoplastic formulations. Firstly, neither a
reference configuration �0 nor a displacement field
mapping �0 to � exists in LA. Due to the same reason,
no elasticity model relates stresses with elastic strains.
Moreover, stress and plastic velocity fields are, in the limit
state, independent from any loading path (Cohn and Maier
1977; Feijóo and Zouain 1987; Kamenjarzh 1996; Lubliner
1990) and their calculus do not demand any time integration
procedure.

2.1 Discretization

A detailed discussion on possible FEM discretization
procedures for LA formulations is found in Borges
et al. (1996) and Zouain et al. (2014). Nevertheless, the
mathematical structure of the discrete LA problem has
important consequences on the effectiveness of the topolog-
ical optimization procedure. Accordingly, a brief descrip-
tion of the discretization chosen is necessary.

For the sake of simplicity, the present study is restricted
to 2D problems. The mixed triangle proposed in Borges
et al. (1996) and Zouain et al. (2014) is used which
comprises quadratic (six nodes) Lagrangian shape functions

for the velocity and linear (three nodes) shape function for
the stress.

The discrete LA version is obtained substituting the
approximated velocity and stress fields in principle (5).
These discrete fields are defined at each element e by:

ve ≈ Ne
vṽ

e σ e ≈ Ne
σ σ̃ e (6)

Vectors ṽe and σ̃ e contain the elementary parameters
while matrices Ne

v and Ne
σ are the shape functions for

velocity and stress, respectively. The discrete velocity field
is assumed to be continuous on � and, therefore, an
appropriate assembly of the element-level vectors ṽe into a
global n-dimensional vector ṽ is performed (n = 2nN, nN

is the number of nodes of the mesh). In addition, stresses
are assumed to be discontinuous among elements and all
element-level vectors σ̃ e are directly collected into a q-
dimensional vector σ̃ (q = 18nE, nE is the number of
elements of the mesh). Classical procedures are used to
impose required homogenous kinematic constraints.

The mixed formulation (5) requires the plastic admis-
sibility of the approximated stress field σ̃ e(xk). This con-
dition can be exactly assured with present discretization
since stress is given by piecewise linear function at each
element and the plastic function F(σ (x)) is convex. Func-
tion F(σ (xk)) is then evaluated at all three vertices (stress
nodes) of each element and its values collected in an
m-dimensional vector F̃(σ̃ ) with m = 3nE . Plastic admis-
sibility is then enforced by requiring F̃j (σ̃ (xk)) � 0, j =
1...m. From now on, for the sake of brevity, the plastic
admissibility condition will be symbolized simply by F̃ �
0.

Substituting these approximations, the continuous prin-
ciple (5) takes the following discrete form:

α̃ = max
σ̃∈IRq

min
ṽ∈IRn

σ̃ · Bṽ

∣∣∣∣ F̃ � 0
F · ṽ = 1

(7)

where B is the discrete strain operator, that is, the matrix
transforming velocities into strain rate, obtained from the
assemblage of elementary contributions of the form

Be =
∫

�e

Ne
σ (x)T DNe

v(x) d�e (8)

and F is the global force vector obtained by assembling

F e =
∫

�e

Ne
v(x)T b(x) d�e +

∫
�e

t

Ne
v(x)T t (x) d�e

t (9)

2.2 Solution of the discrete limit analysis problem

The non-linear system that represents the first-order optimal-
ity conditions of the discrete limit analysis problem (7) can
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be written as Zouain et al. (1993), Borges et al. (1996), Pas-
tor and Loute (2005), de Saxcé and Bousshine (1998), and
Fusch et al. (2015)

R(X̃ ) = 0 F̃ � 0 λ̃ � 0 (10)

where the vector λ̃ ∈ IRm collets the plastic multipliers
corresponding to each plastic mode F̃j . The inequalities
should be understood as holding componentwise. Addition-
ally, R(X̃ ) and the argument of the problem, the vector X̃ ,
are defined as:

R(X̃ ) =

⎡
⎢⎢⎢⎣

Bṽ − ∇σ̃ F̃(σ̃ )λ̃

BT σ̃ − α̃F̃

−F̃
T
ṽ + 1

−G(σ̃ )λ̃

⎤
⎥⎥⎥⎦ X̃ =

⎡
⎢⎢⎣

σ̃

ṽ

α̃

λ̃

⎤
⎥⎥⎦ (11)

The symbol G(σ̃ ) represents a diagonal matrix such
that Gjj (σ̃ ) = F̃j (σ̃ ), j = 1...m . To solve the system
defined by the optimality conditions (10), a Newton-like
algorithm is employed, as proposed by Borges et al. (1996).
The algorithm consists of two stages: the first one is a
sequence of Newton iterations on the set of equalities,
and the second one, a step relaxation and stress scaling
in order to preserve plastic admissibility. Herein, only
Newton’s iteration stage is detailed due to its relevance
for the topological optimization strategy. A step-by-step
description of the whole algorithm can be found in Borges
et al. (1996).

The Newton–Raphson scheme provides the following
linearized equation:

∂R(X̃ )

∂X̃

∣∣∣X̃ 0
�X̃ = −R(X̃ )

∣∣∣X̃ 0
, (12)

where the tangent matrix K = ∂R(X̃ )

∂X̃ takes the expression

K(X̃ ) =

⎡
⎢⎢⎣

−H B 0 −∇σ̃ F̃(σ̃ 0)

BT 0 −F 0
0 −F T 0 0

−�∇T
σ̃
F̃(σ̃ 0) 0 0 −G(σ̃ 0)

⎤
⎥⎥⎦ . (13)

The term � is a diagonal matrix, such that �jj = λ̃j .
The new iterate X̃ is computed from the present one X̃ 0, by
defining a search direction �X̃ , in such a way that

X̃ = X̃ 0 + �X̃ (14)

being �X̃ obtained from the solution of the system (12) as
follows. The matrix K is symmetrized by multiplying the
last set of equations by �−1. This is possible because the
updating performed at the end of each iteration enforces that
each λ̃j is strictly positive for the new iteration (Borges et al.
1996). Denoting O(•) the corresponding symmetrization
operator, (12) is rewritten as

Ks�X̃ = −Rs (15)

where

Rs = O
(
�−1

)
R | X̃ 0

=

⎡
⎢⎢⎢⎣

Bṽ0 − ∇σ̃ F̃(σ̃ 0)λ̃

BT σ̃ 0 − α̃0F̃

−F̃
T
ṽ0 + 1

−	−1G(σ̃ 0)λ̃0

⎤
⎥⎥⎥⎦ , (16)

Ks = O(�−1)K | X̃ 0

=

⎡
⎢⎢⎣

−H B 0 −∇σ̃ F̃(σ̃ 0)

BT 0 −F 0
0 −F T 0 0

−∇T
σ̃
F̃(σ̃ 0) 0 0 −�−1G(σ̃ 0)

⎤
⎥⎥⎦ , (17)

The equilibrium constraint (second equation of the
residuum R(X̃ )) is exactly satisfied for the current values
σ̃ 0 and α̃0. Then, expanding (15) and substituting �ṽ =
ṽ − ṽ0 and �λ̃ = λ̃ − λ̃0, the following linear system is
obtained:

⎡
⎢⎢⎣

−H B 0 −∇σ̃ F̃(σ̃ 0)

BT 0 −F 0
0 −F T 0 0

−∇T
σ̃
F̃(σ̃ 0) 0 0 −�−1G(σ̃ 0)

⎤
⎥⎥⎦

⎡
⎢⎢⎣

�σ̃

ṽ

�α̃

λ̃

⎤
⎥⎥⎦=−

⎡
⎢⎢⎣
0
0
1
0

⎤
⎥⎥⎦

(18)

where ṽ, λ̃ represent the updated values and �σ̃ , �α̃, are
the corrections of the corresponding arguments within a
Newton–Raphson iteration (Borges et al. 1996). It is worth
mentioning that at convergence, �σ̃ → 0 and �α̃ → 0.

3 Optimum design problem

Consider a domain � ⊂ IRn (n = 2, 3) with boundary
∂� separated in sub-domains �m ⊂ � and �v = � \
�m representing respectively the regions occupied by a
body B and the void associated with its complement in
� (see Fig. 1). Assume that the boundary � of �m is
sufficiently smooth and contains the part �t ∈ ∂� where
traction forces t are applied and the boundary �u where
homogeneous velocity conditions are considered. The
topology optimization problem is classically characterized

Ω ∂
vΩ

mΩ

Ω

σ ⋅ n = t

u = u

Γt

Γ

Γu

Fig. 1 Design domain comprised of solid and void regions
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as the search of a domain�m contained in� that maximizes
a performance function while satisfying design constraints,
among them, the state equation defining the physical
problem in study. Different ways to control �m relate to
different topology optimization techniques. One of the most
used techniques is that called SIMP (Bendsoe and Kikuchi
1988), in which topology is controlled by a fictional density
ρ : � → [0, 1] ranging continuously between the extreme
conditions of solid, ρ(x) = 1, and void material, ρ(x) = 0.
Different approaches for the discretization of ρ are seen in
the literature. In the present case, the classical element-wise
constant distribution is considered for simplicity reasons.
Therefore, function ρ is substituted by an nE-dimensional
vector ρ̃ of elemental densities, being nE the number of
elements of the mesh.

The present work aims to find the density distribution
ρ̃ that maximizes the scaling factor α (or, equivalently,
maximizing the limit load) for a given quantity of available
material. This problem is formally described as

min f
(
X̃

)
= −α̃

s.t.

R
(
X̃ , ρ̃

)
= 0

∣∣∣∣ λ̃ � 0
F̃ � 0

,

M(ρ̃) = M0,

ρmin � ρ̃ � 1

(19)

where M(ρ̃) = ρ̃ · Ṽ = ∫
�

ρ d� is a fictional
mass measurement, being Ṽ an nE-dimensional vector of
elemental volumes. The dependency of the state equation

R
(
X̃ , ρ̃

)
on ρ is given by the yield function F now

dependent on the fictitious density ρ through the value of
the yield stress:

F(σ , ρ) = σ 2
vM(σ ) − [

ρpσy

]2 � 0, (20)

σ 2
vM(σ ) = 1

2
Cσ · σ (21)

where σvM(σ ) represents the equivalent von Mises stress,
C a projection matrix associated with the von Mises yield
criterion, and p a penalization factor for intermediate
densities. It is possible to see that (20) constrains the stress
field in order to satisfy the following extreme conditions:
{

F(σ , 1) = σ 2
vM(σ ) − σ 2

y � 0 → σvM � σy,

F(σ , 0) = σ 2
vM(σ ) � 0 → σvM = 0.

(22)

4 Sensitivity analysis

Consider the optimization problem (19) where, for a given
density field ρ̃, the vector X̃ is obtained as the solution of

the non-linear state equation, i.e.,:

min f
(
X̃ (ρ̃)

)
= −α̃

s.t.
M(ρ̃) = M0,

ρmin ≤ ρ̃ � 1,

X̃ (ρ̃) = arg

{
R

(
X̃ , ρ̃

)
= 0

∣∣∣∣ λ̃ � 0
F̃ � 0

}
.

(23)

In order to solve this constrained minimization problem, the
following Lagrangian functional is defined,

L(ρ̃, μ, γ +, γ −) = f
(
X̃ (ρ̃)

)
+ μ (M(ρ̃) − M0)

+γ +(ρ̃ − 1) + γ −(ρmin − ρ̃) (24)

whose corresponding stationary conditions are given by

∇ρ̃L = ∇ρ̃f
(
X̃ (ρ̃)

)
+ μ∇ρ̃ (M(ρ̃) − M0)

+γ +∇ρ̃(ρ̃ − 1) + γ −∇ρ̃(ρmin − ρ̃) = 0 (25)

∇μL = M(ρ̃) − M = 0 (26)

γ +(ρ̃ − 1) = 0 (27)

γ −(ρmin − ρ̃) = 0 (28)

ρ̃ − 1 � 0 (29)

ρmin − ρ̃ � 0 (30)

γ + � 0 (31)

γ − � 0 (32)

being μ, γ +, γ − the Lagrangian multipliers related to
volume and lateral constraints, respectively.

Due to the implicit dependency of f
(
X̃ (ρ̃)

)
on the

density field, the conventional adjoint method is used to
calculate its gradient (Komkov et al. 1986). Each component
of ∇ρf is then computed by the expression

[
∇ρf

(
X̃ (ρ)

)]
e

= ∂f

∂X̃
· ∂X̃
∂ρe

= −∂Rs

∂ρe

· ω, (33)

where ω is the so-called adjoint vector, obtained from the
solution of the following (adjoint) linear problem:

Ks |
X̃ sol

ω = ∂f

∂X̃
|
X̃ sol

= −

⎡
⎢⎢⎣
0
0
1
0

⎤
⎥⎥⎦ . (34)

being X̃ sol the converged solution of the LA problem. Some
algebraic manipulation show an interesting feature of the
present formulation: linear system (34) is identical to that
of the Newton iteration (18) evaluated at the converged
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argument. Consequently, identical solutions are obtained
and the adjoint vector takes the form

ω =

⎡
⎢⎢⎣

�σ̃

ṽ

�α̃

λ̇

⎤
⎥⎥⎦ (35)

Substituting this result in (33), the gradient of the objective
function writes

[
∇ρf

(
X̃ (ρ̃)

)]
e

=

⎡
⎢⎢⎣

0
0
0

∂
∂ρe

g(σ̃ , ρ̃)

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

�σ̃

ṽ

�α̃

λ̇

⎤
⎥⎥⎦

= −2pρ
2p−1
e σ 2

y

3∑
j=1

λ̇e
j , (36)

where gj (σ̃ , ρ̃) = Gjj (σ̃ , ρ̃) and
3∑

j=1

λ̇e
j is the sum

of all three j th plastic multipliers related to the plastic
admissibility evaluated at each stress node of the eth
element. Substituting this result in (25) and considering that

μ
∂

∂ρe

M(ρ̃) + γ + ∂

∂ρe

(ρ̃ − 1) + γ − ∂

∂ρe

(ρmin − ρ̃) =
μVe + γ + − γ −

the eth component of gradient (25) reduces to:

[∇ρL
]
e

= −2pρ
2p−1
e σ 2

y

3∑
j=1

λ̇e
j +μVe +γ +−γ − = 0 (37)

Disregarding the last three terms of (37) related to volume
and lateral constraints, the core of the sensitivity is given
by the first term, whose simplicity deserves a comment.
Since its arguments are non-negative, the larger (negative)
amplitudes of the gradient are associated with elements
with large plastic multipliers λ̇e

j . In other words, only
those elements with high participation in power dissipation
are relevant in the gradient vector. Therefore, in order to

minimize the function f
(
X̃ (ρ̃)

)
= −α̃, mass should be

added to such elements and removed from those with low or
null values of λ̇e

j .

5 Algorithm

Sensitivity calculations usually provide gradient vectors
with high differences among contiguous elements (gradient
components), fact that leads to the well-known undesirable
checkerboard-like solutions. Simple filtering techniques help
to circumvent this inconvenience (Sigmund and Petersson
1998). To this aim, a smoothed gradient on the element e is

calculated by a weighted mean of the gradient of neighbor
elements, i.e.,

̂

[∇ρf (ρ)
]
e

=

nE∑
i=1

Hiρi

[∇ρf (ρ)
]
i

ρe

nE∑
i=1

Hi

(38)

beingHi the distance weighing factor, defined as{
Hi := R − dist(i, e)

Hi := 0
if dist(i, e) < R

if dist(i, e) � R
,

andR an influence radius and dist(i, e) the distance between
the centers ci and ce of elements i and e respectively. The
modified gradient vector is then given by

̂

[∇ρL
]
e

= ̂

[∇ρf (ρ)
]
e
+ μVe + γ + − γ − = 0, (39)

that reduces to second and third terms if an element with
intermediate density is considered:
[̂∇ρL

]
e

= ̂

[∇ρf (ρ)
]
e
+ μVe = 0, (40)

Based on this last equation, the parameter βe usually called
sensitivity of e is defined:

βe = −
̂

[∇ρf (ρ)
]
e

μVe

(41)

such that βe → 1 as ρe → ρ
opt
e unless a lateral constraint is

firstly reached. With these values at hand, the same heuristic
updating scheme for the density of element e found in
Bendsøe and Sigmund (2003) is used:

βmax = max
{
(1 − ξ)ρk

e , ρmin

}

βmin = min
{
(1 + ξ)ρk

e , 1
}

ρk+1
e =

⎧⎨
⎩

βmax if ρk
e β

η
e � βmax

βmin if ρk
e β

η
e � βmin

ρk
e β

η
e other cases

, (42)

where η < 1 is a regularization exponent in order
to avoid algorithmic oscillations. It is important to note
that βe is dependent on the Lagrangian multiplier μ,
whose value is iteratively modified in order to satisfy the
volume constraint; this is done similarly to Sigmund (2001).
Figure 2 presents the iterative procedure, starting from a
density field ρk until the optimum design ρopt is reached.

6 Results

A set of numerical tests were performed in order to assess
the effectiveness of present formulation. The first two
cases have simple and closed solutions allowing them to
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Fig. 2 Fluxogram. Iterative procedure for optimum design

Fig. 3 Boundary conditions for the bar problem

Fig. 4 Bar under traction. Optimum topology–density field

Fig. 5 Bar under traction. von Mises stress field

L 

L 

Fig. 6 Boundary conditions for the thick pressure vessel problem
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Fig. 7 Pressure vessel. Optimum topology–density field

Fig. 8 Pressure vessel. von Mises stress field

L 

2/5 L

3/5 L

Fig. 9 Boundary conditions for the L-shape problem

Fig. 10 L-shape. Optimum topology–density field

Fig. 11 L-shape. von Mises stress field

Fig. 12 L-shape. Optimum topology–compliance formulation–density
field



Structural topology optimization under limit analysis 1363

Fig. 13 L-shape: von Mises stress field–compliance formulation

be used as initial tests. Further examples are classical bi-
dimensional topology optimization problems. Their aim
is to evaluate the capability of the method to deal with
complex topology solutions. All the examples consider a
traction force distribution t with unitary integral. Therefore,
the value of the loading factor α represents the total load
magnitude. The parameters used for all examples are p =
2, η = 0.5, and ξ = 0.175 unless explicitly indicated.
Moreover, the available fictitious mass is fixed on M0 =
0.5.

6.1 Bar under traction

Figure 3 shows a domain � submitted to a constant load
t distributed over half of the superior boundary. Symmetry
conditions are applied on the inferior and left boundary, repre-
senting in this way the first quadrant of the whole problem.

The element size chosen is Le = 0.02L being L = 1.
Based on this, the radius of influence R = 0.021L in
order to guarantee the existence of at least two neighbor

−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Fig. 14 L-shape. von Mises stress constraint for the stress-constrained
problem. Adapted from Emmendoerfer and Fancello (2015)

L

L

L/2L/20

Fig. 15 Boundary conditions for the Cantilever beam problem, first
case

elements for filtering calculus. The yield stress is σy = 2.
The optimum expected topology is of a bar of L/2 width,
submitted to an homogeneous uniaxial stress field equal to
the yield stress (fully stressed design) and plastic collapse
factor α = 2.

The final topology achieved is displayed in Fig. 4 and
corresponds to the expectations, having reached the plastic
collapse factor of α = 1.94. The difference between this
value and the theoretical one can be explained considering
that the mass comprised by the solid column (ρ = 1) is
slightly lower than that available. The remaining mass is
distributed on a narrow band of intermediate density and
a wide region with minimum density (ρmin = 0.01), all
of them with low contribution upon the overall resistance.
The solid column recovered at the final topology occupies
a volume of approximately Vρ=1 = 0.47. Considering a
height L = 1, the plastic collapse factor reached then an
appropriate value. The stress field of the final topology
is presented in Fig. 5, having the expected fully stressed
characteristic. It is worth highlighting that present fully
stressed bar design can be equally achieved by stress
constrained or compliance formulations (see for example
Fancello 2006).

6.2 Thick pressure vessel

Different from the first example, the next case shows new
features. A squared domain with inner circular boundary
of radius Ri = L/2 submitted to a constant pressure

Fig. 16 Cantilever beam, first case. Optimum topology–density field
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Fig. 17 Cantilever beam, first
case. von Mises stress field
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is proposed. Due to the symmetry boundary conditions
imposed, a thick pressure vessel–like geometry submitted to
a fully stressed design condition is expected. This is the limit
case reached for a cylinder when submitted to the pressure
of plastic collapse. Considering plane-stress condition, the
expected analytical value of the collapse pressure is p =
6
5σy ln

(
Re

Ri

)
(Yu et al. 2009). Considering an available mass

M0 = 0.5, the analytical external radius is Re = 0.8727
which has p = 1.337 as limit pressure.

In order to represent this problem, symmetry conditionswere
used simulating the first quadrant of the design domain,
having in the interior (curved) region a pressure load (see
Fig. 6).The element size for this example was adopted
Le = 0.025L and influence radius R = 0.026L for L = 1.

The final topology achieved is shown in Fig. 7 with a
plastic fully stressed region ranging throughout the entire
thickness of the vessel. The numerically obtained value
of α = 1.18, slightly different from the analytical one.
However, if intermediate regions are disregarded, the radius
associated with the plastic band is Re = 0.836, which in
return gives as limit pressure p = 1.233, quite close to what
was obtained. Stress distribution is shown in Fig. 8.

The reader may wonder what would be the corresponding
optimal designs if compliance or stress-constrained formu-
lations would have been used. In the case of compliance

L

L/2

L/20

Fig. 18 Boundary conditions for the Cantilever beam problem, second
case

formulation, the annular shape provides the maximum stiff-
ness and therefore the same optimal design is achieved if
same volume fraction is used.

The optimal design for the (elastic) problem of mass
minimization with local stress constraints is, once again, an
annulus whose inner radius is submitted to the maximum
hoop stress. Its comparison with the present case, however,
is not straightforward. A possible procedure for this
comparison consists of using the optimal annular design
achieved in the present case and calculating the maximum
pressure it would support for a maximum hoop stress of
σy . This is easily done with the aid of the analytical elastic
solution of a thick (plane stress) disk, given by pe =

(
Re
Ri

)2−1√
3( Re

Ri
)4+1

(Yu et al. 2009). This expression provides a

pressure pe = 0.726, approximately 40% lower than that
achievable with limit analysis.

6.3 L-shape support

This case is a classical benchmark in topology optimization
with stress constraints (Pereira et al. 2004; Fancello 2006)
whose optimal design usually drives to a rounded corner in
order to eliminate stress concentrations. In present formula-
tion, however, the region close to the sharp corner achieves
a plastic flow condition and, as it is shown in the sensitivity
analysis section, the algorithm adds mass to those elements.
Consequently, the sharp corner is expected to exist in the

Fig. 19 Cantilever beam, second case, large element size. Optimum
topology–density field
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Fig. 20 Cantilever beam, second
case, intermediate element size.
Optimum topology–density field

Fig. 21 Cantilever beam,
second case, small element size.
Optimum topology–density field

Fig. 22 Cantilever beam,
second case, large element size.
von Mises stress field
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Fig. 23 Cantilever beam, second
case, intermediate element size.
von Mises stress field
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Fig. 24 Cantilever beam,
second case, small element size.
von Mises stress field
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final topology. The boundary conditions used in this exam-
ple are shown in Fig. 9, corresponding to a limit of plastic
collapse of α = 1.640.

The element size is Le = 0.02L and L = 2.5. The radius
for filtering calculations is R = 0.021L. The final solution
is shown in Fig. 10, and its stress field in Fig. 11

The final design of Fig. 10 is clearly quite similar to
that expected for a compliance minimization problem and it
is reasonable to inquire which are the eventual differences
between the optimal designs of both formulations. To
this aim, this example was run with classical compliance
formulation using the same element-by-element algorithm
of Section 5. The optimal design is shown in Fig. 12.When a
limit analysis calculus is performed with this last design, the
plastic collapse factor achieved is α = 1.272, approximately
77% of that achieved by the LA formulation. The stress field
achieved in this analysis is shown in Fig. 13.

A qualitative comparison between these present results
and those of a stress-constrained problem is illustrative.
Figure 14 shows a stress-constrained solution for the same
geometry. In that case, yield stresses are usually found at the
boundaries, as a consequence of bending. Moreover, a clear
round corner is formed in order to keep the stress lower or
equal than the yield value. Present results, on the other side,
show a wider regions achieving yield stress on the limit of
plastic failure.

6.4 Cantilever beam

This example presents a cantilever beam problem. Two
cases are investigated; the first one has a load applied on

L/10

L

L/4

Fig. 25 Boundary conditions for the clamped beam problem

the middle right-side boundary as a shear force. The second
one has the load applied on the upper right corner. The
remaining boundary conditions are the same for both cases
and are displayed in Figs. 15 and 18. A mesh sensitivity
analysis is performed for the second case.

The mesh element size used in the first example is
Le = 0.03L with L = 1. Analogous to previous, a radius
R = 0.031L was chosen in order to keep minimal the
number of elements used in the sensitivity filtering. The
final configuration is presented in Fig. 16.

As consequence of the shear-like load applied, a local
plastic hinge is created near the load application area (see
Fig. 17); the load is not efficiently transmitted over the
entire structure and limits the maximum achievable value of
α = 1.45.

The second cantilever beam has the applied force turned
to a normal stress over the boundary (Fig. 18). Three meshes
were tested, having element size of Le = 0.075L, 0.045L,
and 0.025L, for the large, intermediate, and small element
sizes, respectively, and R = 0.076L, 0.046L, and 0.026L.
The corresponding optimum plastic collapse factors are
αLarge = 1.97, αInter . = 1.85, and αSmall = 1.88.

The final topologies and stress fields for all of the mesh
sizes are shown in Figs. 19, 20, 21, 22, 23, and 24.

It can be seen that the mesh size modifies the minimiza-
tion sequence and the local minimum achieved with it. As
in other problems, the topology complexity increases with
the mesh refinement and perimeter penalization techniques
can be used to recover some control on this issue (Cardoso
and Fonseca 2003).

6.5 Clamped beam

This last example is usually presented in topology
optimization problems concerning energy absorption and
energy dissipation formulations. It refers to a hyperstatic
beam, having both ends clamped and a distributed force
applied to its center top as shown in Fig. 25.

Mesh element size used is Le = 0.0125L with L = 20.
Analogous to previous, a radius R = 0.0126L was chosen.
Here, the available fictitious mass is set to M0 = 0.4 so
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Fig. 26 Clamped beam.
Optimum topology–density field
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Fig. 27 Clamped beam. von
Mises stress field
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Fig. 28 Minimizing design
sequence. Density-update
iteration number. (A) 5, (B) 10,
(C) 15, (D) 20, (E) 25, and (F) 35

1.00e0
9.38e-1
8.76e-1
7.53e-1
6.91e-1
6.29e-1
5.67e-1
5.05e-1
4.43e-1
3.81e-1
3.19e-1
2.58e-1
1.96e-1
1.34e-1
7.18e-2
1.00e-2

a b

c

e

d

f



1368 J. Fin et al.

Fig. 29 Clamped beam. Density field for the maximum energy
absorption problem—adapted from Li et al. (2017b)

it can be compared with the solution presented in Li et al.
(2017b) Fig. 29, related to the maximum energy absorption
problem, considering plasticity.

The final topology achieved is shown in Fig. 26, having
as limit load α = 1.124 and its von Mises stress field
presented in Fig. 27. A sequence of density updates is shown
in Fig. 28. One can see that the topology is already defined
at the first updates and consolidated in update number 35.
The final design of Fig. 26, however, has been collected
at update number 300 in order to obtain a stable stress
distribution shown in Fig. 27.

Even though the two cases shown have different formu-
lations, the similarities between topologies do not seem to
be a simple coincidence. As seen in the sensitivity anal-
ysis, elements that contribute to the maximum structural
load are also responsible for the maximum energy dissipa-
tion within the body (Fig. 29).

Once again, a valuable comparison relates present opti-
mal design with that obtained with compliance formulation,
shown in Fig. 30. This design run with LA provides the
von Mises stress field displayed in Fig. 31. Despite that the
same essential topology is achieved, shape differences exist:
the collapse factor for the compliance formulation is 0.752,
67% of that achieved by the present approach.

7 Discussion

The set of tested examples brings encouraging results.Although
the numerical implementation is based on very simple and
old-fashioned procedure for design updating and filtering
technique, gradient information is powerful enough to
drive the problem to local minima with sound appealing
designs.

Fig. 30 Clamped beam. Density
field–compliance formulation

The first two examples are in fact test cases aiming to
evaluate the ability of the procedure to recover the expected
global minimum of the problem.

Special attention is deserved to the thick pressure vessel
example. The best design and corresponding plastic collapse
factor were indeed correctly identified. It is also verified
that the admissible pressure for an elastic analysis with a
maximum hoop stress σy is approximately 40% inferior to
that achievable with the collapse failure condition.

The third numerical case addresses a benchmark for stress-
constrained problems. As expected, no rounded corner designs
are obtained with the present approach since the stress concen-
trations disappear in the plastic collapse response. A com-
parison between optimal designs for LA and compliance
case was performed. As expected, the optimal design for
the compliance case provides a lower plastic collapse factor
(77%) of that achieved with present formulation.

Another interesting case is captured when shear loads
are applied in the Cantilever beam problem revealing some
tricky behaviors associated with plastic collapse. Even
though plastic collapse is a condition associated with the
whole structure, the lack of bearing capabilities is frequently
due to plastic flow in small local regions. In this particular
example, the load is applied in a manner that a plastic hinge
is formed locally and then the bearing capability of the
structure is globally lowered.

The fourth test explores the same cantilever solved with
different meshes and a new load condition, revealing the
expected change in design with increasing complexity for
finer meshes. Again, the local nature of plastic collapse
turns the problem plenty of local minima and therefore quite
dependent on the chosen minimization sequence.

The last test (clamped beam) resulted in a topology
much similar to that obtained by optimization procedures
that sought to maximize the energy absorption of structures
when loaded. From sensitivity analysis, it is verified that
regions with high-energy dissipation are also the main
responsible for maximizing the structural load, indicating a
possible similarity between the two formulations and opens
the subject to further investigations. A comparison between
LA and compliance optimal designs showed, once again,
that the former presents a higher plastic collapse factor than
the latter, as expected.
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Fig. 31 Clamped beam. von
Mises stress field–compliance
formulation

8 Conclusions

A procedure that looks for the design that maximizes the
load supported by an structure at its limit state of plas-
tic collapse was proposed. The mechanical problem is
described by a limit analysis formulation that, different from
classical incremental plasticity, allows a direct (and con-
sequently efficient) calculation of the collapse load factor.
Design optimization is formally stated as the maximiza-
tion of the collapse load factor subject to a fixed quantity
of available material. To this aim, a fictitious material den-
sity distribution, widely known as SIMP approach, is used.

Limit analysis, besides being an appealing approach
for the proposed task, provides appropriate mathematical
structure for sensitivity calculations. In the particular case of
the chosen objective function, it was shown that the solution
of the adjoint problem is identical to the update vector of
the Newton–Raphson procedure at the convergence of the
limit state. Consequently, gradient calculations reduce to
multiplicative array operations of already-available data.

In order to keep the implementation simple, a heuristic
element-by-element density updating algorithm aiming to
solve the optimality conditions is used. This procedure was
inspired by those applied in compliance linear problems and
makes use of conventional filtering techniques to preclude
checkerboard patterns.

A global evaluation of the obtained results suggests the
present formulation involving limit analysis as the physical
problem within topology optimal design is promising and
open for further investigations. Present work had a clear
choice for the most simple operational solutions for design
optimization and new, more efficient numerical techniques
may be tested, providing a design method for a wide range
of technological applications.

As a final conclusion, the results of the tested examples
support the argument that, despite having similar geome-
tries, optimal designs for the compliance problem provide
plastic collapse factors that are lower than those obtained
with the present formulation.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.
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Feijóo RA, Zouain N (1987) Variational formulations for rates and
increments in plasticity. 1st Int Cong on Comput Plast I:33–57
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